

1 A New Model for Single-Molecule Tracking Analysis

2 of Transcription Factor Dynamics

3 David A. Garcia^{1,2,7}, Gregory Fettweis^{1,7}, Diego M. Presman^{1,3,7}, Ville Paakinaho^{1,4},
4 Christopher Jarzynski^{2,5,6}, Arpita Upadhyaya^{2,6}, and Gordon L. Hager^{1,*}

5
6
7
8 ¹Laboratory of Gene Expression and Receptor Biology, National Cancer Institute,
9 National Institutes of Health, Bethesda, MD 20893, USA.

10
11 ²Department of Physics, University of Maryland, College Park, MD 20742, USA

12
13 ³IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas
14 y Naturales, Argentina

15
16 ⁴Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211
17 Kuopio, Finland.

18
19 ⁵Department of Chemistry, University of Maryland, College Park, MD 20742, USA

20
21 ⁶Institute for Physical Science and Technology, University of Maryland, College Park,
22 MD 20742, USA

23
24 ⁷ These authors contributed equally to this work

25 * Correspondence to: hagerg@exchange.nih.gov

26

27 **Running title:** Power-law behavior in transcription factor dynamics

28 **Keywords:** Transcription factor, glucocorticoid receptor, power-law, Bayesian Statistics,
29 chromatin, DNA binding, photobleaching, bi-exponential.

30 **Abstract**

31 Single-molecule tracking allows the study of transcription factor dynamics in the
32 nucleus, giving important information regarding the search and binding behavior of
33 these proteins with chromatin *in vivo*. However, these experiments suffer from
34 limitations due to photobleaching of the tracked protein and assumptions about the
35 exponential behavior required for data interpretation, potentially leading to serious
36 artifacts. Here, we developed an improved method to account for photobleaching
37 effects, theory-based models to accurately describe transcription factor dynamics, and
38 an unbiased model selection approach to determine the best predicting model. A new
39 biological interpretation of transcriptional regulation emerges from the proposed models
40 wherein transcription factor searching and binding on the DNA results in a broad
41 distribution of binding affinities and accounts for the power-law behavior of transcription
42 factor residence times.

43 **Introduction**

44 Transcription factors (TFs) are key regulatory proteins responsible for turning
45 genes “on” and “off” by binding to enhancer or promoter elements across the genome¹.
46 Fluorescence microscopy techniques have revolutionized our understanding of how TFs
47 search and interact with chromatin². Fluorescence recovery after photobleaching
48 (FRAP) in live-cell systems unveiled the dynamic nature of these proteins, in contrast to
49 the long-standing static model of TF-chromatin interactions³. The combined innovative
50 technological improvements in fluorophore brightness and stability⁴, optical set-ups to
51 increase the signal-to-noise ratio⁵, and camera speed and sensitivity now allow the

52 study of single-molecules at an unprecedent temporal and spatial resolution. Single-
53 molecule tracking (SMT) is a powerful technique that allows the characterization of
54 protein dynamics in single, live cells. It is based on detecting and following through time
55 the traces produced by the light emitted from a single fluorophore. When applied to the
56 study of TFs, important information regarding the search and binding dynamics of these
57 proteins can be extracted².

58 The SMT approach (**Fig. 1**) has now been applied for approximately two-dozen
59 TFs in a variety of cellular systems⁶. The current consensus, based on empirical
60 residence time distributions, describes TFs as able to transition between three different
61 states: 1) unbound from DNA (diffusing in the nucleus), 2) non-specifically bound and 3)
62 specifically bound to chromatin (i.e. interacting with specific response elements)⁷. This
63 three-population model is based on the observation that TFs can intermittently stop, and
64 then resume rapid diffusion^{8, 9}. Thus, the empirical residence time distribution of the
65 “stopped molecules” have been phenomenologically fitted to families of exponential
66 distributions¹⁰⁻¹⁹, with no underlying normative model for the origins of these
67 distributions⁸. Nevertheless, the bi-exponential fits to the distribution suggest that the
68 DNA-bound population of molecules includes two distinct subpopulations: a short-lived
69 fraction (‘fast stops’) and a longer-lived fraction (‘slow stops’). The slow fraction has
70 been hypothesized to represent specific binding events associated with enhancers or
71 promoters, while the fast fraction is hypothesized to represent non-specific binding to
72 chromatin^{11, 12, 15, 17}. Experiments wherein the DNA-binding domain of TFs has been
73 mutated are consistent with this hypothesis as the longer events were reported to be
74 dramatically reduced^{10, 12, 17, 18}.

75 Despite the technological advances in studying TF dynamics, a major remaining
76 limitation of the SMT approach is the relatively short fluorescence stability (or tendency
77 to photobleach) of any fluorophore dye. This makes it difficult to distinguish whether a
78 loss of signal is due to an unbinding event, drifting or photobleaching. Hence, careful
79 corrections must be performed to accurately estimate TF dynamics. Unfortunately,
80 photobleaching correction methods vary widely among research groups^{17, 20, 21} which
81 highlights the lack of a standard approach to overcome the photobleaching bias of SMT
82 strategies^{9, 12, 18, 22}.

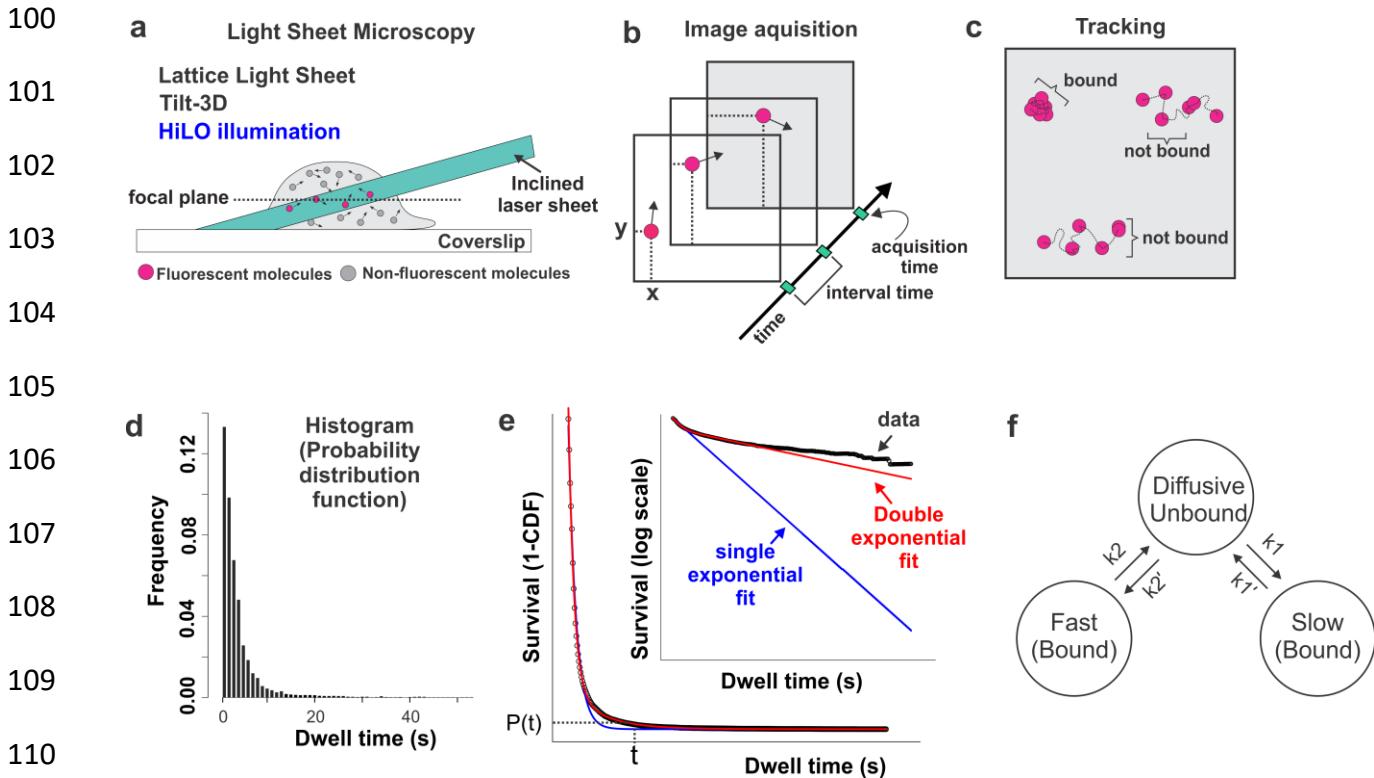
83 In this work, we propose a new and improved photobleaching correction method
84 that uses fluorescence dynamics of histones measured at the focal plane under precise
85 SMT acquisition conditions. We then use the glucocorticoid receptor (GR), a ligand
86 regulated transcription factor²³, as a model TF to validate and test the new
87 methodology. This approach unexpectedly reveals a novel, power-law behavior of GR
88 residence time distributions. We then derive theory-based models for TF dynamics and
89 a principled method to obtain optimal model parameters from empirical residence time
90 distributions, using Bayesian statistics. We show that a model of TF searching and
91 binding or a model of a nucleus with broad distribution of binding affinities accounts for
92 the power law behavior of GR residence times obtained after implementing the modified
93 photobleaching correction method. These models exhibit a broad effective distribution of
94 binding affinities, thus challenging the established model with two discrete, bound
95 populations.

96 **RESULTS**

97 **Photobleaching: a source of error in single-molecule tracking of TFs**

98 When tracking TFs at the single-molecule level, binding events can be observed

99 as stationary spots (Fig. 1a-c, Supplementary Video 1).



126 **Figure 1. The current SMT pipeline and interpretation of TF dynamics.** (a) A HiLO set-up is most
127 commonly implemented to increase signal-to-noise ratio (shown in panel). A laser beam is tilted and hits
128 the sample creating a thin illumination layer in the focal plane. Any light sheet microscope may be used.
(b) Several images are taken at specific yet variable acquisition and interval time conditions. (c) A
tracking algorithm is used to follow each individual molecule and classify them as either bound or
unbound. (d) From the bound population, a histogram is usually plotted which shows the frequency of TF
molecules that are bound for a specific time (dwell time). (e) Fitting of the data is performed on the
survival plot, which corresponds to 1-CDF, where CDF is the cumulative distribution function. This plot
represents the probability P that a molecule will last t number of time points, or longer. This distribution
has been phenomenologically fitted to either a single or a bi-exponential distribution. The better fit to a bi-
exponential function gave rise to the notion that two-distinct bound populations (fast and slow) exist. (f)
The current model states that TFs can be found in three different states: unbound from the DNA (diffusing
in the nucleus), specifically bound (slow stops), and non-specifically bound (fast stops). The latter can be
composed of TFs sliding and hopping on the DNA to facilitate searching of specific sites. Due to the
resolution limit, any transition between specific and non-specific bound states cannot be distinguished.

126

127 The experimental information recovered is the time the molecule “remains” visible

128 before it bleaches or moves out of the focal plane. From these observations, one can

129 obtain a local dwell time for TFs which is defined as the time interval between a single
130 molecule transitioning from a diffusive state to a bound state and its subsequent
131 unbinding from DNA. The definition of dwell time presented here differs of the one used
132 in the field (residence time) in that we are considering any process occurring in a point
133 spread function as a single observable binding event in the calculation of the dwell time
134 distribution, not just discrete binding states. The dwell time distribution is generated by
135 integrating the ensemble-averaged distribution of bound times (**Fig. 1d**,
136 **Supplementary Note 1.1**). Most often, a “survival” distribution, defined as 1-CDF,
137 where CDF is the empirical cumulative distribution function of dwell times, is used for
138 further analysis (**Fig. 1e**). This survival distribution is usually fit to a bi-exponential
139 distribution, interpreted as the “three population model” (i.e. diffusive, fast bound, slow
140 bound) illustrated in **Fig. 1f**.

141 The upper temporal limit in SMT experiments is ultimately determined by the
142 intrinsic photostability of the chosen fluorophore. When the affinity of bound TFs leads
143 to dwell times longer than the averaged photostability of their fluorescent dyes,
144 residence times cannot be resolved. Importantly, even when bound molecules have
145 relatively lower affinities, they will appear to have shorter experimental dwell times due
146 to photobleaching (PB) bias. To demonstrate this, we conducted single-molecule
147 imaging of the glucocorticoid receptor (GR), a ligand-dependent transcription factor²³,
148 tagged with HaloTag-Janelia Fluor 549 (JF₅₄₉)⁷. If we artificially modulate the PB
149 conditions by changing acquisition parameters (exposure time, interval time, laser
150 power), the resulting kymographs (**Supplementary Fig. 1**, **Supplementary Videos 1-4**)

151 appear to have originated from different TFs. Therefore, PB must be properly corrected
152 to prevent artifacts in the analysis of SMT data.

153 Currently, there is no consensus on the proper method to estimate PB rates. One
154 common approach is to simply count, frame-by-frame, the number of particles in the
155 focal plane and then fit the time-dependent number to a bi-exponential model^{8, 10, 11, 16,}
156 ¹⁷. However, this method underestimates the real PB that stably-bound proteins
157 undergo at the focal plane. The dwell time of diffusive (unbound) molecules is much
158 shorter than that of bound molecules (**Fig. 2a**) in the focal plane. Therefore, stably-
159 bound molecules will photobleach faster than diffusive particles. Moreover, the number
160 of particles in the focal plane will be heavily dominated by the diffusive component,
161 which will also distort PB rates derived from the fits.

162 Another strategy uses histones as a proxy for obtaining PB rates. Histones are a
163 good representation of stably-bound proteins because, after integration into chromatin,
164 they have a residence time much longer than the photostability of any currently
165 available organic fluorophore²⁴. Therefore, by measuring the residence time of histones,
166 we can obtain a direct representation of PB for particles in the focal plane, as the
167 disappearance of a long-lived particle will most likely represent a PB event. This method
168 is widely used in the SMT field^{12, 19, 21 13, 14, 25} but, as we will demonstrate below, it has
169 not been properly implemented. In current models, photobleaching kinetics are
170 characterized by an exponential parameter k_{his} and the slow component of a TF is
171 characterized by another exponential parameter k_{TF} (see **Supplementary Note 2** for
172 details). This rate k_{TF} is corrected for PB to give the “real residence time” (k_{TFreal}) of the
173 transcription factor by: $k_{TFreal} = k_{TF} - k_{his}$. However, the correction assumes that TF

174 kinetics come from an exponential family since PB kinetics is exponential. Therefore,
175 the parameter k_{TFreal} may emerge as an artifact of this assumption.

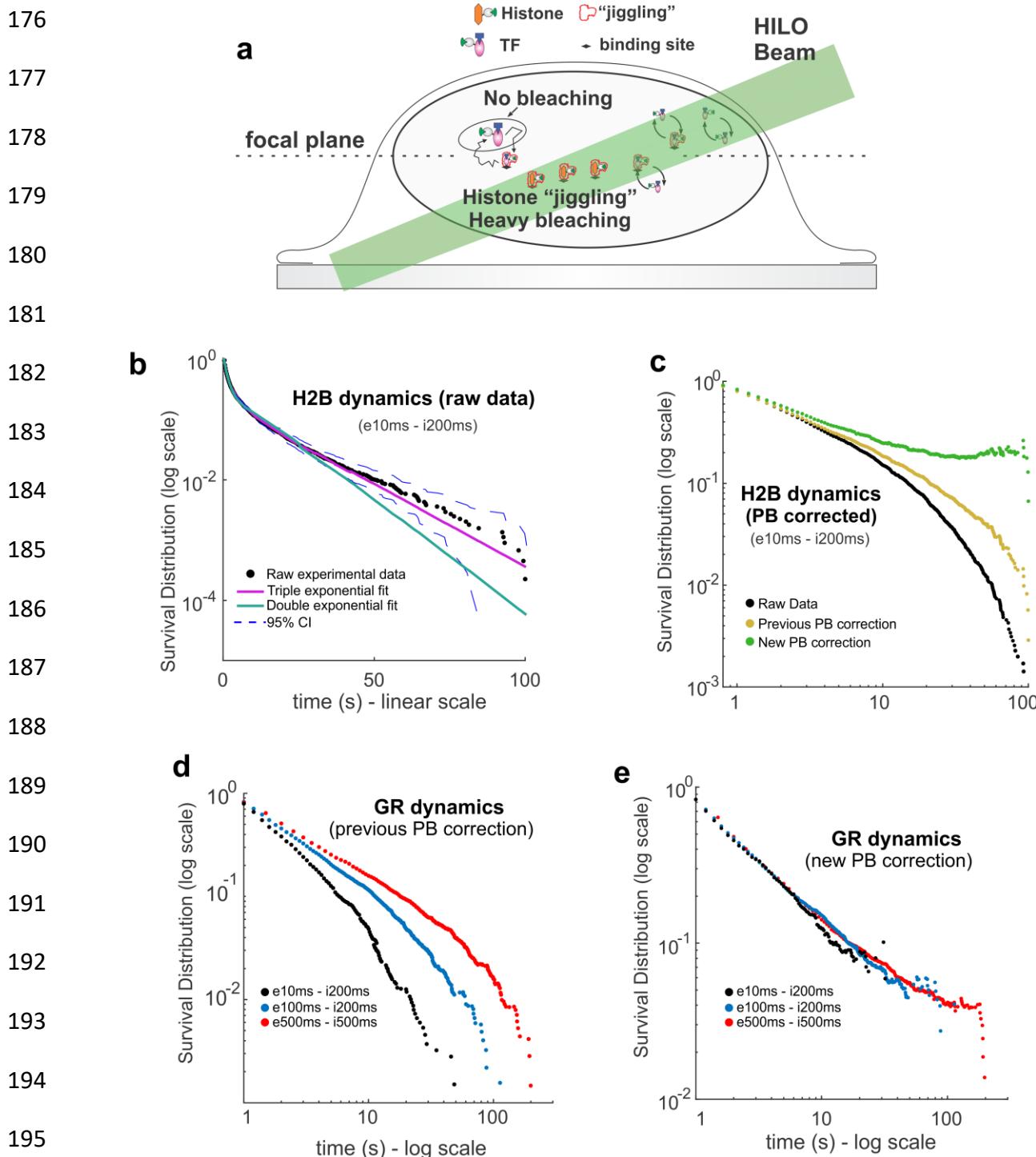


Figure 2. The new proposed photobleaching correction method. (a) TFs will not photobleach uniformly in the nucleus. A group of TFs stay bound in the focal plane until they bleach, another group stay bound in the focal plane for a short time and diffuse away from it, another group never enters the

199 focal plane and a final group diffuses through the focal plane. (b) Fit of H2B survival distribution to a
200 double exponential and triple exponential. A triple exponential better represents the experimental data
201 where the slower component corresponds to the photobleaching rate in the focal plane. (c) Raw data for
202 H2B survival distribution (black), previous correction using number of molecules decayed (yellow) which
203 shows that H2B after correction still have a finite dwell time. Upgraded photobleaching correction for
204 histone H2B representing two different regimes: stably incorporated histones that have a longer residence
205 time that photobleaching and a dynamic regime representing unincorporated histones nonspecifically
206 interacting in the nucleus. (d) Single-molecule tracking data of the glucocorticoid receptor (GR) activated
207 with corticosterone (Cort). GR acquired with different photobleaching kinetics and corrected using the
208 number of particles decayed in the focal plane (previous PB correction). (e) Same experimental data as
209 (d) but corrected using the upgraded photobleaching correction, showing similar dynamics independent of
210 photobleaching.
211

212 **Improving photobleaching correction**

213 We propose a new PB correction method also based on histone data as a proxy
214 of the fluorophore stability. A detailed derivation is described in **Supplementary Note 2**.
215 The main step involves SMT of histones under the same conditions that the TF of
216 interest will be imaged. We tracked individual H2B, H3 or H4 molecules using highly
217 inclined and laminated optical sheet (HiLO) illumination⁵ by sub-optimal transient
218 transfection of HaloTag-fused histones, labeled with JF₅₄₉ HaloTag ligand²⁶ (**see online**
219 **Methods**). The three histone variants we tested presented statistically similar dynamics
220 (**Supplementary Fig. 2a**). We continued with H2B for all further experiments.

221 Histone genes are primarily transcribed upon entry into S-phase of the cell
222 cycle²⁷. Due to our transient transfection approach, HaloTag-H2B proteins will be
223 translated during interphase and therefore some histones will not be incorporated into
224 chromatin at the time of acquisition (**Supplementary Video 5**). Hence, survival
225 distribution of H2B will be composed of PB kinetics and a diffusive/transient binding
226 component. To account for this behavior and assuming PB kinetics at the single-
227 molecule level is exponentially distributed, the survival distribution of H2B is fit to an
228 exponential family with three components (**Fig. 2b, Supplemental Note 2**). The faster

229 components characterize the dynamics of histones that have not been stably
230 incorporated into chromatin, while the third (slower) component describes the PB
231 kinetics of the fluorophore. To confirm that our method quantifies PB kinetics and not
232 intrinsic dynamics of the histone H2B, we calculated PB lifetimes using histones H3 and
233 H4 with the same statistical results (**Supplementary Fig. 2b**). Consequently, artificially
234 modifying PB kinetics (by changing acquisition conditions) modulates the H2B survival
235 distribution (**Supplementary Fig. 2c**) and, accordingly, the mean PB lifetimes
236 (**Supplementary Fig. 2d, Supplementary Videos 5-8**). This method for estimating PB
237 rates has some drawbacks when a non-uniform illumination in the focal plane is used
238 (as in HiLO microscopy), since the calculated rate corresponds to the average
239 fluorophore decay in the focal plane, which may differ slightly in each location⁷.

240 To test this new PB correction method, we first analyzed how histone data itself
241 changes after correction. Comparisons between H2B survival distribution with either our
242 previous correction methods (**Supplementary Fig. 2e**) or with no correction at all,
243 reveals a predictable upward shift of the distribution (**Fig. 2c**, compare yellow and black
244 datapoints). However, H2B data still artifactually resembles the dynamics of a TF with a
245 relatively short residence time. Conversely, if the newly proposed PB correction is used
246 (**Fig. 2c**, green datapoints), a plateau in survival probability appears, indicating that H2B
247 dwell times are now longer than those resulting from the photostability of the
248 fluorophore. The high fluctuations at the tail of the distribution are likely due to noise in
249 the data and the appearance of multiple particles within the point spread function
250 (**Supplementary Fig. 2f**). For reproducibility and reliability purposes, multiple biological
251 replicates are always taken, hence the ensemble average is used as the survival

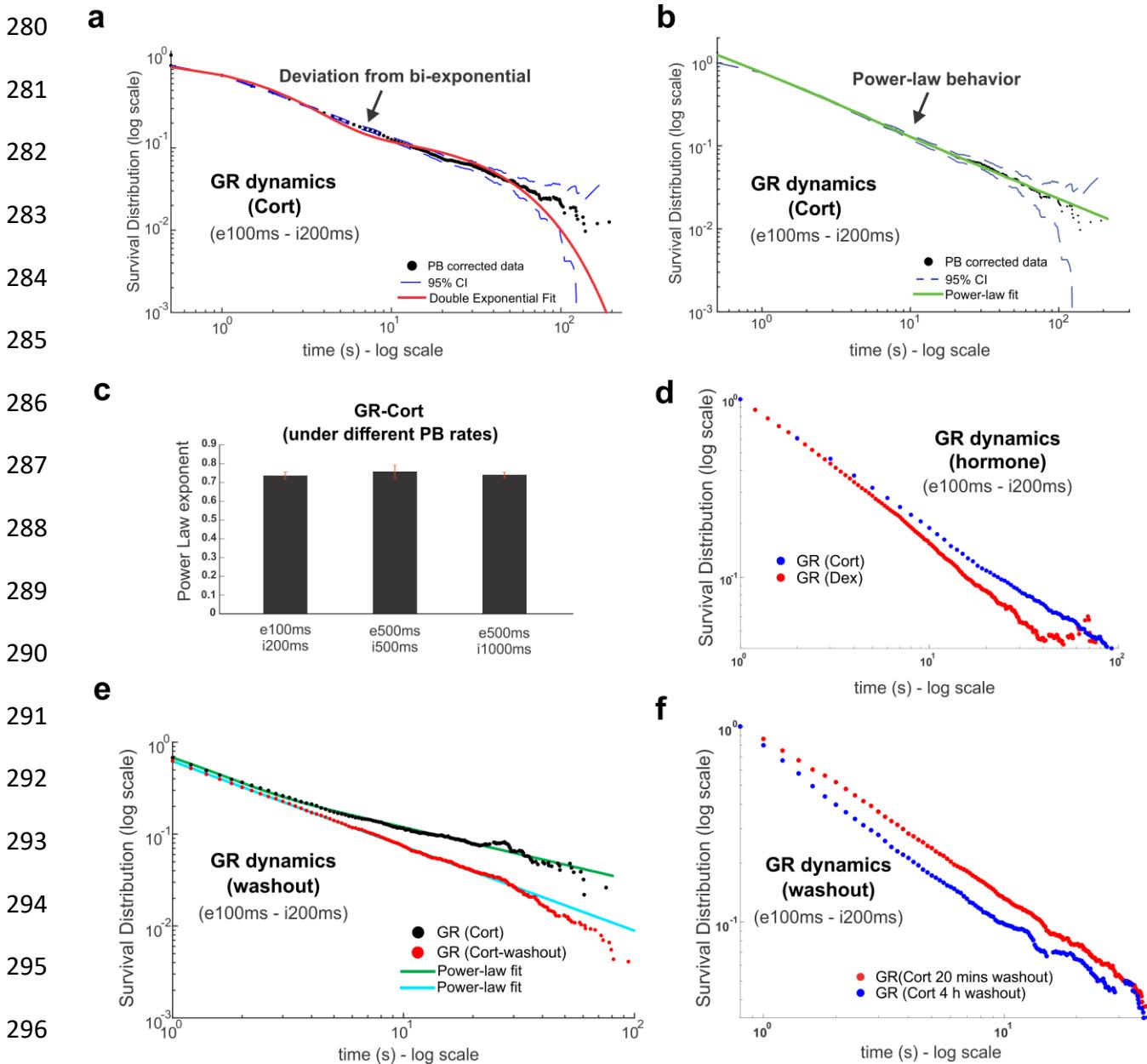
252 distribution for analysis (**Supplementary Fig. 2g**, all data). Even though the decay in
253 number of particles at the focal plane (previous method) could potentially be used to
254 correct for differences in laser illumination between replicates, we found that it makes
255 the data more heterogenous (c.f. **Supplementary Fig. 2h** and **2i**), suggesting this is not
256 a suitable measure for PB estimates.

257 Next, we apply our new PB correction to GR as a model TF. As with histones, we
258 transiently transfected 3617 cells with GR fused to HaloTag (HaloTag-GR), incubated
259 the cells with JF₅₄₉, and activated the receptor with its natural ligand, corticosterone
260 (Cort, 600 nM). We artificially varied the PB kinetics of the experiment by changing the
261 exposure time and laser power (**see Methods**). When the previous PB correction was
262 applied, GR survival curves show clear dependence on acquisition conditions (**Fig. 2d**),
263 illustrating the artifact produced by PB. Conversely, with the new PB correction, we can
264 now retrieve the same underlying distribution (**Fig. 2e**), independently of the acquisition
265 conditions.

266 **New photobleaching correction reveals power-law behavior of TF dynamics**

267 Surprisingly, after correcting for PB with the new method, GR's SMT data now
268 deviates clearly from a bi-exponential distribution (**Fig. 3a**). However, the data looks
269 strikingly linear in a log-log plot (**Fig. 3b**), which suggests a power-law behavior. A
270 similar distribution is observed upon GR activation with dexamethasone (Dex, 100 nM),
271 a more potent, synthetic hormone (**Supplementary Fig. 3a**). To rule out any artifacts
272 from acquisition conditions, SMT experiments for GR-Cort complexes were acquired at
273 different time intervals and exposure times (**Supplementary Fig. 3b-d**). Independent of
274 the sampling times, GR's survival distribution appears power-law distributed, with a

275 plateau in the tail due to a few molecules staying immobilized longer than the
 276 characteristic photobleaching time of the fluorophore (illustrated in **Supplementary Fig.**
 277 **2f**). An acquisition rate of 1000 ms allows the observation of the long-lived events in the
 278 tail of the power law distribution (**Supplementary Fig. 3d**, independent replicates are
 279 plotted as well to demonstrate reproducibility).



300 (c) Power law exponent of GR-Cort SMT data under different photobleaching rates, artificially generated
301 by modulation of acquisition conditions. (d) GR dynamics under Cort or dexamethasone (Dex) activation.
302 Power-law exponents of 0.71 +/- 0.05 and 0.81 +/- 0.01 respectively. The natural hormone exhibits longer
303 dwell times. (e) Comparison of GR dynamics under Cort or washout of the hormone, which inactivates the
304 TF. (f) GR dynamics under a standard 20 min or a more stringent 4h washout protocol.
305

306 A random variable t follows a power law²⁸ for $t > t_{min}$ if $f(t) = At^{-\beta}$, where A is
307 a constant and $\beta \in \mathbb{R}^+$ corresponds to the critical exponent, also known as the scaling
308 parameter. Power laws are heavy tailed (right-skewed) and β is a measure of this
309 skewness. Quantification of the critical exponent of the power-law shows that GR under
310 different acquisition conditions (i.e. under different PB rates) exhibits the same
311 dynamics (**Fig. 3c**). Surprisingly, GR activated with Cort shows an upward-shifted
312 (lower β) distribution compared to the more potent hormone dexamethasone (**Fig. 3d**),
313 suggesting longer residence times for the less potent ligand. These differences were not
314 apparent in previous studies^{10, 17} likely due to inaccurate PB correction and/or a partial
315 exploration of the dynamic range of the protein of interest in the SMT experiments.

316 Previous research has assumed that the dynamics of non-specific binding is well
317 described by a single exponential component with a much shorter dwell time than
318 specific binding^{8, 12, 17}. To understand the dynamics of non-specific binding, we
319 inactivated GR by washing out the hormone²⁹ for 20 minutes, which greatly reduces
320 specific binding measured by chromatin immunoprecipitation³⁰. Interestingly, GR still
321 exhibits power law behavior, although with shorter dwell times as indicated by an
322 increase in the power law exponent (**Fig. 3e**). While longer washouts (four hours) shows
323 further reduction in dwell times, GR still exhibits power-law dynamics (**Fig. 3f**,
324 **Supplementary Fig. 3e, Supplementary Video 9**). In conclusion, the new PB
325 correction method has a major impact on the *distribution* of TF residence times (power-

326 law instead of bi-exponential). This, in turn, questions the interpretation of specific and
327 non-specific binding as two distinct populations with discrete (and measurable)
328 residence times.

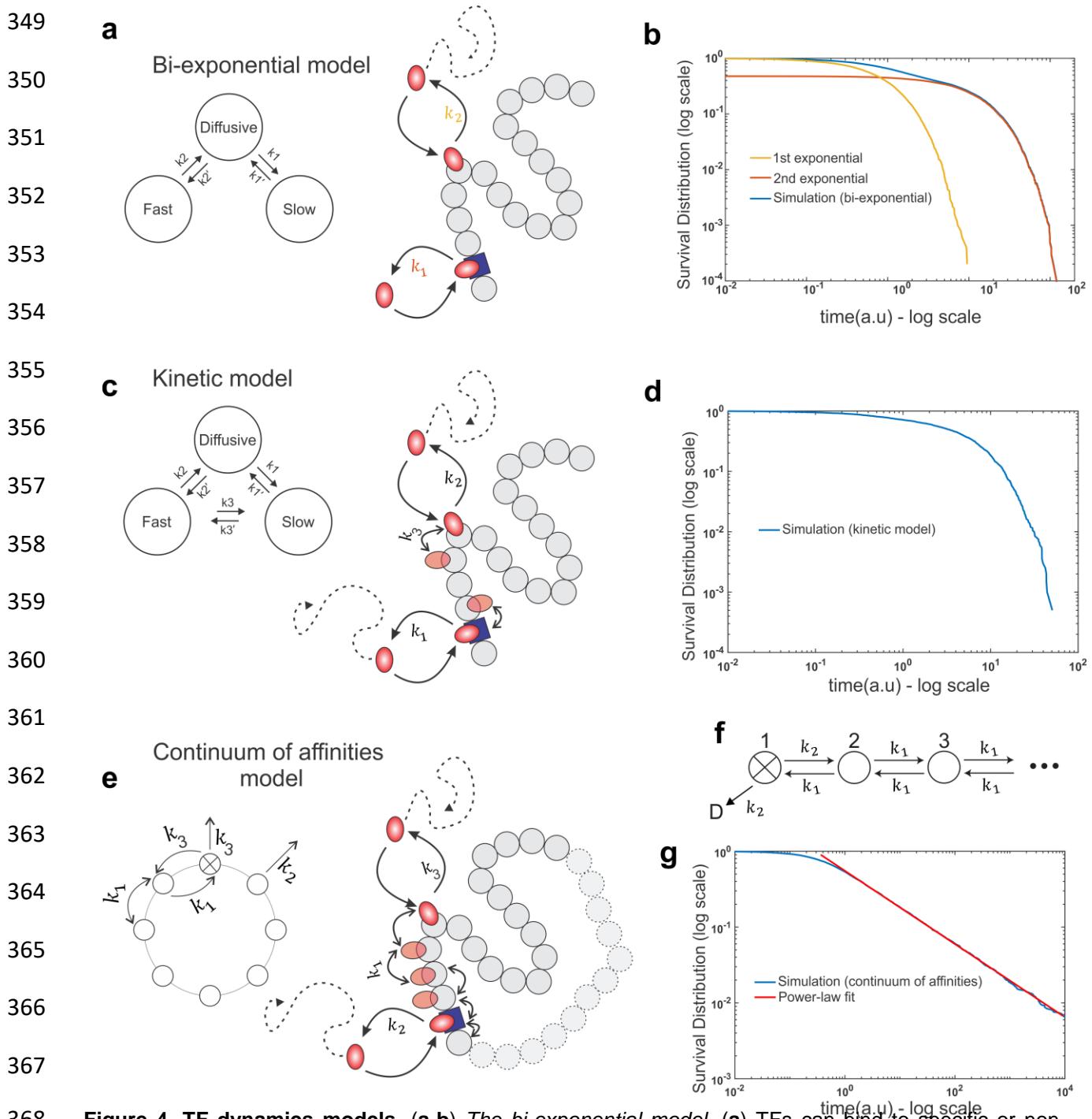
329

330 **Re-interpretation of SMT data: new models for TFs kinetics**

331 To better understand the link between TF binding and the observed residence
332 time distributions, we explored different theoretical models that may explain the
333 emergence of different behaviors in the survival distribution. Calculation of dwell time
334 distributions is a first-passage time problem in stochastic analysis and has been widely
335 used to characterize the kinetic properties of molecular motors and ion channels³¹.

336 When simple kinetic schemes are involved, dwell time distributions can be calculated
337 analytically. However, for more complex systems, other methods must be used. One
338 particularly powerful approach is to assign one or more states to “act” as an absorbing
339 boundary, and then solve the associated first-order kinetic equations to obtain dwell
340 time distributions³² (**Supplementary Note 1.1**). We assume that the diffusive state
341 (unbound) corresponds to an absorbing boundary state since tracked particles end with
342 such transitions. The single-molecule either photobleaches, disappears from the focal
343 plane or begins diffusing. Any rebinding of the TF is considered an independent event.

344 We first examined the widely used bi-exponential model under this framework
345 (**Fig. 4a**). According to this model, TFs can occupy three different states: diffusive, slow
346 and fast. The diffusive state plays the role of an absorbing boundary state (i.e. exit from
347 a bound state). In the current literature, it has been interpreted that the slow and fast
348 states correspond to specific and nonspecific binding, respectively³³.



377 Numerical simulation of (e) showing the emergence of power-law behavior (red line). See
378 **Supplementary Note 1** for details.
379

380 With this assumption of a well separated and narrow distribution of affinities, the
381 expected behavior of the survival distribution corresponds to a double exponential with
382 exponential parameters determining the average residence time of each state, as
383 confirmed with stochastic simulations (**Fig. 4b**) using the Gillespie algorithm³⁴.
384 Importantly, this model does not allow for transitions between fast and slow states. For
385 a complete derivation, see **Supplementary Note 1.2**.

386 We next extended the bi-exponential model to allow for transitions between the
387 slow and fast components (**Fig. 4c**). Due to the resolution limit (~30nm), any transitions
388 between specific and non-specific bound states cannot be distinguished. The resulting
389 survival distribution corresponds to a family of exponentials; we call this a *kinetic model*
390 (**Supplementary Note 1.3**). Simulations were performed as before, and the expected
391 distribution is displayed in **Fig. 4d**.

392 Finally, several theoretical studies have posited that TF search and “final” binding
393 to its cognate site on the DNA involves a combination of bulk diffusion in the nucleus,
394 1D sliding along the DNA, hopping and translocation, and theoretical search times for
395 the TF to find specific sites in this framework have been estimated³⁵⁻³⁷. In this model,
396 TFs will have a multiplicity of fast bound states that must be accounted for in the
397 analysis of dwell time data. To do so, we modeled TF movement on the DNA as
398 hopping on a circular chain composed of specific sites and non-specific sites (**Fig. 4e**).
399 The main assumption in our “*continuum of affinities*” model derivation (**Supplementary**
400 **Note 1.4**) is that the number of non-specific sites on the DNA is much larger than the
401 number of specific sites. This is a biologically reasonable assumption as only a few to

402 tens of thousands of specific sites are bound by any TF according to genome wide
403 studies³⁸, while the entire genome contains millions of “other” potential chromatin sites.
404 An analytical solution can be found for the simplest case where there is a single specific
405 binding site and the TF unbinds from the specific site (**Fig. 4f, Supplementary Note**
406 **1.4.3**). A simulation based on the model gives rise to asymptotic power law behavior at
407 time scales compatible with specific binding (**Fig. 4g**).

408 To test which model better represents the observed behavior of GR dynamics,
409 we used the Bayesian information criterion (BIC)³⁹ and Kolmogorov–Smirnov (KS) test
410 to choose the best-predicted model (**see Methods**). Clearly, power-law behavior
411 emerges as the best fit, as illustrated for both GR-Cort (**Supplementary Fig. 4a-c**) and
412 GR-Dex (**Supplementary Fig. 4d-f**) data. Interestingly, power law distributions have
413 infinite variance, which implies a finite probability of long-lived binding events. This
414 could imply that productive binding events may be rare with dwell times much longer
415 than previously appreciated, as indicated by the right-skewness of the distribution.
416 Another possibility corresponds to a wide distribution of binding affinities in the nucleus
417 due to heterogeneity in 1) binding affinities of individual response elements, and/or 2)
418 local nuclear microenvironment.

419 In summary, by incorporating an improved PB correction method, we discovered
420 that the survival distribution of GR dwell times does not follow a bi-exponential model. In
421 fact, the data follows a power-law distribution, which we can derive using two theoretical
422 models (**Supplementary Note 1.4-1.5**). Ultimately, if there is a way to define or
423 distinguish non-specific from specific binding, our results indicate that it cannot be
424 based on their global residence times. However, the slope of the residence time

425 distribution does provide an estimate of the overall affinity and can be used for
426 comparing TFs and their function under different conditions.

427

428 Discussion

429 In the present study, we describe a new photobleaching correction method to
430 prevent photobleaching-related bias of the dwell time distribution of TFs. This method is
431 based on histone SMT dynamics, used here as a proxy for photobleaching kinetics
432 within the focal plane (**Fig. 2**). When correcting H2B SMT data by itself with this new
433 approach, we showed that the survival distribution of H2B exhibits a “plateau” (**Fig. 2c**).
434 This indicates very slow dynamics for the core histone, much longer than our
435 experimental time scale, and is fully compatible with previously published FRAP data⁴⁰.
436 Additionally, we are now able to reconcile data acquired under different experimental
437 conditions (**Fig. 2d-e**) whereas previous attempts were not successful^{10, 20, 41, 42}.

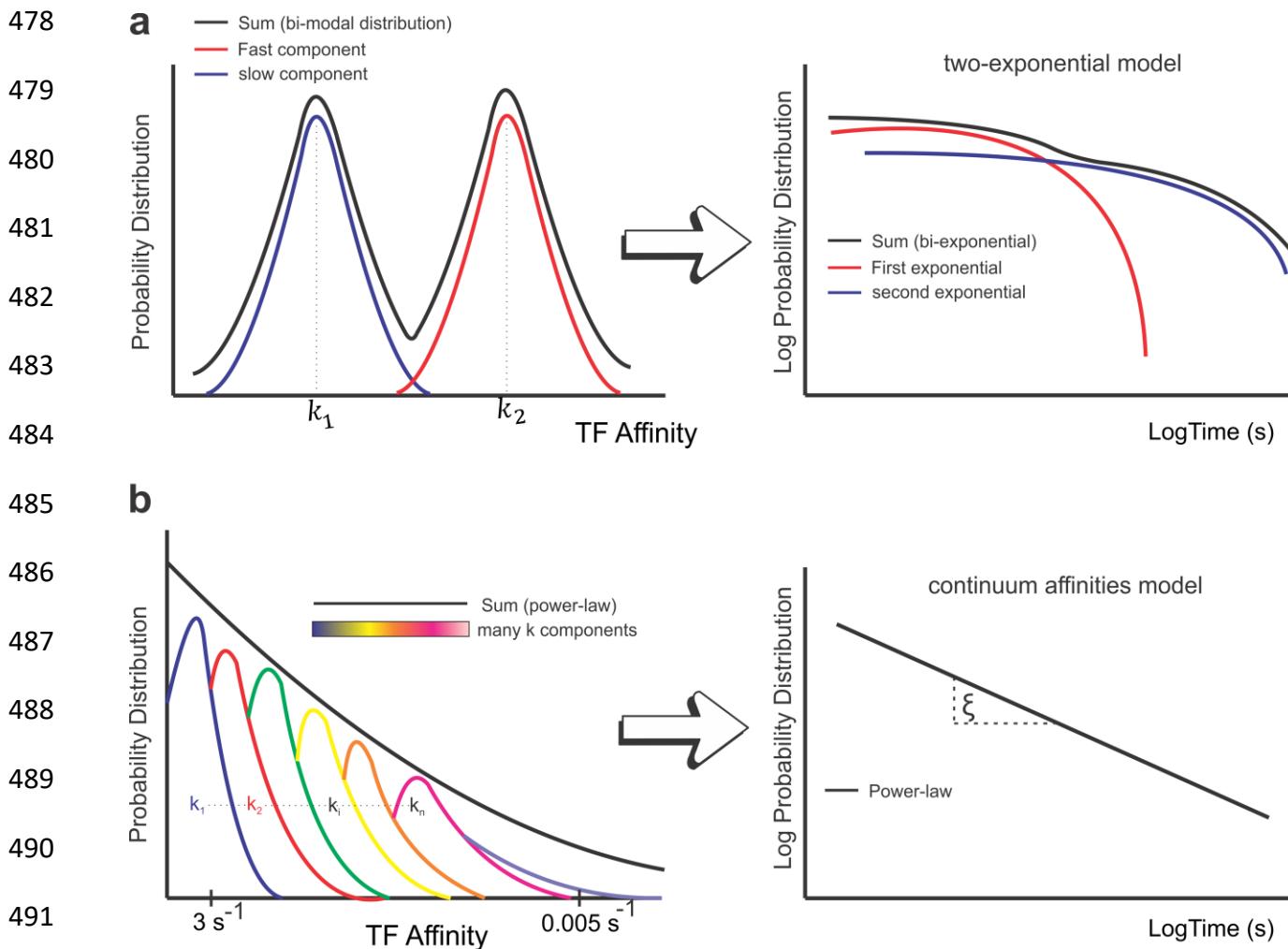
438 Given the current phenomenological interpretation of SMT data and the general
439 lack of a model-based approach in the field, we derived theory-based models in an
440 attempt to explain TF dynamics more accurately. We explored three different models:
441 the classic bi-exponential model, a kinetic three-state model and a power-law model
442 (**Fig. 4**). After correcting for photobleaching and implementation of Bayesian Information
443 Criterion, we could identify the best predictive model that explained the residence time
444 distribution of a paradigmatic TF, the GR. Surprisingly, the dwell time distribution of
445 activated-GR is best described by a power-law. Although a recent study corrected PB of
446 NF-κB dynamics by normalization with the H2B dwell time distribution, they still reported
447 exponential behavior of the TF⁴³. However, they did not consider alternative models and

448 the range of detected experimental dwell times is relatively short (maximum ~10 s),
449 which might have prevented observation (and verification) of asymptotic power law
450 behavior.

451 Our observation of power law behavior of GR residence times suggests a model
452 with a continuum of DNA-bound states rather than discrete non-specific/specific binding
453 of TFs. Consistent with this model, wash-out of the hormone (**Fig. 3e**) revealed that the
454 dwell time distribution also follows a power law, indicating no apparent dynamical
455 differences between the so-called specific and non-specific binding. Nevertheless, the
456 overall residence time decreases when the receptor is less active, suggesting that a
457 majority of the longer events observed with the fully activated receptor are associated
458 with productive transcription as previously reported^{8, 10, 12, 17, 43}. However, non-specific
459 binding can also result in TF binding events with long residence times, the implications
460 of which are still not known. Critical efforts are required to investigate whether the
461 slow(er) stops seen in SMT are matched exclusively to specific interactions with
462 chromatin. Alternatively, a sub-population of these “stops” could correspond to
463 microscopic regions in the nucleus where diffusion is severely impaired, or transient
464 interaction with “clustered” structures such as foci observed for GR⁴⁴, or another hitherto
465 unknown mechanism.

466 The broad distribution of affinities is puzzling but may be explained by
467 heterogeneity in the nuclear structure and chromatin environment. Targets for a
468 searching TF certainly exist in a wide variety of chromatin states (compacted fibers,
469 different nucleosome modification conditions, etc.). Also, affinities for the thousands of
470 alternative binding sites in response elements must vary significantly. Furthermore,

471 recent work points to the presence of transcriptional hubs and liquid-liquid phase
 472 separation domains⁴⁵ that contribute to the complexity of nuclear organization. If TFs
 473 exhibit different dynamical properties in these structures, it is not surprising to find a
 474 broad variation in binding affinities. The resulting broad distribution of binding affinities
 475 in these scenarios goes against the widely-held assumption that TF dynamics on
 476 chromatin results from well-separated and narrow distributions of specific and non-
 477 specific binding (**Fig. 5**).



497 affinities may explain the emergence of power law behavior (characterized by the exponent, ξ) in the
498 residence time of TFs (right graph).
499

500
501 Given the heterogeneities in local organization and nuclear structure, TF binding sites
502 on chromatin can be viewed as a collection of traps with a distribution of trap depths
503 (analogous to binding affinities). In such a finite disordered system, the distribution of
504 trapping times asymptotically approaches a power law^{46, 47} (**Fig. 5b, Supplementary**

505 **Note 1.5**)

506 Alternatively, but not mutually exclusive, heterogeneity in the searching
507 mechanism of TFs may affect the effective affinity constant observed in SMT
508 experiments. In support of the latter, the tetracycline repressor (TetR), a chimera
509 between a bacterial and a viral protein with no known endogenous targets in
510 mammalian cells, when used as a proxy to emulate TF dynamics, also showed power-
511 law behavior for “non-specific binding”^{48, 49}. However, it could still be described as an
512 exponential on an artificially (and single) specific DNA binding array⁴⁹. Thus, the intrinsic
513 nature of the searching mechanism of any DNA-binding protein may be governed by
514 power-law dynamics. In addition, the heterogeneity of dwell times in the thousands of
515 response elements for an endogenous TF could explain why GR can present power-law
516 tails as opposed to TetR, which can only bind to one artificial array site. Interestingly, a
517 recent study in yeast⁵⁰ reports that both the TF Ace1p and the chromatin remodeler
518 RSC binding follow a bi-exponential binding distribution in cells containing a natural
519 tandem of ten *CUP1* (Ace1p responsive) genes. This dynamic and discrete behavior, in
520 contrast with our GR data, can be explained by the particular and homogeneous
521 chromatin environment of single array of specific sites. Consequently, we speculate that

522 a broad distribution of binding affinities coming from a whole population of different
523 binding sites (thousands in the case of GR) may result in a power-law behavior (**Fig. 5**).
524 In summary, by the implementation of proper photobleaching kinetics, we reveal a new
525 model of TF dynamics. Our findings suggest that, contrary to the established paradigm,
526 TF dwell times follow a broad distribution with no evidence of binary, discrete
527 populations.

528

529 **Acknowledgments**

530 We thank Tatiana Karpova and David Ball from the Optical Microscopy Core at
531 the NCI, NIH for the assistance in imaging and data processing. We thank Luke Lavis
532 (Janelia Research Campus) for providing HALO dyes. We thank Kaustubh Wagh for
533 helpful discussions of the analytical results. This research was supported (in part) by the
534 Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer
535 Research. V.P. was supported, in part, by the Academy of Finland, the University of
536 Eastern Finland strategic funding and the Sigrid Jusélius Foundation. D.M.P was
537 supported, in part, by CONICET. A.U. acknowledges support from the NCI-UMD Cancer
538 Technology Partnership, and the awards NSF PHY 1607645, NSF PHY 1806903.

539 **Author Contributions**

540 D.A.G, G.F., D.M.P., and G.L.H. conceived the experiments and wrote the
541 original draft with subsequent input and editing from all authors. D.A.G, G.F., and
542 D.M.P. performed imaging experiments, analyzed data and prepared figures. V.P.
543 participated in the early stages of the project. D.A.G conceived and wrote in MATLAB®
544 the photobleaching correction method (with constant feedback from G.F and D.M.P.).

545 D.A.G and C.J. derived the theoretical models, performed the simulations, and
546 implemented the Bayesian statistical analysis. A.U. supervised data analysis, theoretical
547 models and participated in the manuscript preparation; G.L.H. supervised the project.

548 **Competing Interests statement**

549 The authors declare no competing interests

550 **References**

- 551 1. Lambert, S.A. et al. The Human Transcription Factors. *Cell* **172**, 650-665 (2018).
- 552 2. Liu, Z. & Tjian, R. Visualizing transcription factor dynamics in living cells. *J Cell*
553 *Biol* **217**, 1181-1191 (2018).
- 554 3. Coulon, A., Chow, C.C., Singer, R.H. & Larson, D.R. Eukaryotic transcriptional
555 dynamics: from single molecules to cell populations. *Nat Rev. Genet.* **14**, 572-584
556 (2013).
- 557 4. Grimm, J.B. et al. Bright photoactivatable fluorophores for single-molecule
558 imaging. *Nat Methods* **13**, 985-988 (2016).
- 559 5. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination
560 enables clear single-molecule imaging in cells. *Nat Methods* **5**, 159-161 (2008).
- 561 6. Goldstein, I. et al. Transcription factor assisted loading and enhancer dynamics
562 dictate the hepatic fasting response. *Genome Res* **27**, 427-439 (2017).
- 563 7. Presman, D.M. et al. Quantifying transcription factor dynamics at the single-
564 molecule level in live cells. *Methods* **123**, 76-88 (2017).
- 565 8. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J.G. A benchmark
566 for chromatin binding measurements in live cells. *Nucleic Acids Res* **40**, e119
567 (2012).
- 568 9. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-
569 search strategies of transcription factors in the nucleus. *Elife* **3**, e02230 (2014).
- 570 10. Paakinaho, V. et al. Single-molecule analysis of steroid receptor and cofactor
571 action in living cells. *Nat Commun* **8**, 15896 (2017).
- 572 11. Ball, D.A. et al. Single molecule tracking of Ace1p in *Saccharomyces cerevisiae*
573 defines a characteristic residence time for non-specific interactions of
574 transcription factors with chromatin. *Nucleic Acids Res* **44**, e160 (2016).
- 575 12. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in
576 embryonic stem cells. *Cell* **156**, 1274-1285 (2014).
- 577 13. Hansen, A.S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and
578 cohesin regulate chromatin loop stability with distinct dynamics. *Elife* **6** (2017).
- 579 14. Kieffer-Kwon, K.-R. et al. Myc regulates chromatin decompaction and nuclear
580 architecture during B cell activation. *Molecular Cell* **67**, 566-578.e510 (2017).

581 15. Kilic, S., Bachmann, A.L., Bryan, L.C. & Fierz, B. Multivalency governs HP1alpha
582 association dynamics with the silent chromatin state. *Nat Commun* **6**, 7313
583 (2015).

584 16. Loffreda, A. et al. Live-cell p53 single-molecule binding is modulated by C-
585 terminal acetylation and correlates with transcriptional activity. *Nat Commun* **8**,
586 313 (2017).

587 17. Morisaki, T., Muller, W.G., Golob, N., Mazza, D. & McNally, J.G. Single-molecule
588 analysis of transcription factor binding at transcription sites in live cells. *Nat
589 Commun.* **5**, 4456 (2014).

590 18. Sugo, N. et al. Single-Molecule Imaging Reveals Dynamics of CREB
591 Transcription Factor Bound to Its Target Sequence. *Sci Rep* **5**, 10662 (2015).

592 19. Zhen, C.Y. et al. Live-cell single-molecule tracking reveals co-recognition of
593 H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. *Elife* **5** (2016).

594 20. Gebhardt, J.C. et al. Single-molecule imaging of transcription factor binding to
595 DNA in live mammalian cells. *Nat Methods* **10**, 421-426 (2013).

596 21. Teves, S.S. et al. A dynamic mode of mitotic bookmarking by transcription
597 factors. *Elife* **5** (2016).

598 22. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. *Elife*.
599 **3**, e04236 (2014).

600 23. Presman, D.M. & Hager, G.L. More than meets the dimer: What is the quaternary
601 structure of the glucocorticoid receptor? *Transcription* **8**, 32-39 (2017).

602 24. Kimura, H. & Cook, P.R. Kinetics of core histones in living human cells: little
603 exchange of H3 and H4 and some rapid exchange of H2B. *J. Cell Biol.* **153**, 1341-
604 1353 (2001).

605 25. Hansen, A.S. et al. Robust model-based analysis of single-particle tracking
606 experiments with Spot-On. *Elife* **7** (2018).

607 26. Grimm, J.B. et al. A general method to improve fluorophores for live-cell and
608 single-molecule microscopy. *Nat Methods* **12**, 244-250 (2015).

609 27. Ewen, M.E. Where the cell cycle and histones meet. *Genes Dev* **14**, 2265-2270
610 (2000).

611 28. Newman, M.E.J. Power laws, Pareto distributions and Zipf's law. *Contemporary
612 Physics* **46**, 323-351 (2005).

613 29. Stavreva, D.A. et al. Ultradian hormone stimulation induces glucocorticoid
614 receptor-mediated pulses of gene transcription. *Nat. Cell Biol.* **11**, 1093-1102
615 (2009).

616 30. Stavreva, D.A. et al. Dynamics of chromatin accessibility and long-range
617 interactions in response to glucocorticoid pulsing. *Genome Res.* **25**, 845-857
618 (2015).

619 31. Liao, J.C., Spudich, J.A., Parker, D. & Delp, S.L. Extending the absorbing
620 boundary method to fit dwell-time distributions of molecular motors with complex
621 kinetic pathways. *Proc Natl Acad Sci U S A* **104**, 3171-3176 (2007).

622 32. Van Kampen, N.G. Stochastic processes in physics and chemistry, Vol. 1.
623 (Elsevier, 1992).

624 33. Goldstein, I. & Hager, G.L. Dynamic enhancer function in the chromatin context.
625 *Wiley interdisciplinary reviews. Systems biology and medicine* (2017).

626 34. Gillespie, D. Exact stochastic simulation of coupled chemical reactions. *J Phys
627 Chem* **81**, 2340-2361 (1977).

628 35. Bauer, M. & Metzler, R. Generalized facilitated diffusion model for DNA-binding
629 proteins with search and recognition states. *Biophys J* **102**, 2321-2330 (2012).

630 36. Berg, O.G. & Blomberg, C. Association kinetics with coupled diffusional flows.
631 Special application to the lac repressor--operator system. *Biophysical chemistry*
632 **4**, 367-381 (1976).

633 37. Marklund, E.G. et al. Transcription-factor binding and sliding on DNA studied
634 using micro- and macroscopic models. *Proc Natl Acad Sci U S A* **110**, 19796-
635 19801 (2013).

636 38. Wang, J. et al. Sequence features and chromatin structure around the genomic
637 regions bound by 119 human transcription factors. *Genome Res.* **22**, 1798-1812
638 (2012).

639 39. Schwarz, G. Estimating the dimension of a model. *Ann Stat.* **6**, 461-464 (1978).

640 40. Kimura, H. Histone dynamics in living cells revealed by photobleaching. *DNA
641 repair* **4**, 939-950 (2005).

642 41. Agarwal, H., Reisser, M., Wortmann, C. & Gebhardt, J.C.M. Direct Observation
643 of Cell-Cycle-Dependent Interactions between CTCF and Chromatin. *Biophys J*
644 **112**, 2051-2055 (2017).

645 42. Clauss, K. et al. DNA residence time is a regulatory factor of transcription
646 repression. *Nucleic Acids Res* **45**, 11121-11130 (2017).

647 43. Callegari, A. et al. Single-molecule dynamics and genome-wide transcriptomics
648 reveal that NF- κ B (p65)-DNA binding times can be decoupled from transcriptional
649 activation. *PLoS Genet* **15**, e1007891 (2019).

650 44. Stortz, M. et al. Mapping the Dynamics of the Glucocorticoid Receptor within the
651 Nuclear Landscape. *Sci Rep* **7**, 6219 (2017).

652 45. Hnisz, D., Shrinivas, K., Young, R.A., Chakraborty, A.K. & Sharp, P.A. A Phase
653 Separation Model for Transcriptional Control. *Cell* **169**, 13-23 (2017).

654 46. Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media:
655 Statistical mechanisms, models and physical applications. *Physics Reports* **195**,
656 127-293 (1990).

657 47. J., B. Weak ergodicity breaking and aging in disordered systems. *Journal de
658 Physique I* **2**, 1705-1713 (1992).

659 48. Caccianini, L., Normanno, D., Izeddin, I. & Dahan, M. Single molecule study of
660 non-specific binding kinetics of LacI in mammalian cells. *Faraday discussions*
661 **184**, 393-400 (2015).

662 49. Normanno, D. et al. Probing the target search of DNA-binding proteins in
663 mammalian cells using TetR as model searcher. *Nat Commun* **6**, 7357 (2015).

664 50. Mehta, G.D. et al. Single-Molecule Analysis Reveals Linked Cycles of RSC
665 Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. *Mol
666 Cell* **72**, 875-887.e879 (2018).