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Abstract

Single-molecule tracking allows the study of transcription factor dynamics in the
nucleus, giving important information regarding the search and binding behavior of
these proteins with chromatin in vivo. However, these experiments suffer from
limitations due to photobleaching of the tracked protein and assumptions about the
exponential behavior required for data interpretation, potentially leading to serious
artifacts. Here, we developed an improved method to account for photobleaching
effects, theory-based models to accurately describe transcription factor dynamics, and
an unbiased model selection approach to determine the best predicting model. A new
biological interpretation of transcriptional regulation emerges from the proposed models
wherein transcription factor searching and binding on the DNA results in a broad
distribution of binding affinities and accounts for the power-law behavior of transcription

factor residence times.

Introduction

Transcription factors (TFs) are key regulatory proteins responsible for turning
genes “on” and “off” by binding to enhancer or promoter elements across the genome?.
Fluorescence microscopy techniques have revolutionized our understanding of how TFs
search and interact with chromatin?. Fluorescence recovery after photobleaching
(FRAP) in live-cell systems unveiled the dynamic nature of these proteins, in contrast to
the long-standing static model of TF-chromatin interactions®. The combined innovative
technological improvements in fluorophore brightness and stability*, optical set-ups to

increase the signal-to-noise ratio®, and camera speed and sensitivity now allow the
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study of single-molecules at an unprecedent temporal and spatial resolution. Single-
molecule tracking (SMT) is a powerful technique that allows the characterization of
protein dynamics in single, live cells. It is based on detecting and following through time
the traces produced by the light emitted from a single fluorophore. When applied to the
study of TFs, important information regarding the search and binding dynamics of these
proteins can be extracted?.

The SMT approach (Fig. 1) has now been applied for approximately two-dozen
TFs in a variety of cellular systems®. The current consensus, based on empirical
residence time distributions, describes TFs as able to transition between three different
states: 1) unbound from DNA (diffusing in the nucleus), 2) non-specifically bound and 3)
specifically bound to chromatin (i.e. interacting with specific response elements)’. This
three-population model is based on the observation that TFs can intermittently stop, and
then resume rapid diffusion® °. Thus, the empirical residence time distribution of the
“stopped molecules” have been phenomenologically fitted to families of exponential
distributions%-19, with no underlying normative model for the origins of these
distributions®. Nevertheless, the bi-exponential fits to the distribution suggest that the
DNA-bound population of molecules includes two distinct subpopulations: a short-lived
fraction (‘fast stops’) and a longer-lived fraction (‘slow stops’). The slow fraction has
been hypothesized to represent specific binding events associated with enhancers or
promoters, while the fast fraction is hypothesized to represent non-specific binding to
chromatin?t 12,15, 17 Experiments wherein the DNA-binding domain of TFs has been
mutated are consistent with this hypothesis as the longer events were reported to be

dramatically reduced?? 1217, 18,
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Despite the technological advances in studying TF dynamics, a major remaining
limitation of the SMT approach is the relatively short fluorescence stability (or tendency
to photobleach) of any fluorophore dye. This makes it difficult to distinguish whether a
loss of signal is due to an unbinding event, drifting or photobleaching. Hence, careful
corrections must be performed to accurately estimate TF dynamics. Unfortunately,
photobleaching correction methods vary widely among research groups?'’: 202X which
highlights the lack of a standard approach to overcome the photobleaching bias of SMT
strategies® 12 18 22,

In this work, we propose a new and improved photobleaching correction method
that uses fluorescence dynamics of histones measured at the focal plane under precise
SMT acquisition conditions. We then use the glucocorticoid receptor (GR), a ligand
regulated transcription factor??, as a model TF to validate and test the new
methodology. This approach unexpectedly reveals a novel, power-law behavior of GR
residence time distributions. We then derive theory-based models for TF dynamics and
a principled method to obtain optimal model parameters from empirical residence time
distributions, using Bayesian statistics. We show that a model of TF searching and
binding or a model of a nucleus with broad distribution of binding affinities accounts for
the power law behavior of GR residence times obtained after implementing the modified
photobleaching correction method. These models exhibit a broad effective distribution of
binding affinities, thus challenging the established model with two discrete, bound

populations.
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96 RESULTS
97 Photobleaching: a source of error in single-molecule tracking of TFs
98 When tracking TFs at the single-molecule level, binding events can be observed

99 as stationary spots (Fig. la-c, Supplementary Video 1).
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111 Figure 1. The current SMT pipeline and interpretation of TF dynamics. (a) A HIiLO set-up is most
112 commonly implemented to increase signal-to-noise ratio (shown in panel). A laser beam is tilted and hits
113 the sample creating a thin illumination layer in the focal plane. Any light sheet microscope may be used.
114 (b) Several images are taken at specific yet variable acquisition and interval time conditions. (c) A
115 tracking algorithm is used to follow each individual molecule and classify them as either bound or
116 unbound. (d) From the bound population, a histogram is usually plotted which shows the frequency of TF
117 molecules that are bound for a specific time (dwell time). (e) Fitting of the data is performed on the
118  survival plot, which corresponds to 1-CDF, where CDF is the cumulative distribution function. This plot
119 represents the probability P that a molecule will last t number of time points, or longer. This distribution
120 has been phenomenologically fitted to either a single or a bi-exponential distribution. The better fit to a bi-
121 exponential function gave rise to the notion that two-distinct bound populations (fast and slow) exist. (f)
122 The current model states that TFs can be found in three different states: unbound from the DNA (diffusing
123 in the nucleus), specifically bound (slow stops), and non-specifically bound (fast stops). The latter can be
124 composed of TFs sliding and hopping on the DNA to facilitate searching of specific sites. Due to the
125 resolution limit, any transition between specific and non-specific bound states cannot be distinguished.

126
127  The experimental information recovered is the time the molecule “remains” visible

128 before it bleaches or moves out of the focal plane. From these observations, one can
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129  obtain a local dwell time for TFs which is defined as the time interval between a single
130  molecule transitioning from a diffusive state to a bound state and its subsequent

131 unbinding from DNA. The definition of dwell time presented here differs of the one used
132 in the field (residence time) in that we are considering any process occurring in a point
133 spread function as a single observable binding event in the calculation of the dwell time
134  distribution, not just discrete binding states. The dwell time distribution is generated by
135 integrating the ensemble-averaged distribution of bound times (Fig. 1d,

136  Supplementary Note 1.1). Most often, a “survival” distribution, defined as 1-CDF,

137  where CDF is the empirical cumulative distribution function of dwell times, is used for
138  further analysis (Fig. 1e). This survival distribution is usually fit to a bi-exponential

139  distribution, interpreted as the “three population model” (i.e. diffusive, fast bound, slow
140  bound) illustrated in Fig. 1f.

141 The upper temporal limit in SMT experiments is ultimately determined by the
142  intrinsic photostability of the chosen fluorophore. When the affinity of bound TFs leads
143  to dwell times longer than the averaged photostability of their fluorescent dyes,

144  residence times cannot be resolved. Importantly, even when bound molecules have
145  relatively lower affinities, they will appear to have shorter experimental dwell times due
146  to photobleaching (PB) bias. To demonstrate this, we conducted single-molecule

147  imaging of the glucocorticoid receptor (GR), a ligand-dependent transcription factor?,
148  tagged with HaloTag-Janelia Fluor 549 (JFs49)’. If we artificially modulate the PB

149  conditions by changing acquisition parameters (exposure time, interval time, laser

150 power), the resulting kymographs (Supplementary Fig. 1, Supplementary Videos 1-4)
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151 appear to have originated from different TFs. Therefore, PB must be properly corrected
152  to prevent artifacts in the analysis of SMT data.

153 Currently, there is no consensus on the proper method to estimate PB rates. One
154 common approach is to simply count, frame-by-frame, the number of particles in the

155  focal plane and then fit the time-dependent number to a bi-exponential model® 10 11. 16,
156 7. However, this method underestimates the real PB that stably-bound proteins

157  undergo at the focal plane. The dwell time of diffusive (unbound) molecules is much

158  shorter than that of bound molecules (Fig. 2a) in the focal plane. Therefore, stably-

159  bound molecules will photobleach faster than diffusive particles. Moreover, the number
160 of particles in the focal plane will be heavily dominated by the diffusive component,

161  which will also distort PB rates derived from the fits.

162 Another strategy uses histones as a proxy for obtaining PB rates. Histones are a
163  good representation of stably-bound proteins because, after integration into chromatin,
164 they have a residence time much longer than the photostability of any currently

165 available organic fluorophore?*. Therefore, by measuring the residence time of histones,
166  we can obtain a direct representation of PB for particles in the focal plane, as the

167 disappearance of a long-lived particle will most likely represent a PB event. This method
168 is widely used in the SMT field!2 1921 13,1425 hyt, as we will demonstrate below, it has
169  not been properly implemented. In current models, photobleaching kinetics are

170 characterized by an exponential parameter k;;; and the slow component of a TF is

171 characterized by another exponential parameter k;r (see Supplementary Note 2 for
172  details). This rate kp is corrected for PB to give the “real residence time” (krpreq:) Of the

173  transcription factor by: kypreqr = krr — knis. HOwever, the correction assumes that TF
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174  kinetics come from an exponential family since PB kinetics is exponential. Therefore,
175 the parameter k;proq; May emerge as an artifact of this assumption.
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196 Figure 2. The new proposed photobleaching correction method. (a) TFs will not photobleach
197 uniformly in the nucleus. A group of TFs stay bound in the focal plane until they bleach, another group
198 stay bound in the focal plane for a short time and diffuse away from it, another group never enters the

8
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199 focal plane and a final group diffuses through the focal plane. (b) Fit of H2B survival distribution to a
200 double exponential and triple exponential. A triple exponential better represents the experimental data
201  where the slower component corresponds to the photobleaching rate in the focal plane. (¢) Raw data for
202 H2B survival distribution (black), previous correction using humber of molecules decayed (yellow) which
203 shows that H2B after correction still have a finite dwell time. Upgraded photobleaching correction for
204 histone H2B representing two different regimes: stably incorporated histones that have a longer residence
205 time that photobleaching and a dynamic regime representing unincorporated histones nonspecifically
206 interacting in the nucleus. (d) Single-molecule tracking data of the glucocorticoid receptor (GR) activated
207  with corticosterone (Cort). GR acquired with different photobleaching kinetics and corrected using the
208 number of particles decayed in the focal plane (previous PB correction). (e) Same experimental data as
209  (d) but corrected using the upgraded photobleaching correction, showing similar dynamics independent of
210  photobleaching.

211

212 Improving photobleaching correction

213 We propose a new PB correction method also based on histone data as a proxy
214  of the fluorophore stability. A detailed derivation is described in Supplementary Note 2.
215  The main step involves SMT of histones under the same conditions that the TF of

216 interest will be imaged. We tracked individual H2B, H3 or H4 molecules using highly
217 inclined and laminated optical sheet (HiLO) illumination® by sub-optimal transient

218 transfection of HaloTag-fused histones, labeled with JFs49 HaloTag ligand?® (see online
219 Methods). The three histone variants we tested presented statistically similar dynamics
220 (Supplementary Fig. 2a). We continued with H2B for all further experiments.

221 Histone genes are primarily transcribed upon entry into S-phase of the cell

222 cycle?’. Due to our transient transfection approach, HaloTag-H2B proteins will be

223  translated during interphase and therefore some histones will not be incorporated into
224 chromatin at the time of acquisition (Supplementary Video 5). Hence, survival

225  distribution of H2B will be composed of PB kinetics and a diffusive/transient binding

226 component. To account for this behavior and assuming PB kinetics at the single-

227  molecule level is exponentially distributed, the survival distribution of H2B is fit to an

228  exponential family with three components (Fig. 2b, Supplemental Note 2). The faster
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229 components characterize the dynamics of histones that have not been stably

230 incorporated into chromatin, while the third (slower) component describes the PB

231  kinetics of the fluorophore. To confirm that our method quantifies PB kinetics and not
232 intrinsic dynamics of the histone H2B, we calculated PB lifetimes using histones H3 and
233  H4 with the same statistical results (Supplementary Fig. 2b). Consequently, artificially
234  modifying PB kinetics (by changing acquisition conditions) modulates the H2B survival
235 distribution (Supplementary Fig. 2c) and, accordingly, the mean PB lifetimes

236  (Supplementary Fig. 2d, Supplementary Videos 5-8). This method for estimating PB
237 rates has some drawbacks when a non-uniform illumination in the focal plane is used
238 (as in HiLO microscopy), since the calculated rate corresponds to the average

239 fluorophore decay in the focal plane, which may differ slightly in each location’.

240 To test this new PB correction method, we first analyzed how histone data itself
241  changes after correction. Comparisons between H2B survival distribution with either our
242  previous correction methods (Supplementary Fig. 2e) or with no correction at all,

243  reveals a predictable upward shift of the distribution (Fig. 2c, compare yellow and black
244  datapoints). However, H2B data still artifactually resembles the dynamics of a TF with a
245  relatively short residence time. Conversely, if the newly proposed PB correction is used
246  (Fig. 2c, green datapoints), a plateau in survival probability appears, indicating that H2B
247  dwell times are now longer than those resulting from the photostability of the

248 fluorophore. The high fluctuations at the tail of the distribution are likely due to noise in
249 the data and the appearance of multiple particles within the point spread function

250 (Supplementary Fig. 2f). For reproducibility and reliability purposes, multiple biological

251 replicates are always taken, hence the ensemble average is used as the survival

10
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252  distribution for analysis (Supplementary Fig. 29, all data). Even though the decay in
253  number of particles at the focal plane (previous method) could potentially be used to
254  correct for differences in laser illumination between replicates, we found that it makes
255 the data more heterogenous (c.f. Supplementary Fig. 2h and 2i), suggesting this is not
256  a suitable measure for PB estimates.

257 Next, we apply our new PB correction to GR as a model TF. As with histones, we
258 transiently transfected 3617 cells with GR fused to HaloTag (HaloTag-GR), incubated
259 the cells with JFs49, and activated the receptor with its natural ligand, corticosterone

260 (Cort, 600 nM). We artificially varied the PB kinetics of the experiment by changing the
261  exposure time and laser power (see Methods). When the previous PB correction was
262  applied, GR survival curves show clear dependence on acquisition conditions (Fig. 2d),
263 illustrating the artifact produced by PB. Conversely, with the new PB correction, we can
264  now retrieve the same underlying distribution (Fig. 2e), independently of the acquisition
265  conditions.

266 New photobleaching correction reveals power-law behavior of TF dynamics

267 Surprisingly, after correcting for PB with the new method, GR’s SMT data now
268 deviates clearly from a bi-exponential distribution (Fig. 3a). However, the data looks
269  strikingly linear in a log-log plot (Fig. 3b), which suggests a power-law behavior. A

270  similar distribution is observed upon GR activation with dexamethasone (Dex, 100 nM),
271  a more potent, synthetic hormone (Supplementary Fig. 3a). To rule out any artifacts
272 from acquisition conditions, SMT experiments for GR-Cort complexes were acquired at
273  different time intervals and exposure times (Supplementary Fig. 3b-d). Independent of

274  the sampling times, GR’s survival distribution appears power-law distributed, with a

11
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275 plateau in the tail due to a few molecules staying immobilized longer than the

276  characteristic photobleaching time of the fluorophore (illustrated in Supplementary Fig.
277  2f). An acquisition rate of 1000 ms allows the observation of the long-lived events in the
278 tail of the power law distribution (Supplementary Fig. 3d, independent replicates are

279  plotted as well to demonstrate reproducibility).
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297 Figure 3. Impact of photobleaching correction on GR dynamics. (a-b) Single-molecule tracking data
298 of GR activated with corticosterone (Cort). Data was acquired at 100 ms exposure time (e100ms) in 5Hz
299 interval (i200ms). The survival distribution is shown, fitted to either a bi-exponential (a) or a power-law (b).
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300 (c) Power law exponent of GR-Cort SMT data under different photobleaching rates, artificially generated
301 by modulation of acquisition conditions. (d) GR dynamics under Cort or dexamethasone (Dex) activation.
302 Power-law exponents of 0.71 +/- 0.05 and 0.81 +/- 0.01 respectively. The natural hormone exhibits longer
303 dwell times. (e) Comparison of GR dynamics under Cort or washout of the hormone, which inactivates the
304 TF. (f) GR dynamics under a standard 20 min or a more stringent 4h washout protocol.

305

306 A random variable t follows a power law?8 for t > t,,;, if f(t) = At™P, where A is
307 aconstant and f € R* corresponds to the critical exponent, also known as the scaling
308 parameter. Power laws are heavy tailed (right-skewed) and g is a measure of this

309 skewness. Quantification of the critical exponent of the power-law shows that GR under
310 different acquisition conditions (i.e. under different PB rates) exhibits the same

311 dynamics (Fig. 3c). Surprisingly, GR activated with Cort shows an upward-shifted

312 (lower B) distribution compared to the more potent hormone dexamethasone (Fig. 3d),
313  suggesting longer residence times for the less potent ligand. These differences were not
314 apparent in previous studies'® 7 likely due to inaccurate PB correction and/or a partial
315 exploration of the dynamic range of the protein of interest in the SMT experiments.

316 Previous research has assumed that the dynamics of non-specific binding is well
317 described by a single exponential component with a much shorter dwell time than

318 specific binding® % 7. To understand the dynamics of non-specific binding, we

319 inactivated GR by washing out the hormone?° for 20 minutes, which greatly reduces

320 specific binding measured by chromatin immunoprecipitation®°. Interestingly, GR still
321  exhibits power law behavior, although with shorter dwell times as indicated by an

322 increase in the power law exponent (Fig. 3e). While longer washouts (four hours) shows
323  further reduction in dwell times, GR still exhibits power-law dynamics (Fig. 3f,

324  Supplementary Fig. 3e, Supplementary Video 9). In conclusion, the new PB

325 correction method has a major impact on the distribution of TF residence times (power-
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326 law instead of bi-exponential). This, in turn, questions the interpretation of specific and
327 non-specific binding as two distinct populations with discrete (and measurable)

328 residence times.

329

330 Re-interpretation of SMT data: new models for TFs kinetics

331 To better understand the link between TF binding and the observed residence
332 time distributions, we explored different theoretical models that may explain the

333 emergence of different behaviors in the survival distribution. Calculation of dwell time
334 distributions is a first-passage time problem in stochastic analysis and has been widely
335 used to characterize the kinetic properties of molecular motors and ion channels3.

336 When simple kinetic schemes are involved, dwell time distributions can be calculated
337 analytically. However, for more complex systems, other methods must be used. One
338 particularly powerful approach is to assign one or more states to “act” as an absorbing
339 boundary, and then solve the associated first-order kinetic equations to obtain dwell
340 time distributions®? (Supplementary Note 1.1). We assume that the diffusive state

341 (unbound) corresponds to an absorbing boundary state since tracked particles end with
342  such transitions. The single-molecule either photobleaches, disappears from the focal
343  plane or begins diffusing. Any rebinding of the TF is considered an independent event.
344 We first examined the widely used bi-exponential model under this framework
345 (Fig. 4a). According to this model, TFs can occupy three different states: diffusive, slow
346 and fast. The diffusive state plays the role of an absorbing boundary state (i.e. exit from
347 abound state). In the current literature, it has been interpreted that the slow and fast

348  states correspond to specific and nonspecific binding, respectively:.
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368  Figure 4. TF dynamics models. (a-b) The bi-exponential model. (a) TFs cz;hmgiﬁa])tblosgpsé%ﬁc or non-
369 specific sites with different affinities. After binding to DNA, they will unbind from DNA; transitions between
370  specific and non-specific sites are forbidden. (b) Numerical simulation showing the emergence of bi-
371 exponential behavior. (c-d) The Kinetic model. (¢) TFs can transition from non-specific sites to specific
372 sites and vice versa. Transitions in the DNA are considered indistinguishable. (d) Simulation results of the
373 Kinetic model. (e-g) The continuum of affinities model. (e) TFs can diffuse on the DNA, and transition
374 between any state (Diffusive, specifically bound, nonspecifically bound). Dwell time is defined as the time
375 spent on the DNA, either bound or sliding. (f) Cartoon-simplification of (), a TF arrives to a random site,
376  scans the DNA until it finds a specific site and it unbinds. This model can be solved analytically. (g)
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377 Numerical simulation of (e) showing the emergence of power-law behavior (red line). See
378  Supplementary Note 1 for detalils.

379

380  With this assumption of a well separated and narrow distribution of affinities, the

381 expected behavior of the survival distribution corresponds to a double exponential with
382 exponential parameters determining the average residence time of each state, as

383  confirmed with stochastic simulations (Fig. 4b) using the Gillespie algorithm34.

384 Importantly, this model does not allow for transitions between fast and slow states. For
385 acomplete derivation, see Supplementary Note 1.2.

386 We next extended the bi-exponential model to allow for transitions between the
387 slow and fast components (Fig. 4c). Due to the resolution limit (~30nm), any transitions
388 between specific and non-specific bound states cannot be distinguished. The resulting
389  survival distribution corresponds to a family of exponentials; we call this a kinetic model
390 (Supplementary Note 1.3). Simulations were performed as before, and the expected
391 distribution is displayed in Fig. 4d.

392 Finally, several theoretical studies have posited that TF search and “final” binding
393 to its cognate site on the DNA involves a combination of bulk diffusion in the nucleus,
394 1D sliding along the DNA, hopping and translocation, and theoretical search times for
395 the TF to find specific sites in this framework have been estimated3>-3’. In this model,
396  TFs will have a multiplicity of fast bound states that must be accounted for in the

397 analysis of dwell time data. To do so, we modeled TF movement on the DNA as

398 hopping on a circular chain composed of specific sites and non-specific sites (Fig. 4e).
399  The main assumption in our “continuum of affinities” model derivation (Supplementary
400 Note 1.4) is that the number of non-specific sites on the DNA is much larger than the

401 number of specific sites. This is a biologically reasonable assumption as only a few to
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402 tens of thousands of specific sites are bound by any TF according to genome wide

403  studies®, while the entire genome contains millions of “other” potential chromatin sites.
404  An analytical solution can be found for the simplest case where there is a single specific
405 binding site and the TF unbinds from the specific site (Fig. 4f, Supplementary Note
406  1.4.3). A simulation based on the model gives rise to asymptotic power law behavior at
407 time scales compatible with specific binding (Fig. 49).

408 To test which model better represents the observed behavior of GR dynamics,
409 we used the Bayesian information criterion (BIC)3° and Kolmogorov—Smirnov (KS) test
410 to choose the best-predicted model (see Methods). Clearly, power-law behavior

411 emerges as the best fit, as illustrated for both GR-Cort (Supplementary Fig. 4a-c) and
412 GR-Dex (Supplementary Fig. 4d-f) data. Interestingly, power law distributions have
413  infinite variance, which implies a finite probability of long-lived binding events. This

414  could imply that productive binding events may be rare with dwell times much longer
415 than previously appreciated, as indicated by the right-skewness of the distribution.

416  Another possibility corresponds to a wide distribution of binding affinities in the nucleus
417  due to heterogeneity in 1) binding affinities of individual response elements, and/or 2)
418 local nuclear microenvironment.

419 In summary, by incorporating an improved PB correction method, we discovered
420 that the survival distribution of GR dwell times does not follow a bi-exponential model. In
421 fact, the data follows a power-law distribution, which we can derive using two theoretical
422  models (Supplementary Note 1.4-1.5). Ultimately, if there is a way to define or

423  distinguish non-specific from specific binding, our results indicate that it cannot be

424  based on their global residence times. However, the slope of the residence time
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425  distribution does provide an estimate of the overall affinity and can be used for

426  comparing TFs and their function under different conditions.

427

428 Discussion

429 In the present study, we describe a new photobleaching correction method to

430 prevent photobleaching-related bias of the dwell time distribution of TFs. This method is
431 based on histone SMT dynamics, used here as a proxy for photobleaching kinetics

432  within the focal plane (Fig. 2). When correcting H2B SMT data by itself with this new
433  approach, we showed that the survival distribution of H2B exhibits a “plateau” (Fig. 2c).
434  This indicates very slow dynamics for the core histone, much longer than our

435  experimental time scale, and is fully compatible with previously published FRAP data*°.
436  Additionally, we are now able to reconcile data acquired under different experimental
437  conditions (Fig. 2d-e) whereas previous attempts were not successfull0 20,41, 42,

438 Given the current phenomenological interpretation of SMT data and the general
439 lack of a model-based approach in the field, we derived theory-based models in an

440 attempt to explain TF dynamics more accurately. We explored three different models:
441  the classic bi-exponential model, a kinetic three-state model and a power-law model

442  (Fig. 4). After correcting for photobleaching and implementation of Bayesian Information
443  Criterion, we could identify the best predictive model that explained the residence time
444  distribution of a paradigmatic TF, the GR. Surprisingly, the dwell time distribution of

445  activated-GR is best described by a power-law. Although a recent study corrected PB of
446  NF-xB dynamics by normalization with the H2B dwell time distribution, they still reported

447  exponential behavior of the TF*3. However, they did not consider alternative models and
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448 the range of detected experimental dwell times is relatively short (maximum ~10 s),
449  which might have prevented observation (and verification) of asymptotic power law

450  behavior.

451 Our observation of power law behavior of GR residence times suggests a model
452  with a continuum of DNA-bound states rather than discrete non-specific/specific binding
453  of TFs. Consistent with this model, wash-out of the hormone (Fig. 3e) revealed that the
454  dwell time distribution also follows a power law, indicating no apparent dynamical

455  differences between the so-called specific and non-specific binding. Nevertheless, the
456  overall residence time decreases when the receptor is less active, suggesting that a
457  majority of the longer events observed with the fully activated receptor are associated
458  with productive transcription as previously reported? 19 12.17. 43 However, non-specific
459  binding can also result in TF binding events with long residence times, the implications
460  of which are still not known. Critical efforts are required to investigate whether the

461  slow(er) stops seen in SMT are matched exclusively to specific interactions with

462  chromatin. Alternatively, a sub-population of these “stops” could correspond to

463  microscopic regions in the nucleus where diffusion is severely impaired, or transient
464 interaction with “clustered” structures such as foci observed for GR*4, or another hitherto
465  unknown mechanism.

466 The broad distribution of affinities is puzzling but may be explained by

467  heterogeneity in the nuclear structure and chromatin environment. Targets for a

468  searching TF certainly exist in a wide variety of chromatin states (compacted fibers,
469  different nucleosome modification conditions, etc.). Also, affinities for the thousands of

470 alternative binding sites in response elements must vary significantly. Furthermore,
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471 recent work points to the presence of transcriptional hubs and liquid-liquid phase

472  separation domains*® that contribute to the complexity of nuclear organization. If TFs
473  exhibit different dynamical properties in these structures, it is not surprising to find a
474  broad variation in binding affinities. The resulting broad distribution of binding affinities
475 in these scenarios goes against the widely-held assumption that TF dynamics on

476  chromatin results from well-separated and narrow distributions of specific and non-

477  specific binding (Fig. 5).
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492 Figure 5. Heterogeneity in binding affinities. (a) In the bi-exponential model, specific sites and
493 nonspecific sites have a well separated and narrow distribution of affinities (left graph), which results in a
494 double exponential model for the survival distribution (right graph). (b) The cell nucleus may have a broad
495 distribution of affinities due to its heterogeneity (black line). This distribution is composed of local dwell
496 times with a well-defined affinity distribution (depicted in different colors, left graph). This distribution of
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497 affinities may explain the emergence of power law behavior (characterized by the exponent, &) in the
498  residence time of TFs (right graph).
499

282 Given the heterogeneities in local organization and nuclear structure, TF binding sites
502 on chromatin can be viewed as a collection of traps with a distribution of trap depths

503 (analogous to binding affinities). In such a finite disordered system, the distribution of
504 trapping times asymptotically approaches a power law*®: 47 (Fig. 5b, Supplementary
505 Note 1.5)

506 Alternatively, but not mutually exclusive, heterogeneity in the searching

507 mechanism of TFs may affect the effective affinity constant observed in SMT

508 experiments. In support of the latter, the tetracycline repressor (TetR), a chimera

509 between a bacterial and a viral protein with no known endogenous targets in

510 mammalian cells, when used as a proxy to emulate TF dynamics, also showed power-
511 law behavior for “non-specific binding”#® 4°. However, it could still be described as an
512 exponential on an artificially (and single) specific DNA binding array*°. Thus, the intrinsic
513 nature of the searching mechanism of any DNA-binding protein may be governed by
514  power-law dynamics. In addition, the heterogeneity of dwell times in the thousands of
515 response elements for an endogenous TF could explain why GR can present power-law
516 tails as opposed to TetR, which can only bind to one artificial array site. Interestingly, a
517 recent study in yeast® reports that both the TF Acelp and the chromatin remodeler

518 RSC binding follow a bi-exponential binding distribution in cells containing a natural

519 tandem of ten CUP1 (Acelp responsive) genes. This dynamic and discrete behavior, in
520 contrast with our GR data, can be explained by the particular and homogeneous

521 chromatin environment of single array of specific sites. Consequently, we speculate that
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522  a broad distribution of binding affinities coming from a whole population of different

523  binding sites (thousands in the case of GR) may result in a power-law behavior (Fig. 5).
524  In summary, by the implementation of proper photobleaching kinetics, we reveal a new
525 model of TF dynamics. Our findings suggest that, contrary to the established paradigm,
526  TF dwell times follow a broad distribution with no evidence of binary, discrete

527  populations.
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