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Abstract 

Deciphering the shared genetic basis of distinct cancers has the potential to elucidate carcinogenic 

mechanisms and inform broadly applicable risk assessment efforts. However, no studies have 

investigated pan-cancer pleiotropy within single, well-defined populations unselected for 

phenotype. We undertook novel genome-wide association studies (GWAS) and comprehensive 

evaluations of heritability and pleiotropy across 18 cancer types in two large, population-based 

cohorts: the UK Biobank (413,870 European ancestry individuals; 48,961 cancer cases) and the 

Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging cohorts (66,526 

European ancestry individuals; 16,001 cancer cases). The GWAS detected 21 novel genome-wide 

significant risk variants. In addition, numerous cancer sites exhibited clear heritability. 

Investigations of pleiotropy identified 12 cancer pairs exhibiting either positive or negative genetic 

correlations and 43 pleiotropic loci. We identified 158 pleiotropic variants, many of which were 

enriched for regulatory elements and influenced cross-tissue gene expression. Our findings 

demonstrate widespread pleiotropy and offer further insight into the complex genetic architecture 

of cross-cancer susceptibility.   
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Introduction 

The global burden of cancer is substantial, with an estimated 18.1 million individuals diagnosed 

each year and approximately 9.6 million deaths attributed to the disease.1 Efforts toward cancer 

prevention, screening, and treatment are thus imperative, but they require a more comprehensive 

understanding of the underpinnings of carcinogenesis than we currently possess. While studies of 

twins,2 families,3 and unrelated populations4–6 have demonstrated substantial heritability and 

familial clustering for many cancers, the extent to which genetic variation is unique versus shared 

across different types of cancer remains unclear. 

 

Genome-wide association studies (GWAS) of individual cancers have identified loci associated 

with multiple cancer types, including 1q32 (MDM4)7,8; 2q33 (CASP8-ALS2CR12)9,10; 3q28 

(TP63)11,12; 4q24 (TET2)13,14; 5p15 (TERT-CLPTM1L)9,12; 6p21 (HLA complex)15,16; 7p1517; 

8q2412,18; 11q1318,19; 17q12 (HNF1B)18,20; and 19q13 (MERIT40)21. In addition, recent studies 

have tested single nucleotide polymorphisms (SNPs) previously associated with one cancer to 

discover pleiotropic associations with other cancer types.22–25 Consortia, such as the Genetic 

Associations and Mechanisms in Oncology, have looked for variants and pathways shared by 

breast, colorectal, lung, ovarian, and prostate cancers.26–30 Comparable studies for other cancers—

including those that are less common—have yet to be conducted. 

 

In addition to individual variants, recent studies have evaluated genome-wide genetic correlations 

between pairs of cancer types.4–6 One evaluated 13 cancer types and found shared heritability 

between kidney and testicular cancers, diffuse large B-cell lymphoma (DLBCL) and 

osteosarcoma, DLBCL and chronic lymphocytic leukemia (CLL), and bladder and lung cancers.4 
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Another study of six cancer types found correlations between colorectal cancer and both lung and 

pancreatic cancers.5 In an updated analysis with increased sample size, the same group identified 

correlations of breast cancer with colorectal, lung, and ovarian cancers and of lung cancer with 

colorectal and head/neck cancers.6 While these studies provide compelling evidence for shared 

heritability across cancers, they lack data on several cancer types (e.g., cervix, melanoma, and 

thyroid).  

 

Here, we present analyses of genome-wide SNP data with respect to 18 cancer types, based on 

475,312 individuals of European ancestry from two large, independent, and contemporary cohorts 

unselected for phenotype – the UK Biobank (UKB) and the Kaiser Permanente Genetic 

Epidemiology Research on Adult Health and Aging (GERA) cohorts. We sought to detect novel 

risk SNPs and pleiotropic loci and variants and to estimate the heritability of and genetic 

correlations between cancer types. We then conducted in-silico functional analyses of pleiotropic 

variants to catalog biological mechanisms potentially shared across cancers. Leveraging the wealth 

of individual-level genetic and phenotypic data from both cohorts allowed us to extensively 

interrogate the shared genetic basis of susceptibility to different cancer types, with the ultimate 

goal of better understanding common genetic mechanisms of carcinogenesis and improving risk 

assessment.   
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Results 

Genome-wide Association Analyses of Individual Cancers 

We found 21 novel, independent variants that attained genome-wide significance at P<5x10-8 upon 

meta-analysis of the UKB and GERA results (Table 1) and an additional 9 genome-wide 

significant variants that were only genotyped or imputed in one cohort (Supplementary Table 1). 

In addition, we detected 308 independent signals with P<1x10-6 that confirmed risk SNPs 

identified by previous GWAS with P<5x10-8 (Supplementary Table 2). Of the 21 novel genome-

wide significant associations from the meta-analyses, 9 were in known susceptibility regions for 

the cancer of interest but independent of previously reported variants. The remaining 12 were in 

regions not previously associated with the cancer of interest in individuals of European ancestry. 

Fourteen of the 21 novel SNPs exhibited pleiotropy in that they were in regions previously 

associated with at least one of the other cancer types evaluated in this study.  

 

In sensitivity analyses for the 21 novel SNPs, we did not detect any material differences in effect 

estimates across categories of age at diagnosis, Surveillance, Epidemiology, and End Results 

Program (SEER) grade, or SEER stage (Heterogeneity P>0.05, corrected for multiple testing). In 

genome-wide sensitivity analyses restricted to incident cases (i.e., excluding prevalent cases), our 

findings were essentially unchanged (Heterogeneity P>0.05, corrected for multiple testing; 

Supplementary Figure 1). Similarly, genome-wide sensitivity analysis results for esophageal and 

stomach cancers separately were materially comparable to those for the two phenotypes combined 

(Heterogeneity P>0.05, corrected for multiple testing; Supplementary Figure 2). 
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Genome-Wide Heritability and Genetic Correlation 

Array-based heritability estimates across cancers ranged from h2=0.04 (95% CI: 0.00-0.13) for 

oral cavity/pharyngeal cancer to h2=0.26 (95% CI: 0.15-0.38) for testicular cancer (Table 2). For 

some of the cancers, our array-based heritability estimates were comparable to twin- or family-

based heritability estimates2,3 but were more precise. Several were also similar to array-based 

heritability estimates from consortia comprised of multiple studies.4–6 For example, our estimate 

for testicular cancer closely matches the previous family-based estimate of heritability (h2=0.25; 

95% CI: 0.15-0.37),3 as well as a previous estimate of array-based heritability (h2=0.30; 95% CI: 

0.08-0.51).4 For lung cancer, our estimated heritability of h2=0.15 (95% CI: 0.10-0.20) approaches 

the twin-based estimate of h2=0.18 (95% CI: 0.00-0.42),2 exceeds the array-based estimate from a 

study using the same methodology (h2=0.08; 95% CI: 0.05-0.10),6 and is comparable to an earlier 

array-based estimate using individual-level data (h2=0.21; 95% CI: 0.14-0.27).4 For rectal 

(h2=0.11; 95% CI: 0.07-0.16) and bladder (h2=0.08; 95% CI: 0.04-0.12) cancers, our heritability 

estimates are close to those from twin/family studies – h2=0.14 (95%CI: 0.00-0.50)2 and h2=0.07 

(95% CI: 0.02-0.11),3 respectively. One of our highest heritability estimates was observed for 

thyroid cancer (h2=0.21; 95% CI: 0.09-0.33), a cancer that has not been evaluated in other array-

based studies. 

 

Among pairs of cancers, only colon and rectal cancers (rg=0.85, P=5.33x10-7) were genetically 

correlated at a Bonferroni corrected significance threshold of P=0.05/153=3.27x10-4 (Figure 1a-

b; Supplementary Table 3). However, at a nominal threshold of P=0.05, we observed suggestive 

relationships between 11 other pairs. Seven pairs showed positive correlations: 

esophageal/stomach cancer was correlated with Non-Hodgkin’s lymphoma (NHL; rg=0.40, 
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P=0.0089), breast (rg=0.26, P=0.0069), lung (rg=0.44, P=0.0035), and rectal (rg=0.32, P=0.024) 

cancers; bladder and breast cancers (rg=0.22, P=0.017); melanoma and testicular cancer (rg=0.23, 

P=0.028); and prostate and thyroid cancers (rg=0.23, P=0.013). The remaining four pairs showed 

negative correlations: endometrial and testicular cancers (rg=-0.41, P=0.0064); 

esophageal/stomach cancer and melanoma (rg=-0.27, P=0.038); lung cancer and melanoma (rg=-

0.28, P=0.0048); and NHL and prostate cancer (rg=-0.21, P=0.012).  

 

Locus-Specific Pleiotropy 

We detected 43 pleiotropic regions associated with more than one cancer (P<1x10-6 for each 

cancer; regions defined using our linkage disequilibrium [LD] clumping procedure; see Methods; 

Figure 1c; Supplementary Table 4). Most were at known cancer pleiotropic loci: HLA (24 

regions), 8q24 (10 regions), TERT-CLPTM1L (5 regions), and TP53 (1 region). Twenty-two of the 

HLA regions were associated with both cervical cancer and NHL, and the remaining two were 

associated with (1) cervical and prostate cancers and (2) NHL and prostate cancer. Six regions in 

8q24 were associated with prostate and colon cancers, and four were associated with prostate and 

breast cancers. Of the regions in TERT-CLPTM1L, two were associated with prostate cancer, one 

with  breast cancer and one with testicular cancer; two were associated with melanoma, one with 

breast cancer and one with bladder cancer; and the last was associated with melanoma and cervical, 

lung, and pancreatic cancers. The TP53 region, indexed by rs78378222, was associated with 

melanoma and lymphocytic leukemia. The remaining three pleiotropic regions were in loci 

previously associated with at least one cancer and were indexed by rs772695095 (DIRC3 at 2q35; 

breast and thyroid cancers), rs11813268 (intergenic at 10q24.33; melanoma and prostate cancer), 

and rs6507874 (SMAD7 at 18q21.1; colon and rectal cancers). 
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Genome-wide Variant-Specific Pleiotropy 

We assessed variant-specific pleiotropy by testing all variants genome-wide using the summary 

statistics for each cancer. We found 137 independent one-directional pleiotropic variants with at 

least two associated cancers, the same direction of effect for all associated cancers, and an overall 

pleiotropic P<1x10-6 (Supplementary Table 5), among which 85 attained genome-wide 

significance (P<5x10-8). Of the 137 one-directional pleiotropic variants, there were 45 for which 

the overall pleiotropic P was smaller than the P for each of the associated cancers, 17 of which 

attained genome-wide significance (Figure 2). While 134 of the 137 one-directional pleiotropic 

variants were in regions that have previously been associated with cancer, 113 were associated 

with at least one new cancer.  

 

We also considered bidirectional pleiotropic associations, wherein the same allele for a given 

variant was associated with an increased risk for some cancers but a decreased risk for others. We 

found 21 such variants with P<1x10-6, all of which were independent from one another and from 

the one-directional pleiotropic variants (Figure 3; Supplementary Table 6). Fifteen attained 

genome-wide significance. There were 13 variants where the overall pleiotropic P was smaller 

than the P for the associated cancers, eight of which attained genome-wide significance. While 20 

of the 21 bidirectional pleiotropic variants were in regions that have previously been associated 

with cancer, 10 were independent of known risk variants, and all 20 were associated with at least 

one new cancer. The SNP in a novel region (SSPN at 12q12.1) was rs10842692, which was 

associated with five cancers in one direction and nine cancers in the other.  
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The number of one- and bidirectional SNPs shared by cancer pairs ranged from four (bladder and 

esophagus/stomach; colon and NHL) to 32 (pancreas and prostate; lymphocytic leukemia and 

prostate) (Figure 4a; Supplementary Table 7). For 19 cancer pairs, the shared associations had 

exclusively the same direction of effect (tabulating across both the one- and bidirectional 

analyses). For eight cancer pairs, most of the shared variants were associated in opposite directions. 

 

For each of the 158 SNPs showing either one- or bidirectional pleiotropy, we assessed whether the 

results differed according to age at diagnosis, SEER grade, or SEER stage for any of the associated 

cancers. After correcting for multiple testing, only one one-directional pleiotropic SNP showed 

heterogeneity across case subtypes. rs111362352-C was significantly positively associated with 

the risk of low grade prostate cancer in GERA, while it was not associated with high grade disease. 

These results are consistent with previous findings for this SNP (or SNPs in strong LD): the C 

allele has been associated with lower Gleason score, and it is located at KLK3, the prostate-specific 

antigen gene, which may reflect its previous association with lower grade screen-detected prostate 

cancer.31,32 

 

Functional Characterization of Pleiotropic Variants 

The biological significance of 158 pleiotropic variants was evaluated using in-silico annotation 

tools (Supplementary Table 8).33–35 Pleiotropic variants were enriched in intergenic and exonic 

regions, as well as non-coding RNA transcripts (P<0.018) (Figure 4b). The distribution of 

DeepSea functional significance scores was skewed toward 0, indicating a higher likelihood  of 

regulatory effects compared to a reference distribution of 1000 Genomes variants (Figure 4b). 

Suggestively functional variants (n=38, DeepSEA score<0.05) were also predicted to be 
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pathogenic by Combined Annotation-Dependent Depletion (CADD; median score of 10.99, 

corresponding to the top 10% of deleterious substitutions). The top-ranked variant was rs3862792 

in 11q13.3 (CCND1; synonymous; CADD=19.55), associated with prostate cancer and 

lymphocytic leukemia. Forty-two of the 158 pleiotropic variants were characterized by active 

chromatin states, 51 were classified as enhancers, and 83 had significant (FDR<0.05) effects on 

gene expression (Figure 4b). Nine variants belonged to all three classes (Figure 4b), including 

rs10842692, the lead variant in one of our novel pleiotropic regions (SSPN at 12q12.1).  

 

Consistent with hypothesized pleiotropy, 75.9% of the 83 expression quantitative trait loci 

(eQTLs) identified among the pleiotropic variants had more than one target tissue, and 71.1% 

influenced the expression of more than one gene (Supplementary Figure 3), for a total of 586 

significant SNP-gene pairs. The most common expression tissues for eQTLs among pleiotropic 

variants were whole blood (63%), followed by subcutaneous adipose (9.9%), and esophageal 

(5.3%). Regulatory effects mediated by chromatin looping were observed for 46 variants, which 

clustered in the HLA region (10 variants), 8q24 (3 variants), and 11q13.3 (3 variants; 

Supplementary Figure 4). Three enhancer-promoter links were also identified in 6p21.23 

(rs535777, rs73728618) and 22q13.2 (rs5759167, PACSIN2 promoter; Supplementary Figure 4). 

Notably, rs5759167 is also an eQTL for PACSIN2 in whole blood (P=9.89x10-14). 

 

Genes represented by pleiotropic variants were significantly enriched for 67 pathways 

(Supplementary Table 9). Top-ranking pathways included inflammatory and immune response 

mechanisms (cytokines and chemokine targets of PSMD4: p=3.06x10-8; interferon-g signaling in 

endothelial cells: p=1.16x10-6; antigen processing and presentation: p=2.53x10-6) and cell cycle 
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checkpoint controls (G1/S: p=6.39x10-6). There was also enrichment for PML targets with 

promoters bound by Myc (p=3.27x10-7), transcription-factor networks implicated in neoplastic 

transformation, including FOXM1 (p=2.74x10-5), and p53 signaling (p=2.35x10-4).  

 

Discussion 

In this study of cancer pleiotropy in two large cohorts, we found multiple lines of evidence for a 

shared genetic basis of several cancer types. By characterizing pleiotropy at the genome-wide, 

locus-specific, and variant-specific levels for a large number of cancer sites, we generated several 

novel insights into cancer susceptibility. Specifically, we detected 21 novel genome-wide 

significant risk variants across the 18 individual cancers. We also detected 158 variants displaying 

one- or bidirectional pleiotropy that were enriched for a number of regulatory functions that reflect 

hallmarks of carcinogenesis. 

 

One notable finding from our cervical cancer GWAS was rs10175462 in PAX8 on 2q13, which, to 

our knowledge, is the first genome-wide significant cervical cancer risk SNP identified outside of 

the HLA region in a European ancestry population.15 In a candidate SNP study of PAX8 eQTLs in 

a Han Chinese population, two variants in LD with rs10175462 in Europeans (rs1110839, r2=0.33; 

rs4848320, r2=0.34) were suggestively associated with cervical cancer risk in the same direction.36 

Several GWAS findings also provided evidence of pleiotropy, in that novel risk variants for one 

cancer had been previously associated with one or more other cancers. For instance, rs9818780 

was associated with melanoma and has been implicated in sunburn risk.37 This intergenic variant 

is an eQTL for LINC00886 and METTL15P1 in skin tissue. The former gene has previously been 

linked to breast cancer,38 and both genes have been implicated in ovarian cancer.39 Beyond novel 
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associations, our GWAS detected 308 independent associations with P<1x10-6 that confirmed 

signals identified in previous GWAS with P<5x10-8. This finding strengthened our confidence in 

using our genome-wide summary statistics for subsequent analyses of cancer pleiotropy. 

 

In evaluating pairwise genetic correlations between the 18 cancer types, we observed the strongest 

signal for colon and rectal cancers – an expected relationship consistent with findings from a twin 

study.40 We also identified several novel cancer pairs for which the genetic correlations were 

nominally significant. One pair supported by previous evidence is melanoma and testicular cancer; 

some studies have found that individuals with a family history of the former are at an increased 

risk for the latter.41,42 Esophageal/stomach cancer was a component of five correlated pairs – with 

melanoma, NHL, and breast, lung, and rectal cancers. Despite some similarities between 

esophageal and stomach cancers, testing them as a combined phenotype may have inflated the 

number of correlated cancers.  

 

Our genetic correlation results contrast with previous consortia-based findings;4–6 we did not find 

several correlations that they did and found others that they did not. The differences may be partly 

due to a smaller number of cases in our cohorts for some sites. Further studies with larger sample 

sizes are necessary to validate our correlations, as those that did not attain Bonferroni-corrected 

significance may have been due to chance. However, we achieved comparable or higher cancer-

specific heritability estimates for breast, colon, and lung cancers, which suggests that differences 

in study design may also play a role. Previous analyses aggregated case-control studies recruited 

during different time periods. While such meta-analyses can be effective at reducing residual 

population stratification, our extensive quality control processes also seemingly mitigated 
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population stratification; the mean λGC across the 18 cancers was 1.02 (standard deviation=0.027). 

Moreover, our design allowed for the assessment of cross-cancer relationships in the same set of 

individuals, and to examine several cancers that have not been previously studied in large 

consortia.  

 

The assessment of pleiotropy at the locus level confirmed previously reported associations at 

5p15.33, HLA, and 8q24.9,12,15,16,18 Out of the 43 pleiotropic loci that we identified, over half, all 

in the HLA locus, were associated with cervical cancer and NHL. The two cancers were weakly 

negatively correlated in the two cohorts combined and nominally significantly negatively 

correlated in the UKB alone (Supplementary Table 10). The difference may reflect better 

coverage and imputation of the HLA region in the UKB than in GERA. Other findings support a 

pleiotropic role of several loci previously associated with specific cancers in separate studies. For 

example, we validated previous results showing that DIRC3 is associated with breast and thyroid 

cancers.14,43 Additionally, the intergenic region surrounding rs11813268 on 10q24.33 has not been 

previously associated with melanoma or prostate cancer (as it was in our study), although 

associations with other cancers have been reported, including kidney, lung, and thyroid 

cancers.39,44–47 SMAD7 has been previously linked to colorectal cancer,48 and we confirmed its 

association with colon and rectal cancers separately.  

 

Variant-specific analyses provided further evidence in support of locus-specific cancer pleiotropy, 

including validation of previously reported signals at 1q327,8 and 2q339,10 (ALS2CR12). 

Interestingly, our lead 1q32 variant (rs1398148) maps to PIK3C2B and is in LD (r2>0.60) with 

known MDM4 cancer risk variants,7,8 suggesting that the 1q32 locus may be involved in 
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modulating both p53-and PI3K-mediated oncogenic pathways. The 158 pleiotropic variants (with 

overall pleiotropic P<1x10-6) mapped to a total of 78 genomic locations, which included all of the 

regions identified from the locus-specific analyses. Although 154 of the 158 variants showing one- 

or bidirectional pleiotropic associations are in regions previously associated with cancer, 133 of 

the 154 were associated with at least one new cancer. One variant (rs10842692) associated with 

14 cancers in the bidirectional analysis mapped to a novel region at 12p12.1 and is an active 

enhancer and an eQTL for SSPN in multiple tissue types, including adipose. SSPN has been linked 

to waist circumference,49 suggesting that increased adiposity may be one plausible mechanism 

underlying the pleiotropic associations observed for this locus.  

 

Out of 158 total variants identified from the variant-specific pleiotropy analyses, 20 were in 8q24 

and 19 were in the HLA region. Different distributions of one- and bidirectional results highlight 

patterns of directional pleiotropy: of the 19 HLA variants, eight were bidirectional, while only 

three of the 20 variants in 8q24 were bidirectional. The HLA region is critical for innate and 

adaptive immune response and has a complex relationship with cancer risk. Heterogeneous 

associations with HLA haplotypes have been reported for different subtypes of NHL50 and lung 

cancer,51 suggesting that relevant risk variants are likely to differ within, as well as between, 

cancers. Studies have further demonstrated that somatic mutation profiles are associated with HLA 

class I52 and class II alleles.53 Specifically, mutations that create neoantigens more likely to be 

recognized by specific HLA alleles are less likely to be present in tumors from patients carrying 

such alleles. It is thus possible that some of the positive and negative pleiotropy we identified is 

related to mutation type. These results reinforce the importance of the immune system playing a 

role in cancer susceptibility.  
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In contrast to the HLA region, the majority of the 8q24 pleiotropic variants had the same direction 

of effect for all associated cancers, implying the existence of shared genetic mechanisms driving 

tumorigenesis across sites. The proximity of the well-characterized MYC oncogene makes it a 

compelling candidate for such a consistent, one-directional effect. It could work via regulatory 

elements, such as acetylated and methylated histone marks.54 Consistent with this hypothesis, we 

observed heritability enrichment55 for variants with the H3K27ac annotation for breast (P = 

3.09x10-4), colon (P = 4.44x10-4), prostate (P = 2.74x10-5), and rectal (P = 0.036) cancers – all of 

which share susceptibility variants in 8q24, according to our analyses and previous studies.54 

 

In-silico analyses found the 158 pleiotropic variants to be enriched across multiple regulatory 

domains and highlighted functional features relevant to cancer pleiotropy. The 11q13.3 region 

includes rs3862792, which is predicted to be in the top 1% of deleterious substitutions in the 

genome.35 Although rs3862792 has been previously linked to prostate cancer,56 our results suggest 

it may also be relevant for lymphocytic leukemia. CCND1 is a hallmark cancer oncogene that plays 

a role in cell cycle transitions, cell invasion, and cell migration, making rs3862792 a highly 

plausible candidate for cross-cancer effects. Three pleiotropic variants in 11q13.3 mapped to 

enhancer regions, including an eQTL for TPCN2, which is part of a signaling pathway controlling 

the angiogenic response to VEGF.57 The 22q13.2 region is indexed by rs5759167, an intergenic 

variant linked to prostate and lung cancers in our analysis. Its pleiotropic effects are likely mediated 

by regulation of PACSIN2, which codes for a cyclin D1 binding partner that serves as a brake for 

CCND1-mediated cellular migration.58 This is consistent with our observation that that the risk-

increasing G-allele was associated with increased PACSIN2 expression in whole blood.59  Lastly, 
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our pathway analysis indicated that pleiotropic variants as a group are enriched for canonical 

signaling pathways that control cell-cycle progression, apoptosis, and immune-related functions, 

the dysregulation of which is a hallmark of cancer.   

 

It is important to acknowledge some limitations of our study. First, counts for some of the cancer 

types were limited. However, small sample sizes are partially offset by the advantages of using 

two population-based cohorts. Second, due to the complexity of the LD structure in the HLA 

region, we may have overestimated the number of distinct, independent signals. Slight 

overestimation, however, does not affect our overall conclusions regarding the pleiotropic nature 

of this region. Third, our analyses included both prevalent and incident cases. Nevertheless, 

sensitivity analyses restricted to incident cancers yielded comparable results. Fourth, we grouped 

esophageal and stomach cancers despite some differences in their risk factor profiles. However, 

there is precedent for using a composite phenotype,60 and analyses of stomach and esophageal 

tumors suggest that they have many overlapping molecular features.61,62 In addition, sensitivity 

analyses for each cancer alone gave similar results, suggesting that they may have similar genetic 

bases despite having different environmental risk factors. Finally, we focused solely on individuals 

of European ancestry. Further analyses are needed to accurately assess patterns of pleiotropy in 

non-Europeans. 

 

The characterization of pleiotropy is fundamental to understanding the genetic architecture of 

cross-cancer susceptibility and its biological underpinnings. The availability of two large, 

independent cohorts provided an unprecedented opportunity to efficiently evaluate the shared 

genetic basis of many cancers, including some not previously studied together. The result was a 
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multifaceted assessment of common genetic factors implicated in carcinogenesis, and our findings 

illustrate the importance of investigating different aspects of cancer pleiotropy. Broad analyses of 

genetic susceptibility and targeted analyses of specific loci and variants may both contribute 

insights into different dimensions of cancer pleiotropy. Future studies should consider the 

contribution of rare variants to cancer pleiotropy and aim to elucidate the functional pathways 

mediating associations observed at pleiotropic regions. Such research, combined with our findings, 

has the potential to inform drug development, risk assessment, and clinical practice toward 

reducing the burden of cancer.   
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Methods 

Study Populations and Phenotyping 

The UKB is a population-based cohort of 502,611 individuals in the United Kingdom. Study 

participants were aged 40 to 69 at recruitment between 2006 and 2010, at which time all 

participants provided detailed information about lifestyle and health-related factors and provided 

biological samples.63 GERA participants were drawn from adult Kaiser Permanente Northern 

California (KPNC) health plan members who provided a saliva sample for the Research Program 

on Genes, Environment and Health (RPGEH) between 2008 and 2011. Individuals included in this 

study were selected from the 102,979 RPGEH participants who were successfully genotyped as 

part of GERA and answered a baseline survey concerning lifestyle and medical history.64,65  

 

Cancer cases in the UKB were identified via linkage to various national cancer registries 

established in the early 1970s.63 Data in the cancer registries are compiled from hospitals, nursing 

homes, general practices, and death certificates, among other sources. The latest cancer diagnosis 

in our data from the UKB occurred in August 2015. GERA cancer cases were identified using the 

KPNC Cancer Registry, including all diagnoses captured through June 2016. Following SEER 

standards, the KPNC Cancer Registry contains data on all primary cancers (i.e., cancer diagnoses 

that are not secondary metastases of other cancer sites; excluding non-melanoma skin cancer) 

diagnosed or treated at any KPNC facility since 1988. 

 

In both cohorts, individuals with at least one recorded prevalent or incident diagnosis of a 

borderline, in situ, or malignant primary cancer were defined as cases for our analyses. Individuals 

with multiple cancer diagnoses were classified as a case only for their first cancer. For the UKB, 
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all diagnoses described by International Classification of Diseases (ICD)-9 or ICD-10 codes were 

converted into ICD-O-3 codes; the KPNC Cancer Registry already included ICD-O-3 codes. We 

then classified cancers according to organ site using the SEER site recode paradigm.66 We grouped 

all esophageal and stomach cancers and, separately, all oral cavity and pharyngeal cancers to 

ensure sufficient statistical power. The 18 most common cancer types (except non-melanoma skin 

cancer) were examined. Testicular cancer data were obtained from the UKB only due to the small 

number of cases in GERA.  

 

Controls were restricted to individuals who had no record of any cancer in the relevant registries, 

who did not self-report a prior history of cancer (other than non-melanoma skin cancer), and, if 

deceased, who did not have cancer listed as a cause of death. For analyses of sex-specific cancer 

sites (breast, cervix, endometrium, ovary, prostate, and testis), controls were restricted to 

individuals of the appropriate sex. 

 

Quality Control 

For the UKB population, genotyping was conducted using either the UKB Axiom array (436,839 

total; 408,841 self-reported European) or the UK BiLEVE array (49,747 total; 49,746 self-reported 

European).63 The former is an updated version of the latter, such that the two arrays share over 

95% of their marker content. UKB investigators undertook a rigorous quality control (QC) 

protocol.63 Genotype imputation was performed using the Haplotype Reference Consortium as the 

main reference panel and the merged UK10K and 1000 Genomes phase 3 reference panels for 

supplementary data.63 Ancestry principal components (PCs) were computed using fastPCA67 based 

on a set of 407,219 unrelated samples and 147,604 genetic markers.63 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2019. ; https://doi.org/10.1101/635367doi: bioRxiv preprint 

https://doi.org/10.1101/635367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 

For GERA participants, genotyping was performed using an Affymetrix Axiom array (Affymetrix, 

Santa Clara, CA, USA) optimized for individuals of European race/ethnicity. Details about the 

array design, estimated genome-wide coverage, and QC procedures have been published 

previously.65,68 The genotyping produced high quality data with average call rates of 99.7% and 

average SNP reproducibility of 99.9%. Variants that were not directly genotyped (or that were 

excluded by QC procedures) were imputed to generate genotypic probability estimates. After pre-

phasing genotypes with SHAPE-IT v2.5,69 IMPUTE2 v2.3.1 was used to impute SNPs relative to 

the cosmopolitan reference panel from 1000 Genomes.70–72 Ancestry PCs were computed using 

Eigenstrat v4.2, as previously described.64 

 

For both cohorts, analyses were limited to self-reported European ancestry individuals for whom 

self-reported and genetic sex matched. To further minimize potential population stratification, we 

excluded individuals for whom either of the first two ancestry PCs fell outside five standard 

deviations of the mean of the population. Based on a subset of genotyped autosomal variants with 

minor allele frequency (MAF) ≥0.01 and genotype call rate ≥97%, we excluded samples with call 

rates <97% and/or heterozygosity more than five standard deviations from the mean of the 

population. With the same subset of SNPs, we used KING73 to estimate relatedness among the 

samples. We excluded one individual from each pair of first-degree relatives, first prioritizing on 

maximizing the number of the cancer cases relevant to these analyses and then maximizing the 

total number of individuals in the analyses. Our study population ultimately included 413,870 

UKB participants and 66,526 GERA participants. We excluded SNPs with imputation quality 

score <0.3, call rate <95% (alternate allele dosage required to be within 0.1 of the nearest hard call 
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to be non-missing; UKB only), Hardy-Weinberg equilibrium P among controls <1x10-5, and/or 

MAF <0.01, leaving 8,876,519 variants for analysis for the UKB and 8,973,631 for GERA. 

 

Genome-Wide Association Analyses of Individual Cancers 

We used PLINK74,75 to implement within-cohort logistic regression models of additively modeled 

SNPs genome-wide, comparing cases of each cancer type to cancer-free controls. All models were 

adjusted for age at specimen collection, sex (non-sex-specific cancers only), first ten ancestry PCs, 

genotyping array (UKB only), and reagent kit used for genotyping (Axiom v1 or v2; GERA only). 

Case counts ranged from 471 (pancreatic cancer) to 13,903 (breast cancer) in the UKB and from 

162 (esophageal/stomach cancer) to 3,978 (breast cancer) in GERA (Supplementary Table 11). 

Control counts were 359,825 (189,855 female) and 50,525 (29,801 female) in the UKB and GERA, 

respectively. After separate GWAS were conducted in each cohort, association results for the 

7,846,216 SNPs in both cohorts were combined via meta-analysis. For variants that were only 

examined in one cohort (22% of the total 10,003,934 SNPs analyzed), original summary statistics 

were merged with the meta-analyzed SNPs to create a union set of SNP statistics for each cancer 

for use in downstream analyses (Supplementary Figure 5). 

 

To determine independent signals in our union set of SNPs, we implemented the LD clumping 

procedure in PLINK74,75 based on genotype hard calls from a reference panel comprised of a 

downsampled subset of 10,000 random UKB participants. For each cancer separately, LD clumps 

were formed around index SNPs with the smallest P not already assigned to another clump. To 

identify all potential signals, in each clump, index SNPs had a suggestive association based on 

P<1x10-6, and SNPs were added if they were marginally significant with P<0.05, were within 
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500kb of the index SNP, and had r2>0.1 with the index SNP. To confirm independence, we 

implemented GCTA’s conditional and joint analysis (COJO) method with the aforementioned 

downsampled subset of UKB participants as a reference panel,76,77 performing stepwise selection 

of the index SNPs within a +/- 1000kb region of one another. SNPs were deemed independent if 

they maintained P<1x10-6 in the joint model. The remaining independent variants were determined 

to be novel if they were independent of previously reported risk variants in European ancestry 

populations (as described below).  

 

To identify SNPs previously associated with each cancer type, we abstracted all genome-wide 

significant SNPs from relevant GWAS published through June 2018. We determined that a SNP 

was potentially novel if it had LD r2 < 0.1 with all previously reported SNPs for the relevant cancer 

based on both the UKB reference panel and the 1000 Genomes EUR superpopulation via LDlink.78 

As an additional filter for novelty, we again used COJO76,77 to condition each potentially novel 

SNP on previously reported SNPs for the relevant cancer using the UKB reference panel, and 

SNPs were not considered novel if they did not maintain P<1x10-6 in the joint model. To confirm 

novelty and consider pleiotropy, we conducted an additional literature review to investigate 

whether these SNPs had previously been reported for the same or other cancers, including those 

not attaining genome-wide significance and those in non-GWAS analyses. For this additional 

review, we used the PhenoScanner database79 to search for SNPs of interest and variants in LD in 

order to comprehensively scan previously reported associations. We then supplemented with more 

in-depth PubMed searches to determine if the genes in which novel SNPs were located had 

previously been reported for the same or other cancers. Finally, for cancers with publicly available 

summary statistics (breast [>120,000 cases],38 prostate [~80,000 cases],80 and ovarian [~30,000 
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cases]39), we tested our potentially novel SNPs with P<1x10-6 for replication (defined as having 

the same direction of effect and P<0.05). Tested SNPs that did not replicate were not considered 

novel. 

 

We considered whether clinical characteristics of the cases were informative about associated 

phenotypes by examining SEER stage and grade (GERA only) and age at cancer diagnosis (UKB 

and GERA). For each clinical variable, we decomposed cases into one of two categories: grade 1-

2 (well or moderately differentiated) or grade 3-4 (poorly or undifferentiated); stage 0-1 (in situ or 

localized) or stage 2-7 (regional or distant metastases); age < median or age ≥ median. The case 

counts for all cancer-outcome strata are tabulated in Supplementary Table 12. For each of the 

novel GWAS SNPs, we conducted logistic regression comparing controls to each of the relevant 

case subtypes. We then compared the effect estimates across the strata for each clinical variable 

(e.g., for each relevant SNP-cancer pair, we compared the OR for grade 1-2 with the OR for grade 

3-4) and calculated Cochran’s Q statistic to test for heterogeneity, adjusting for multiple testing 

for the number of strata and SNPs tested. 

 

To assess whether our results were influenced by factors associated with survival, we conducted 

sensitivity analyses restricted to incident cases in the larger UKB cohort. For each cancer, we 

compared the independent SNPs that were suggestively associated in the analysis using both 

prevalent and incident cases (P<1x10-6) with those in the incident only analysis. We assessed 

whether the effect sizes varied by calculating Cochran’s Q statistic to test for heterogeneity, 

adjusting for multiple testing across the number of SNPs tested for each cancer. Additional 

sensitivity analyses evaluated esophageal and stomach cancers as separate phenotypes in the UKB 
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cohort. For independent SNPs with P<1x10-6 in the analysis of the composite phenotype in UKB 

alone, we compared effect sizes for the composite phenotype to effect sizes for esophageal and 

stomach cancers separately and calculated Cochran’s Q statistic to test for heterogeneity, adjusting 

for multiple testing across the number of SNPs tested. 

 

Genome-Wide Heritability and Genetic Correlation 

We used LD score regression (LDSC) on summary statistics from the union set of all SNPs 

genome-wide to calculate the genome-wide liability-scale heritability of each cancer type and the 

genetic correlation between each pair of cancer types.81,82 Internal LD scores were calculated using 

the aforementioned downsampled subset of UKB participants. To convert to liability-scale 

heritability, we adjusted for lifetime risks of each cancer based on SEER 2012-2014 estimates 

(Supplementary Table 13).83 LDSC was unable to estimate genetic correlations for testicular 

cancer with both oral cavity/pharyngeal and pancreatic cancers, likely due to small sample sizes. 

 

Locus-Specific Pleiotropy 

Using our union set of SNP-based summary statistics, we constructed pleiotropic regions of SNPs 

associated with more than one cancer with P<1x10-6. Non-overlapping regions were iteratively 

formed around index SNPs associated with any cancer, beginning with the SNP associated with 

the smallest P. We used a suggestive threshold of P<1x10-6 to assess whether suggestive regions 

for one cancer might also be informative for another. SNPs were added to a region if they were 

associated with any cancer with P<1x10-6, were within 500kb of the index SNP, and had LD r2>0.5 

with the index SNP. We used a larger threshold for assessing pleiotropic regions (r2>0.5) than for 

identifying truly independent signals (r2>0.1; above) to ensure that all SNPs within a region were 
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in LD. If all SNPs in a region were associated with the same cancer, the region was not considered 

pleiotropic.  

 

Genome-wide Variant-Specific Pleiotropy 

We quantified one-directional and, separately, bidirectional variant-specific pleiotropy via the R 

package ASSET (association analysis based on subsets).84 Briefly, ASSET explores all possible 

subsets of traits for the presence of association signals, resulting in the best combination of traits 

to maximize the test statistic.84 ASSET has two procedures: in one, all traits are assumed to be 

associated with a variant in the same effect direction (one-directional pleiotropy); in the other, 

variants can be associated with traits in opposite directions (bidirectional pleiotropy).84 In the one-

directional pleiotropy analysis, an overall P across the selected traits is provided, and in the 

bidirectional pleiotropy analysis, a P for each direction is provided as well as an overall P for the 

total association signal for both directions combined. ASSET corrects for the internal multiple 

testing burden accrued by iterating through all possible trait subsets for each variant as well as 

controlling for shared samples among the traits.84 

 

Genome-wide ASSET analyses were conducted on the union sets of summary statistics for all 18 

cancers. Independent variants were determined via LD clumping, where index SNPs were 

suggestively significant (overall P<1x10-6), and other SNPs were clumped with the lead variant if 

they had overall P<0.05, were within 500kb of the index SNP, and had r2>0.1 with the index SNP. 

We used a suggestive significance threshold to comprehensively assess all potentially pleiotropic 

variants. A SNP was determined to have a one-directional pleiotropic association if the overall P 

was <1x10-6 and it was associated with at least two cancers. A SNP was determined to have a 
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bidirectional pleiotropic association if the overall P was <1x10-6 and the P for each direction was 

<0.05. For one- and bidirectional SNPs in LD with each other, the SNP with the smaller overall P 

was retained. We deconstructed bidirectional associations into cancers with risk-increasing effects 

and cancers with risk-decreasing effects. 

 

To assess whether clinical aspects of the cases could be informative about the pleiotropic variants, 

for each of the one-directional and bidirectional pleiotropic SNPs, we conducted logistic regression 

comparing controls to each of the relevant case subtypes described above and calculated Cochran’s 

Q statistic to test for heterogeneity between estimates across the strata for each clinical variable. 

 

Functional Characterization of Pleiotropic Variants 

Functional consequences for the 158 pleiotropic variants identified in the ASSET analysis were 

obtained from ANNOVAR. Enrichment of functional classes was evaluated using Fisher’s exact 

test, comparing the distribution observed among the pleiotropic variants to that of all variants in 

the reference panel of UKB European descent individuals. 

 

Overall functional significance was assessed using DeepSEA,33 a deep learning tool that prioritizes 

functional variants by integrating regulatory binding and ENCODE modification patterns of ~ 900 

cell-factor combinations with evolutionary conservation features. Resulting functional 

significance scores, ranging from 0 to 1, represent the degree of deviation from a  reference 

distribution of 1000 Genomes variants, with lower scores indicating a higher likelihood of 

functional significance. We also report CADD scores, which combine over 60 diverse annotations 

to predict deleteriousness.35 CADD scores are transformed into a log10-derived rank score based 
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on the genome-wide distribution of scores for 8.6 billion single nucleotide variants in 

GRCh37/hg19 (i.e.: CADD=10 corresponds to top 10% most deleterious substitutions).35 

 

To assess more specific functional features, we annotated each SNP according to Roadmap’s 15-

core chromatin states across 127 cell or tissue types.34,85 Chromatin state was assigned by taking 

the most common state across 127 cell or tissue types, with values ≤7 indicating open, accessible 

chromatin regions. Three-dimensional chromatin interactions were explored to identify significant 

interaction and enhancer-promoter links. Lastly, we explored associations with gene expression in 

blood and non-neurological tissues (since we did not investigate brain tumors) using data from the 

GTEx v786 and BIOS QTL59 databases. 

 

We conducted pathway analyses based on gene set collections from the Molecular Signatures 

Database (MSigDB)87 with an FDR q<0.05 significance threshold. Pathway enrichment analyses 

focused on the C2 MSigDB collection, which includes curated signatures of genetic and chemical 

perturbations, as well as canonical pathways from BioCarta, KEGG, Reactome, and other 

databases.  

 

Ethics 

The study was approved by the University of California and KPNC Institutional Review Boards 

and the UKB data access committee, and informed consent was obtained from all participants. 
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Data Availability 

Our GWAS summary statistics are publicly available via direct request and will be deposited into 

dbGaP. The UKB cohort data is publicly available from the UKB access portal at 

https://www.ukbiobank.ac.uk. The UKB cancer phenotyping we performed to define cases will be 

provided to the UKB for public use. The Kaiser Permanente data are available via application with 

a local collaborator at: https://researchbank.kaiserpermanente.org/our-research/for-researchers/.  
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Tables and Figures 
 
Table 1. Novel genome-wide significant loci from meta-analysis of UK Biobank (UKB) and Genetic Epidemiology Research on Adult Health 
and Aging (GERA) SNPs for each cancer site. 
 

      MAF** Odds Ratio (OR)  
Cancer Site SNP Chromosome Position Gene REF/ALT* UKB GERA UKB GERA Meta Meta P 

Bladder rs76088467†,+ 6 21795787 CASC15 G/A 0.025 0.030 0.67 0.59 0.64 2.34x10-8 
Breast rs6752414†,+ 2 121425339 Intergenic T/C 0.077 0.083 0.89 0.87 0.88 1.81x10-9 
Breast rs8027730§,+ 15 49872585 FAM227B A/C 0.48 0.48 1.06 1.08 1.06 2.68x10-8 
Cervix rs10175462§,+ 2 113988492 PAX8 A/G 0.36 0.37 1.16 1.08 1.15 7.71x10-14 
Cervix rs2856437†,+ 6 32157364 PBX2 A/G 0.063 0.047 0.76 0.88 0.77 1.24x10-15 
Colon rs71518872§,+ 8 103561978 Upstream of ODF1 G/C 0.015 0.017 0.65 0.61 0.64 1.27x10-8 
Colon rs8114643§ 20 7833046 Intergenic G/A 0.14 0.15 0.83 0.84 0.83 2.10x10-9 

Esophagus/Stomach rs75460256†,+ 2 106687838 C2orf40 G/A 0.024 0.022 0.52 0.67 0.53 1.04x10-8 
Kidney rs112248293§,+ 15 61500352 RORA A/G 0.024 0.025 0.53 0.62 0.55 3.36x10-9 
Lung rs10863899§ 1 211666218 5'UTR of RD3 G/A 0.42 0.42 1.23 1.09 1.18 1.91x10-8 
Lung rs146099759§ 5 12883592 Intergenic A/G 0.024 0.028 0.69 0.57 0.64 3.50x10-8 
Lung rs12543486†,+ 8 13012376 DLC1 C/T 0.17 0.16 1.30 1.18 1.26 3.51x10-8 

Lymphocytic Leukemia rs114490818† 3 126099101 Intergenic A/G 0.022 0.011 0.48 0.53 0.48 2.86x10-8 
Lymphocytic Leukemia rs61965473§,+ 13 95571786 Intergenic T/C 0.023 0.023 0.52 0.44 0.49 3.95x10-8 
Lymphocytic Leukemia rs78378222†,+ 17 7571752 3'UTR of TP53 G/T 0.012 0.014 0.44 0.34 0.40 1.89x10-9 

Melanoma rs9818780§,+ 3 156492758 Intergenic C/T 0.49 0.48 0.92 0.89 0.91 3.16x10-8 
Melanoma rs12186662§ 5 90356197 ADGRV1 G/A 0.32 0.36 0.90 0.89 0.90 1.09x10-8 
Melanoma rs55797833†,+ 9 21995044 5'UTR OF CDKN2A G/T 0.023 0.021 1.71 1.72 1.71 6.71x10-12 
Melanoma rs78378222†,+ 17 7571752 3'UTR of TP53 G/T 0.012 0.014 0.70 0.63 0.67 1.18x10-8 

Rectum rs145503185§ 9 23455764 Intergenic C/T 0.013 0.018 0.57 0.50 0.55 4.36x10-8 
Thyroid 2:173859846_TA_T§ 2 173859846 RAPGEF4 T/TA 0.25 0.26 1.45 1.15 1.36 3.49x10-8 

 
*REF is reference allele and ALT allele is effect allele; bold allele is minor allele 
**MAF = minor allele frequency calculated in all controls 
 
§ Indicates SNPs in loci not previously associated with the cancer of interest in European ancestry 
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† Indicates SNPs in known susceptibility loci for cancer of interest in European ancestry but independent of previously reported variants (LD r2<0.1 
in Europeans) 
+ Indicates SNPs in loci previously associated with at least one of the other cancers evaluated in this study in European ancestry 
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Table 2. Heritability estimates (h2) and 95% confidence intervals (CIs) for each cancer based on the union 
set of UK Biobank (UKB) and Genetic Epidemiology Research on Adult Health and Aging (GERA) SNPs, 
compared with previous estimates from other array-based and twin/family-based studies. 
 

 Array-Based Heritability Twin/Family-Based Heritability 
Cancer Site Current Study Jiang et al.a Sampson et al.c Mucci et al.d 

Bladder 0.08 (0.04-0.12)  0.12 (0.09-0.16) 0.07 (0.02-0.11)e 
Breast 0.10 (0.08-0.13) 0.14 (0.12-0.16) 0.10 (0.00-0.20)** 0.31 (0.11-0.51) 
Cervix 0.07 (0.02-0.12)   0.13 (0.06-0.15)e,+ 
Colon 0.07 (0.04-0.10) 0.09 (0.07-0.11)*  0.15 (0.00-0.45) 

Endometrium 0.13 (0.07-0.18)  0.18 (0.09-0.27) 0.27 (0.11-0.43) 
Esophagus/Stomach 0.14 (0.07-0.21)  0.38 (0.17-0.59)*** 0.22 (0.00-0.55)++ 

Kidney 0.09 (0.04-0.15)  0.15 (0.02-0.27) 0.38 (0.21-0.55) 
Lung 0.15 (0.10-0.20) 0.08 (0.05-0.10) 0.21 (0.14-0.27) 0.18 (0.00-0.42) 

Lymphocytic Leukemia 0.14 (0.05-0.23)  0.22 (0.16-0.28)† 0.09 (0.09-0.16)e,+++ 
Melanoma 0.08 (0.04-0.11)   0.58 (0.43-0.73) 

Non-Hodgkin’s Lymphoma 0.13 (0.03-0.23)  0.09 (0.04-0.15)†† 0.10 (0.08-0.10)e 
Oral Cavity/Pharynx 0.04 (0.00-0.13) 0.10 (0.05-0.14)  0.09 (0.00-0.60) 

Ovary 0.07 (0.01-0.13) 0.03 (0.02-0.05)  0.39 (0.23-0.55) 
Pancreas 0.06 (0.00-0.18) 0.05 (0.00-0.10)b 0.10 (0.04-0.16)  

Prostate 0.16 (0.13-0.20) 0.18 (0.14-0.22) 0.38 (0.24-0.51) 0.57 (0.51-0.63) 
Rectum 0.11 (0.07-0.16)   0.14 (0.00-0.50) 
Testis 0.26 (0.15-0.38)  0.30 (0.08-0.51) 0.25 (0.15-0.37)e 

Thyroid 0.21 (0.09-0.33)   0.53 (0.52-0.53)e 
 
* Colorectal 
** Estrogen receptor negative (ER-) 
*** For esophageal in Asian population (stomach in Asian population: h2 = 0.25 [0.00-0.52]) 
† For chronic lymphocytic leukemia 
†† For diffuse large B-cell lymphoma 
+ For in situ (invasive: h2 = 0.22 [0.14-0.27]) 
++ Stomach 
+++ Age >15 years 
 
a Taken from Jiang, et al. (2019),6 95% CI calculated from provided standard error 
b Taken from Lindström, et al. (2017)5 
c Taken from Sampson, et al. (2015)4 
d Taken from Mucci, et al. (2016),2 except where not included in analysis or 95% CI range was > 0.60; 
remaining taken from Czene, et al. (2002),3 as marked 
e Taken from Czene, et al. (2002),3 family-based not twin 
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Figure 1. Cross-cancer genetic correlations (rg) calculated via LD-score regression (LDSC) and associated 
cancers from the locus-specific pleiotropy analysis. (a) Cancer pairs are connected if the genetic correlation 
had P<0.05, width of the line is proportional to magnitude of the point estimate, and shading is proportional to 
strength of association according to P, where the Bonferroni-corrected threshold is 0.05/153=3.27x10-4; (b) 
genetic correlation, 95% confidence interval (CI), and P for all cancer pairs with P<0.05; (c) cancer pairs are 
connected by a line (each line represents one region) if a region contains any SNPs associated with either cancer, 
where regions are formed around index SNPs with P<1x10-6 for any cancer and SNPs are added if they have 
P<1x10-6 for any cancer, are within 500kb of the index SNP, and have LD r2>0.5 with the index SNP. 
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Figure 2. Manhattan plot displaying one-directional variant-specific pleiotropy, where the effect is 
maximized across all possible subsets of 18 cancers and assumes the same direction of effect across all 
selected cancers. The red dashed line represents the genome-wide significance threshold (P < 5x10-8), and the 
black dotted line represents a suggestive threshold (P < 1x10-6). Highlighted in purple are genome-wide 
significant loci where the overall pleiotropic P is less than all individual P for the selected cancers; details for the 
strongest signal at each locus are provided in the table, including the overall P and odds ratio (OR). Highlighted 
in green are the genome-wide significant loci where the overall pleiotropic P is greater than at least one of the 
individual P for the selected cancers, and highlighted in blue are loci with overall pleiotropic P < 1x10-6. All 
highlighted loci are independent of bidirectional SNPs with smaller overall P. 

 
* Bl=Bladder, Br=Breast, Ce=Cervix, Co=Colon, En=Endometrium, Es=Esophagus/Stomach, Ki=Kidney, 
Le=Lymphocytic Leukemia, Lu=Lung, Me=Melanoma, NHL=Non-Hodgkin’s Lymphoma, Or=Oral 
Cavity/Pharynx, Ov=Ovary, Pa=Pancreas, Pr=Prostate, Re=Rectum, Te=Testis, Th=Thyroid  
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Figure 3. Manhattan plot displaying bidirectional variant-specific pleiotropy, where the effect is maximized 
across all possible subsets of 18 cancers and allows for different directions of effect for selected cancers. 
The red dashed line represents the genome-wide significance threshold (P < 5x10-8), and the black dotted line 
represents a suggestive threshold (P < 1x10-6). Highlighted are loci with overall pleiotropic P < 1x10-6, the two 
directional P < 0.05, and not in LD with a one-directional SNP with smaller P; loci in purple are genome-wide 
significant loci where the overall pleiotropic P is less than all individual P for the selected cancers, loci in green 
are genome-wide significant loci where the overall pleiotropic P is greater than at least one of the individual P 
for the selected cancers, and loci in blue have P < 1x10-6. Details for the strongest signal at each highlighted locus 
are provided in the table, including overall P and odds ratio (OR).  

 
 
* Bl=Bladder, Br=Breast, Ce=Cervix, Co=Colon, En=Endometrium, Es=Esophagus/Stomach, Ki=Kidney, 
Le=Lymphocytic Leukemia, Lu=Lung, Me=Melanoma, NHL=Non-Hodgkin’s Lymphoma, Or=Oral 
Cavity/Pharynx, Ov=Ovary, Pa=Pancreas, Pr=Prostate, Re=Rectum, Te=Testis, Th=Thyroid 
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Figure 4. Summary of the cancer pairs associated with and the functional consequences of the 158 one- and bidirectional pleiotropic variants. 
(a) The number of pleiotropic variants (of the 158 one- and bidirectional variants with overall pleiotropic P<1x10-6) associated with each pair of cancers 
by type of pleiotropic effect for select cancer pairs. Variants were counted for a cancer pair if they were associated with both cancers using ASSET. 
For bidirectional variants, effects in the same direction and in opposite directions were tabulated separately. Included are all cancer pairs with any of 
the following cancer sites: breast, cervix, lung, melanoma, Non-Hodgkin’s Lymphoma (NHL), pancreas, and prostate. (b) The distribution of variant 
consequences and corresponding enrichment, calculated using Fisher’s exact test comparing the proportion of variants belonging to each functional 
class observed among the 158 ASSET variants to all variants in the UK Biobank. The Venn diagram summarizes the number of variants with specific 
regulatory elements, based on analyses of chromatin features from Roadmap and expression quantitative trait loci (eQTL) associations. DeepSEA 
functional significance score provides an integrated summary score based on evolutionary conservation and chromatin data, with 0 denoting variants 
most likely to be functional. 
 
(a) 
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(b)  
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