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Abstract

SARS86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central
role in the function of marine ecosystems. We hypothesized that despite its ubiquity, different
SARS86 subgroups may be endemic to specific ocean regions and functionally specialized for
unique marine environments. However, the global biogeographical distributions of SAR86
genes, and the manner in which these distributions correlate with marine environments, have not
been investigated. We quantified SAR86 gene content across globally-distributed metagenomic
samples and modeled these gene distributions as a function of 51 environmental variables. We
identified five distinct clusters of genes within the SAR86 pangenome, each with a unique
geographic distribution associated with specific environmental characteristics. Gene clusters are
characterized by strong taxonomic enrichment of distinct SAR86 genomes and partial
assemblies, as well as differential enrichment of certain functional groups, suggesting differing
functional and ecological roles of SAR86 ecotypes. We then leveraged our models and high-
resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene
clusters across the world’s oceans, creating global maps of SAR86 ecotype distributions. Our
results reveal that SAR86 exhibits previously unknown, complex biogeography, and provide a
framework for exploring geographic distributions of genetic diversity from other microbial

clades.
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Introduction

Marine microbes are important drivers of biogeochemical cycling and ecological function
[1, 2]. Many studies have demonstrated the link between microbial genetic diversity and
functional capacities [e.g. 3—7], as well as the dependence of microbial community structure and
function on environmental variables [5, 8, 9]. However, the complexity of microbial
communities and of their interactions with their environment limit our ability to link microbial
genetic and functional variation across environments [10]. Furthermore, we have only limited
understanding of the geographic distributions of genetic diversity within key taxa, the
relationship of gene distributions to environmental conditions, and the manner in which these
distributions may result in distinct ecotypes across different environments and regions. Our
limitations in mapping microbial genetic diversity to geographic distributions restrict our ability
to predict microbial ecotypes across the environment. Accurate models linking environmental
and microbial variables may improve our current ability to incorporate biological inputs into
ecosystem models, which often rely on simplified biological systems utilizing incomplete
environmental relationships or imprecise evaluations of the functional capabilities of microbial
communities at different locations [11, 12].

In microbial ecology, an ecotype [13] is often identified in practice as a group of closely
related lineages that co-occur on the same spatial or temporal scale and are associated with
particular environmental conditions. This contrasts with the classical ecological definition, which
additionally specifies that an ecotype must be genotypically adapted to the environmental
conditions it is associated with [14]. In microbial ecology, where community members often lack
cultured representatives and experiments directly measuring adaptive capacity to manipulated

environmental conditions are challenging to conduct, adaptation is often difficult to demonstrate
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conclusively. In this study, we define an ecotype to be a group of lineages within a clade whose
genomes contain a similar set of genes with a common geographic distribution associated with
distinct environmental conditions. This definition is consistent with previous studies of microbial
ecotypes [15]. Additionally, we require an ecotype to be taxonomically and functionally
differentiated from other ecotypes, which may indicate an adaptive strategy specific to that
ecotype, although we do not explicitly test for genetic signatures of adaptation.

The biogeography of marine microbes has been observed at scales from single depth
profiles [4] to global surveys [16, 17], revealing spatial and temporal patterns in microbial
community structure [16, 18], function [8, 19], and diversity [17]. Many marine microbial clades
exhibit population structure that correlates with their differential geographic distributions [20].
Because most microbes have large pangenomes and flexible gene content [20], there is
significant interest in elucidating the differential functional capabilities of microbial ecotypes
and mapping their biogeographical distributions. Associating geographic distributions of
microbial ecotypes with environmental conditions could illuminate the links between microbial
community structure, function, and ecosystem processes, enabling predictions of biological and
chemical shifts in the world’s oceans as environmental conditions change. However, there have
been very few efforts to predict biogeographic patterns of genetic and functional diversity of key
microbial taxa at large spatial scales in the ocean [17, 21].

SARS6 is a ubiquitous marine heterotroph frequently found in surface waters, classified
by their 16S rRNA gene similarity as a clade within the Gammaproteobacteria [22—-24]. SAR86
is a very diverse group with at least three subclades [23, 24]. Despite its ubiquity in marine
systems, SARS86 eludes cultivation, and therefore knowledge of the ecological role of SAR86 in

marine microbial communities is limited to evidence from genomes curated from single-cell
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87  sequencing or metagenomic assembly [25-27]. These genomes suggest that SAR86 gene sets,

88  and hence functional capabilities, vary greatly across locations, even though the clade is very

89  commonly detected in marine environments. However, little is known about the manner in which

90 the distribution of subspecies and the vast genetic diversity within the SAR86 pangenome may

91  vary across large spatial extents, and what environmental factors may affect the geographic

92  distributions of different SAR86 gene families.

93 In this study, we build a custom pangenome of SAR86 genes from metagenomic co-

94  assemblies and five available reference genomes. We then quantify the presence of each gene in

95  the pangenome across diverse marine epipelagic waters using hundreds of publicly available,

96  globally-distributed shotgun metagenomes. We find that geographic distributions of SAR86

97  genes are strongly associated with environmental variables, and we leverage these associations to

98  build machine learning models that accurately predict the presence of SAR86 genes from

99  environmental data. Using global-scale environmental measurements from satellite and
100  shipboard sources, we use our models to predict the global distribution of each geographically
101  variable gene in the SAR86 pangenome at a 9km? resolution. Our machine learning approach
102  enables patterns in the environmental variables that best predict the distributions of SAR86 genes
103  to emerge from the global metagenomic dataset without explicitly assuming a priori
104  relationships between inputs and outputs. Analysis of the resultant models reveals five clusters of
105  genes with unique environmental and geographic distributions, defining five ecotypes within the
106  SARS6 clade. We conclude that patterns of taxonomic and functional enrichment across these
107  ecotypes reveal previously underappreciated complexity in the geographic distributions
108  underlying the pangenome of this otherwise ubiquitous marine heterotroph, with great potential

109 to illuminate structure-function relationships across the marine environment.
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110  Materials & Methods

111

112 Creation of the SAR86 pangenome and global SAR86 gene presence/absence dataset

113 A custom pangenome of 51 711 nonredundant SAR86 genes was created with the

114  MIDAS tool [20], from a combination of genomic sources [23, 24, 25] as well as a massive co-
115  assembly of metagenomic sequences (Supplemental Text 1.1-1.2).

116 A global dataset of SAR86 gene presence/absence for each gene in the SAR86

117  pangenome was then created. Shotgun metagenomic sequencing reads from the TARA project
118  [9] were mapped to the SAR86 pangenome, and the resulting normalized read coverage for each
119  gene was used to determine SAR86 gene presence or absence for all SAR86 genes at 198 TARA
120  sites (Supplemental Text 1.3).

121

122 Environmental data curation and processing

123 In order to build models predicting SAR86 gene presence from environmental variables,
124  environmental data available at resolution between 9km to 1-degree and at global scale were

125  curated from a combination of contemporary satellite data and historical averages of satellite and
126  interpolated in situ measurements. A total of 51 environmental features were compiled (SI Table
127 1, Supplemental Text 1.4). Normalized environmental feature values closest to each TARA site’s
128 latitude, longitude, and, where relevant, sampling depth and/or sampling date (SI Table 2) served
129  as the input feature vectors for each TARA site during model training.

130
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Gene presence/absence models & predictions

Classification models predicting SAR86 gene presence or absence as a function of the
environmental feature vectors across TARA sites were built for each of 24 317 geographically
variable SAR86 genes, using logistic regression with L1 regularization (Supplemental Text 1.5).
Geographically variable genes were defined as genes present at between 20-80% of TARA sites.
155 TARA sites for which SAR86 was present and environmental data was available were split
into training, validation, and test sets of 111, 13, and 31 sites respectively. The final models
trained independently for each of the 24 317 geographically variable genes can be reproduced

with code available on the associated Github repository [29].

Clustering, global maps of ecotypes, & enrichment analysis

To identify groups of SAR86 genes whose geographic distributions are best predicted by
similar environmental variables, we clustered genes into 5 clusters on the logistic regression
model coefficients for each environmental feature using a k-means algorithm (Supplemental
Text 1.6). Clustering on environmental features associated with gene models enabled us to
identify the environmental variables underlying geographic distributions of genes, and also
enabled the projection of predicted cluster distributions at global scales. To produce global
projections (i.e., maps) of each SAR86 gene cluster, we predicted the presence or absence of
each cluster at 9km2 resolution and global scale from the available satellite and historical
environmental data ([29], Supplemental Text 1.6). A Jupyter notebook and a python script for
reproducing clusters and cluster projections are available ([29]).

The distribution and enrichment across clusters were evaluated at the genome, contig, and

functional level for two SAR86 reference genomes SARS86A and SARS6E, for the contigs of the
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154  SARS6 co-assembly, and for the functional annotations to Pfam [30] for the SAR86 pangenome
155  (Supplemental Text 1.7). This produced a vector of taxonomic/functional enrichment values
156  associated with each contig/annotation for each cluster, with which the statistical significance of
157  cluster enrichment could be tested (Supplemental Text 1.7).

158

159  Results

160 This study first modeled the relationships between SAR86 gene distributions and

161  environmental variables. We used a regularized logistic regression approach to identify the

162  subset of environmental variables that are most important for predicting the geographical

163  distributions of each gene and to estimate the strength of these gene-environmental variable
164  relationships. Using unsupervised clustering of these association profiles, we then identified
165  clusters of genes with similar environmental distributions. Clustering enabled us to identify the
166  structure underlying the environmental gene distributions without explicit prior knowledge of
167  expected SAR86 ecotypes. By using environmental variables available at global scale, we

168  leveraged our gene models to predict the geographic distribution of these emergent ecotypes in
169  regions far beyond the sampling locations specific to the TARA study.

170

171  Accurate prediction of SAR86 gene distributions from environmental variables

172 SARS86 gene content in TARA Oceans metagenomes is associated with environmental
173  characteristics of the sampling locations. We built a regularized logistic regression model for
174  each gene that accurately predicts the probability of the gene being present at a given location as
175  a function of the most predictive subset of environmental variables (Methods, Supplemental Text

176  1.5).
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177 The resulting 24 317 gene models predict SAR86 gene presence/absence with an average
178  0of 79.4% accuracy in the test set, and a median test accuracy of 80.6%. Precision and recall

179  measures are roughly even (0.85 and 0.81, respectively; SI Fig 3a), with an F1 score of 0.83. For
180 21 264 out of 24 317 genes (87.4%), the models have accuracies in the test set that are an

181 improvement over the majority class accuracy — the accuracy of the model if it predicts ‘always
182  absent’ or ‘always present’, whichever is in the majority (SI Fig 3b).

183 As an additional test of the robustness of the models, the accuracy of predictions at those
184  TARA sites that were not included in model development, where SAR86 was not present or were
185  in very low abundance, was also examined. There were 20 such sites for which environmental
186  data was available for all features. These 20 sites were primarily mesopelagic samples,

187  distributed across all ocean basins (Supplemental Text 1.5). Across these 20 sites, the average
188  accuracy of the gene models is 68.5%, while the median accuracy is 70.0%. While this

189  performance is below that achieved at sites where SAR86 was present, it suggests that our

190  models are able to make fairly accurate predictions even when extrapolating outside of the

191  distribution of gene presence used in training.

192 An average of 17 of 51 environmental features is significantly associated with each

193  gene’s distribution across TARA Oceans sites. Across multiple gene models, the same

194  environmental feature was frequently selected during model training (SI Fig 4). These frequently
195  associated variables include latitude, longitude, distance from land, ocean depth, and other

196  features that might describe the general ocean basin or region of a sample; as well as pH, sea
197  surface temperature, pycnocline depth, nitrogen:phosphorous ratio, cloud fraction, and other

198  environmental factors that describe regions of the ocean that experience particular environmental

199  conditions.
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200 While the environmental features that best predict gene presence/absence vary by the
201  individual gene model, and many of the 51 environmental variables covary with one another,
202  training logistic regression multiple times on the same data with different random seeds resulted
203  in the same sets of environmental features being chosen as the most predictive for each gene
204  model (see Jupyter notebook in [29]). This consistency suggests that the environmental features
205  selected in each model reflect a true difference in predictive power between the selected features
206  and those that were not selected, rather than a random choice among features that are roughly
207  equally predictive.

208

209  Clustering of SARS86 genes into common environmental distributions & global projections of
210  their biogeographic distributions

211 The environmental features that best predict individual genes, and the strength of the
212 coefficients associated with any particular environmental feature, vary by the individual gene
213  model. However, there are apparent patterns among genes, with some groups of genes appearing
214  to be predicted by similar environmental variables, as well as similar magnitudes and signs of the
215  coefficients associated with those variables. These patterns suggest that genes that are predicted
216 by similar environmental features occupy similar geographic distributions characterized by

217  unique environmental conditions.

218 K-means clustering of genes by their logistic regression environmental feature

219  coefficients identified five clusters within the SAR86 pangenome characterized by similar

220  environmental distributions (Fig 1). The average environmental feature coefficient across all
221  genes in each cluster (the “centroid”) demonstrates the distinct pattern of association with

222  environmental features of each cluster (SI Table 3).

10
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223 Each TARA site contains genes from a mixture of clusters, but the dominant clusters and
224  the evenness of the proportion of each cluster is variable across sites (Fig 2, SI Fig 5, SI Table 4).
225  For example, cluster 2 is strongly associated with longitudes in the western hemisphere, and this
226  is also reflected across TARA samples, for which cluster 2 is present in highest proportions for
227  those TARA sites sampled in the Pacific Ocean (Fig 2, SI Fig 5b). In contrast, cluster 3 genes are
228  found in higher proportions at TARA sites sampled in the eastern hemisphere, reflecting their
229  predicted geographic distributions (Fig 2, SI Fig 5c¢).

230 A Shannon diversity metric was used to measure the relative evenness and proportion of
231  the five clusters at each TARA site (SI Table 4, Supplemental Text 1.7). The TARA sites with
232 the lowest Shannon diversity include TARA station 93 at 34°S and 73°W off the coast of Chile,
233 which is dominated by cluster 5 genes, and TARA stations 38, 42, 45, and 36 in the Indian

234 Ocean, which are dominated by cluster 4 genes. The TARA sites with the highest Shannon

235  diversity include many of the mesopelagic depth samples in the Pacific Ocean, as well as station
236 70 in the South Atlantic basin at 20.4°S and 3.2°W.

237  We next used the cluster centroids and global-scale environmental data to predict the geographic
238  distribution of each cluster beyond the TARA sampling locations (Fig 3). These global

239  projections reveal the differential distributions of SAR86 gene clusters. These differential

240  distributions are reflected in variation across longitude (e.g. cluster 2 versus clusters 3 and 4),
241  latitude (e.g. clusters 1 and 5 versus clusters 2, 3, and 4), and season (e.g. cluster 1, Fig 3). In
242  each case, the highest magnitude coefficients for each cluster are suggestive of their predicted
243  geographic distributions (SI Table 3, Supplemental Text 2.1).

244

11
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245  Taxonomic enrichment & functional differentiation across clusters define SAR86 ecotypes
246 The cluster assignments of genes from the SAR86 reference genomes SAR86A and

247  SARB8G6E show clear partitioning on taxonomic lines. Genes from each genome are assigned

248  primarily to two clusters, and each cluster is dominated by one genome. SAR86A genes are

249  partitioned primarily into clusters 4 and 3, with 493 and 118 out of the 622 SAR86A genes

250  assigned to cluster 4 and 3 respectively, while only 4 and 7 genes were assigned to clusters 2 and
251 5, and 0 genes to cluster 1. The 157 SAR86E genes were partitioned into clusters 1 and 5, with
252 76 and 78 genes respectively, while only 2 and 1 genes were assigned to clusters 2 and 4,

253  respectively, and 0 genes to cluster 3.

254 Clusters also show clear taxonomic differentiation at the contig level. Those genes that do
255  not originate from one of the five SAR86 genomes constitute a total length of 22 Mbp

256  originating from 732 contigs from the SAR86 co-assembly. All clusters are significantly

257  enriched in specific contigs (p<0.001, Fig 4c), with a unique set of contigs enriched on each

258  cluster. Genes from the same contig are generally assigned to the same cluster, such that gene
259  assignments of almost all contigs, 540 out of 732 contigs, are enriched on only one cluster, 183
260  contigs are enriched on only two clusters, and the remaining 9 contigs are enriched on 3 clusters
261  (Fig4). Where a contig is enriched, the enrichment is strong, with an average enrichment of 3.03
262  and a standard deviation of 0.43, and ranging from 1.41 in cluster 4 to 5.25 in cluster 2.

263 The taxonomic partitioning of clusters is also evident in their distribution across TARA
264  sites. First, the cluster proportions and the relative abundances of SAR86 genomes at TARA sites
265  reflect the taxonomic differentiation of genomes across clusters. The clusters associated with
266  SARB86A (clusters 3 and 4) are in higher proportions relative to the clusters associated with

267  SARSGE (clusters 1 and 5) at TARA sites where SAR86A abundances are higher relative to

12
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268  SARSG6E (SI Fig 6, Pearson R2 = 0.70, P=1.56x10-26). In addition to this genomic evidence, the
269  normalized read coverage across TARA sites for genes from the same cluster are more highly
270  correlated with one another than genes from different clusters (SI Fig 7), as would be expected if
271  genes belonging to the same cluster share a common taxonomic origin. This indicates that genes
272  from the same genome are assigned to the same cluster, although a single cluster may be made
273  up of genes from multiple genomes. Indeed, the 22Mbp of genomic material in the SAR86 co-
274  assembly is enough for at least 11 genomes of size similar to that of known SAR86 reference
275  genomes, so multiple genomes are expected to be contained within the 5 identified clusters.

276  These clusters are thus composed of genes that co-occur with one another across similar

277  environmental contexts, and are taxonomically differentiated, but do not necessarily represent
278  individual SAR86 genomes.

279 In addition to taxonomic enrichment across clusters, there is also significant partitioning
280  of genes at the functional level, with differential enrichment of Pfam annotated genes across

281  clusters (Fig 5). Pfams are enriched by an average value of 0.25 and a standard deviation of 0.10,
282  ranging from 0.13 in cluster 4 to 0.32 in cluster 2. This enrichment is significant (p<0.01) for
283  most of the clusters (Fig 5c). This result suggests that clusters 1, 2, and 4 have significant

284  functional enrichment, while functional enrichment on cluster 3 is marginally significant. Genes
285  from a particular Pfam are most often assigned to only two or three clusters (Fig 5b). While

286  functional enrichment in general is less strong than taxonomic enrichment, this may be due to the
287  relative coarseness of functional annotation compared to taxonomic assignments, and our

288 inability to annotate many genes with confidence.

289 Enrichment of specific Pfams corresponding to some ecologically important functions

290 indicate possible differentiation in ecological function between clusters. For example, glycosyl

13
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291  hydrolase family 3 (Pfams PF00933, PF01915), which corresponds to exo-acting glucosidases, is
292  enriched across clusters 3, 4, and 5, and depleted in clusters 1 and 2, while glycosyl hydrolase
293  family 16 (Pfam PF00722), which corresponds to endo-acting glucanases, is enriched strongly on
294  cluster 3, depleted in clusters 1 and 2, and near the null value for clusters 4 and 5 (SI Fig 8).

295  Proteorhodopsin, a photoactive transmembrane proton pump first identified in bacteria in SAR86
296  [31] and used by SAR86 for photoheterotrophic ATP generation, is enriched in clusters 3 and 4,
297  and depleted in clusters 1, 2, and 5 (SI Fig 9).

298

299  Discussion

300 While SAR86 is generally considered to be a ubiquitous heterotroph in the ocean, this
301  study demonstrates that SAR86 harbors immense within-species genetic diversity that is strongly
302  associated with environmental variables. These distinct environmental distributions of gene

303  clusters define a deeper geographic variability within the SAR86 clade than previously

304  appreciated. The three near-complete and two partial genomes available for SAR86 [25, 26]

305  show high diversity within this clade; average nucleotide identity between genomes is between
306  70-80% (SI Table 5). In light of this high diversity, it is perhaps not surprising that the

307  geographically variable genes in the SAR86 pangenome can be decomposed into five distinct
308  clusters with different geographic distributions associated with unique environmental variables.
309  These clusters are differentiated at the taxonomic and functional level, which has implications
310 for our understanding of the biogeography of SARS86, as well as its ecological role within

311  microbial communities in the marine environment.

312 Using a data intensive approach to build machine learning models of the relationship

313  between SAR86 genes and environmental variables at a global scale, we demonstrate how such

14
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314  an approach can be used to better understand the factors shaping the biogeography of microbial
315  clades. This approach can reveal patterns that would likely be missed at the 16S OTU or

316  community level, or using data from a smaller scale. Particularly as metagenomics data become
317  increasingly available in the future, such an approach holds promise for illuminating the

318 relationship between microbial community structure and ecological function across broad

319  taxonomic and spatial scales.

320 The results of this study identify clusters of genes that, while their phylogenetic

321  relatedness is unknown, are taxonomically and functionally differentiated and occupy distinct
322  environmental distributions. While the functional traits that confer niche restriction within these
323  distributions is not obvious from our results, functional differentiation across clusters of glycosyl
324  hydrolases (SI Fig 8) — an important class of enzymes for heterotrophic metabolism of

325  polysaccharides — and proteorhodopsin (SI Fig 9) — a light-driven means of energy generation
326  and enhanced nutrient and organic carbon uptake — suggest that genes associated with different
327  clusters define distinct functional roles filled by each cluster . Glycosyl hydrolase families 3 and
328 16 target many of the same substrates — B-linked glucans, including the abundant marine

329  plankton storage glucan laminarin — but using different enzymatic mechanisms [32]. The strong
330  enrichment in cluster 3, and strong depletion in clusters 1 and 2, of both families, compared to
331  the enrichment of only family 16 in clusters 4 and 5, may indicate distinct ecological functions of
332  SARSG6 across clusters that utilize differing metabolic strategies and have disparate impacts on
333  carbon remineralization. Proteorhodopsin genes are only enriched in clusters 3 and 4, the two
334  clusters associated with lower latitudes and more abundant sunlight, and are depleted in clusters
335 1 and 5, which are associated with temperate latitudes. This latitudinal pattern may also indicate

336  distinct energy generation and metabolic strategies that correspond with the environmental
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distributions of the clusters. Given the clear taxonomic and functional partitioning of the SAR86
pangenome across clusters with distinct geographic distributions associated with unique
environmental conditions, we conclude that the clusters described here define previously
unidentified ecotypes within the SAR86 clade.

The geographic distributions of SAR86 ecotypes are consistent with previous studies. An
investigation of temporal and geographic patterns in SAR86 noted that while the phylogenetic
substructure of the SAR86 clade implies that it may be made up of multiple ecotypes, these
could not be identified at the limited geographic resolution of the study [24]. The potential
existence of SAR86 ecotypes was also noted in the apparent geographic distributions of
SARS86A, B, C, and D genomes [25], which differed in their distributions across coastal versus
open ocean sampling sites and along temperature gradients. This general observation is
supported by the predicted distributions of the clusters identified in our study, for which three
clusters (clusters 2, 3, and 4) are partially defined by their warmer, open ocean distributions, and
two (clusters 1 and 5) are associated with cooler temperatures. The difficulty of identifying
ecotypes in SAR86 contrasts with SAR11, for which distinct ecotypes have been identified
within a constrained geographic sample because they were strongly associated with differences
in depth and salinity distributions [15]. This study was able to identify SAR86 ecotypes, despite
their partially sympatric distributions that cause single sampling sites to be composed of genes
from multiple clusters, because of the larger data size and geographic distribution of the TARA
dataset, and our unique approach to defining ecotypes based on quantitative models of
environmental associations with geographically variable genes. Whereas ecotypes are typically
identified by building a phylogeny based on core genes and observing whether environmental

variables map over the phylogeny [e.g. 23, 33], our approach is quantitative, objective and

16


https://doi.org/10.1101/635185
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/635185; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

360 independent of a priori knowledge of phylogeny, and results in sets of genes and functional

361 features that define the ecotype.

362 The taxonomic and functional differentiation of genes across SAR86 ecotype clusters is
363  significant in the context of interactions between microbial community structure, function, and
364  ecology. Both community composition [16—18, 34] and functional traits [3, 4, 8, 19] vary

365  geographically and can be predicted to some extent by environmental variables [8, 17].

366 Taxonomic variation can lead to functional differentiation of microbial communities [4, 35, 36],
367  which ultimately shapes biogeochemical cycling and ecosystem function; conversely, functional
368  redundancy across microbial taxa can complicate the relationship between structure and function
369  [37], with taxonomically variable communities playing similar functional roles [38].

370  Disentangling the relationship between environment, biogeography, structure, and function is
371  therefore a significant ongoing challenge in microbial ecology [5, 7, 8, 10]. By focusing on

372  patterns at the individual gene level within a single clade, we are able to uncover patterns in

373  environmental distributions of genetic diversity at a scale that would normally be obscured by
374  the complexity inherent to microbial communities. For example, previous studies have found that
375  functional classifications of taxa are better predicted by environmental parameters than

376  taxonomic 16S-based classifications [8]; however, these functional classifications are broad — all
377  of the SAR86 pangenome would be classified as ‘aerobic chemoheterotroph’ — in order to

378  control for the vast genetic diversity of traits in mixed microbial communities. It is likely that
379  within the SAR86 pangenome there is ecological differentiation within this category that, for
380 example, could lead closely related phylotypes of SAR86 that belong to different ecotypes to
381 utilize different substrates [33, 39, 40]. This hypothesis is supported by the functional enrichment

382  across our clusters and the differential enrichment of carbohydrate utilizing enzymes (SI Fig 8).
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383  Previous analyses of the genomic context of SAR86 genomes also suggest that much of the

384  diversity among SAR86 genomes may be driven by fine scale diversification of catabolic

385  enzymes on loci associated with TonB dependent receptors [25], which are responsible for

386  transporting carbon compounds (as well as metals) into the cell [41].

387 The accuracies of our gene models are better on average than previous studies (0.79 vs
388  0.48, [8]), which may similarly be due in part to our focus on modeling individual genes rather
389  than whole communities. This difference in model accuracy may also be due to our consideration
390 of different, and a larger number, of input environmental features. Here, the environmental

391 features were chosen for their availability at global resolution rather than their human-predicted
392  importance in regulating microbial function. These environmental features may be more

393  predictive of the distributions of SAR86 genes, even if they are less relevant to biological

394  function. The environmental factors that influence whether an organism grows in a particular
395  location or community may be different from those that drive their function within that

396  community: for example, an organism may only grow in fresh or saline waters, while the

397  maintenance of a nitrogen fixation pathway depends on nutrients or other factors. It is important
398  to note that those environmental features that are selected as most predictive for each gene model
399  do not necessarily drive the growth of SAR86 in a causal manner, but implies only that these
400 environmental features are good predictive proxies for the presence of that gene. The

401 interpretation of the most predictive environmental features may vary depending on the feature;
402  some features may be a proxy for biological phenomena, while others simply define

403  oceanographic regions, or are proxies for other factors that cannot be measured that are true

404  causal drivers of variation. The features chosen by the L1 regularization procedure are also likely

405  biased by the scope of the samples used as inputs to the model. For example, the cluster
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406  associated with western hemisphere longitudes is overrepresented in sites from the Pacific Ocean
407  in the TARA expedition dataset. However, there are longitudes both east and west of the

408 antemeridian in the Pacific, represented as negative and positive longitudes in the models, and it
409  is a limitation of the TARA dataset that only samples from the eastern part of the basin, in the
410  western hemisphere, are represented. This limitation results in an unnaturally sharp transition in
411  cluster projections on the antemeridian in the Pacific Ocean for those clusters for which

412  longitude is a strong predictor. This observation also serves as a note of caution for the

413  interpretation of the global projections, whose predicted distributions will likely break down
414  most in locations for which representation of samples is most sparse, e.g. in polar regions.

415 We are able to make accurate predictions of geographic distributions of SAR86 genes,
416  identifying previously unknown biogeographical complexity within an otherwise ubiquitous
417  heterotrophic clade and making global projections of the distributions of SAR86 ecotypes

418  associated with distinct environmental distributions. Our modeling approach leverages a large
419  dataset across broad geographic regions, demonstrating the potential of machine learning and the
420  use of broader scale integrated datasets for marine microbial ecology. The five global ecotypes
421  underlying the highly diverse SAR86 clade, the taxonomic and functional differentiation across
422  ecotypes, and the distinct environmental distributions of SAR86 genetic diversity highlight the
423  importance of SAR86 within marine microbial communities and broadens the context for

424  interpreting their ecological impact across the world’s oceans.
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Figure Legends

Fig. 1 — Heatmap of model coefficients for each environmental feature (rows) and gene
(columns), ordered by cluster (x axis).

Fig. 2 — Relative proportion of clusters at each TARA site (vertical bars). TARA sites are sorted
by longitude (x axis; negative numbers correspond to longitude west of the prime meridian).
Blue, cluster 1; green, cluster 2; yellow, cluster 3; purple, cluster 4; pink, cluster 5.

Fig. 3 — Global predictions of SAR86 gene cluster distributions for each cluster (rows) in
January, April, July, and October of 2009 (columns). Red indicates a high confidence of a gene
cluster being present, blue a high confidence of a gene cluster being absent, and white a low
confidence prediction.

Fig. 4 — Contig enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue) of
each contig (columns) across each cluster (rows). (b) Pie chart of the number of clusters in which
SARS6 contigs are enriched. (¢c) Mean positive enrichment value, standard deviation of positive
enrichment values, and the Mann-Whitney P value for significance of cluster enrichment, for
each cluster.

Fig. 5 — Functional enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue)
of the 405 most abundant Pfam families (columns) across each cluster (rows). Pfams are ordered
left to right by the number of genes annotated to it, from the most abundant Pfams to the Pfams
with as few as 20 genes annotated to it. (b) Pie chart of the number of clusters in which Pfams
are enriched. (c) Mean positive enrichment value, standard deviation of positive enrichment
values, and the Mann-Whitney P value for significance of cluster enrichment, for each cluster.
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