

1 Global ecotypes in the ubiquitous marine clade SAR86

2

3 Adrienne Hoarfrost^{1,8*}, Stephen Nayfach^{2,3}, Joshua Ladau², Shibu Yooseph⁴, Carol Arnosti¹,

4 Chris L Dupont⁵, Katherine S. Pollard^{3,6,7}

5

6 ¹ Dept. of Marine Sciences, University of North Carolina, Chapel Hill, NC

7 2 Joint Genome Institute, Walnut Creek, CA

8 ³ Gladstone Institutes, San Francisco, CA

⁹ ⁴Department of Computer Science, University of Central Florida, Orlando, FL

10 ⁵ J. Craig Venter Institute, La Jolla, CA

11 ⁶Dept. of Epidemiology & Biostatistics, Institute for Human Genetics, Computational Health

12 Sciences Institute, and Quantitative Biology Institute, University of California, San Francisco,

13 CA

14 ⁷ Chan-Zuckerberg Biohub, San Francisco, CA

15 ⁸ Present address: Department of Biochemistry & Microbiology, Rutgers University, New

16 Brunswick, NJ

17

18 * Corresponding author: adrienne.hoarfrost@rutgers.edu

19

20

21 **Abstract**

22
23 SAR86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central
24 role in the function of marine ecosystems. We hypothesized that despite its ubiquity, different
25 SAR86 subgroups may be endemic to specific ocean regions and functionally specialized for
26 unique marine environments. However, the global biogeographical distributions of SAR86
27 genes, and the manner in which these distributions correlate with marine environments, have not
28 been investigated. We quantified SAR86 gene content across globally-distributed metagenomic
29 samples and modeled these gene distributions as a function of 51 environmental variables. We
30 identified five distinct clusters of genes within the SAR86 pangenome, each with a unique
31 geographic distribution associated with specific environmental characteristics. Gene clusters are
32 characterized by strong taxonomic enrichment of distinct SAR86 genomes and partial
33 assemblies, as well as differential enrichment of certain functional groups, suggesting differing
34 functional and ecological roles of SAR86 ecotypes. We then leveraged our models and high-
35 resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene
36 clusters across the world's oceans, creating global maps of SAR86 ecotype distributions. Our
37 results reveal that SAR86 exhibits previously unknown, complex biogeography, and provide a
38 framework for exploring geographic distributions of genetic diversity from other microbial
39 clades.

40

41 **Introduction**

42 Marine microbes are important drivers of biogeochemical cycling and ecological function
43 [1, 2]. Many studies have demonstrated the link between microbial genetic diversity and
44 functional capacities [e.g. 3–7], as well as the dependence of microbial community structure and
45 function on environmental variables [5, 8, 9]. However, the complexity of microbial
46 communities and of their interactions with their environment limit our ability to link microbial
47 genetic and functional variation across environments [10]. Furthermore, we have only limited
48 understanding of the geographic distributions of genetic diversity within key taxa, the
49 relationship of gene distributions to environmental conditions, and the manner in which these
50 distributions may result in distinct ecotypes across different environments and regions. Our
51 limitations in mapping microbial genetic diversity to geographic distributions restrict our ability
52 to predict microbial ecotypes across the environment. Accurate models linking environmental
53 and microbial variables may improve our current ability to incorporate biological inputs into
54 ecosystem models, which often rely on simplified biological systems utilizing incomplete
55 environmental relationships or imprecise evaluations of the functional capabilities of microbial
56 communities at different locations [11, 12].

57 In microbial ecology, an ecotype [13] is often identified in practice as a group of closely
58 related lineages that co-occur on the same spatial or temporal scale and are associated with
59 particular environmental conditions. This contrasts with the classical ecological definition, which
60 additionally specifies that an ecotype must be genotypically adapted to the environmental
61 conditions it is associated with [14]. In microbial ecology, where community members often lack
62 cultured representatives and experiments directly measuring adaptive capacity to manipulated
63 environmental conditions are challenging to conduct, adaptation is often difficult to demonstrate

64 conclusively. In this study, we define an ecotype to be a group of lineages within a clade whose
65 genomes contain a similar set of genes with a common geographic distribution associated with
66 distinct environmental conditions. This definition is consistent with previous studies of microbial
67 ecotypes [15]. Additionally, we require an ecotype to be taxonomically and functionally
68 differentiated from other ecotypes, which may indicate an adaptive strategy specific to that
69 ecotype, although we do not explicitly test for genetic signatures of adaptation.

70 The biogeography of marine microbes has been observed at scales from single depth
71 profiles [4] to global surveys [16, 17], revealing spatial and temporal patterns in microbial
72 community structure [16, 18], function [8, 19], and diversity [17]. Many marine microbial clades
73 exhibit population structure that correlates with their differential geographic distributions [20].

74 Because most microbes have large pangenomes and flexible gene content [20], there is
75 significant interest in elucidating the differential functional capabilities of microbial ecotypes
76 and mapping their biogeographical distributions. Associating geographic distributions of
77 microbial ecotypes with environmental conditions could illuminate the links between microbial
78 community structure, function, and ecosystem processes, enabling predictions of biological and
79 chemical shifts in the world's oceans as environmental conditions change. However, there have
80 been very few efforts to predict biogeographic patterns of genetic and functional diversity of key
81 microbial taxa at large spatial scales in the ocean [17, 21].

82 SAR86 is a ubiquitous marine heterotroph frequently found in surface waters, classified
83 by their 16S rRNA gene similarity as a clade within the Gammaproteobacteria [22–24]. SAR86
84 is a very diverse group with at least three subclades [23, 24]. Despite its ubiquity in marine
85 systems, SAR86 eludes cultivation, and therefore knowledge of the ecological role of SAR86 in
86 marine microbial communities is limited to evidence from genomes curated from single-cell

87 sequencing or metagenomic assembly [25–27]. These genomes suggest that SAR86 gene sets,
88 and hence functional capabilities, vary greatly across locations, even though the clade is very
89 commonly detected in marine environments. However, little is known about the manner in which
90 the distribution of subspecies and the vast genetic diversity within the SAR86 pangenome may
91 vary across large spatial extents, and what environmental factors may affect the geographic
92 distributions of different SAR86 gene families.

93 In this study, we build a custom pangenome of SAR86 genes from metagenomic co-
94 assemblies and five available reference genomes. We then quantify the presence of each gene in
95 the pangenome across diverse marine epipelagic waters using hundreds of publicly available,
96 globally-distributed shotgun metagenomes. We find that geographic distributions of SAR86
97 genes are strongly associated with environmental variables, and we leverage these associations to
98 build machine learning models that accurately predict the presence of SAR86 genes from
99 environmental data. Using global-scale environmental measurements from satellite and
100 shipboard sources, we use our models to predict the global distribution of each geographically
101 variable gene in the SAR86 pangenome at a 9km² resolution. Our machine learning approach
102 enables patterns in the environmental variables that best predict the distributions of SAR86 genes
103 to emerge from the global metagenomic dataset without explicitly assuming *a priori*
104 relationships between inputs and outputs. Analysis of the resultant models reveals five clusters of
105 genes with unique environmental and geographic distributions, defining five ecotypes within the
106 SAR86 clade. We conclude that patterns of taxonomic and functional enrichment across these
107 ecotypes reveal previously underappreciated complexity in the geographic distributions
108 underlying the pangenome of this otherwise ubiquitous marine heterotroph, with great potential
109 to illuminate structure-function relationships across the marine environment.

110 **Materials & Methods**

111

112 ***Creation of the SAR86 pangenome and global SAR86 gene presence/absence dataset***

113 A custom pangenome of 51 711 nonredundant SAR86 genes was created with the
114 MIDAS tool [20], from a combination of genomic sources [23, 24, 25] as well as a massive co-
115 assembly of metagenomic sequences (Supplemental Text 1.1-1.2).

116 A global dataset of SAR86 gene presence/absence for each gene in the SAR86
117 pangenome was then created. Shotgun metagenomic sequencing reads from the TARA project
118 [9] were mapped to the SAR86 pangenome, and the resulting normalized read coverage for each
119 gene was used to determine SAR86 gene presence or absence for all SAR86 genes at 198 TARA
120 sites (Supplemental Text 1.3).

121

122 ***Environmental data curation and processing***

123 In order to build models predicting SAR86 gene presence from environmental variables,
124 environmental data available at resolution between 9km to 1-degree and at global scale were
125 curated from a combination of contemporary satellite data and historical averages of satellite and
126 interpolated in situ measurements. A total of 51 environmental features were compiled (SI Table
127 1, Supplemental Text 1.4). Normalized environmental feature values closest to each TARA site's
128 latitude, longitude, and, where relevant, sampling depth and/or sampling date (SI Table 2) served
129 as the input feature vectors for each TARA site during model training.

130

131 ***Gene presence/absence models & predictions***

132 Classification models predicting SAR86 gene presence or absence as a function of the
133 environmental feature vectors across TARA sites were built for each of 24 317 geographically
134 variable SAR86 genes, using logistic regression with L1 regularization (Supplemental Text 1.5).
135 Geographically variable genes were defined as genes present at between 20-80% of TARA sites.
136 155 TARA sites for which SAR86 was present and environmental data was available were split
137 into training, validation, and test sets of 111, 13, and 31 sites respectively. The final models
138 trained independently for each of the 24 317 geographically variable genes can be reproduced
139 with code available on the associated Github repository [29].

140

141 ***Clustering, global maps of ecotypes, & enrichment analysis***

142 To identify groups of SAR86 genes whose geographic distributions are best predicted by
143 similar environmental variables, we clustered genes into 5 clusters on the logistic regression
144 model coefficients for each environmental feature using a k-means algorithm (Supplemental
145 Text 1.6). Clustering on environmental features associated with gene models enabled us to
146 identify the environmental variables underlying geographic distributions of genes, and also
147 enabled the projection of predicted cluster distributions at global scales. To produce global
148 projections (i.e., maps) of each SAR86 gene cluster, we predicted the presence or absence of
149 each cluster at 9km² resolution and global scale from the available satellite and historical
150 environmental data ([29], Supplemental Text 1.6). A Jupyter notebook and a python script for
151 reproducing clusters and cluster projections are available ([29]).

152 The distribution and enrichment across clusters were evaluated at the genome, contig, and
153 functional level for two SAR86 reference genomes SAR86A and SAR86E, for the contigs of the

154 SAR86 co-assembly, and for the functional annotations to Pfam [30] for the SAR86 pangenome
155 (Supplemental Text 1.7). This produced a vector of taxonomic/functional enrichment values
156 associated with each contig/annotation for each cluster, with which the statistical significance of
157 cluster enrichment could be tested (Supplemental Text 1.7).

158

159 **Results**

160 This study first modeled the relationships between SAR86 gene distributions and
161 environmental variables. We used a regularized logistic regression approach to identify the
162 subset of environmental variables that are most important for predicting the geographical
163 distributions of each gene and to estimate the strength of these gene-environmental variable
164 relationships. Using unsupervised clustering of these association profiles, we then identified
165 clusters of genes with similar environmental distributions. Clustering enabled us to identify the
166 structure underlying the environmental gene distributions without explicit prior knowledge of
167 expected SAR86 ecotypes. By using environmental variables available at global scale, we
168 leveraged our gene models to predict the geographic distribution of these emergent ecotypes in
169 regions far beyond the sampling locations specific to the TARA study.

170

171 ***Accurate prediction of SAR86 gene distributions from environmental variables***

172 SAR86 gene content in TARA Oceans metagenomes is associated with environmental
173 characteristics of the sampling locations. We built a regularized logistic regression model for
174 each gene that accurately predicts the probability of the gene being present at a given location as
175 a function of the most predictive subset of environmental variables (Methods, Supplemental Text
176 1.5).

177 The resulting 24 317 gene models predict SAR86 gene presence/absence with an average
178 of 79.4% accuracy in the test set, and a median test accuracy of 80.6%. Precision and recall
179 measures are roughly even (0.85 and 0.81, respectively; SI Fig 3a), with an F1 score of 0.83. For
180 21 264 out of 24 317 genes (87.4%), the models have accuracies in the test set that are an
181 improvement over the majority class accuracy – the accuracy of the model if it predicts ‘always
182 absent’ or ‘always present’, whichever is in the majority (SI Fig 3b).

183 As an additional test of the robustness of the models, the accuracy of predictions at those
184 TARA sites that were not included in model development, where SAR86 was not present or were
185 in very low abundance, was also examined. There were 20 such sites for which environmental
186 data was available for all features. These 20 sites were primarily mesopelagic samples,
187 distributed across all ocean basins (Supplemental Text 1.5). Across these 20 sites, the average
188 accuracy of the gene models is 68.5%, while the median accuracy is 70.0%. While this
189 performance is below that achieved at sites where SAR86 was present, it suggests that our
190 models are able to make fairly accurate predictions even when extrapolating outside of the
191 distribution of gene presence used in training.

192 An average of 17 of 51 environmental features is significantly associated with each
193 gene’s distribution across TARA Oceans sites. Across multiple gene models, the same
194 environmental feature was frequently selected during model training (SI Fig 4). These frequently
195 associated variables include latitude, longitude, distance from land, ocean depth, and other
196 features that might describe the general ocean basin or region of a sample; as well as pH, sea
197 surface temperature, pycnocline depth, nitrogen:phosphorous ratio, cloud fraction, and other
198 environmental factors that describe regions of the ocean that experience particular environmental
199 conditions.

200 While the environmental features that best predict gene presence/absence vary by the
201 individual gene model, and many of the 51 environmental variables covary with one another,
202 training logistic regression multiple times on the same data with different random seeds resulted
203 in the same sets of environmental features being chosen as the most predictive for each gene
204 model (see Jupyter notebook in [29]). This consistency suggests that the environmental features
205 selected in each model reflect a true difference in predictive power between the selected features
206 and those that were not selected, rather than a random choice among features that are roughly
207 equally predictive.

208

209 ***Clustering of SAR86 genes into common environmental distributions & global projections of***
210 ***their biogeographic distributions***

211 The environmental features that best predict individual genes, and the strength of the
212 coefficients associated with any particular environmental feature, vary by the individual gene
213 model. However, there are apparent patterns among genes, with some groups of genes appearing
214 to be predicted by similar environmental variables, as well as similar magnitudes and signs of the
215 coefficients associated with those variables. These patterns suggest that genes that are predicted
216 by similar environmental features occupy similar geographic distributions characterized by
217 unique environmental conditions.

218 K-means clustering of genes by their logistic regression environmental feature
219 coefficients identified five clusters within the SAR86 pangenome characterized by similar
220 environmental distributions (Fig 1). The average environmental feature coefficient across all
221 genes in each cluster (the “centroid”) demonstrates the distinct pattern of association with
222 environmental features of each cluster (SI Table 3).

223 Each TARA site contains genes from a mixture of clusters, but the dominant clusters and
224 the evenness of the proportion of each cluster is variable across sites (Fig 2, SI Fig 5, SI Table 4).
225 For example, cluster 2 is strongly associated with longitudes in the western hemisphere, and this
226 is also reflected across TARA samples, for which cluster 2 is present in highest proportions for
227 those TARA sites sampled in the Pacific Ocean (Fig 2, SI Fig 5b). In contrast, cluster 3 genes are
228 found in higher proportions at TARA sites sampled in the eastern hemisphere, reflecting their
229 predicted geographic distributions (Fig 2, SI Fig 5c).

230 A Shannon diversity metric was used to measure the relative evenness and proportion of
231 the five clusters at each TARA site (SI Table 4, Supplemental Text 1.7). The TARA sites with
232 the lowest Shannon diversity include TARA station 93 at 34°S and 73°W off the coast of Chile,
233 which is dominated by cluster 5 genes, and TARA stations 38, 42, 45, and 36 in the Indian
234 Ocean, which are dominated by cluster 4 genes. The TARA sites with the highest Shannon
235 diversity include many of the mesopelagic depth samples in the Pacific Ocean, as well as station
236 70 in the South Atlantic basin at 20.4°S and 3.2°W.

237 We next used the cluster centroids and global-scale environmental data to predict the geographic
238 distribution of each cluster beyond the TARA sampling locations (Fig 3). These global
239 projections reveal the differential distributions of SAR86 gene clusters. These differential
240 distributions are reflected in variation across longitude (e.g. cluster 2 versus clusters 3 and 4),
241 latitude (e.g. clusters 1 and 5 versus clusters 2, 3, and 4), and season (e.g. cluster 1, Fig 3). In
242 each case, the highest magnitude coefficients for each cluster are suggestive of their predicted
243 geographic distributions (SI Table 3, Supplemental Text 2.1).

244

245 ***Taxonomic enrichment & functional differentiation across clusters define SAR86 ecotypes***

246 The cluster assignments of genes from the SAR86 reference genomes SAR86A and
247 SAR86E show clear partitioning on taxonomic lines. Genes from each genome are assigned
248 primarily to two clusters, and each cluster is dominated by one genome. SAR86A genes are
249 partitioned primarily into clusters 4 and 3, with 493 and 118 out of the 622 SAR86A genes
250 assigned to cluster 4 and 3 respectively, while only 4 and 7 genes were assigned to clusters 2 and
251 5, and 0 genes to cluster 1. The 157 SAR86E genes were partitioned into clusters 1 and 5, with
252 76 and 78 genes respectively, while only 2 and 1 genes were assigned to clusters 2 and 4,
253 respectively, and 0 genes to cluster 3.

254 Clusters also show clear taxonomic differentiation at the contig level. Those genes that do
255 not originate from one of the five SAR86 genomes constitute a total length of 22 Mbp
256 originating from 732 contigs from the SAR86 co-assembly. All clusters are significantly
257 enriched in specific contigs ($p < 0.001$, Fig 4c), with a unique set of contigs enriched on each
258 cluster. Genes from the same contig are generally assigned to the same cluster, such that gene
259 assignments of almost all contigs, 540 out of 732 contigs, are enriched on only one cluster, 183
260 contigs are enriched on only two clusters, and the remaining 9 contigs are enriched on 3 clusters
261 (Fig 4). Where a contig is enriched, the enrichment is strong, with an average enrichment of 3.03
262 and a standard deviation of 0.43, and ranging from 1.41 in cluster 4 to 5.25 in cluster 2.

263 The taxonomic partitioning of clusters is also evident in their distribution across TARA
264 sites. First, the cluster proportions and the relative abundances of SAR86 genomes at TARA sites
265 reflect the taxonomic differentiation of genomes across clusters. The clusters associated with
266 SAR86A (clusters 3 and 4) are in higher proportions relative to the clusters associated with
267 SAR86E (clusters 1 and 5) at TARA sites where SAR86A abundances are higher relative to

268 SAR86E (SI Fig 6, Pearson R² = 0.70, P=1.56x10-26). In addition to this genomic evidence, the
269 normalized read coverage across TARA sites for genes from the same cluster are more highly
270 correlated with one another than genes from different clusters (SI Fig 7), as would be expected if
271 genes belonging to the same cluster share a common taxonomic origin. This indicates that genes
272 from the same genome are assigned to the same cluster, although a single cluster may be made
273 up of genes from multiple genomes. Indeed, the 22Mbp of genomic material in the SAR86 co-
274 assembly is enough for at least 11 genomes of size similar to that of known SAR86 reference
275 genomes, so multiple genomes are expected to be contained within the 5 identified clusters.
276 These clusters are thus composed of genes that co-occur with one another across similar
277 environmental contexts, and are taxonomically differentiated, but do not necessarily represent
278 individual SAR86 genomes.

279 In addition to taxonomic enrichment across clusters, there is also significant partitioning
280 of genes at the functional level, with differential enrichment of Pfam annotated genes across
281 clusters (Fig 5). Pfams are enriched by an average value of 0.25 and a standard deviation of 0.10,
282 ranging from 0.13 in cluster 4 to 0.32 in cluster 2. This enrichment is significant (p<0.01) for
283 most of the clusters (Fig 5c). This result suggests that clusters 1, 2, and 4 have significant
284 functional enrichment, while functional enrichment on cluster 3 is marginally significant. Genes
285 from a particular Pfam are most often assigned to only two or three clusters (Fig 5b). While
286 functional enrichment in general is less strong than taxonomic enrichment, this may be due to the
287 relative coarseness of functional annotation compared to taxonomic assignments, and our
288 inability to annotate many genes with confidence.

289 Enrichment of specific Pfams corresponding to some ecologically important functions
290 indicate possible differentiation in ecological function between clusters. For example, glycosyl

291 hydrolase family 3 (Pfams PF00933, PF01915), which corresponds to exo-acting glucosidases, is
292 enriched across clusters 3, 4, and 5, and depleted in clusters 1 and 2, while glycosyl hydrolase
293 family 16 (Pfam PF00722), which corresponds to endo-acting glucanases, is enriched strongly on
294 cluster 3, depleted in clusters 1 and 2, and near the null value for clusters 4 and 5 (SI Fig 8).
295 Proteorhodopsin, a photoactive transmembrane proton pump first identified in bacteria in SAR86
296 [31] and used by SAR86 for photoheterotrophic ATP generation, is enriched in clusters 3 and 4,
297 and depleted in clusters 1, 2, and 5 (SI Fig 9).

298

299 **Discussion**

300 While SAR86 is generally considered to be a ubiquitous heterotroph in the ocean, this
301 study demonstrates that SAR86 harbors immense within-species genetic diversity that is strongly
302 associated with environmental variables. These distinct environmental distributions of gene
303 clusters define a deeper geographic variability within the SAR86 clade than previously
304 appreciated. The three near-complete and two partial genomes available for SAR86 [25, 26]
305 show high diversity within this clade; average nucleotide identity between genomes is between
306 70-80% (SI Table 5). In light of this high diversity, it is perhaps not surprising that the
307 geographically variable genes in the SAR86 pangenome can be decomposed into five distinct
308 clusters with different geographic distributions associated with unique environmental variables.
309 These clusters are differentiated at the taxonomic and functional level, which has implications
310 for our understanding of the biogeography of SAR86, as well as its ecological role within
311 microbial communities in the marine environment.

312 Using a data intensive approach to build machine learning models of the relationship
313 between SAR86 genes and environmental variables at a global scale, we demonstrate how such

314 an approach can be used to better understand the factors shaping the biogeography of microbial
315 clades. This approach can reveal patterns that would likely be missed at the 16S OTU or
316 community level, or using data from a smaller scale. Particularly as metagenomics data become
317 increasingly available in the future, such an approach holds promise for illuminating the
318 relationship between microbial community structure and ecological function across broad
319 taxonomic and spatial scales.

320 The results of this study identify clusters of genes that, while their phylogenetic
321 relatedness is unknown, are taxonomically and functionally differentiated and occupy distinct
322 environmental distributions. While the functional traits that confer niche restriction within these
323 distributions is not obvious from our results, functional differentiation across clusters of glycosyl
324 hydrolases (SI Fig 8) – an important class of enzymes for heterotrophic metabolism of
325 polysaccharides – and proteorhodopsin (SI Fig 9) – a light-driven means of energy generation
326 and enhanced nutrient and organic carbon uptake – suggest that genes associated with different
327 clusters define distinct functional roles filled by each cluster. Glycosyl hydrolase families 3 and
328 16 target many of the same substrates – β -linked glucans, including the abundant marine
329 plankton storage glucan laminarin – but using different enzymatic mechanisms [32]. The strong
330 enrichment in cluster 3, and strong depletion in clusters 1 and 2, of both families, compared to
331 the enrichment of only family 16 in clusters 4 and 5, may indicate distinct ecological functions of
332 SAR86 across clusters that utilize differing metabolic strategies and have disparate impacts on
333 carbon remineralization. Proteorhodopsin genes are only enriched in clusters 3 and 4, the two
334 clusters associated with lower latitudes and more abundant sunlight, and are depleted in clusters
335 1 and 5, which are associated with temperate latitudes. This latitudinal pattern may also indicate
336 distinct energy generation and metabolic strategies that correspond with the environmental

337 distributions of the clusters. Given the clear taxonomic and functional partitioning of the SAR86
338 pangenome across clusters with distinct geographic distributions associated with unique
339 environmental conditions, we conclude that the clusters described here define previously
340 unidentified ecotypes within the SAR86 clade.

341 The geographic distributions of SAR86 ecotypes are consistent with previous studies. An
342 investigation of temporal and geographic patterns in SAR86 noted that while the phylogenetic
343 substructure of the SAR86 clade implies that it may be made up of multiple ecotypes, these
344 could not be identified at the limited geographic resolution of the study [24]. The potential
345 existence of SAR86 ecotypes was also noted in the apparent geographic distributions of
346 SAR86A, B, C, and D genomes [25], which differed in their distributions across coastal versus
347 open ocean sampling sites and along temperature gradients. This general observation is
348 supported by the predicted distributions of the clusters identified in our study, for which three
349 clusters (clusters 2, 3, and 4) are partially defined by their warmer, open ocean distributions, and
350 two (clusters 1 and 5) are associated with cooler temperatures. The difficulty of identifying
351 ecotypes in SAR86 contrasts with SAR11, for which distinct ecotypes have been identified
352 within a constrained geographic sample because they were strongly associated with differences
353 in depth and salinity distributions [15]. This study was able to identify SAR86 ecotypes, despite
354 their partially sympatric distributions that cause single sampling sites to be composed of genes
355 from multiple clusters, because of the larger data size and geographic distribution of the TARA
356 dataset, and our unique approach to defining ecotypes based on quantitative models of
357 environmental associations with geographically variable genes. Whereas ecotypes are typically
358 identified by building a phylogeny based on core genes and observing whether environmental
359 variables map over the phylogeny [e.g. 23, 33], our approach is quantitative, objective and

360 independent of a priori knowledge of phylogeny, and results in sets of genes and functional
361 features that define the ecotype.

362 The taxonomic and functional differentiation of genes across SAR86 ecotype clusters is
363 significant in the context of interactions between microbial community structure, function, and
364 ecology. Both community composition [16–18, 34] and functional traits [3, 4, 8, 19] vary
365 geographically and can be predicted to some extent by environmental variables [8, 17].

366 Taxonomic variation can lead to functional differentiation of microbial communities [4, 35, 36],
367 which ultimately shapes biogeochemical cycling and ecosystem function; conversely, functional
368 redundancy across microbial taxa can complicate the relationship between structure and function
369 [37], with taxonomically variable communities playing similar functional roles [38].

370 Disentangling the relationship between environment, biogeography, structure, and function is
371 therefore a significant ongoing challenge in microbial ecology [5, 7, 8, 10]. By focusing on
372 patterns at the individual gene level within a single clade, we are able to uncover patterns in
373 environmental distributions of genetic diversity at a scale that would normally be obscured by
374 the complexity inherent to microbial communities. For example, previous studies have found that
375 functional classifications of taxa are better predicted by environmental parameters than
376 taxonomic 16S-based classifications [8]; however, these functional classifications are broad – all
377 of the SAR86 pangenome would be classified as ‘aerobic chemoheterotroph’ – in order to
378 control for the vast genetic diversity of traits in mixed microbial communities. It is likely that
379 within the SAR86 pangenome there is ecological differentiation within this category that, for
380 example, could lead closely related phylotypes of SAR86 that belong to different ecotypes to
381 utilize different substrates [33, 39, 40]. This hypothesis is supported by the functional enrichment
382 across our clusters and the differential enrichment of carbohydrate utilizing enzymes (SI Fig 8).

383 Previous analyses of the genomic context of SAR86 genomes also suggest that much of the
384 diversity among SAR86 genomes may be driven by fine scale diversification of catabolic
385 enzymes on loci associated with TonB dependent receptors [25], which are responsible for
386 transporting carbon compounds (as well as metals) into the cell [41].

387 The accuracies of our gene models are better on average than previous studies (0.79 vs
388 0.48, [8]), which may similarly be due in part to our focus on modeling individual genes rather
389 than whole communities. This difference in model accuracy may also be due to our consideration
390 of different, and a larger number, of input environmental features. Here, the environmental
391 features were chosen for their availability at global resolution rather than their human-predicted
392 importance in regulating microbial function. These environmental features may be more
393 predictive of the distributions of SAR86 genes, even if they are less relevant to biological
394 function. The environmental factors that influence whether an organism grows in a particular
395 location or community may be different from those that drive their function within that
396 community: for example, an organism may only grow in fresh or saline waters, while the
397 maintenance of a nitrogen fixation pathway depends on nutrients or other factors. It is important
398 to note that those environmental features that are selected as most predictive for each gene model
399 do not necessarily drive the growth of SAR86 in a causal manner, but implies only that these
400 environmental features are good predictive proxies for the presence of that gene. The
401 interpretation of the most predictive environmental features may vary depending on the feature;
402 some features may be a proxy for biological phenomena, while others simply define
403 oceanographic regions, or are proxies for other factors that cannot be measured that are true
404 causal drivers of variation. The features chosen by the L1 regularization procedure are also likely
405 biased by the scope of the samples used as inputs to the model. For example, the cluster

406 associated with western hemisphere longitudes is overrepresented in sites from the Pacific Ocean
407 in the TARA expedition dataset. However, there are longitudes both east and west of the
408 antemeridian in the Pacific, represented as negative and positive longitudes in the models, and it
409 is a limitation of the TARA dataset that only samples from the eastern part of the basin, in the
410 western hemisphere, are represented. This limitation results in an unnaturally sharp transition in
411 cluster projections on the antemeridian in the Pacific Ocean for those clusters for which
412 longitude is a strong predictor. This observation also serves as a note of caution for the
413 interpretation of the global projections, whose predicted distributions will likely break down
414 most in locations for which representation of samples is most sparse, e.g. in polar regions.

415 We are able to make accurate predictions of geographic distributions of SAR86 genes,
416 identifying previously unknown biogeographical complexity within an otherwise ubiquitous
417 heterotrophic clade and making global projections of the distributions of SAR86 ecotypes
418 associated with distinct environmental distributions. Our modeling approach leverages a large
419 dataset across broad geographic regions, demonstrating the potential of machine learning and the
420 use of broader scale integrated datasets for marine microbial ecology. The five global ecotypes
421 underlying the highly diverse SAR86 clade, the taxonomic and functional differentiation across
422 ecotypes, and the distinct environmental distributions of SAR86 genetic diversity highlight the
423 importance of SAR86 within marine microbial communities and broadens the context for
424 interpreting their ecological impact across the world's oceans.

425

426 **Acknowledgements**

427 This work was supported by a Deep Carbon Observatory Deep Life Modeling &
428 Visualization Fellowship to AH; OCE-1736772 to CA; Gordon and Betty Moore Foundation

429 grant #3300 to KSP; and grants from the Beyster Family Fund of the San Diego Foundation and
430 Life Technologies Foundation to JCVI.

431

432 **Conflict of Interest**

433 The authors declare no conflict of interest.

434

435 **Author Contributions**

436 CD and SY created the SAR86 co-assembly of SAR86 genes from the Global Ocean
437 Sampling sequences, and CD annotated the SAR86 pangenome. SN created the pangenome and
438 mapped TARA samples to the SAR86 pangenome. AH gathered satellite environmental data,
439 created the models, did clustering, identified ecotypes and analyzed data. JL gathered historical
440 environmental data. All authors contributed to discussion of data and writing of the manuscript.

441

442 **References**

- 443 1. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's
444 biogeochemical cycles. *Science* 2008; **320**: 1034–9.
- 445 2. Azam F. Microbial control of oceanic carbon flux: The plot thickens. *Science (80-)* 1998;
446 **280**: 694–696.
- 447 3. Shi Y, Tyson GW, Eppley JM, Delong EF. Integrated metatranscriptomic and
448 metagenomic analyses of stratified microbial assemblages in the open ocean. *ISME J*
449 2011; **5**: 999–1013.
- 450 4. Delong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N, et al. Community
451 Genomics Among Stratified Microbial Assemblages in the Ocean's Interior. *Science (80-)*
452 2006; **311**: 496–503.
- 453 5. Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward molecular trait-based ecology
454 through integration of biogeochemical, geographical and metagenomic data. *Mol Syst Biol*
455 2014; **7**.
- 456 6. Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks
457 driving carbon export in the oligotrophic ocean. *Nature* 2015; **532**: in review.
- 458 7. Morales SE, Holben WE. Linking bacterial identities and ecosystem processes: Can
459 'omic' analyses be more than the sum of their parts? *FEMS Microbiol Ecol* 2011; **75**: 2–
460 16.
- 461 8. Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean

462 microbiome. *Science* (80-) 2016; **353**: 1272–1277.

463 9. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure
464 and function of the global ocean microbiome. *Science* (80-) 2015; **348**: 1–10.

465 10. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in
466 microbial ecology: building predictive understanding of community function and
467 dynamics. *ISME J* 2016.

468 11. Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, et al.
469 Integrating microbial ecology into ecosystem models: Challenges and priorities.
470 *Biogeochemistry* 2012; **109**: 7–18.

471 12. Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly
472 representing soil microbial processes in Earth system models. *Global Biogeochem Cycles*
473 2015; **29**: 1782–1800.

474 13. Cohan FM. Towards a conceptual and operational union of bacterial systematics, ecology,
475 and evolution. *Philos Trans R Soc B Biol Sci* 2006; **361**: 1985–1996.

476 14. Begon M, Townsend C, Harper J. Ecology: From individuals to ecosystems, 4th ed. 2006.
477 Blackwell Publishing.

478 15. Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal
479 dynamics of SAR11 populations in the euphotic and mesopelagic zones of the
480 northwestern Sargasso Sea. *ISME J* 2009; **3**: 283–295.

481 16. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al.
482 Microbial biogeography: putting microorganisms on the map. *Nat Rev Microbiol* 2006; **4**:
483 102–12.

484 17. Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'Dwyer J, et al. Global
485 marine bacterial diversity peaks at high latitudes in winter. *ISME J* 2013; **7**: 1669–77.

486 18. Zinger L, Amaral-Zettler L a, Fuhrman JA, Horner-Devine MC, Huse S, Welch DBM, et
487 al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. *PLoS
488 One* 2011; **6**: e24570.

489 19. Jiang X, Langille MGI, Nekes RY, Elliot M, Levin S a., Eisen J a, et al. Functional
490 Biogeography of Ocean Microbes Revealed through Non-Negative Matrix Factorization.
491 *PLoS One* 2012; **7**: 1–9.

492 20. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics
493 pipeline for strain profiling reveals novel patterns of bacterial transmission and
494 biogeography. *Genome Res* 2016; **26**: 1612–1625.

495 21. Kent AG, Dupont CL, Yooseph S, Martiny AC. Global biogeography of Prochlorococcus
496 genome diversity in the surface ocean. *ISME J* 2016; **10**: 1856–1865.

497 22. Britschgi TB, Giovannoni SJ. Phylogenetic analysis of a natural marine bacterioplankton
498 population by rRNA gene cloning and sequencing. *Appl Environ Microbiol* 1991; **57**:
499 1707–1713.

500 23. Suzuki MT, Beja O, Taylor LT, DeLong EF. Phylogenetic analysis of ribosomal RNA
501 operons from uncultivated coastal marine bacterioplankton. *Environ Microbiol* 2001; **3**:
502 323–331.

503 24. Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, et al.
504 Seasonality and vertical structure of microbial communities in an ocean gyre. *ISME J*
505 2009; **3**: 1148–1163.

506 25. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, et al.
507 Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. *ISME*

508 26. *J* 2012; **6**: 1186–1199.

509 26. Rusch DB, Lombardo M-J, Yee-Greenbaum J, Novotny M, Brinkac LM, Lasken RS, et al.

510 Draft genome sequence of a single cell of SAR86 clade subgroup IIIa. *Genome Announc*

511 2013; **1**: e00030-12.

512 27. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, et al.

513 Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the

514 surface ocean. *Proc Natl Acad Sci U S A* 2013; **110**: 11463–8.

515 28. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the

516 bacterial bioinformatics database and analysis resource. *Nucleic Acids Res* 2014; **42**: 581–

517 591.

518 29. Hoarfrost A. SAR86. *Github repository*. .

519 30. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam

520 protein families database: Towards a more sustainable future. *Nucleic Acids Res* 2016; **44**:

521 D279–D285.

522 31. Béjà O, Aravind L, Koonin E V, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial

523 Rhodopsin : Evidence for a New Type of Phototrophy in the Sea Linked references are

524 available on JSTOR for this article : Bacterial Bacterial Rhodopsin : Rhodopsin : Evidence

525 for for a a New New Type Type of of Phototrophy Phototrophy in the Sea. 2017; **289**:

526 1902–1906.

527 32. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The

528 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 2014; **42**: 490–

529 495.

530 33. Aguilar D, Aviles FX, Querol E, Sternberg MJE. Analysis of phenetic trees based on

531 metabolic capabilites across the three domains of life. *J Mol Biol* 2004; **340**: 491–512.

532 34. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, et al. Global

533 patterns of diversity and community structure in marine bacterioplankton. *Mol Ecol* 2007;

534 **16**: 867–80.

535 35. Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine

536 microbial community composition and function challenges the idea of functional

537 redundancy. *ISME J* 2018; **1**.

538 36. Strickland MS, Lauber C, Fierer N, Bradford MA. Testing the functional significance of

539 microbial community composition. *Ecology* 2009; **90**: 441–451.

540 37. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, et al. Function and

541 functional redundancy in microbial systems. *Nat Ecol Evol* 2018.

542 38. Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High

543 taxonomic variability despite stable functional structure across microbial communities.

544 *Nat Ecol Evol* 2016; **1**: 0015.

545 39. Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A

546 phylogenetic perspective. *Science (80-)* 2015; **350**.

547 40. Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and

548 sympatric differentiation among closely related bacterioplankton. *Science (80-)* 2008; **320**:

549 1081–1085.

550 41. Noinaj N, Guiller M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation,

551 structure, and function. *Annu Rev Microbiol* 2010; **64**: 43–60.

552

553

554 **Figure Legends**

555

556 **Fig. 1** – Heatmap of model coefficients for each environmental feature (rows) and gene
557 (columns), ordered by cluster (x axis).

558

559 **Fig. 2** – Relative proportion of clusters at each TARA site (vertical bars). TARA sites are sorted
560 by longitude (x axis; negative numbers correspond to longitude west of the prime meridian).
561 Blue, cluster 1; green, cluster 2; yellow, cluster 3; purple, cluster 4; pink, cluster 5.

562

563 **Fig. 3** – Global predictions of SAR86 gene cluster distributions for each cluster (rows) in
564 January, April, July, and October of 2009 (columns). Red indicates a high confidence of a gene
565 cluster being present, blue a high confidence of a gene cluster being absent, and white a low
566 confidence prediction.

567

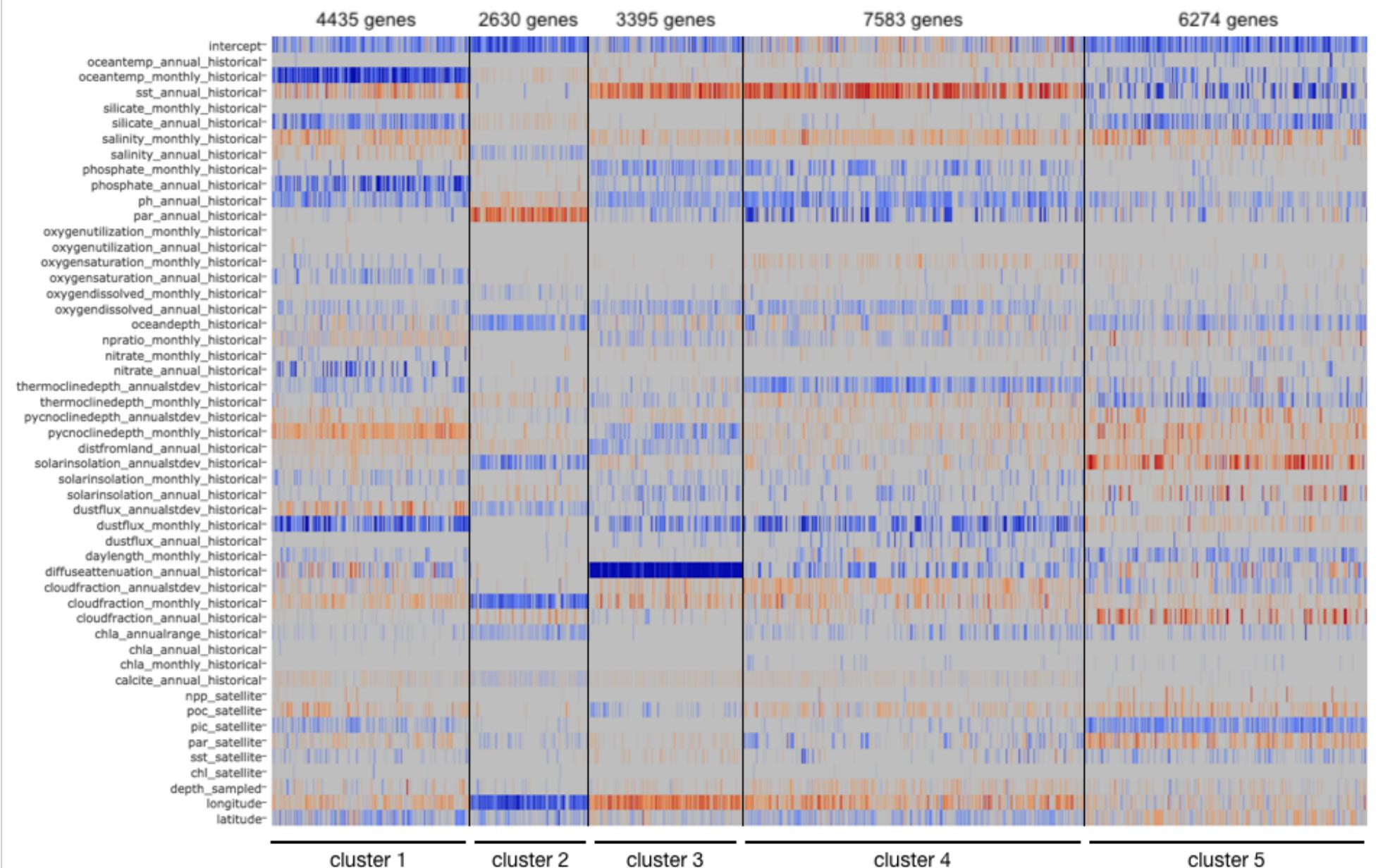
568 **Fig. 4** – Contig enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue) of
569 each contig (columns) across each cluster (rows). (b) Pie chart of the number of clusters in which
570 SAR86 contigs are enriched. (c) Mean positive enrichment value, standard deviation of positive
571 enrichment values, and the Mann-Whitney P value for significance of cluster enrichment, for
572 each cluster.

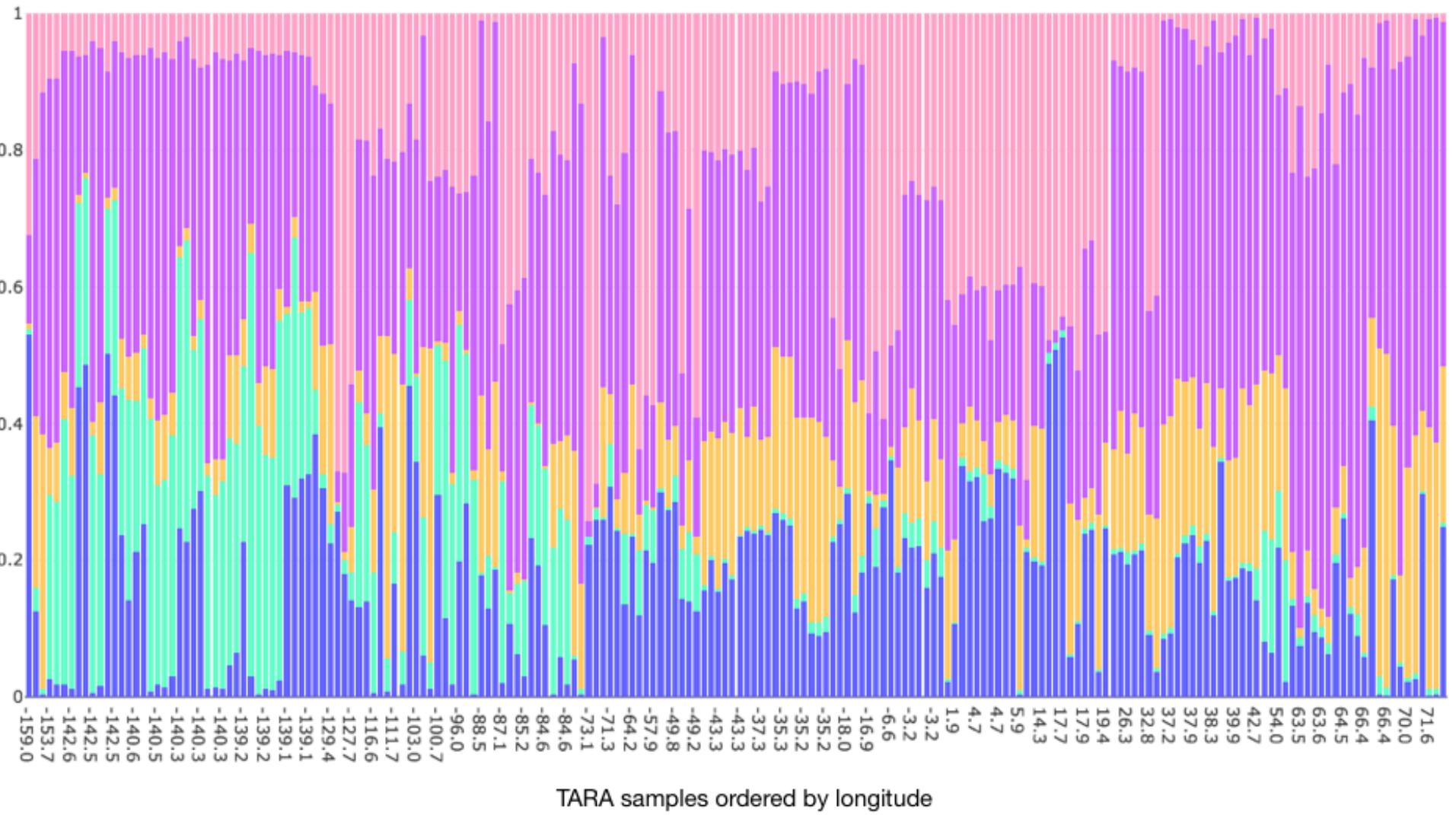
573

574 **Fig. 5** – Functional enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue)
575 of the 405 most abundant Pfam families (columns) across each cluster (rows). Pfams are ordered
576 left to right by the number of genes annotated to it, from the most abundant Pfams to the Pfams
577 with as few as 20 genes annotated to it. (b) Pie chart of the number of clusters in which Pfams
578 are enriched. (c) Mean positive enrichment value, standard deviation of positive enrichment
579 values, and the Mann-Whitney P value for significance of cluster enrichment, for each cluster.

580

581





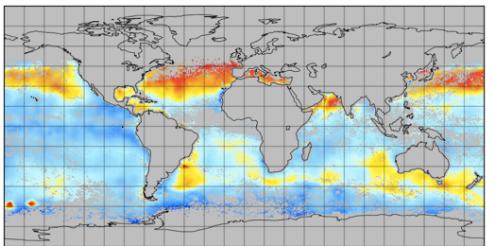
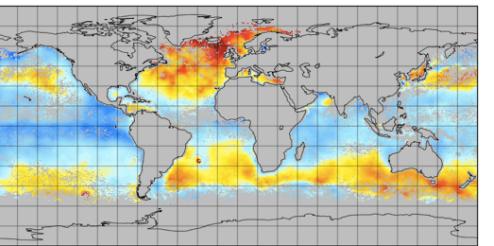
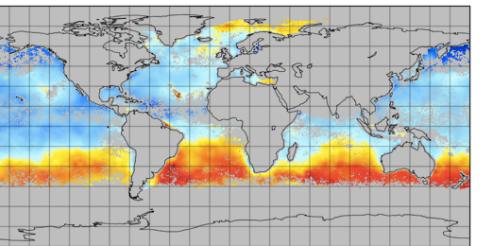
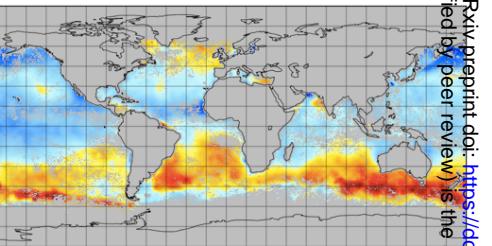
january

april

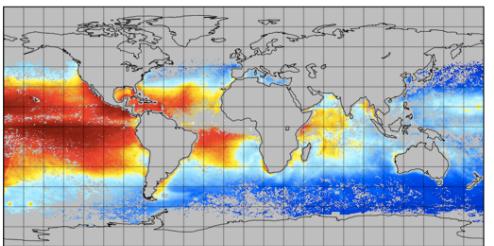
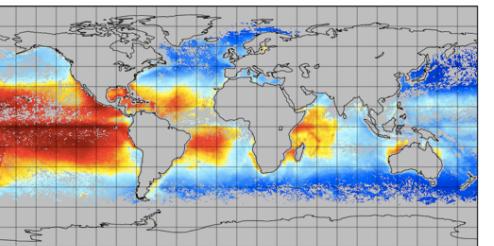
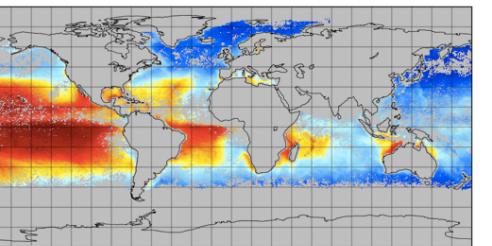
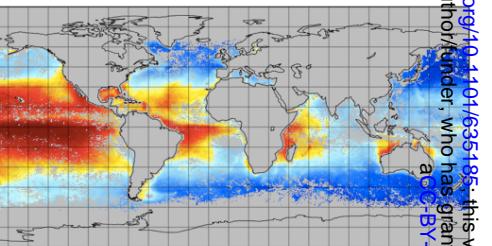
july

october

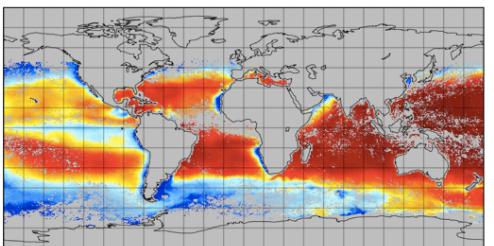
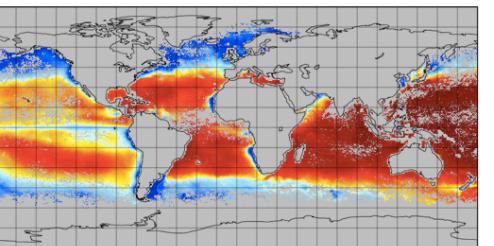
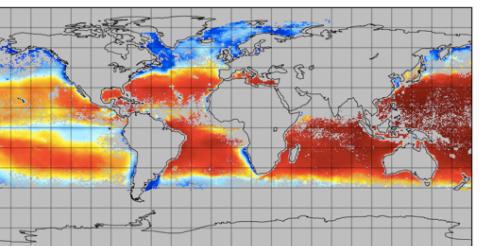
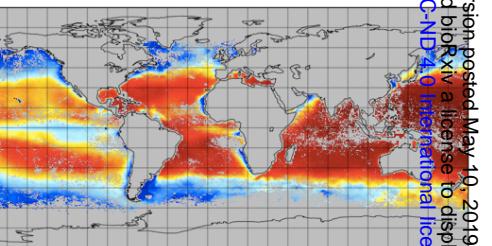
cluster 1



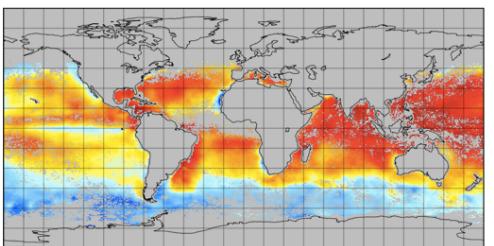
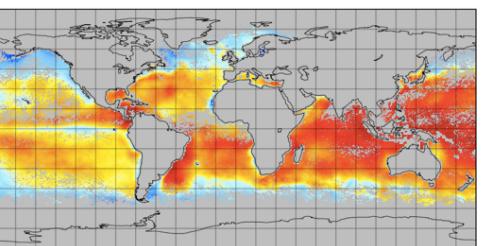
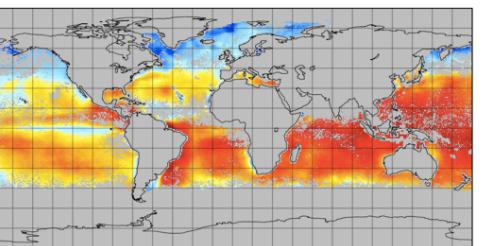
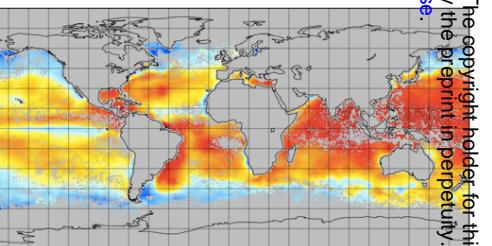
cluster 2



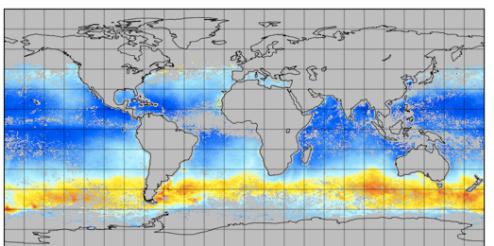
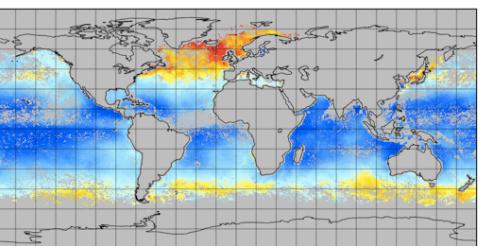
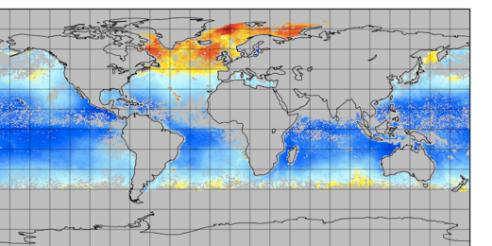
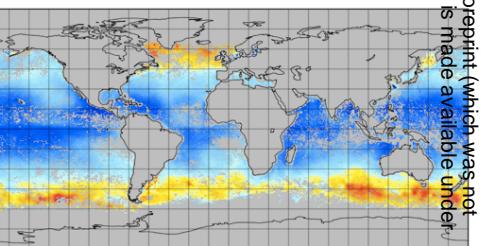
cluster 3



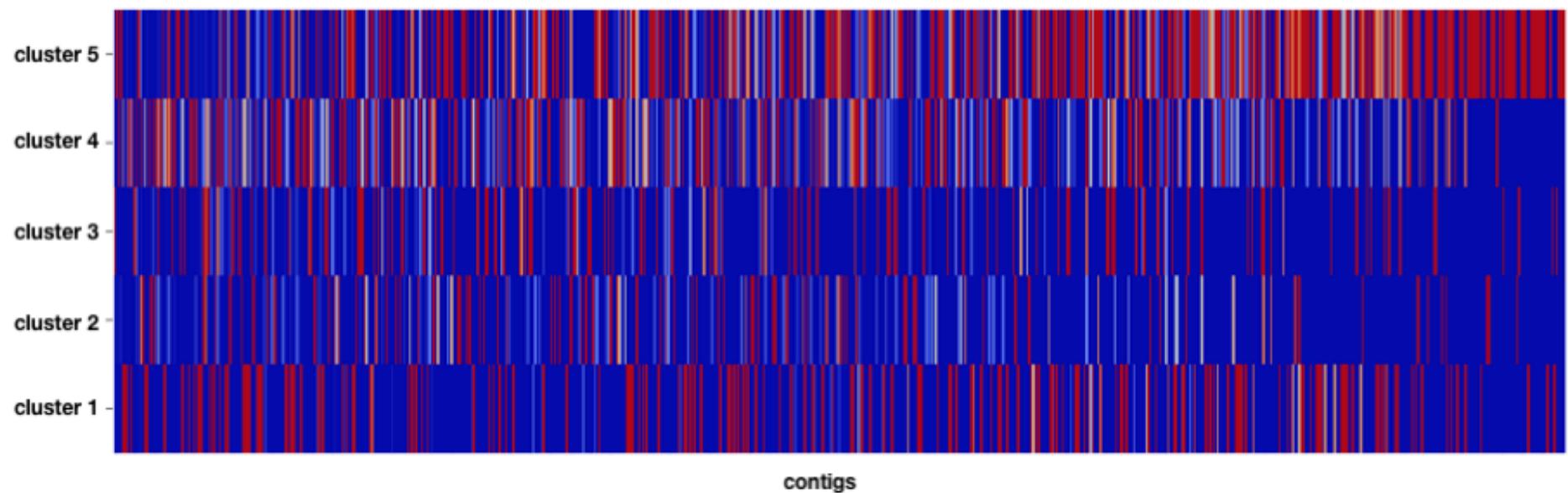
cluster 4



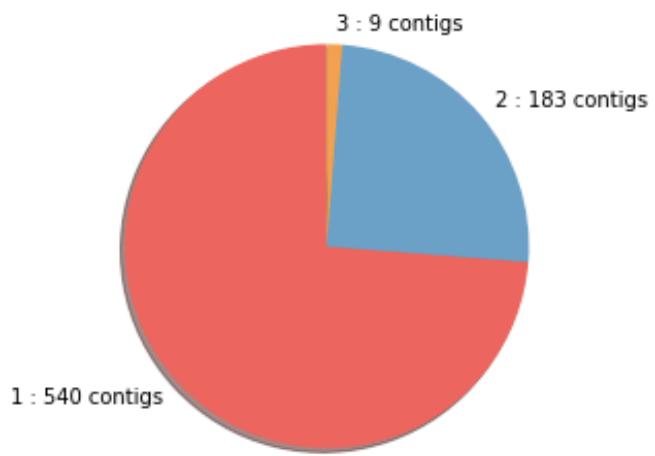
cluster 5



(a)



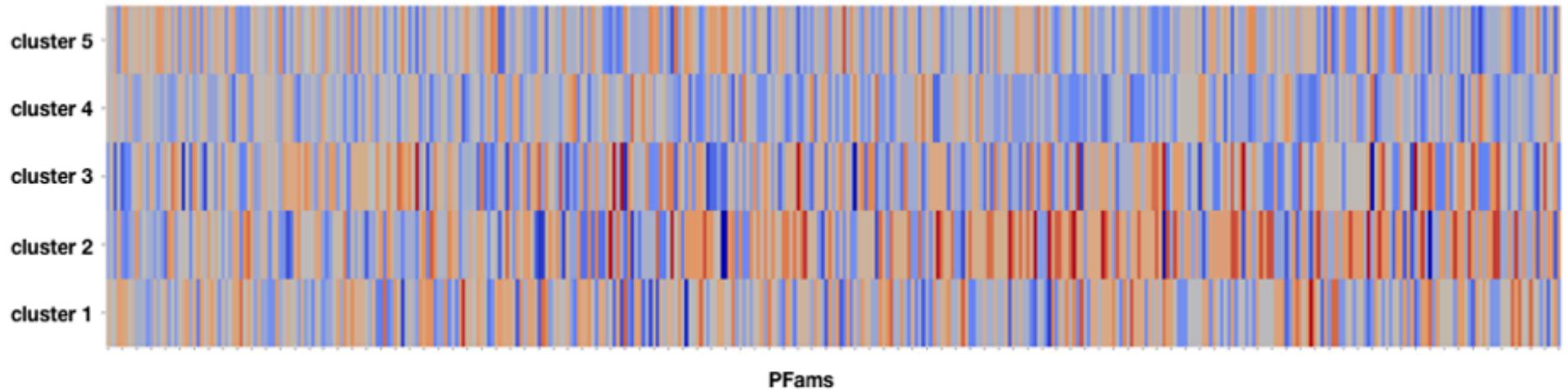
(b)



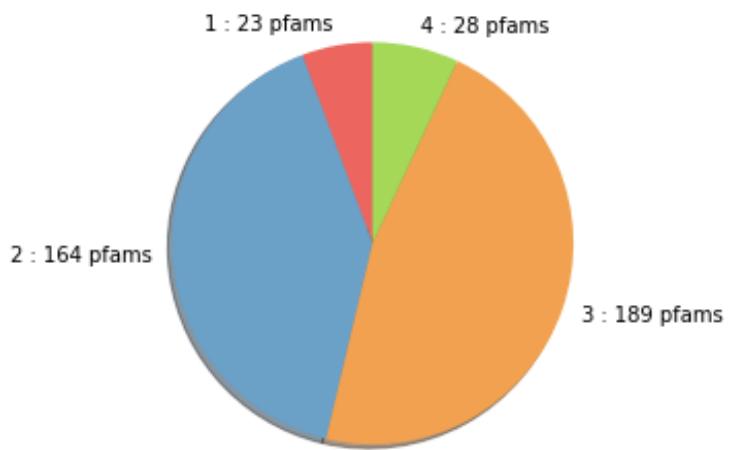
(c)

	mean enrichment	std. dev. enrichment	MW P-value
cluster 1	2.67	1.22	1.13×10^{-73}
cluster 2	5.25	3.33	7.36×10^{-159}
cluster 3	3.97	2.00	2.23×10^{-135}
cluster 4	1.41	0.80	8.86×10^{-57}
cluster 5	2.16	0.96	5.72×10^{-4}

(a)



(b)



(c)

	mean enrichment	std. dev. enrichment	MW P-value
cluster 1	0.22	0.17	5.61×10^{-3}
cluster 2	0.33	0.24	1.63×10^{-9}
cluster 3	0.26	0.24	0.016
cluster 4	0.14	0.13	1.06×10^{-11}
cluster 5	0.17	0.13	0.108