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List of abbreviations 

SV​: structural variation bp​: base pair TR​: tandem repeat 

Abstract 

Accurate detection and genotyping of structural variations (SVs) from short-read data is a 

long-standing area of development in genomics research and clinical sequencing pipelines. We 

introduce Paragraph, an accurate genotyper that models SVs using sequence graphs and SV 

annotations. We demonstrate the accuracy of Paragraph on whole-genome sequence data from 

three samples using long read SV calls as the truth set, and then apply Paragraph at scale to a 

cohort of 100 short-read sequenced samples of diverse ancestry. Our analysis shows that 

Paragraph has better accuracy than other existing genotypers and can be applied to 

population-scale studies. 

Keywords 

Sequence graphs, Targeted variant calling, Structural variation, Population studies 

Background 

Structural variants (SVs) contribute to a large fraction of genomic variation and have long been 

implicated in phenotypic diversity and human disease ​1–3​. Whole-genome sequencing (WGS) is a 

common approach to profile genomic variation, but compared to small variants, accurate 

detection and genotyping of SVs still remains a challenge ​4,5​. This is especially problematic for a 

large number of SVs that are longer than the read lengths of short-read (100-150 bp) 
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high-throughput sequence data, as a significant fraction of SVs has complex structures that can 

cause artifacts in read mapping and make it difficult to reconstruct the alternative haplotypes​6,7​. 

 

Recent advances in long read sequencing technologies, (e.g. Pacific Biosciences and Oxford 

Nanopore Technologies), have made it easier to detect SVs, including those in low complexity 

and non-unique regions of the genome. This is chiefly because, compared to short reads, long 

(10-50kbp) reads can be more reliably mapped to such regions and are more likely to span 

entire SVs​8–10​. These technologies combined with data generated by population studies using 

multiple sequencing platforms, are leading to a rapid and ongoing expansion of the reference 

SV databases in a variety of species​11–13​. 

 

Currently, most SV algorithms analyze each sample independent of any prior information about 

the variation landscape. The increasing availability and completeness of a reference database 

of known SVs, established through long read sequencing and deep coverage short-read 

sequencing, makes it possible to develop methods that use prior knowledge to genotype these 

variants. Furthermore, if the sequence data remains available they can be re-genotyped using 

new information as the reference databases are updated. Though the discovery of ​de novo 

germline or somatic variants will not be amenable to a genotyping approach, population studies 

that involve detection of common or other previously known variants will be greatly enhanced by 

genotyping using a reference database that is continually updated with newly discovered 

variants. 

 

Targeted genotyping of SVs using short-read sequencing data still remains an open problem​14​. 

Most targeted methods for genotyping are integrated with particular discovery algorithms and 
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require the input SVs to be originally discovered by the designated SV caller​15–17​, require a 

complete genome-wide realignment​18,19​ or need to be optimized on a set of training samples​12,20​. 

In addition, insertions are generally more difficult to detect than deletions using short-read 

technology, and thus are usually genotyped with lower accuracy or are completely excluded by 

these methods​21–23​. Finally, consistently genotyping SVs across many individuals is difficult 

because most existing genotypers only support single-sample SV calling. 

 

Here, we present a graph-based genotyper, Paragraph, that is capable of genotyping SVs in a 

large population of samples sequenced with short reads. The use of a graph for each variant 

makes it possible to systematically evaluate how reads align across breakpoints of the 

candidate variant. Paragraph can be universally applied to genotype insertions and deletions 

represented in a variant call format (VCF) file, independent of how they were initially discovered. 

This is in contrast to many existing genotypers that require the input SV to have a specific 

format or to include additional information produced by a specific ​de novo​ caller​14​. Furthermore, 

compared to alternate linear-reference based methods, the sequence graph approach 

minimizes the reference allele bias and enables the representation of pan-genome reference 

structures (e.g. small variants in the vicinity of an SV) so that variants can be accurate even 

when variants are clustered together​24–27​. 

 

We compare Paragraph to five popular SV detection and genotyping methods and show that the 

performance of Paragraph is an improvement in accuracy over the other methods tested. Our 

test set includes 20,385 SVs (9,287 deletions and 11,117 insertions) across three human 

samples for a total of 60,389 genotypes (38,265 alternative and 22,124 homozygous reference 

genotypes). Against this test set, Paragraph achieves a recall of 0.86 and a precision of 0.91. 
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By comparison the most comprehensive alternative genotyping method we tested achieved 0.76 

recall and 0.85 precision across deletions only. In addition, the only discovery-based SV caller 

we tested that could identify both insertions and deletions, had a recall of 0.35 for insertions 

compared to 0.88 for Paragraph. Finally, we showcase the capability of Paragraph to genotype 

on a population-scale using 100 deep-coverage WGS samples, from which we detected 

signatures of purifying selection of SVs in functional genomic elements. Combined with a 

growing and improving catalog of population-level SVs, Paragraph will deliver more complete 

SV calls and also allow researchers to revisit and improve the SV calls on historical sequence 

data. 

Result 

Graph-based genotyping of structural variations 

For each SV defined in an input variant call format (VCF) file, Paragraph constructs a directed 

acyclic graph containing paths representing the reference sequence and possible alternative 

alleles (​Figure 1​) for each region where a variant is reported. Each node represents a sequence 

that is at least one nucleotide long. Directed edges define how the node sequences can be 

connected to form complete haplotypes. The sequence for each node can be specified explicitly 

or retrieved from the reference genome. In the sequence graph, a branch is equivalent to a 

variant breakpoint in a linear reference. In Paragraph, these breakpoints are genotyped 

independently and the genotype of the variant can be inferred from genotypes of individual 

breakpoints (see ​Methods​). Besides genotypes, several graph alignment summary statistics, 

such as coverage and mismatch rate, are also computed which are used to assess quality, filter 
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and combine breakpoint genotypes into the final variant genotype. Genotyping details are 

described in the ​Methods ​section. 

 

 

 

Figure 1. Overview of the SV genotyping workflow implemented in Paragraph. ​The 
illustration shows the process to genotype a blockwise sequence swap. Starting from an entry in 
a VCF file that specifies the SV breakpoints and alternative allele sequences, Paragraph 
constructs a sequence graph containing all alleles as paths of the graph. Colored rectangles 
labeled FLANK, ALTERNATIVE and REFERENCE are nodes with actual sequences and solid 
arrows connect these nodes are edges of the graph. All reads from the original, linear 
alignments that aligned near or across the breakpoints are then realigned to the constructed 
graph. Based on alignments of these reads, the SV is genotyped as described in the ​Methods 
section. 
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Construction of a long read-based ground truth 

To estimate the performance of Paragraph and other existing methods, we built a long read 

ground truth (LRGT) from SVs called in three samples included in the Genome in a Bottle 

(GIAB)​11,28​ project data: NA12878 (HG001), NA24385 (HG002) and NA24631 (HG005). Long 

read data from these three individuals was generated on a Pacific Biosciences (PacBio) Sequel 

system using the Circular Consensus Sequencing (CCS) technology (sometimes called “HiFi” 

reads)​29​. Each sample was sequenced to an average of 30 fold depth and ~11,100 bp read 

length. Previous evaluations showed high recall (0.91) and precision (0.94) for SVs called from 

PacBio CCS NA24385 with similar coverage levels against the GIAB benchmark dataset in 

confident regions​11,29​. Thus, indicating SVs called from CCS data can be effectively used as 

ground truth to evaluate the performance of SV genotypers and callers. 

 

For each sample, we called SVs (50bp+) as described in the ​Methods​ and identified a total of 

65,108 SV calls (an average 21,702 SVs per sample) representing 38,709 unique autosomal 

SVs. In addition, we parsed out SV loci according to regions with a single SV across the 

samples and those with multiple different SVs and identified that 38,239 (59%) of our SV calls 

occur as single, unique events in the respective region and the rest 26,869 (41%) occur in 

regions with one or more nearby SVs ​(​Figure S1​)​. Recent evidence suggests that a significant 

fraction of novel SVs could be tandem repeats with variable lengths across the population ​30,31 

and we found that 49% of the singleton unique SVs are completely within the UCSC Genome 

Browser Tandem Repeat (TR) tracks while 93% of the clustered unique SVs are within TR 

tracks. Because regions with multiple variants will pose additional complexities for SV 

genotyping that are beyond the scope of the current version of Paragraph, we limited our LRGT 
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to the 9,238 deletions and 10,870 insertions that are not confounded by the presence of a 

different nearby or overlapping SV (see ​Methods​). Considering all three samples, there are: 1) 

4,260/4,439 deletions/insertions that occurred in just one sample, 2) 2,258/2,429 

deletions/insertions that occurred in two samples and 3) 2,720/4,002 deletions/insertions that 

occurred in all three samples. With short-read sequencing also available for these three 

samples, we are able to test any SV genotyping method and can estimate recall and precision 

using the long read genotypes as the ground truth. 

Test for recall and precision 

To evaluate the performance of different methods, we genotyped the LRGT SVs on short-read 

data of ​NA12878 (63x), NA24385 (35x) and NA24631 (40x)​ using Paragraph and two 

widely-used SV genotypers, ​SVTyper​16​ and Delly Genotyper​17​. Additionally, we ran three 

methods that independently discover SVs (i.e. ​de novo​ callers), Manta ​21​, Lumpy​32​ and Delly​17​. 

Because the genotyping accuracy of classifying homozygous versus heterozygous alleles may 

vary for the short and long-read methods used here, we focus our test on the presence/absence 

of variants and not genotyping concordance. Thus, we define a variant as a true positive (TP) if 

LRGT also has a call in the same sample and a false positive (FP) if LRGT did not call a variant 

in that sample. We have 38,239 individual alternative genotypes in LRGT to calculate TPs and 

22,085 individual reference genotypes in LRGT to calculate FPs. Since some of the methods 

are not able to call certain sizes or types of SVs we only tested these methods on a subset of 

the SVs when calculating recall and precision. 
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Type 

Deletion  Insertion 

Paragraph Delly 
Genotyper 

SVTyper 
(100+ bp) Manta Delly 

Lumpy 
(100+ bp) 

 Paragraph Manta 

#Tested TPs 16,936 16,936 11,160 16,936 16,936 11,160  21,303 21,303 

Recall 0.84 0.76 0.70 0.62 0.61 0.64  0.88 0.35 

#Tested FPs 10,778 10,778 6,960 - - -  11,307 - 

Precision 0.92 0.85 0.98 - - -  0.89 - 

F-score 0.88 0.80 0.82 - - -  0.88 - 

 
Table 1. Performance of different genotypers and ​de novo ​callers, measured against 50bp 
or longer SV from our LRGT. ​ Genotyping/calling was evaluated on short read data of the three 
samples sequenced with 150 bp paired-end reads on Illumina platforms. As SVTyper and 
Lumpy are limited to deletions longer than 100bp, they have fewer tested SVs than other 
methods. 
 

Paragraph has the highest recall: 0.84 for deletions and 0.88 for insertions (​Table 1​) among all 

the genotypers and ​de novo​ callers tested. Of the genotypers, Paragraph had the highest 

genotype concordance compared to the LRGT genotypes (​Table S1​). The precision of 

Paragraph is estimated as 0.92 for deletions, which is 7% higher than Delly Genotyper (0.85), 

and 0.89 for insertions. Though SVTyper had the highest precision (0.98) of all the methods 

tested it achieved that by sacrificing recall (0.70). Furthermore, SVTyper is limited to deletions 
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longer than 100 bp. When measuring precision only on 100bp+ deletions, Paragraph has a 

slightly lower precision (0.93) than SVTyper (0.98) but the recall is 12% higher (0.82 vs SVTyper 

0.70). Combining recall and precision, Paragraph has the highest F-score among all genotypers 

also for this subset of 100bp+ deletions (0.88 vs 0.80 for Delly Genotyper and 0.82 for 

SVTyper). In addition, we tested another short-read genotyper, BayesTyper, a kmer-based 

method and estimated a recall of 0.47 and precision of 0.94 across all of the LRGT SVs. The 

low recall of BayesTyper is because it produced no genotype call for 56% of the LRGT SVs. We 

speculate that this may be largely caused by sequencing errors that would have a greater 

impact on methods that require exact matches of kmers. 

 

Since genotyping performance is often associated with SV length (e.g. depth-based genotypers 

usually perform better on larger SVs than smaller ones), and some of the tested methods only 

work for SVs above certain deletion/insertion sizes, we partitioned the LRGT SVs by length and 

further examined the recall of each method (​Figure 2​). In general, for deletions between 50bp 

and ~1,000bp, the genotypers (Paragraph, SVTyper, and Delly Genotyper) have better recall 

than the ​de novo​ callers (Manta, Lumpy, and Delly). SVTyper and Paragraph have comparable 

recall for larger (>300bp) deletions, and in that size range, Delly Genotyper has lower recall than 

these two. For smaller deletions (50-300 bp), the recall for Paragraph (0.83) remains high while 

we observe a slight drop in the recall of Delly Genotyper (0.75) and a larger drop in the recall of 

SVTyper (0.43). We speculate that this is because SVTyper mainly relies on paired-end (PE) 

and read-depth (RD) information and will therefore be less sensitive for smaller events. Only 

Paragraph and Manta were able to call insertions and while Paragraph (0.88) has consistently 

high recall across all insertion lengths, Manta (0.35) has a much lower recall which drops further 

for larger insertions. 
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We additionally partitioned the precision of each genotyper by SV length (​Figure S2​). The result 

suggests that false positives are more likely to occur in small SVs than in large ones. Paragraph 

has a consistent precision for deletions and insertions, while the only comparable method in 

genotyping very small deletions (50-100bp), Delly Genotyper, has a precision drop in this range 

(​Figure S2 ​). We further examined Paragraph FPs in one of the tested samples, NA24385 and 

found nearly all of the FP deletions (91%) and the FP insertions (90%) are completely within TR 

regions. We performed a visual inspection of the 21 FP deletions and 83 FP insertions that are 

outside of TRs: 12% (12) have two or more supporting reads for an SV but were not called by 

the long read caller in LRGT; 40% (42) have one or more large indels (longer than 10bp) in the 

target region; 48% (50) have no evidence of variants in the long read alignments in the target 

region and thus these FPs are likely to come from short-read alignment artifacts. 

 

 

Figure 2. Estimated recall of different methods, partitioned by SV length. ​ Recall was 
estimated on the three samples using LRGT as the truth set. A negative SV length indicates a 
deletion and a positive SV length indicates an insertion. Colored lines in (a) show recall of 
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different methods; Solid grey bars in (b) represent the count of SVs in each size range in LRGT. 
The center of the plot is empty since SVs must be at least 50 bp in length. 
 

So far, we tested the recall using high depth data (>35x) with 150bp reads but some studies 

may use shorter reads and/or lower read depths. To quantify how either shorter reads or lower 

depth will impact genotyping performance, we evaluated data of different read lengths and 

depths by downsampling and trimming reads from our short-read data of NA24385. Generally, 

shorter read lengths are detrimental to recall; reductions in depth have less of a deleterious 

effect until the depth is below ~20x (​Figure S3​). 

Genotyping with breakpoint deviations 

The LRGT data we used here will be both costly and time-consuming to generate in the near 

term because generating long read CCS data is still a relatively slow and expensive process. An 

alternative approach to build up a reference SV catalog would be to sequence many samples 

(possibly at lower depth) using PacBio contiguous long reads (CLR) or Oxford Nanopore long 

reads rather than CCS technology and derive consensus calls across multiple samples. The 

high error rates (~10-15%) of these long reads may result in errors in SV descriptions especially 

in low-complexity regions where just a few errors in the reads could alter how the reads align to 

the reference. Since Paragraph realigns reads to a sequence graph using stringent parameters, 

inaccuracies in the breakpoints may result in a decreased recall. 

 

To understand how the genotypers perform with input SVs that have imprecise breakpoints, we 

called SVs from CLR data of NA24385 that were generated on a PacBio RS II platform. 9,534 

out of the total 12,776 NA24385 SVs in LRGT closely match those generated from the CLR data 

(see ​Methods ​ for matching details). Of these, 658 (17%) deletions and 806 (14%) insertions 
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have identical breakpoints in the CLR and CCS SV calls. The remaining ​3,306 ​ deletions and 

4,763 ​ insertions, although in approximately similar locations, have differences in representations 

(breakpoints and/or insertion sequences). Assuming breakpoints found using the CCS data 

within the LRGT SVs are correct, we consider deviations in the CLR breakpoints as errors in this 

sample. For the matching deletions between LRGT and CLR calls but with deviating 

breakpoints, Paragraph recall decreased from 0.97 to 0.83 when genotyped the CLR-defined 

deletions. Overall, there is a negative correlation between Paragraph recall and breakpoint 

deviations: the larger the deviation, the less likely the variant can be genotyped correctly 

(​Figure 3 ​). While deviations of a few base pairs can generally be tolerated without issue, 

deviations of 20 bp or more reduce recall to around 0.44. For insertions with differences in 

breakpoints and/or insertion sequences, Paragraph recall decreased from 0.88 to 0.66 when 

genotyped the CLR-defined insertions. We also investigated how inaccurate breakpoints impact 

insertion genotyping, but found no clear trend between recall and base-pair deviation in 

breakpoints. 
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Figure 3. Demonstration of the impact of recall when tested SVs include errors in their 
breakpoints.​ Breakpoint deviations measure the differences in positions between matching 
deletions in the CLR calls and in LRGT. Paragraph recall was estimated using CLR calls as 
genotyping input and TPs in LRGT as the ground truth. Breakpoint deviations were binned at 
1bp for deviations less than 18bp and at 2bp for deviations larger or equal to 19bp. Solid bars 
show the number of deletions in each size range (left axis). Points and the solid line shows the 
recall for individual size and the overall regression curve (right axis). 
 

On the same set of CLR calls, we estimated the impact of breakpoint deviation on SVTyper and 

Delly Genotyper (​Figure S4​). Similar to Paragraph, the split-read genotyper, Delly Genotyper, 

shows the same negative relationship between its recall and breakpoint deviations. As a 

contrast, SVTyper, which genotype SVs mostly using information from read depth and pair-read 

insert size distribution, does not depend much on breakpoint accuracy and is not significantly 

affected by deviations in breakpoints. 
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Genotyping in tandem repeats 

We identified that most of the SVs having breakpoint deviations between the CLR calls and 

LRGT are in low complexity regions: of the 8,069 matching SVs with breakpoint deviations, 

3,217 (77%) are within in TRs. SVs within TRs have larger breakpoint deviations in CLR calls 

from the true breakpoints than those not in TRs: 35% of the SVs with smaller (<=10 bp) 

deviations are within TRs while 66% of the SVs with larger breakpoint deviations (>20 bp) are 

within TRs. Additionally, we found that 59% of the FNs and 77% of the FPs in NA24385 occur in 

SVs that are completely within TRs. To further understand the impact of TRs on the 

performance of Paragraph, we grouped LRGT SVs according to whether they are in TRs and 

plotted Paragraph recall binned by SV lengths. Paragraph has a better recall in SVs that are 

outside of TRs (0.89 for deletions and 0.90 for insertions), compared to its recall in SVs that are 

within TRs (0.74 for deletions and 0.83 for insertions) (​Figure 4a​). Small (<200bp) SVs are 

much more likely to be within TR (~75%) than large (>1,000bp) SVs (~35%) (​Figure 4b​), and 

that matches our earlier observation that Paragraph and other genotypers have decreased 

recall and precision , in small SVs. 
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Figure 4. The impact of TRs on SV recall. ​ a) Estimated Paragraph recall from LRGT, 
partitioned by SV length and grouped by their positioning with TRs. b) LRGT SV count 
partitioned by length and grouped by their positionings with TRs. 
 

When building our LRGT, we excluded SVs with other nearby SVs in one or more samples 

(named as clustered SVs in ​Construction of long read-based ground truth ​ section). The 

majority of these SVs (93%) are within TRs, therefore benchmarking against these clustered 

SVs could be informative to quantify the impact of TRs in SV genotyping. As none of the tested 

methods could model each SV cluster as a whole without an appropriate annotation, we instead 

model each of the SVs in the clusters as a single SV and evaluated the performance of 

Paragraph and other methods on the same three samples using long read genotypes of these 

clustered SVs as the underlying truth (​Table S2​). All methods have a lower recall and precision 

in the clustered SVs than in LRGT highlighted by their reduced F-scores: Paragraph (0.64 vs. 

0.88), Delly Genotyper (0.58 vs. 0.80) and SVTyper (0.42 vs. 0.82). The three ​ de novo​ callers 

have a deletion recall of 0.15-0.20 in the clustered SVs, much lower than their recall of 

0.61-0.64 in LRGT. 
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Population-scale genotyping across 100 diverse human genomes 

A likely use case for Paragraph will be to ​genotype SVs from a reference catalog for more 

accurate assessment in a population or association studies​. To further test and demonstrate 

Paragraph in this application, we genotyped our LRGT SVs in 100 unrelated individuals (not 

including NA24385, NA12878 or NA24631) from the publicly-available Polaris sequencing 

resource (https://github.com/Illumina/Polaris). This resource consists of a mixed population of 46 

Africans (AFR), 34 East Asians (EAS) and 20 Europeans (EUR). All of these samples were 

sequenced on Illumina HiSeq X platforms with 150 bp paired-end reads to at least 30-fold depth 

per sample. 

 

Most deletions occur at a low alternative allele frequency (AF) in the population, whereas there 

is a gradually decreasing number of deletions at progressively higher AF. Over half of the 

insertions also occur at a low AF, but there is a sizeable number of insertions with very high AF 

or even becomes fixated (AF=1) in the population. As been reported previously​12​, these high AF 

insertions are likely to represent defects and/or rare alleles in the reference human genome. 

Based on the Hardy-Weinberg Equilibrium (HWE) test, we removed 2,868 (14%) SVs that are 

inconsistent with population genetics expectations. The removed SVs chiefly come from the 

unexpected AF peak at 0.5 (dashed lines in ​Figure 5a​). 79% of these HWE-failed SVs are 

within TRs, which are likely to have higher mutation rates and be more variable in the 

population ​33,34​. SVs that showed more genotyping errors in the discovery samples were more 

likely to fail the HWE test (​Table S3 ​). For example, while just 9% of the SVs with no genotyping 

errors failed our HWE test 40% of the SVs with two genotyping errors in our discovery samples 

failed our HWE test. 
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Because these samples are derived from different populations, our HWE test can be overly 

conservative, although only 962 (5%) of LRGT SVs have significantly different AFs between 

populations as measured by the test of their Fixation Index (F​st​)​
35​. In the principal component 

analysis (PCA) of the HWE-passing SVs, the samples are clearly clustered by populations 

(​Figure 5b ​). Interestingly, in PCA of the HWE-failed SVs, the samples cluster by population 

(​Figure S5 ​), too, indicating that some SVs could fail our HWE test because of population 

substructure rather than poor genotyping performance. Genotyping more samples in each of the 

three populations will allow better assessment of the genotyping accuracy without the 

confounding factor of subpopulations that could lead to erroneous HWE deviations. 

 

The population AF can reveal information about the potential functional impact of SVs on the 

basis of signals of selective pressure. By checking the AFs for SVs in different genomic 

elements, we found that SVs within exons, pseudogenes and untranslated regions (UTRs) of 

coding sequences, in general, have lower AFs than those in intronic and intergenic regions. SVs 

in introns and intergenic regions have more uniform AF distributions compared to the more 

extreme AFs in functional elements (UTRs, exons) (​Figure 5c​). All these suggest a purifying 

selection against SVs with potentially functional consequences​25​. Common SVs are more 

depleted in functional regions than rare SVs, although we do see a few common SVs within 

exons of genes including ​TP73​ (AF=0.09, tumor suppressor gene), ​FAM110D​ (AF=0.60, 

functions to be clarified, possibly related with cell cycle) and ​OVGP1​ (AF=0.18, related to 

fertilization and early embryo development). As the three discovery samples are likely healthy 

individuals, and these SVs are found at a high frequency in the population, we expect them 

unlikely to have functional significance. 
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Figure 5. Population-scale genotyping and function annotation of LRGT SVs. ​(a) The AF 
distribution of LRGT SVs in the Polaris 100-individual population (b) PCA biplot of individuals in 
the population, based on genotypes of HWE-passing SVs. (c) The AF distribution of 
HWE-passing SVs in different functional elements. SV count: 191 in UTRs, 554 in exons, 420 in 
pseudogenes, 9,542 in introns and 6,603 in intergenic regions. 
 
 
We also observed 17 exonic insertions fixated (AF=1) in the population (​Table S4​). Since these 

insertions are present and homozygous in all 100 genotyped individuals, the reference 

sequence reflects either rare deletion or errors in GRCh38 ​36​. Specifically, the 1,638 bp exonic 

insertion in ​UBE2QL1​ was also reported at high frequency in two previous studies​37,38​. 

Particularly, a recent study by TOPMed ​38​ reported this insertion in all 53,581 sequenced 
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individuals from mixed ancestries. Applying Paragraph to population-scale data will give us a 

better understanding of common, population-specific, and rare variations and aid in efforts to 

build a better reference genome. 

Discussion 

Here we introduce Paragraph, an accurate graph-based SV genotyper for short-read 

sequencing data. Using SVs discovered from high-quality long read sequencing data of three 

individuals, we demonstrate that Paragraph achieves substantially higher recall (0.84 for 

deletions and 0.88 for insertions) compared to three commonly used genotyping methods 

(highest recall at 0.76 for deletions across the genome) and three commonly used ​de novo ​SV 

callers (highest recall of 0.64 for deletions). Of particular note, Paragraph and Manta were the 

only two methods that worked for both deletions and insertions and based on our test data 

Paragraph achieved substantially higher recall for insertions compared to Manta (0.88 vs 0.35). 

 

As highlighted above, a particular strength of Paragraph is the ability to genotype both deletions 

and insertions genome-wide, including those within complicated regions. While we expect that 

there are as many insertions as there are deletions in the human population, the majority of the 

commonly used methods either do not work for insertions or perform poorly with the inserted 

sequence. In particular, because insertions are poorly called by ​de novo ​variant callers from 

short reads. Currently the most effective method to identify insertions is through discovery with 

long reads. Once a reference database of insertions is constructed, they can then be genotyped 

with high accuracy in the population using Paragraph. We expect this will be especially helpful 

to genotype clinically relevant variants as well as to assess variants of unknown significance 

(VUS) by accurately calculating AFs in healthy and diseased individuals. 
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Existing population reference databases for SVs may include many variants that are incorrectly 

represented. Since errors in the breakpoints may be a limitation for population-scaled SV 

genotyping, we have quantified the genotyping performance of Paragraph and its correlation 

with breakpoint accuracy (​Figure 3​). Our analysis shows that Paragraph can generally tolerate 

breakpoint deviation of up to 10 base pairs in most genomic contexts, although the performance 

suffers as the breakpoints deviate by more bases. Undoubtedly, recent advances in long read 

accuracy will lead to more accurate SV reference databases and thus better performance for 

Paragraph as a population genotyper. 

 

Paragraph works by aligning and genotyping reads on a local sequence graph constructed for 

each targeted SV. This approach is different from other proposed and most existing graph 

methods that create a single whole-genome graph and align all reads to this large graph ​18,39​. A 

whole-genome graph may be able to rescue reads from novel insertions that are misaligned to 

other parts of the genome in the original linear reference, however, the computational cost of 

building such a graph and performing alignment against this graph is very high. Adding variants 

to a whole-genome graph is also a very involved process that typically requires all reads to be 

realigned. Conversely, the local graph approach applied in Paragraph is not computationally 

intensive and can easily be adapted into existing secondary analysis pipelines. The local graph 

approach utilized by Paragraph also scales well to population-level studies where large sets of 

variants identified from different resources can be genotyped rapidly (e.g. 1,000 SVs can be 

genotyped in one sample in 15 minutes with a single thread) and accurately in many samples. 
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In this study, we demonstrated that Paragraph can accurately genotype single SVs that are not 

confounded by the presence of nearby SVs (​Table 1, Table S2​). Though, of the SVs identified 

in these three samples, almost half (48%) occurred in the presence of one or more different 

SVs. The current version of Paragraph only genotypes one SV per locus though we are actively 

working on the algorithm to consider and test the ability to annotate overlapping SVs and 

genotype them simultaneously. In addition, it will be equally important to create a more 

complete catalog of SVs in these highly variable loci so that the entire complexity can be 

encoded into the graph. 

 

The primary use case for Paragraph will be to allow investigators to genotype previously 

identified variants with high accuracy. This could be applied to genotype known, medically 

relevant SVs in precision medicine initiatives or to genotype SVs from a reference catalog for 

more accurate assessment in a population or association study. Importantly, the catalog of both 

medically important SVs and population-discovered SVs will continue to evolve over time and 

Paragraph will allow scientists to genotype these newly-identified variants in historical sequence 

data. Certainly, the variant calls for both small (single sample) and large (population-level) 

sequencing studies can continue to improve as our knowledge of population-wide variation 

becomes more comprehensive and accurate. 

Conclusions 

Paragraph is an accurate SV genotyper for short-read sequencing data that scales to hundreds 

or thousands of samples. Paragraph implements a unified genotyper that works for both 

insertions and deletions, independent of the method by which the SVs were discovered. Thus, 
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Paragraph is a powerful tool for studying the SV landscape in populations, human or otherwise, 

in addition to analyzing SVs for clinical genomic sequencing applications. 

Methods 

Graph construction 

In a sequence graph, each node represents a sequence that is at least one nucleotide long and 

directed edges define how the node sequences can be connected together to form complete 

haplotypes. Labels on edges are used to identify individual alleles or haplotypes through the 

graph. Each path represents an allele, either the reference allele, or one of the alternative 

alleles. Paragraph currently supports three types of SV graphs: deletion, insertion, and 

blockwise sequence swaps. Since we are only interested in read support around SV 

breakpoints, any node corresponding to a very long nucleotide sequence (typically longer than 

two times the average read length) is replaced with two shorter nodes with sequences around 

the breakpoints. 

Graph alignment 

Paragraph extracts reads, as well as their mates (for paired-end reads), from the flanking region 

of each targeted SV in a Binary Alignment Map (BAM) or CRAM file. The default target region is 

one read length upstream of the variant starting position to one read length downstream of the 

variant ending position, although this can be adjusted at runtime. The extracted reads are 

realigned to the pre-constructed sequence graph using a graph-aware version of a Farrar’s 

Striped Smith-Waterman alignment algorithm implemented in GSSW library​40​ v0.1.4. In the 

current implementation, read pair information is not used in alignment or genotyping. The 
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algorithm extends the recurrence relation and the corresponding dynamic programming score 

matrices across junctions in the graph. For each node, edge, and graph path, alignment 

statistics such as mismatch rates and graph alignment scores are generated. 

 

Only uniquely mapped reads, meaning reads aligned to only one graph location with the best 

alignment score, are used to genotype breakpoints. Reads used in genotyping must also 

contain at least one kmer that is unique in the graph. Paragraph considers a read as supporting 

a node if its alignment overlaps the node with a minimum number of bases (by default 10% of 

the read length or the length of the node, whichever is smaller). Similarly, for a read to support 

an edge between a pair of nodes means its alignment path contains the edge and supports both 

nodes under the above criteria. 

Breakpoint genotyping 

A breakpoint occurs in the sequence graph when a node has more than one connected edges. 

Considering a breakpoint with a set of reads with a total read count  and two connectingR  

edges representing haplotype  and . We define the read count of haplotype  as  andh1 h2 h1 Rh1  

haplotype  as . The remaining reads in  that are mapped to neither haplotype areh2 Rh2 R  

denoted as .R=h1,h2/  

 

The likelihood of observing the given set of reads with the underlying breakpoint genotype 

 can be represented as:Gh1/h2  

 

                          (1)(R | G ) p(R ,  | G ) (R  | G )p h1/h2 =  h1 Rh2 h1/h2 × p =h1,h2/ h1/h2  
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We assume that the count of the reads for a breakpoint on the sequence graph follows a 

Poisson-distribution with parameter . With an average read length , an average sequencingλ l  

depth , and the minimal overlap of  bases (default: 10% of the read length ) for the criteriad m l  

of a read supporting a node, the Poisson parameter can be estimated as 

 

                                                                   (2) d l ) / lλ =  × ( − m  

 

When assuming the haplotype fractions (expected fraction of reads for each haplotype when the 

underlying genotype is heterozygous) of and  are and , the likelihood under ah1 h2 μh1 μh2  

certain genotype,  , or the first term in equation (1), can be estimated from the(R ,  | G )p h1 Rh2 h1/h2  

density function  of the underlying Poisson distribution:pois()d  

 

                                (3)(R | G ) dpois(R , λ ) pois(R , λ )p h1/h2 =  h1  × μh1 × d h2  × μh2  

 

If and are the same haplotypes, the likelihood calculation is simplified as:h1 h2  

 

                                                      (4)(R | G ) dpois(R , λ(1 ))p h1/h1 =  h1  − ε  

 

, where  is the error rate of observing reads supporting neither nor  given the underlyingε h1 h2  

genotype . Similarly, the error likelihood, , or the second term in equationGh1/h2 (R  | G )p =h1,h2/ h1/h2  

(1), can be calculated as 

 

                                           (5)(R  | G ) dpois(R , λ )p =h1,h2/ h1/h2 =  =h1,h2/  × ε  
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Finally, the likelihood of observing genotype  under the observed reads  can beGh1/h2 R  

estimated under a Bayesian framework 

 

                                                  (6) | R) (G ) (R | G ) p(Gh1/h2 ~ p h1/h2 × p h1/h2  

 

The prior  can be pre-defined or calculated using a helper script in Paragraph(G )P h1/h2  

repository that uses the Expectation-Maximization algorithm to estimate genotype-likelihood 

based allele frequencies under Hardy-Weinberg Equilibrium across a population ​41​. 

SV genotyping 

We perform a series of tests for the confidence of breakpoint genotypes. For a breakpoint to be 

labeled as “passing”, it must meet all of the following criteria: 

 

1. It has more than one read aligned, regardless of which allele the reads were aligned to 

2. The breakpoint depth is not significantly high or low compared to the genomic average 

(p-value is at least 0.01 on a two-sided Z-test) 

3. The Phred-scaled score of its genotyping quality (derived from genotype likelihoods) is at 

least 10. 

4. Based on the reads aligned to the breakpoint, regardless of alleles, the Phred-scaled 

p-value from FisherStrand ​42​ test is at least 30. 
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If a breakpoint fails one or more of the above tests, it will be labeled as a “failing” breakpoint. 

Based on the test results of the two breakpoints, we then derive the SV genotype using the 

following decision tree: 

 

1. If two breakpoints are passing: 

a. If they have the same genotype, use this genotype as the SV genotype 

b. If they have different genotypes, pool reads from these two breakpoints and 

perform the steps in ​Breakpoint genotyping ​ section again using the pooled 

reads. Use the genotype calculated from the pooled reads as the SV genotype. 

2. If one breakpoint is passing and the other one is failing: 

a. use the genotype from the passing breakpoint as the SV genotype. 

3. If two breakpoints are failing: 

a. If the two breakpoints have the same genotype, use this genotype as the SV 

genotype 

b. If two breakpoints have different genotypes, follow the steps in 1b. 

 

Note that for 1b and 2b, as we pool reads from two breakpoints together, the depth parameter d  

in equation (2) needs to be doubled, and reads that span two breakpoints will be counted twice. 

We also set a filter label for the SV after this decision tree, and this filter will be labeled as 

passing only when the SV is genotyped through decision tree 1a. SVs that fail the passing 

criteria 1 and 2 for any one of its breakpoints were considered as reference genotypes in the 

evaluation of Paragraph in the main text. 
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Sequence data 

The CCS data for ​NA12878 (HG001), NA24385 (HG002) and NA24631 (HG005)​ are available 

at the GiaB FTP (ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/). These samples were sequenced to an 

approximate 30x depth with an average read length of 11 kb on the PacBio Sequel system. We 

re-aligned reads to the most recent human genome assembly, GRCh38, using pbmm2 v1.0.0 

(https://github.com/PacificBiosciences/pbmm2). Pacbio CLR data of NA24385 ​11​ were 

sequenced to 50x coverage on a PacBio RS II platform, and reads were aligned to GRCh38 

using NGMLR​10​ v0.2.7. 

 

To test the performance of the methods on short-read data, we utilized three matching samples 

that were sequenced using TruSeq PCR-free protocol on Illumina platforms with 150 bp 

paired-end reads: 35x (​NA24385 ​) on HiSeq X, 64x (NA12878) and 48x (​NA24631 ​) on NovaSeq 

6000. Reads were mapped to GRCh38 using the Issac aligner​43​. To estimate the recall of 

Paragraph in samples of lower depth, we downsampled the 35x ​NA24385 ​ data to different 

depths using samtools​44​. To estimate the recall of Paragraph in 100bp and 75bp reads, we 

trimmed the 150bp reads from their 3’ end in the downsampled ​NA24385 ​ data. 

Long read ground truth and performance evaluation 

SVs were called from the CCS long read data of the three samples using PBSV v2.0.2 

(​https://github.com/PacificBiosciences/pbsv​). When merging SVs across samples, we define 

deletions as “different” if their deleted sequences have less than 80% reciprocal overlap; we 

define insertions as “different” if their breakpoints are more than 150 bp apart, or their insertion 

sequences have less than 80% of matching bases when aligning against each other using 
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Smith-Waterman algorithm. After merging, we obtained 41,186 unique SVs. From these unique 

SVs, we excluded 1,944 from chromosome X or Y, 53 SVs that had a failed genotype in one or 

more samples and 480 SVs where a nearby duplication was reported in at least one sample. In 

the remaining 38,709 unique SVs, 20,108 have no nearby SVs within 150bp upstream and 

downstream and these SVs were used as LRGT to test the performance of Paragraph and other 

methods. 

 

For each method, we define a variant as a true positive (TP) if the LRGT data also has a call in 

the same sample and a false positive (FP) if the LRGT did not call a variant in that sample. ​For 

each genotyper, we estimate its recall as the count of its TPs divided by the count of alternative 

genotypes in LRGT. We calculate the precision of each method as its TPs divided by its TPs 

plus FPs. Variants identified by the ​de novo​ methods (Manta, Lumpy, and Delly) may not have 

the same reference coordinates or insertion sequences as the SVs in LRGT. To account for this 

we matched variants from​ de novo​ callers and SVs in LRGT using Illumina’s large-variant 

benchmarking tool, Wittyer (v0.3.1). Wittyer matches variants using centered-reciprocal overlap 

criteria, similar to Truvari (https://github.com/spiralgenetics/truvari) but has better support for 

different variant types and allow stratification for variant sizes. We set parameters in Wittyter as 

“--em simpleCounting --bpd 500 --pd 0.2”, which means for two matching variants, their 

breakpoint needs to be no more than 500 bp apart from each other and if they are deletions, 

their deleted sequences must have no less than 80% reciprocal overlap. 

Estimation of breakpoint deviation 

From CLR ​NA24385 ​, SVs were called using the long read SV caller, Sniffles​10​ with parameters 

“--report-seq -n -1” to report all supporting read names and insertion sequences. Additional 
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default parameters require 10 or more supporting reads to report a call, and require variants to 

be at least 50 bp in length. Insertion calls were refined using the insertion refinement module of 

CrossStitch (​https://github.com/schatzlab/crossstitch ​), which uses FalconSense, an open-source 

method originally developed for the Falcon assembler​45​ and is also used as the consensus 

module for Canu ​46​. 

 

We used a customized script to match calls between the CLR and LRGT SVs of ​NA24385 ​. A 

deletion from the CLR data is considered to match a deletion in LRGT if their breakpoints are no 

more than 500 bp apart and their reciprocal overlap length is no less than 60% of their union 

length. An insertion from the CLR data is considered to match an insertion in LRGT if their 

breakpoints are no more than 500 bp apart. Base pair deviations between insertion sequences 

were calculated from the pairwise alignment method implemented the python module 

biopython ​47​. 

Population genotyping and annotation 

The 100 unrelated individuals from the Polaris sequencing resource 

(https://github.com/Illumina/Polaris) were sequenced using TruSeq PCR-free protocol on 

Illumina HiSeq X platforms with 150 bp paired-end reads. Each sample was sequenced at an 

approximate 30-fold coverage. We genotyped the LRGT SVs in each individual using Paragraph 

with default parameters. 

 

For each SV, we used Fisher’s exact test to calculate its Hardy-Weinberg p-values​48​. SVs with 

p-value less than 0.0001 were considered as HWE-failed. We used dosage of HWE-passing 
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SVs to run PCA, which means 0 for homozygous reference genotypes and missing genotypes, 

1 for heterozygotes and 2 for homozygous alternative genotypes. 

 

We used the annotation tracks from the UCSC Genome Browser to annotate SVs in LRGT. We 

define an SV as “within TR” if its reference sequence is completely within one or more TRF 

tracks. We categorized an SV as functional if it overlaps with one or more functional tracks. We 

used the ENCODE Exon and PseudoGene SupportV28 track for exons, IntronEst for introns 

and ENCFF824ZKD for UTRs. SVs that overlap with any functional tracks SVs that do not 

overlap with any of these tracks were annotated as intergenic. 
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