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List of abbreviations

SV: structural variation bp: base pair TR: tandem repeat

Abstract

Accurate detection and genotyping of structural variations (SVs) from short-read data is a
long-standing area of development in genomics research and clinical sequencing pipelines. We
introduce Paragraph, an accurate genotyper that models SVs using sequence graphs and SV
annotations. We demonstrate the accuracy of Paragraph on whole-genome sequence data from
three samples using long read SV calls as the truth set, and then apply Paragraph at scale to a
cohort of 100 short-read sequenced samples of diverse ancestry. Our analysis shows that
Paragraph has better accuracy than other existing genotypers and can be applied to

population-scale studies.
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Background

Structural variants (SVs) contribute to a large fraction of genomic variation and have long been
implicated in phenotypic diversity and human disease'. Whole-genome sequencing (WGS) is a
common approach to profile genomic variation, but compared to small variants, accurate
detection and genotyping of SVs still remains a challenge*®. This is especially problematic for a

large number of SVs that are longer than the read lengths of short-read (100-150 bp)
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high-throughput sequence data, as a significant fraction of SVs has complex structures that can

cause artifacts in read mapping and make it difficult to reconstruct the alternative haplotypes®’.

Recent advances in long read sequencing technologies, (e.g. Pacific Biosciences and Oxford
Nanopore Technologies), have made it easier to detect SVs, including those in low complexity
and non-unique regions of the genome. This is chiefly because, compared to short reads, long
(10-50kbp) reads can be more reliably mapped to such regions and are more likely to span
entire SVs®'°. These technologies combined with data generated by population studies using
multiple sequencing platforms, are leading to a rapid and ongoing expansion of the reference

SV databases in a variety of species’"°.

Currently, most SV algorithms analyze each sample independent of any prior information about
the variation landscape. The increasing availability and completeness of a reference database
of known SVs, established through long read sequencing and deep coverage short-read
sequencing, makes it possible to develop methods that use prior knowledge to genotype these
variants. Furthermore, if the sequence data remains available they can be re-genotyped using
new information as the reference databases are updated. Though the discovery of de novo
germline or somatic variants will not be amenable to a genotyping approach, population studies
that involve detection of common or other previously known variants will be greatly enhanced by
genotyping using a reference database that is continually updated with newly discovered

variants.

Targeted genotyping of SVs using short-read sequencing data still remains an open problem™.

Most targeted methods for genotyping are integrated with particular discovery algorithms and
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require the input SVs to be originally discovered by the designated SV caller’™™"’, require a

complete genome-wide realignment' ' or need to be optimized on a set of training samples'*%.
In addition, insertions are generally more difficult to detect than deletions using short-read
technology, and thus are usually genotyped with lower accuracy or are completely excluded by

these methods?™%. Finally, consistently genotyping SVs across many individuals is difficult

because most existing genotypers only support single-sample SV calling.

Here, we present a graph-based genotyper, Paragraph, that is capable of genotyping SVs in a
large population of samples sequenced with short reads. The use of a graph for each variant
makes it possible to systematically evaluate how reads align across breakpoints of the
candidate variant. Paragraph can be universally applied to genotype insertions and deletions
represented in a variant call format (VCF) file, independent of how they were initially discovered.
This is in contrast to many existing genotypers that require the input SV to have a specific
format or to include additional information produced by a specific de novo caller'. Furthermore,
compared to alternate linear-reference based methods, the sequence graph approach
minimizes the reference allele bias and enables the representation of pan-genome reference
structures (e.g. small variants in the vicinity of an SV) so that variants can be accurate even

when variants are clustered together®2’.

We compare Paragraph to five popular SV detection and genotyping methods and show that the
performance of Paragraph is an improvement in accuracy over the other methods tested. Our
test set includes 20,385 SVs (9,287 deletions and 11,117 insertions) across three human
samples for a total of 60,389 genotypes (38,265 alternative and 22,124 homozygous reference

genotypes). Against this test set, Paragraph achieves a recall of 0.86 and a precision of 0.91.
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By comparison the most comprehensive alternative genotyping method we tested achieved 0.76
recall and 0.85 precision across deletions only. In addition, the only discovery-based SV caller
we tested that could identify both insertions and deletions, had a recall of 0.35 for insertions
compared to 0.88 for Paragraph. Finally, we showcase the capability of Paragraph to genotype
on a population-scale using 100 deep-coverage WGS samples, from which we detected
signatures of purifying selection of SVs in functional genomic elements. Combined with a
growing and improving catalog of population-level SVs, Paragraph will deliver more complete
SV calls and also allow researchers to revisit and improve the SV calls on historical sequence

data.

Result

Graph-based genotyping of structural variations

For each SV defined in an input variant call format (VCF) file, Paragraph constructs a directed
acyclic graph containing paths representing the reference sequence and possible alternative
alleles (Figure 1) for each region where a variant is reported. Each node represents a sequence
that is at least one nucleotide long. Directed edges define how the node sequences can be
connected to form complete haplotypes. The sequence for each node can be specified explicitly
or retrieved from the reference genome. In the sequence graph, a branch is equivalent to a
variant breakpoint in a linear reference. In Paragraph, these breakpoints are genotyped
independently and the genotype of the variant can be inferred from genotypes of individual
breakpoints (see Methods). Besides genotypes, several graph alignment summary statistics,

such as coverage and mismatch rate, are also computed which are used to assess quality, filter
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and combine breakpoint genotypes into the final variant genotype. Genotyping details are

described in the Methods section.

Variant Call Format (VCF) file

Variant type: Insertion Variant type: Swap Variant type: Deletion
Reference coords: chr1:50-50 Reference coords: chr1:100-150 Reference coords: chr1:200-300| ---
ALT sequence: ATGCT ALT sequence: ATGCT ALT sequence: None
Read pairs from target region Sequence graph
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Figure 1. Overview of the SV genotyping workflow implemented in Paragraph. The
illustration shows the process to genotype a blockwise sequence swap. Starting from an entry in
a VCEF file that specifies the SV breakpoints and alternative allele sequences, Paragraph
constructs a sequence graph containing all alleles as paths of the graph. Colored rectangles
labeled FLANK, ALTERNATIVE and REFERENCE are nodes with actual sequences and solid
arrows connect these nodes are edges of the graph. All reads from the original, linear
alignments that aligned near or across the breakpoints are then realigned to the constructed
graph. Based on alignments of these reads, the SV is genotyped as described in the Methods
section.
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Construction of a long read-based ground truth

To estimate the performance of Paragraph and other existing methods, we built a long read
ground truth (LRGT) from SVs called in three samples included in the Genome in a Bottle
(GIAB)"? project data: NA12878 (HG001), NA24385 (HG002) and NA24631 (HG005). Long
read data from these three individuals was generated on a Pacific Biosciences (PacBio) Sequel
system using the Circular Consensus Sequencing (CCS) technology (sometimes called “HiFi”
reads)®. Each sample was sequenced to an average of 30 fold depth and ~11,100 bp read
length. Previous evaluations showed high recall (0.91) and precision (0.94) for SVs called from
PacBio CCS NA24385 with similar coverage levels against the GIAB benchmark dataset in
confident regions'"?°. Thus, indicating SVs called from CCS data can be effectively used as

ground truth to evaluate the performance of SV genotypers and callers.

For each sample, we called SVs (50bp+) as described in the Methods and identified a total of
65,108 SV calls (an average 21,702 SVs per sample) representing 38,709 unique autosomal
SVs. In addition, we parsed out SV loci according to regions with a single SV across the
samples and those with multiple different SVs and identified that 38,239 (59%) of our SV calls
occur as single, unique events in the respective region and the rest 26,869 (41%) occur in
regions with one or more nearby SVs (Figure S1). Recent evidence suggests that a significant
fraction of novel SVs could be tandem repeats with variable lengths across the population®*'
and we found that 49% of the singleton unique SVs are completely within the UCSC Genome
Browser Tandem Repeat (TR) tracks while 93% of the clustered unique SVs are within TR

tracks. Because regions with multiple variants will pose additional complexities for SV

genotyping that are beyond the scope of the current version of Paragraph, we limited our LRGT
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to the 9,238 deletions and 10,870 insertions that are not confounded by the presence of a
different nearby or overlapping SV (see Methods). Considering all three samples, there are: 1)
4,260/4,439 deletions/insertions that occurred in just one sample, 2) 2,258/2,429
deletions/insertions that occurred in two samples and 3) 2,720/4,002 deletions/insertions that
occurred in all three samples. With short-read sequencing also available for these three
samples, we are able to test any SV genotyping method and can estimate recall and precision

using the long read genotypes as the ground truth.

Test for recall and precision

To evaluate the performance of different methods, we genotyped the LRGT SVs on short-read
data of NA12878 (63x), NA24385 (35x) and NA24631 (40x) using Paragraph and two
widely-used SV genotypers, SVTyper'® and Delly Genotyper'’. Additionally, we ran three
methods that independently discover SVs (i.e. de novo callers), Manta®', Lumpy>? and Delly"".
Because the genotyping accuracy of classifying homozygous versus heterozygous alleles may
vary for the short and long-read methods used here, we focus our test on the presence/absence
of variants and not genotyping concordance. Thus, we define a variant as a true positive (TP) if
LRGT also has a call in the same sample and a false positive (FP) if LRGT did not call a variant
in that sample. We have 38,239 individual alternative genotypes in LRGT to calculate TPs and
22,085 individual reference genotypes in LRGT to calculate FPs. Since some of the methods
are not able to call certain sizes or types of SVs we only tested these methods on a subset of

the SVs when calculating recall and precision.
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Deletion Insertion
Type Paragraph Gelr::ce;::lyper ?%Ifg;r Manta Delly (I;:OTE;,) Paragraph Manta
#Tested TPs 16,936 16,936 11,160 16,936 16,936 11,160 21,303 21,303
Recall 0.84 0.76 0.70 0.62 0.61 0.64 0.88 0.35
#Tested FPs 10,778 10,778 6,960 - - - 11,307 -
Precision 0.92 0.85 0.98 - - - 0.89 -
F-score 0.88 0.80 0.82 - - - 0.88 -

Table 1. Performance of different genotypers and de novo callers, measured against 50bp
or longer SV from our LRGT. Genotyping/calling was evaluated on short read data of the three
samples sequenced with 150 bp paired-end reads on lllumina platforms. As SVTyper and
Lumpy are limited to deletions longer than 100bp, they have fewer tested SVs than other
methods.

Paragraph has the highest recall: 0.84 for deletions and 0.88 for insertions (Table 1) among all
the genotypers and de novo callers tested. Of the genotypers, Paragraph had the highest
genotype concordance compared to the LRGT genotypes (Table S1). The precision of
Paragraph is estimated as 0.92 for deletions, which is 7% higher than Delly Genotyper (0.85),
and 0.89 for insertions. Though SVTyper had the highest precision (0.98) of all the methods

tested it achieved that by sacrificing recall (0.70). Furthermore, SVTyper is limited to deletions
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longer than 100 bp. When measuring precision only on 100bp+ deletions, Paragraph has a
slightly lower precision (0.93) than SVTyper (0.98) but the recall is 12% higher (0.82 vs SVTyper
0.70). Combining recall and precision, Paragraph has the highest F-score among all genotypers
also for this subset of 100bp+ deletions (0.88 vs 0.80 for Delly Genotyper and 0.82 for
SVTyper). In addition, we tested another short-read genotyper, BayesTyper, a kmer-based
method and estimated a recall of 0.47 and precision of 0.94 across all of the LRGT SVs. The
low recall of BayesTyper is because it produced no genotype call for 56% of the LRGT SVs. We
speculate that this may be largely caused by sequencing errors that would have a greater

impact on methods that require exact matches of kmers.

Since genotyping performance is often associated with SV length (e.g. depth-based genotypers
usually perform better on larger SVs than smaller ones), and some of the tested methods only
work for SVs above certain deletion/insertion sizes, we partitioned the LRGT SVs by length and
further examined the recall of each method (Figure 2). In general, for deletions between 50bp
and ~1,000bp, the genotypers (Paragraph, SVTyper, and Delly Genotyper) have better recall
than the de novo callers (Manta, Lumpy, and Delly). SVTyper and Paragraph have comparable
recall for larger (>300bp) deletions, and in that size range, Delly Genotyper has lower recall than
these two. For smaller deletions (50-300 bp), the recall for Paragraph (0.83) remains high while
we observe a slight drop in the recall of Delly Genotyper (0.75) and a larger drop in the recall of
SVTyper (0.43). We speculate that this is because SVTyper mainly relies on paired-end (PE)
and read-depth (RD) information and will therefore be less sensitive for smaller events. Only
Paragraph and Manta were able to call insertions and while Paragraph (0.88) has consistently
high recall across all insertion lengths, Manta (0.35) has a much lower recall which drops further

for larger insertions.
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We additionally partitioned the precision of each genotyper by SV length (Figure S2). The result
suggests that false positives are more likely to occur in small SVs than in large ones. Paragraph
has a consistent precision for deletions and insertions, while the only comparable method in
genotyping very small deletions (50-100bp), Delly Genotyper, has a precision drop in this range
(Figure S2). We further examined Paragraph FPs in one of the tested samples, NA24385 and
found nearly all of the FP deletions (91%) and the FP insertions (90%) are completely within TR
regions. We performed a visual inspection of the 21 FP deletions and 83 FP insertions that are
outside of TRs: 12% (12) have two or more supporting reads for an SV but were not called by
the long read caller in LRGT; 40% (42) have one or more large indels (longer than 10bp) in the
target region; 48% (50) have no evidence of variants in the long read alignments in the target

region and thus these FPs are likely to come from short-read alignment artifacts.

Genotyper Paragraph —— SVTyper —— Delly Genotyper
d De novo Caller Manta Lumpy Delly
1
0.75
E
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o
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Figure 2. Estimated recall of different methods, partitioned by SV length. Recall was
estimated on the three samples using LRGT as the truth set. A negative SV length indicates a
deletion and a positive SV length indicates an insertion. Colored lines in (a) show recall of
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different methods; Solid grey bars in (b) represent the count of SVs in each size range in LRGT.
The center of the plot is empty since SVs must be at least 50 bp in length.

So far, we tested the recall using high depth data (>35x) with 150bp reads but some studies
may use shorter reads and/or lower read depths. To quantify how either shorter reads or lower
depth will impact genotyping performance, we evaluated data of different read lengths and
depths by downsampling and trimming reads from our short-read data of NA24385. Generally,
shorter read lengths are detrimental to recall; reductions in depth have less of a deleterious

effect until the depth is below ~20x (Figure S3).

Genotyping with breakpoint deviations

The LRGT data we used here will be both costly and time-consuming to generate in the near
term because generating long read CCS data is still a relatively slow and expensive process. An
alternative approach to build up a reference SV catalog would be to sequence many samples
(possibly at lower depth) using PacBio contiguous long reads (CLR) or Oxford Nanopore long
reads rather than CCS technology and derive consensus calls across multiple samples. The
high error rates (~10-15%) of these long reads may result in errors in SV descriptions especially
in low-complexity regions where just a few errors in the reads could alter how the reads align to
the reference. Since Paragraph realigns reads to a sequence graph using stringent parameters,

inaccuracies in the breakpoints may result in a decreased recall.

To understand how the genotypers perform with input SVs that have imprecise breakpoints, we
called SVs from CLR data of NA24385 that were generated on a PacBio RS Il platform. 9,534
out of the total 12,776 NA24385 SVs in LRGT closely match those generated from the CLR data

(see Methods for matching details). Of these, 658 (17%) deletions and 806 (14%) insertions
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have identical breakpoints in the CLR and CCS SV calls. The remaining 3,306 deletions and
4,763 insertions, although in approximately similar locations, have differences in representations
(breakpoints and/or insertion sequences). Assuming breakpoints found using the CCS data
within the LRGT SVs are correct, we consider deviations in the CLR breakpoints as errors in this
sample. For the matching deletions between LRGT and CLR calls but with deviating
breakpoints, Paragraph recall decreased from 0.97 to 0.83 when genotyped the CLR-defined
deletions. Overall, there is a negative correlation between Paragraph recall and breakpoint
deviations: the larger the deviation, the less likely the variant can be genotyped correctly
(Figure 3). While deviations of a few base pairs can generally be tolerated without issue,
deviations of 20 bp or more reduce recall to around 0.44. For insertions with differences in
breakpoints and/or insertion sequences, Paragraph recall decreased from 0.88 to 0.66 when
genotyped the CLR-defined insertions. We also investigated how inaccurate breakpoints impact
insertion genotyping, but found no clear trend between recall and base-pair deviation in

breakpoints.

13


https://doi.org/10.1101/635011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/635011; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Recall
400 _ Fitted recall
. | O SV Count 0.9
3001
% ] o
E L 06g
8 2004 g=)
* M~ _—___
] L0.3
100
0 L] L ”DDDDDDDDD:EEDGE:: L0 0

0 10 20 30 40 50
Breakpoint deviation (bp)

Figure 3. Demonstration of the impact of recall when tested SVs include errors in their
breakpoints. Breakpoint deviations measure the differences in positions between matching
deletions in the CLR calls and in LRGT. Paragraph recall was estimated using CLR calls as
genotyping input and TPs in LRGT as the ground truth. Breakpoint deviations were binned at
1bp for deviations less than 18bp and at 2bp for deviations larger or equal to 19bp. Solid bars
show the number of deletions in each size range (left axis). Points and the solid line shows the
recall for individual size and the overall regression curve (right axis).

On the same set of CLR calls, we estimated the impact of breakpoint deviation on SVTyper and
Delly Genotyper (Figure S4). Similar to Paragraph, the split-read genotyper, Delly Genotyper,
shows the same negative relationship between its recall and breakpoint deviations. As a
contrast, SVTyper, which genotype SVs mostly using information from read depth and pair-read
insert size distribution, does not depend much on breakpoint accuracy and is not significantly

affected by deviations in breakpoints.

14


https://doi.org/10.1101/635011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/635011; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Genotyping in tandem repeats

We identified that most of the SVs having breakpoint deviations between the CLR calls and
LRGT are in low complexity regions: of the 8,069 matching SVs with breakpoint deviations,
3,217 (77%) are within in TRs. SVs within TRs have larger breakpoint deviations in CLR calls
from the true breakpoints than those not in TRs: 35% of the SVs with smaller (<=10 bp)
deviations are within TRs while 66% of the SVs with larger breakpoint deviations (>20 bp) are
within TRs. Additionally, we found that 59% of the FNs and 77% of the FPs in NA24385 occur in
SVs that are completely within TRs. To further understand the impact of TRs on the
performance of Paragraph, we grouped LRGT SVs according to whether they are in TRs and
plotted Paragraph recall binned by SV lengths. Paragraph has a better recall in SVs that are
outside of TRs (0.89 for deletions and 0.90 for insertions), compared to its recall in SVs that are
within TRs (0.74 for deletions and 0.83 for insertions) (Figure 4a). Small (<200bp) SVs are
much more likely to be within TR (~75%) than large (>1,000bp) SVs (~35%) (Figure 4b), and
that matches our earlier observation that Paragraph and other genotypers have decreased

recall and precision , in small SVs.
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Figure 4. The impact of TRs on SV recall. a) Estimated Paragraph recall from LRGT,
partitioned by SV length and grouped by their positioning with TRs. b) LRGT SV count
partitioned by length and grouped by their positionings with TRs.

When building our LRGT, we excluded SVs with other nearby SVs in one or more samples
(named as clustered SVs in Construction of long read-based ground truth section). The
majority of these SVs (93%) are within TRs, therefore benchmarking against these clustered
SVs could be informative to quantify the impact of TRs in SV genotyping. As none of the tested
methods could model each SV cluster as a whole without an appropriate annotation, we instead
model each of the SVs in the clusters as a single SV and evaluated the performance of
Paragraph and other methods on the same three samples using long read genotypes of these
clustered SVs as the underlying truth (Table $2). All methods have a lower recall and precision
in the clustered SVs than in LRGT highlighted by their reduced F-scores: Paragraph (0.64 vs.
0.88), Delly Genotyper (0.58 vs. 0.80) and SVTyper (0.42 vs. 0.82). The three de novo callers
have a deletion recall of 0.15-0.20 in the clustered SVs, much lower than their recall of

0.61-0.64 in LRGT.
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Population-scale genotyping across 100 diverse human genomes

A likely use case for Paragraph will be to genotype SVs from a reference catalog for more
accurate assessment in a population or association studies. To further test and demonstrate
Paragraph in this application, we genotyped our LRGT SVs in 100 unrelated individuals (not
including NA24385, NA12878 or NA24631) from the publicly-available Polaris sequencing
resource (https://github.com/lllumina/Polaris). This resource consists of a mixed population of 46
Africans (AFR), 34 East Asians (EAS) and 20 Europeans (EUR). All of these samples were
sequenced on lllumina HiSeq X platforms with 150 bp paired-end reads to at least 30-fold depth

per sample.

Most deletions occur at a low alternative allele frequency (AF) in the population, whereas there
is a gradually decreasing number of deletions at progressively higher AF. Over half of the
insertions also occur at a low AF, but there is a sizeable number of insertions with very high AF
or even becomes fixated (AF=1) in the population. As been reported previously'?, these high AF
insertions are likely to represent defects and/or rare alleles in the reference human genome.
Based on the Hardy-Weinberg Equilibrium (HWE) test, we removed 2,868 (14%) SVs that are
inconsistent with population genetics expectations. The removed SVs chiefly come from the
unexpected AF peak at 0.5 (dashed lines in Figure 5a). 79% of these HWE-failed SVs are
within TRs, which are likely to have higher mutation rates and be more variable in the
population®*. SVs that showed more genotyping errors in the discovery samples were more
likely to fail the HWE test (Table S3). For example, while just 9% of the SVs with no genotyping
errors failed our HWE test 40% of the SVs with two genotyping errors in our discovery samples

failed our HWE test.
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Because these samples are derived from different populations, our HWE test can be overly
conservative, although only 962 (5%) of LRGT SVs have significantly different AFs between
populations as measured by the test of their Fixation Index (F )*. In the principal component
analysis (PCA) of the HWE-passing SVs, the samples are clearly clustered by populations
(Figure 5b). Interestingly, in PCA of the HWE-failed SVs, the samples cluster by population
(Figure S5), too, indicating that some SVs could fail our HWE test because of population
substructure rather than poor genotyping performance. Genotyping more samples in each of the
three populations will allow better assessment of the genotyping accuracy without the

confounding factor of subpopulations that could lead to erroneous HWE deviations.

The population AF can reveal information about the potential functional impact of SVs on the
basis of signals of selective pressure. By checking the AFs for SVs in different genomic
elements, we found that SVs within exons, pseudogenes and untranslated regions (UTRs) of
coding sequences, in general, have lower AFs than those in intronic and intergenic regions. SVs
in introns and intergenic regions have more uniform AF distributions compared to the more
extreme AFs in functional elements (UTRs, exons) (Figure 5¢). All these suggest a purifying
selection against SVs with potentially functional consequences®. Common SVs are more
depleted in functional regions than rare SVs, although we do see a few common SVs within
exons of genes including TP73 (AF=0.09, tumor suppressor gene), FAM110D (AF=0.60,
functions to be clarified, possibly related with cell cycle) and OVGP1 (AF=0.18, related to
fertilization and early embryo development). As the three discovery samples are likely healthy
individuals, and these SVs are found at a high frequency in the population, we expect them

unlikely to have functional significance.
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Figure 5. Population-scale genotyping and function annotation of LRGT SVs. (a) The AF
distribution of LRGT SVs in the Polaris 100-individual population (b) PCA biplot of individuals in
the population, based on genotypes of HWE-passing SVs. (¢) The AF distribution of
HWE-passing SVs in different functional elements. SV count: 191 in UTRs, 554 in exons, 420 in
pseudogenes, 9,542 in introns and 6,603 in intergenic regions.

We also observed 17 exonic insertions fixated (AF=1) in the population (Table S4). Since these
insertions are present and homozygous in all 100 genotyped individuals, the reference
sequence reflects either rare deletion or errors in GRCh38%*. Specifically, the 1,638 bp exonic
37,38

insertion in UBE2QL 1 was also reported at high frequency in two previous studies

Particularly, a recent study by TOPMed? reported this insertion in all 53,581 sequenced
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individuals from mixed ancestries. Applying Paragraph to population-scale data will give us a
better understanding of common, population-specific, and rare variations and aid in efforts to

build a better reference genome.

Discussion

Here we introduce Paragraph, an accurate graph-based SV genotyper for short-read
sequencing data. Using SVs discovered from high-quality long read sequencing data of three
individuals, we demonstrate that Paragraph achieves substantially higher recall (0.84 for
deletions and 0.88 for insertions) compared to three commonly used genotyping methods
(highest recall at 0.76 for deletions across the genome) and three commonly used de novo SV
callers (highest recall of 0.64 for deletions). Of particular note, Paragraph and Manta were the
only two methods that worked for both deletions and insertions and based on our test data

Paragraph achieved substantially higher recall for insertions compared to Manta (0.88 vs 0.35).

As highlighted above, a particular strength of Paragraph is the ability to genotype both deletions
and insertions genome-wide, including those within complicated regions. While we expect that
there are as many insertions as there are deletions in the human population, the majority of the
commonly used methods either do not work for insertions or perform poorly with the inserted
sequence. In particular, because insertions are poorly called by de novo variant callers from
short reads. Currently the most effective method to identify insertions is through discovery with
long reads. Once a reference database of insertions is constructed, they can then be genotyped
with high accuracy in the population using Paragraph. We expect this will be especially helpful
to genotype clinically relevant variants as well as to assess variants of unknown significance

(VUS) by accurately calculating AFs in healthy and diseased individuals.
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Existing population reference databases for SVs may include many variants that are incorrectly
represented. Since errors in the breakpoints may be a limitation for population-scaled SV
genotyping, we have quantified the genotyping performance of Paragraph and its correlation
with breakpoint accuracy (Figure 3). Our analysis shows that Paragraph can generally tolerate
breakpoint deviation of up to 10 base pairs in most genomic contexts, although the performance
suffers as the breakpoints deviate by more bases. Undoubtedly, recent advances in long read
accuracy will lead to more accurate SV reference databases and thus better performance for

Paragraph as a population genotyper.

Paragraph works by aligning and genotyping reads on a local sequence graph constructed for
each targeted SV. This approach is different from other proposed and most existing graph
methods that create a single whole-genome graph and align all reads to this large graph®*°. A
whole-genome graph may be able to rescue reads from novel insertions that are misaligned to
other parts of the genome in the original linear reference, however, the computational cost of
building such a graph and performing alignment against this graph is very high. Adding variants
to a whole-genome graph is also a very involved process that typically requires all reads to be
realigned. Conversely, the local graph approach applied in Paragraph is not computationally
intensive and can easily be adapted into existing secondary analysis pipelines. The local graph
approach utilized by Paragraph also scales well to population-level studies where large sets of
variants identified from different resources can be genotyped rapidly (e.g. 1,000 SVs can be

genotyped in one sample in 15 minutes with a single thread) and accurately in many samples.
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In this study, we demonstrated that Paragraph can accurately genotype single SVs that are not
confounded by the presence of nearby SVs (Table 1, Table S2). Though, of the SVs identified
in these three samples, almost half (48%) occurred in the presence of one or more different
SVs. The current version of Paragraph only genotypes one SV per locus though we are actively
working on the algorithm to consider and test the ability to annotate overlapping SVs and
genotype them simultaneously. In addition, it will be equally important to create a more
complete catalog of SVs in these highly variable loci so that the entire complexity can be

encoded into the graph.

The primary use case for Paragraph will be to allow investigators to genotype previously
identified variants with high accuracy. This could be applied to genotype known, medically
relevant SVs in precision medicine initiatives or to genotype SVs from a reference catalog for
more accurate assessment in a population or association study. Importantly, the catalog of both
medically important SVs and population-discovered SVs will continue to evolve over time and
Paragraph will allow scientists to genotype these newly-identified variants in historical sequence
data. Certainly, the variant calls for both small (single sample) and large (population-level)
sequencing studies can continue to improve as our knowledge of population-wide variation

becomes more comprehensive and accurate.

Conclusions

Paragraph is an accurate SV genotyper for short-read sequencing data that scales to hundreds
or thousands of samples. Paragraph implements a unified genotyper that works for both

insertions and deletions, independent of the method by which the SVs were discovered. Thus,
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Paragraph is a powerful tool for studying the SV landscape in populations, human or otherwise,

in addition to analyzing SVs for clinical genomic sequencing applications.

Methods

Graph construction

In a sequence graph, each node represents a sequence that is at least one nucleotide long and
directed edges define how the node sequences can be connected together to form complete
haplotypes. Labels on edges are used to identify individual alleles or haplotypes through the
graph. Each path represents an allele, either the reference allele, or one of the alternative
alleles. Paragraph currently supports three types of SV graphs: deletion, insertion, and
blockwise sequence swaps. Since we are only interested in read support around SV
breakpoints, any node corresponding to a very long nucleotide sequence (typically longer than
two times the average read length) is replaced with two shorter nodes with sequences around

the breakpoints.

Graph alignment

Paragraph extracts reads, as well as their mates (for paired-end reads), from the flanking region
of each targeted SV in a Binary Alignment Map (BAM) or CRAM file. The default target region is
one read length upstream of the variant starting position to one read length downstream of the
variant ending position, although this can be adjusted at runtime. The extracted reads are
realigned to the pre-constructed sequence graph using a graph-aware version of a Farrar’s
Striped Smith-Waterman alignment algorithm implemented in GSSW library*® v0.1.4. In the

current implementation, read pair information is not used in alignment or genotyping. The
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algorithm extends the recurrence relation and the corresponding dynamic programming score
matrices across junctions in the graph. For each node, edge, and graph path, alignment

statistics such as mismatch rates and graph alignment scores are generated.

Only uniquely mapped reads, meaning reads aligned to only one graph location with the best
alignment score, are used to genotype breakpoints. Reads used in genotyping must also
contain at least one kmer that is unique in the graph. Paragraph considers a read as supporting
a node if its alignment overlaps the node with a minimum number of bases (by default 10% of
the read length or the length of the node, whichever is smaller). Similarly, for a read to support
an edge between a pair of nodes means its alignment path contains the edge and supports both

nodes under the above criteria.

Breakpoint genotyping

A breakpoint occurs in the sequence graph when a node has more than one connected edges.
Considering a breakpoint with a set of reads with a total read count R and two connecting
edges representing haplotype #, and #,. We define the read count of haplotype #, as R,, and
haplotype s, as R,,. The remaining reads in R that are mapped to neither haplotype are

denoted as R, -

The likelihood of observing the given set of reads with the underlying breakpoint genotype

G, €an be represented as:

p(R | Ghl/hz) = p(Rhl’RhZ | Ghl/hz) Xp(R#hl,hZ | Ghl/hz) (1)
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We assume that the count of the reads for a breakpoint on the sequence graph follows a
Poisson-distribution with parameter A. With an average read length /, an average sequencing
depth d, and the minimal overlap of m bases (default: 10% of the read length /) for the criteria

of a read supporting a node, the Poisson parameter can be estimated as

A=dx(-m)/l (2)

When assuming the haplotype fractions (expected fraction of reads for each haplotype when the
underlying genotype is heterozygous) of 4, and &, are p,, and y,, , the likelihood under a
certain genotype, p(R,;,R,, | G,1,12) » or the first term in equation (1), can be estimated from the

density function dpois() of the underlying Poisson distribution:

PR | Gpp) = dpois(Ry,;, A > w,,) X dpois(R;,, A X ) (3)

If », and #h, are the same haplotypes, the likelihood calculation is simplified as:

PR Gyypy) = dpois(Ryy, M1 —¢)) (4)

, Where ¢ is the error rate of observing reads supporting neither 4, nor 4, given the underlying
genotype G, - Similarly, the error likelihood, p(R, , | G,1,) > Or the second term in equation

(1), can be calculated as

PRy o | Grimg) = dpois(Rupy jps A X €) (5)

25


https://doi.org/10.1101/635011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/635011; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Finally, the likelihood of observing genotype G,,,, under the observed reads R can be

estimated under a Bayesian framework

PG | B) ~p(Ghypn) X (R | Gyjpn) (6)

The prior P(G,,,,) can be pre-defined or calculated using a helper script in Paragraph
repository that uses the Expectation-Maximization algorithm to estimate genotype-likelihood

based allele frequencies under Hardy-Weinberg Equilibrium across a population®’.

SV genotyping

We perform a series of tests for the confidence of breakpoint genotypes. For a breakpoint to be

labeled as “passing”, it must meet all of the following criteria:

1. It has more than one read aligned, regardless of which allele the reads were aligned to

2. The breakpoint depth is not significantly high or low compared to the genomic average
(p-value is at least 0.01 on a two-sided Z-test)

3. The Phred-scaled score of its genotyping quality (derived from genotype likelihoods) is at
least 10.

4. Based on the reads aligned to the breakpoint, regardless of alleles, the Phred-scaled

p-value from FisherStrand*? test is at least 30.
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If a breakpoint fails one or more of the above tests, it will be labeled as a “failing” breakpoint.
Based on the test results of the two breakpoints, we then derive the SV genotype using the

following decision tree:

1. If two breakpoints are passing:
a. If they have the same genotype, use this genotype as the SV genotype
b. If they have different genotypes, pool reads from these two breakpoints and
perform the steps in Breakpoint genotyping section again using the pooled
reads. Use the genotype calculated from the pooled reads as the SV genotype.
2. If one breakpoint is passing and the other one is failing:
a. use the genotype from the passing breakpoint as the SV genotype.
3. If two breakpoints are failing:
a. If the two breakpoints have the same genotype, use this genotype as the SV
genotype

b. If two breakpoints have different genotypes, follow the steps in 1b.

Note that for 1b and 2b, as we pool reads from two breakpoints together, the depth parameter d
in equation (2) needs to be doubled, and reads that span two breakpoints will be counted twice.
We also set a filter label for the SV after this decision tree, and this filter will be labeled as
passing only when the SV is genotyped through decision tree 1a. SVs that fail the passing
criteria 1 and 2 for any one of its breakpoints were considered as reference genotypes in the

evaluation of Paragraph in the main text.
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Sequence data

The CCS data for NA12878 (HG001), NA24385 (HG002) and NA24631 (HGO005) are available
at the GiaB FTP (ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/). These samples were sequenced to an
approximate 30x depth with an average read length of 11 kb on the PacBio Sequel system. We
re-aligned reads to the most recent human genome assembly, GRCh38, using pbmm2 v1.0.0
(https://github.com/PacificBiosciences/pbmmz2). Pacbio CLR data of NA24385"" were
sequenced to 50x coverage on a PacBio RS Il platform, and reads were aligned to GRCh38

using NGMLR™ v0.2.7.

To test the performance of the methods on short-read data, we utilized three matching samples
that were sequenced using TruSeq PCR-free protocol on lllumina platforms with 150 bp
paired-end reads: 35x (NA24385) on HiSeq X, 64x (NA12878) and 48x (NA24631) on NovaSeq
6000. Reads were mapped to GRCh38 using the Issac aligner*®. To estimate the recall of
Paragraph in samples of lower depth, we downsampled the 35x NA24385 data to different
depths using samtools*. To estimate the recall of Paragraph in 100bp and 75bp reads, we

trimmed the 150bp reads from their 3’ end in the downsampled NA24385 data.

Long read ground truth and performance evaluation

SVs were called from the CCS long read data of the three samples using PBSV v2.0.2

(https://github.com/PacificBiosciences/pbsv). When merging SVs across samples, we define

deletions as “different” if their deleted sequences have less than 80% reciprocal overlap; we
define insertions as “different” if their breakpoints are more than 150 bp apart, or their insertion

sequences have less than 80% of matching bases when aligning against each other using
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Smith-Waterman algorithm. After merging, we obtained 41,186 unique SVs. From these unique
SVs, we excluded 1,944 from chromosome X or Y, 53 SVs that had a failed genotype in one or
more samples and 480 SVs where a nearby duplication was reported in at least one sample. In
the remaining 38,709 unique SVs, 20,108 have no nearby SVs within 150bp upstream and
downstream and these SVs were used as LRGT to test the performance of Paragraph and other

methods.

For each method, we define a variant as a true positive (TP) if the LRGT data also has a call in
the same sample and a false positive (FP) if the LRGT did not call a variant in that sample. For
each genotyper, we estimate its recall as the count of its TPs divided by the count of alternative
genotypes in LRGT. We calculate the precision of each method as its TPs divided by its TPs
plus FPs. Variants identified by the de novo methods (Manta, Lumpy, and Delly) may not have
the same reference coordinates or insertion sequences as the SVs in LRGT. To account for this
we matched variants from de novo callers and SVs in LRGT using Illlumina’s large-variant
benchmarking tool, Wittyer (v0.3.1). Wittyer matches variants using centered-reciprocal overlap
criteria, similar to Truvari (https://github.com/spiralgenetics/truvari) but has better support for
different variant types and allow stratification for variant sizes. We set parameters in Wittyter as
“--em simpleCounting --bpd 500 --pd 0.2”, which means for two matching variants, their
breakpoint needs to be no more than 500 bp apart from each other and if they are deletions,

their deleted sequences must have no less than 80% reciprocal overlap.

Estimation of breakpoint deviation

From CLR NA24385, SVs were called using the long read SV caller, Sniffles'® with parameters

“-report-seq -n -1” to report all supporting read names and insertion sequences. Additional
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default parameters require 10 or more supporting reads to report a call, and require variants to
be at least 50 bp in length. Insertion calls were refined using the insertion refinement module of

CrossStitch (https://github.com/schatzlab/crossstitch), which uses FalconSense, an open-source

method originally developed for the Falcon assembler*® and is also used as the consensus

module for Canu“®.

We used a customized script to match calls between the CLR and LRGT SVs of NA24385. A
deletion from the CLR data is considered to match a deletion in LRGT if their breakpoints are no
more than 500 bp apart and their reciprocal overlap length is no less than 60% of their union
length. An insertion from the CLR data is considered to match an insertion in LRGT if their
breakpoints are no more than 500 bp apart. Base pair deviations between insertion sequences
were calculated from the pairwise alignment method implemented the python module

biopython*’.

Population genotyping and annotation

The 100 unrelated individuals from the Polaris sequencing resource
(https://github.com/Illumina/Polaris) were sequenced using TruSeq PCR-free protocol on
Illumina HiSeq X platforms with 150 bp paired-end reads. Each sample was sequenced at an
approximate 30-fold coverage. We genotyped the LRGT SVs in each individual using Paragraph

with default parameters.

For each SV, we used Fisher’s exact test to calculate its Hardy-Weinberg p-values*®. SVs with

p-value less than 0.0001 were considered as HWE-failed. We used dosage of HWE-passing

30


https://github.com/schatzlab/crossstitch
https://paperpile.com/c/PhaoWx/3ZJk
https://paperpile.com/c/PhaoWx/Jzbt
https://paperpile.com/c/PhaoWx/5KhE
https://paperpile.com/c/PhaoWx/w1LH
https://doi.org/10.1101/635011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/635011; this version posted September 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

SVs to run PCA, which means 0 for homozygous reference genotypes and missing genotypes,

1 for heterozygotes and 2 for homozygous alternative genotypes.

We used the annotation tracks from the UCSC Genome Browser to annotate SVs in LRGT. We
define an SV as “within TR” if its reference sequence is completely within one or more TRF
tracks. We categorized an SV as functional if it overlaps with one or more functional tracks. We
used the ENCODE Exon and PseudoGene SupportV28 track for exons, IntronEst for introns
and ENCFF824ZKD for UTRs. SVs that overlap with any functional tracks SVs that do not

overlap with any of these tracks were annotated as intergenic.
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