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Abstract 17 

Muscle synergies are usually identified via dimensionality reduction techniques, such that the 18 

identified synergies reconstruct the muscle activity to a level of accuracy defined heuristically, 19 

such as 90% of the variance explained. Here, we question the assumption that the residual 20 

muscle activity not explained by the synergies is due to noise. We hypothesize instead that the 21 

residual activity is structured and can therefore influence the execution of a motor task. Young 22 

healthy subjects performed an isometric reaching task in which surface electromyography of 10 23 

arm muscles was mapped onto estimated two-dimensional forces used to control a cursor. Three 24 

to five synergies were extracted to account for 90% of the variance explained. We then altered the 25 

muscle-force mapping via “hard” and “easy” virtual surgeries. Whereas in both surgeries the forces 26 

associated with synergies spanned the same single dimension of the virtual environment, the 27 

muscle-force mapping was as close as possible to the initial mapping in the easy surgery and as 28 

far as possible in the hard surgery. This design therefore maximized potential differences in 29 

reaching errors attributable to the residual muscle activity. Results show that the easy surgery 30 

produced much smaller directional errors than the hard task. In addition, systematic estimations 31 

of the errors for easy and hard surgeries constructed with 1 to 10 synergies show that the errors 32 

differ significantly for up to 8 synergies, which account for 98% of the variance on average. Our 33 

study therefore indicates the need for cautious interpretations of results derived from synergy 34 

extraction techniques based on heuristics with lenient levels of accuracy.  35 

 36 

Author summary: The muscle synergy hypothesis states that the central nervous system 37 

simplifies motor control by grouping muscles that share common functions into modules called 38 

muscle synergies. Current techniques use unsupervised dimensionality reduction algorithms to 39 

identify these synergies. However, these techniques rely on arbitrary criteria to determine the 40 
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number of synergies, which is actually unknown. An example of such criteria is that the identified 41 

synergies must be able to reconstruct the measured muscle activity to at least a 90% level of 42 

accuracy. Thus, the residual muscle activity, the remaining 10% of the muscle activity, is often 43 

disregarded as noise. We show that residual muscle activity following muscle synergy 44 

identification has a large systematic effect on movements even when the number of synergies 45 

approaches the number of muscles. This suggests that current synergy extraction techniques 46 

may discard a component of muscle activity that is important for motor control. Therefore, current 47 

synergy extraction techniques must be updated to identify true physiological synergies. 48 

Introduction 49 

One of the most salient problems the central nervous system (CNS) faces when generating 50 

movements is the redundancy of the motor system [1]. That is, the CNS can generate an infinity 51 

of different motor commands to produce the same action. This redundancy spans the length of 52 

the causal chain of motor control: from neuron to muscle to joint levels. In light of the complexity 53 

of this problem, the muscle synergy hypothesis posits that the CNS groups the control of 54 

functionally similar muscles into modules called muscle synergies [2]. This would reduce the 55 

number of variables that the CNS needs to control to produce a movement, decreasing the 56 

complexity of the computations necessary for motor control [3]. 57 

Direct evidence for the muscle synergy hypothesis comes from experiments in animal models [3-58 

6]. These show that simultaneous stimulation of different groups of motor neurons elicits 59 

movements that correspond to the superposition of the movements obtained by stimulating each 60 

group of neurons separately [3, 5, 6]. However, most of the supporting evidence in humans is 61 

indirect and comes from measurements of electromyography (EMG) from multiple muscles during 62 

a variety of motor tasks [7-11]. Dimensionality reduction techniques, such as non-negative matrix 63 

factorization, show that different muscles tend to co-activate in reliable patterns during task 64 
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execution [12]. One of the interpretations of these results is that they reveal the grouping of 65 

muscles into functional synergies [8, 9, 13, 14]. An alternative interpretation, however, is that the 66 

discovered patterns arise because of biomechanical constraints imposed by the task [15-17]. 67 

This controversy notwithstanding [18], dimensionality reduction techniques for the extraction of 68 

muscle synergies rely on the ability of the extracted synergies to reconstruct the originally 69 

measured EMG signals accurately [19]. That is, the extracted synergies must capture a high 70 

proportion of the variability in the recorded EMG, attributing the discarded or residual variability in 71 

the data to measurement and process noise. This proportion is usually adjusted by making the 72 

number of muscle synergies a hyper-parameter to be tuned to best fit the data [20]. A widely used 73 

rule of thumb is to set the number of muscle synergies to the minimum number that accounts for 74 

at least 90% of the variability in the EMG.  75 

However, this method neglects the fundamental role of muscle synergies as building blocks of 76 

movement, as the ability of the extracted muscle synergies to reconstruct the observed movement 77 

is often ignored [19, 21, 22]. Indeed, the ability of muscle synergies to reconstruct measured 78 

forces in an isometric task at the wrist becomes largely degraded as the number of considered 79 

muscle synergies decreases [22]. This is true even when the extracted synergies capture an 80 

acceptable portion of the variability in the EMG signals according to the defined heuristics. This 81 

suggests that the portion of EMG variability that is not captured by the extracted muscle synergies 82 

is important for a full description of the motor action. 83 

Here, we therefore aimed to determine the importance of the residual EMG in the execution of a 84 

motor task. We tested the null hypothesis that following extraction of muscle synergies with non-85 

negative matrix factorization and using the 90% of explained variance rule to select the number 86 

of synergies, the residual muscle activity is due to noise. Therefore, if our experimental data failed 87 
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to support this hypothesis, it would suggest that the residuals are structured and can therefore 88 

influence motor performance.  89 

To this end, we used the virtual surgery paradigm, which simulates tendon transfer surgeries [10]. 90 

The virtual surgery alters the pulling forces of arm muscles in a virtual mapping from EMG to two-91 

dimensional isometric force at the wrist, which affects performance during the reaching task. This 92 

EMG-force mapping can be simplified into a synergy-force mapping by combining the pulling 93 

forces for each arm muscle according to a set of previously identified muscle synergies. Given 94 

that the number of muscles is necessarily larger than the number of extracted synergies, it is 95 

possible to build virtual surgeries that produce identical synergy-force mappings but different 96 

EMG-force mappings. We exploited this property by designing virtual surgeries that modified the 97 

EMG-force mapping to two opposite extremes while producing the same synergy-force mapping.  98 

The “easy” surgery modified the EMG-force mapping as little as possible with respect to the 99 

baseline mapping, and the “hard” surgery modified the mapping as much as possible. The two 100 

virtual surgeries were designed based on the extracted muscle synergies that account for at least 101 

90% of the variability in the EMG. Consequently, the effect of the surgery on the residual portion 102 

of the EMG was not specified, leading to possible differences in the effects of the easy and hard 103 

surgeries on task variables. If the EMG residuals are attributable to noise, then both surgeries 104 

should produce similar errors in the direction of reaching when introduced suddenly. Alternatively, 105 

if the EMG residuals have a latent structure, then both surgeries should have a differential effect 106 

on the residuals and on the error in the direction of reaching. We found that the sudden 107 

introduction of both kinds of virtual surgeries produced largely different errors, supporting the 108 

existence of a latent structure in the EMG residuals. 109 
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Materials and Methods 110 

Subjects. Fifteen right-handed subjects (mean age, 27.9 ± 8.75 years, s.d.; thirteen males) 111 

participated in the study after providing written informed consent. All procedures were approved 112 

by the Ethical Review Board of the Tokyo Institute of Technology. 113 

Experimental setup. Each participant sat on a racecar seat while gripping a handle located at 114 

the height of the base of their sternum with their right hand. The arm posture corresponded to an 115 

elbow flexion of around 90° and the elbow was supported on a stand at approximately the same 116 

height as the hand. A splint was used to immobilize the hand, wrist and forearm. Participants were 117 

instructed to lean on the back of the seat for the duration of the experiment. The base of the 118 

handle was attached to a six axis force transducer (Dyn Pick; Wacoh-Tech Inc.) used to measure 119 

isometric forces. The force transducer was mounted on a 2-D sliding rail to allow for an adjustable 120 

configuration for each participant. A virtual environment was displayed on a computer screen 121 

placed at the height of the participants’ eyes at a distance of around 1 m. The virtual environment 122 

consisted of a circular red cursor (1 cm diameter), and several ring-shaped white targets (2 cm 123 

diameter) on a black background.  124 

We recorded surface EMG activity from 10 muscles crossing the shoulder and elbow joints: 125 

pronator teres, brachioradialis, biceps brachii long head, triceps brachii lateral head, triceps 126 

brachii long head, anterior deltoid, middle deltoid, posterior deltoid, pectoralis major, and middle 127 

trapezius. Active bipolar electrodes (DE 2.1; Delsys) were used to record EMG activity. EMG 128 

signals were bandpass filtered (20-450 Hz) and amplified (gain 1000, Bagnoli-16; Delsys). Force 129 

and EMG recordings were digitized at 2 kHz using an USB analog-to-digital converter (USB-6259; 130 

National Instruments).  131 
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To reduce random oscillations of the cursor caused by the stochastic nature of EMG signals, a 132 

mass-spring-damper dynamics filtered the EMG signals further [10]. The mass-spring-damper 133 

dynamics governed the movement of the cursor according to: 134 

𝒑 ̈ =  −
𝑏

𝑚
𝒑̇ −

𝑘

𝑚
𝒑 + 𝐹(𝑡)  (1) 135 

where p is a vector containing the x and y positions of the cursor on the screen and its derivatives 136 

are indicated in dot notation, m is the system’s mass, k is the stiffness, and b is the damping 137 

coefficient (m = 0.05 kg, b = 100 kg/s). F(t) is the force recorded by the force transducer (during 138 

force control) or the estimated force by the EMG-force mapping (during EMG control). k was 139 

calculated as a function of the maximum voluntary force (MVF) (described in the next section), so 140 

that targets at equal percentages of MVF required the same cursor displacement across 141 

participants.  142 

Experimental protocol. In all phases of the experiment, participants performed isometric force 143 

tasks. These tasks required the displacement of a cursor on a visual display from a center position 144 

to one of eight targets radially and uniformly distributed around the center. Participants first 145 

performed a force control task and then an EMG control task (Fig 1a). In the force control task, 146 

the cursor was controlled via forces applied by the arm on a load cell (force control). In the EMG 147 

control task, the cursor was controlled by a linear approximation of the force derived from EMG 148 

measurements of 10 arm muscles (EMG control). 149 
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 150 

Fig 1. Experimental schedule and virtual surgery construction. 151 

a. Experimental schedule. Following a maximum voluntary force (MVF) block, participants performed a 152 

force control task. Simultaneous recording of EMG and force data in this task were analyzed to extract 153 

muscle synergies, produce the baseline EMG-force mapping, and construct the easy and hard incompatible 154 

virtual surgeries. Participants then performed the EMG control tasks, starting with a familiarization block, 155 

followed by baseline, and then one of the two virtual surgeries (easy or hard). In this cross-over study, 156 

participants then performed the other virtual surgery following a new baseline. Note that in this study, we 157 

only analyzed the data from the first block of each of the two virtual surgery procedures. b – d. Virtual 158 

surgery construction. c. EMG-force mapping extracted after the force control task for one participant. Each 159 

arrow represents the estimated force on the horizontal plane that a single muscle would produce when fully 160 

activated in isolation from the rest of the muscles (columns of M matrix). Forces produced by each of the 161 

muscle synergies extracted after the force control task (columns of MW matrix). Before applying any virtual 162 

surgery, these forces span the 2-dimensional plane completely. b. Hard incompatible surgery. We designed 163 

an incompatible surgery by rotating the force vectors in MS so that they became collinear at an angle of 164 
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135° degrees while maximizing the angles between the column vectors of M and MTH while producing the 165 

desired MTHS. d. Easy incompatible surgery. We obtained the easy incompatible surgery by minimizing the 166 

angles between the column vectors of MT and MTE while making MTES equal to MTHS. This way the 167 

individual synergies produced the same force in both cases. 168 

 169 

The force control task started with a maximum voluntary force (MVF) block, in which participants 170 

were instructed to produce a maximum voluntary force with their right arm in each of eight 171 

directions spanning the horizontal plane, with two trials for each direction. The mean MVF was 172 

calculated as the mean of the maximum forces recorded across all trials. For each muscle, the 173 

value at the 95 percentile of the recorded EMG signal across all trials was used to normalize the 174 

values of EMG from the corresponding muscle in all subsequent tasks. 175 

Participants then performed an isometric reaching task by applying force with their right arm to 176 

reach targets in the virtual environment. The recorded force and EMG signals during this task 177 

were processed to compute the EMG-force mapping, extract muscle synergies, and construct the 178 

virtual surgeries. Targets were arranged radially in eight directions and required 5, 10, 15 or 20% 179 

of MVF to be reached. Each trial started by displaying the target at the central position. The central 180 

position corresponded to the position of the cursor when no forces were applied. After placing the 181 

cursor inside the central target for two seconds, the central target disappeared and one of the 182 

radial targets appeared. After reaching each target, both the cursor and the target disappeared 183 

from the screen and participants were asked to hold the applied force as steadily as possible for 184 

two seconds. Next, the cursor and the central target reappeared and participants were asked to 185 

move the cursor back to the center. After this, another trial began. Each target was presented 186 

three times, with a total of 96 trials. Targets were presented in a randomized order. Trials were 187 

repeated if participants failed to reach a target.  188 
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Next, cursor control was switched to EMG control without the knowledge of the participants, after 189 

which participants performed the reaching task under EMG control. The first EMG control block 190 

was a familiarization block, and was followed by one type of incompatible surgery, easy or hard, 191 

followed by the other in a cross-over design (see Fig 1A). The order of the easy and hard surgeries 192 

was pseudo-randomized such that 7 participants started with the easy surgery. Participants rested 193 

for 5 minutes between surgery types. Each surgery condition consisted of three phases: baseline, 194 

virtual surgery, and washout, which consisted of 6, 12, and 6 blocks, respectively. Each block 195 

consisted of 24 trials: three trials for each of the eight targets at a magnitude of 10% MVF 196 

randomized within target sets containing each one of the eight targets. The level of baseline noise 197 

in each EMG signal was measured at the start of every block while the participant was relaxed. 198 

This baseline noise was subtracted from the EMG signals measured during the corresponding 199 

block.  200 

Note that in this study, we focus exclusively on data recorded during the first set of eight targets 201 

following the onset of each virtual surgery. Analysis of the following blocks for each surgery will 202 

be covered in a separate manuscript that focuses on learning of incompatible virtual surgeries. 203 

EMG-force mapping. Force produced at the hand with the arm in a static posture can be 204 

approximated as a linear function of the activations of muscles that actuate the shoulder and 205 

elbow [10]: 206 

𝐟 = 𝐌𝐦 (2) 207 

where f is a two-dimensional force vector produced on the horizontal plane, m is a ten-208 

dimensional vector of muscle activations, composed by normalized EMG signals recorded from 209 

ten muscles simultaneously, and M is a 2 × 10 matrix that maps muscle activations to forces. M 210 

was determined via linear regression of 10 EMG signals against 2D forces recorded during every 211 

trial of the main force control subtask. Before performing the regression, forces were low-pass 212 
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filtered (second-order Butterworth; 1 Hz cutoff) and EMG signals were band-pass filtered (second-213 

order Butterworth; 5-20 Hz), rectified, and normalized. The signals were recorded from the time 214 

of target go to the end of target hold. 215 

Synergy extraction and number of synergies. We used non-negative matrix factorization (NMF) 216 

to extract muscle synergies from the EMG signals collected during the main force control subtask: 217 

𝐦 = 𝐒 𝐜 (3) 218 

where S is a 10 × N matrix that contains the identified synergies in its columns with N being the 219 

number of synergies, and c is an N-dimensional vector of synergy activations. Equation 3 220 

assumes perfect matrix factorization (no residual EMG activity).  221 

EMG signals collected during the main force control subtask were processed in the same way as 222 

described in the EMG-force mapping section. The synergy extraction procedure closely followed 223 

a method previously described [10]. Synergies were extracted for all N from 1 to 10. For each 224 

case, the synergy extraction algorithm was run 100 times, and the result with the highest 225 

reconstruction quality R2 of the original EMG signals was kept. Two criteria were required to select 226 

N. The first was to set N as the minimum number of synergies necessary to explain at least 90% 227 

of the EMG data variance. The second involved calculating the changes in slope in the R2 curve 228 

as a function of N. Linear regressions were performed on sections of the curve between N and 229 

10. N was selected as the smallest value for which the mean squared error of the linear regression 230 

was < 10-4 [11]. If the two criteria did not match, N was selected as the case in which the extracted 231 

synergies had the smallest number of similar preferred directions (number of adjacent directions 232 

separated by less than 20°). This occurred for seven of the participants.  233 

Construction of easy and hard incompatible surgeries. As in a previous study [10], we 234 

designed virtual surgeries that were incompatible with the muscle synergies extracted by 235 
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nonnegative matrix factorization (NMF) [23]. A virtual surgery modifies the EMG-force mapping 236 

(M) by applying a linear transformation in muscle space [10]: 237 

𝐌′ = 𝐌𝐓 (4) 238 

where T is a 10 × 10 matrix that constitutes the transformation or virtual surgery.  239 

Incompatible virtual surgeries are designed such that muscle activations m produced by synergy 240 

combinations Sc are restricted to generate forces along only one dimension of the force space, 241 

while the resulting EMG-force mapping M’ spans the whole force space. Therefore, theoretically, 242 

any force can still be produced by a new combination of muscle activations m’, but in practice, 243 

produced forces are biased towards one dimension of the plane.  244 

It is important to note that the set of incompatible surgeries is infinite. This is because the number 245 

of muscles used in the virtual mapping is larger than the number of muscle activity patterns found 246 

using muscle synergy analysis. A previous study [10] combined randomness and difficulty 247 

matching to select compatible and incompatible virtual surgeries.  248 

In contrast, here we specified a series of constraints to yield only two possible virtual surgeries. 249 

Specifically, we built hard TH and easy TE incompatible surgeries such that they were equivalent 250 

in the force space spanned by each participant’s extracted muscle synergies (Figs 1b and 1d). 251 

We first note that according to equations 2, 3 and 4, forces produced during the surgery are given 252 

by: 253 

𝐟 = 𝐌′𝐦 = 𝐌𝐓𝐒𝐜 (5) 254 

assuming that muscle activations are generated by combinations of synergies. This equation 255 

shows that surgery T can alternatively be thought to transform the extracted synergies S into a 256 

new set of synergies: 257 
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𝐟 = 𝐌𝐒′𝐜 (6) 258 

In order to build an incompatible surgery it is necessary to find S’ such that the matrix MS’ is rank 259 

deficient. This guarantees that forces produced by this mapping lie in a single dimension. 260 

Geometrically, this means that the forces associated with each individual synergy from S’ are 261 

collinear (Figs 1c and 1g).  262 

Easy surgeries were built such that the angles between the column vectors of the original M 263 

mapping and of the transformed mapping M’ were as small as possible. In contrast, hard surgeries 264 

were built by making these angles as large as possible (Fig 1b). These conditions produced M’ 265 

mappings that are similar or very different to the original M mapping in the case of easy or hard 266 

surgeries, respectively. For this, we used a two-step optimization procedure to first obtain a 267 

transformed set of synergies S’, and second, to compute the incompatible surgery T. We 268 

constrained S’ to be equal for both the easy and hard incompatible surgeries. This ensured that 269 

the only difference between both virtual surgeries is the transformed mapping MT. We chose a 270 

configuration such that the individual force vectors associated to each synergy in S were rotated 271 

onto a line that bisected the plane at an angle of 135° with the x-axis. Therefore, each force vector 272 

conserved its magnitude, and its direction was assigned to the direction of the bisecting line that 273 

was closest to it: 135° or -45°. This can be represented as a system of equations in which the 274 

elements of S’ are the unknowns: 275 

𝐌𝐒′ = 𝐅𝐝𝐞𝐬 (7) 276 

where Fdes is a 2 × N matrix containing the desired force components associated with each 277 

synergy after the virtual surgery in each of its columns, with N being the number of extracted 278 

synergies. This problem has 10N unknowns and only 2N equations, so we introduced an 279 

optimization objective to arrive to a unique solution. A reasonable objective is to minimize the sum 280 

of the squares of the elements of S’, as this creates a sparse set of synergies. Additionally the 281 
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elements of S are required to be non-negative. This optimization problem can be posed as a 282 

quadratic program: 283 

min
𝐬

∑ ∑ sij
2N

j=1
10
i=1   284 

s. t.    {
𝐌𝐒′ = 𝐅𝐝𝐞𝐬

sij ≥ 0  for i = 1, … ,10 j = 1, … , N
 (8) 285 

We transcribed this quadratic program into its canonical form and solved it using the quadprog 286 

function in Matlab.  287 

After obtaining S’, we computed the incompatible surgery T by noting that 288 

𝐒′ = 𝐓𝐒 (9) 289 

This is a system of equations where the elements of T are the unknowns. We note that T is a 10 290 

× 10 matrix, so in this case there are 100 unknowns and 10N equations. The system is 291 

overdetermined in all cases where N < 10, which in our case is guaranteed.  292 

In order to find the easy virtual surgery, we used our requirements of similarity between M and M’ 293 

to introduce an optimization objective to arrive to a unique solution. M and M’ are considered 294 

similar when the angles between their corresponding column vectors are as small as possible. 295 

The cosine of the angle between two vectors is proportional to the dot product of both vectors. 296 

Therefore, we defined the optimization objective as 297 

max
𝐭

∑ 𝐡𝐢 ∙ 𝐡𝐢
′𝟏𝟎

𝐢=𝟏  (10) 298 

where hi and hi’ are the column vectors of M and M’, respectively. This optimization objective is 299 

not bounded, so we added constraints to the magnitude of the resulting h’ vectors: 300 

‖𝐡𝐢
′‖  ≤  1.5‖𝐡𝐢‖ (11) 301 
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This problem can be posed as a linear program with quadratic constraints, with equation 10 as 302 

the objective, and equations 9 and 11 as equality and inequality constraints, respectively. The 303 

result of this optimization procedure yields TE, the easy incompatible virtual surgery.  304 

In order to compute the hard incompatible virtual surgery TH, the procedure is the same as for the 305 

easy incompatible surgery. The only difference is that the optimization objective is minimized 306 

instead of being maximized. In turn, this maximizes the angles between hi and hi’: 307 

min
𝐭

∑ 𝐡𝐢 ∙ 𝐡𝐢
′𝟏𝟎

𝐢=𝟏  (12) 308 

Both linear programs with quadratic constraints were solved using the fmincon function in Matlab. 309 

Data analysis 310 

Task performance metric. We used the initial angular error as a metric to quantify task 311 

performance during the experiment, before possible feedback corrections. The initial angular error 312 

was calculated for each trial as |θtarget - θcursor|. θtarget is the direction of the target. θcursor is defined 313 

as the direction of the line segment that joins the point at which the cursor exits a 2 cm diameter 314 

circumference at the center of the screen and the position of the cursor 100 ms after exiting the 315 

circumference. We averaged the initial angular error for the targets within sets of eight trials. We 316 

only took into account targets that were not aligned with the line of action of the surgery. That is, 317 

targets other than those at 135° and -45° from the horizontal on the screen. 318 

EMG residual analysis. We analyzed the residual EMG signals obtained after reconstructing the 319 

measured EMG signals based on the extracted muscle synergies. After synergy extraction using 320 

the NMF algorithm, and extending equation 3, muscle activations can be represented as 321 

𝐦 = 𝐒𝐜 + 𝐫 = 𝐦𝐬𝐲𝐧 + 𝐫 (13) 322 
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where msyn is the synergy component of muscle activation, and r is the residual component of 323 

muscle activation that cannot be accounted for by the extracted synergies. Consequently, the 324 

forces associated with the EMG signals by the EMG-force mapping have a synergy and a residual 325 

component: 326 

𝐅 = 𝐌𝐦 = 𝐌(𝐒𝐜 + 𝐫) = 𝐌𝐦𝐬𝐲𝐧  + 𝐌𝐫 =  𝐅𝐬𝐲𝐧 + 𝐅𝐫𝐞𝐬   (14) 327 

where Fsyn and Fres are the synergy and residual components of force, respectively. Because 328 

virtual surgeries are built based on S, the intended effects of the virtual surgeries are only 329 

manifested on the synergy component of force, and the effect on the residual force is not specified.  330 

In order to decompose a given EMG sample m into its synergy and residual components (msyn 331 

and r), we first computed msyn via non-negative least squared regression of S and m, which 332 

yielded c. This algorithm optimizes the same cost function as the NMF algorithm. Therefore, using 333 

equation 13, msyn is given by the product of S and c. Consequently, r is found by subtracting msyn 334 

from m.  335 

We then analyzed the effects of the surgery on both the synergy and residual components of 336 

EMG. For this, we used the EMG activity that participants produced when they acquired each 337 

target during the first baseline phase of the experiment. We then separated the average EMG 338 

activity of each subject and target m into msyn and r.  339 

We also estimated both force components Fsyn and Fres produced for each target at the onset of 340 

the easy and hard virtual surgeries by substituting M by M’ in equation 14. We then compared the 341 

estimated force direction to the intended direction for each target to obtain an estimate of the error 342 

that subjects would produce at the onset of each virtual surgery. 343 

Shuffling of EMG residuals. Shuffling the residual component of different EMG signal samples 344 

creates random residual components with the same statistical properties as the original residuals. 345 
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If the residual EMG activity can be disregarded as noise, then shuffling the residuals should have 346 

no significant effect on the estimated forces with respect to pre-shuffling. On the contrary, if the 347 

residuals have a structured organization, shuffling the residuals would destroy this organization. 348 

Consequently, the force estimates would most likely be different from the pre-shuffling estimates.  349 

We therefore shuffled the residual components of the EMG samples that we used to estimate 350 

forces, and re-estimated the total forces that would be produced at the onset of the easy and hard 351 

virtual surgeries. We averaged the results of 1000 different shuffling instances.  352 

Results 353 

Hard incompatible virtual surgeries produced larger initial angular 354 

errors than easy incompatible virtual surgeries.  355 

The number of extracted muscle synergies N for all subjects ranged from three to five (N = 3, 1 356 

subjects; N = 4, 11 subjects; N = 5, 3 subjects). Fig 2 shows sample cursor trajectories before 357 

and after the onset of the virtual surgeries. Both surgeries produced a bias in the cursor movement 358 

along the designed direction as predicted, although cursor movements were not perfectly 359 

constrained to this direction. Overall, deviations from the line of action of the surgery were closer 360 

to the intended target during the easy surgery than during the hard surgery (Fig 2b). 361 
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 362 

Fig 2. Example of cursor trajectories during the EMG control task by a representative subject.  363 

a. Sample cursor trajectories. These trajectories correspond to the last target set of the baseline subtask, 364 

and the first target set after the onset of the hard and easy incompatible virtual surgery tasks. This subject 365 

experienced the easy virtual surgery first. The trajectories tended to fall along the line of action of the virtual 366 

surgery, notably in the hard surgery. b. Comparison of initial directions of cursor movement between the 367 

onset of the easy and hard virtual surgeries. Straight-line segments represent the computed direction of 368 

movement of the cursor depicted in panel a 100 ms after exiting the central position. Solid lines correspond 369 

to the initial directions during the easy surgery onset and dotted lines correspond to the hard surgery onset. 370 

This subject produced larger initial errors at the onset of the hard virtual surgery than at the onset of the 371 

easy surgery (see targets at 45° and 90°).  372 

 373 

Over all 15 participants, the mean error for the first set of targets after the onset of the surgery 374 

was clearly larger for the hard surgery than for the easy surgery (hard surgery: 81.4° ± 3.8° s.e, 375 

easy surgery: 54.5° ± 4.6° s.e., p < 10-3, paired t-test; see Fig 3B, experiment). This difference in 376 

errors may appear surprising at first, given that the easy and hard surgeries had the same effect 377 

on the synergy component of the force. That is, they restricted the forces associated with the 378 
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synergies along one dimension. However, the synergies were only required to account for 90% 379 

of the variance in EMG. Therefore, the EMG residuals appeared to generate an additional 380 

component of force. 381 

 382 

Fig 3. Comparison between actual directional cursor errors and estimated errors.  383 

a. Correlation between the estimated average angular error after applying the surgery and the actual 384 

average error during the first target set of the virtual surgery for all participants. b. Actual and estimated 385 

errors in initial direction of force at the onset of the easy and hard virtual surgeries. In the experiment, the 386 

hard surgery produced a larger initial error than the easy surgery. As a comparison, errors were also 387 

estimated: i) using only the synergy component of the average EMG signals (null residuals), and ii) using 388 

the shuffled residual component of the EMG. The null residual estimate produced error estimates that 389 

showed no difference between the hard and the easy virtual surgeries. The EMG signals with shuffled 390 

residuals produced error estimates that were similar to those obtained using only the synergy component 391 

of the EMG signal.  392 

Initial angular error was determined by effect of surgery on residual 393 

EMG activity 394 

To verify the effect of residuals on movement error, we decomposed the recorded EMG signals 395 

into their synergy and residual components (equation 14). Fig 4 shows the estimated forces 396 
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corresponding to the total EMG activity F (top), and the synergy (Fsyn) and residual (Fres) 397 

components of force (middle and bottom, respectively) at each target for a representative subject 398 

(equation 14). The center column shows F, Fsyn and Fres before the onset of the surgeries. The 399 

left and right columns show F, Fsyn and Fres after applying the hard and easy surgeries, 400 

respectively. The incompatible design of the surgery can be appreciated on Fsyn, as these forces 401 

lie on the 135° line of action of the virtual surgery (Fig 4, middle row).  402 

 403 

Fig 4. Residual forces can explain the differences in initial direction error at surgery onset between 404 

the easy and hard surgery conditions.  405 

Top row: Estimated forces F at each target before and after applying the hard and easy virtual surgeries. 406 

We indicate the average estimated error across targets for each virtual surgery. Middle row: Estimated 407 

synergy components of force Fsyn at each target. Bottom row: Estimated residual components of force Fres 408 

at each target. We indicate the average rotation of Fres after each virtual surgery with respect to Fres before 409 

the surgery. Middle column: F, Fsyn and Fres before the surgery. Left and right columns: F, Fsyn and Fres 410 
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after applying the hard and easy surgeries, respectively. Colors represent the eight targets in the task as 411 

indicated in the middle bottom diagram. Data shown in this figure corresponds to the same representative 412 

subject as in Fig 2. 413 

 414 

Given that the EMG signals that we used to estimate forces were representative of the subjects’ 415 

actions during baseline, and assuming that subjects produced these EMG signals when suddenly 416 

exposed to the virtual surgeries, the directions of the estimated forces after applying the virtual 417 

surgery (Equation 5) also provided an estimate of the cursor error to each target (Fig 4, top row). 418 

These initial error estimates were consistently higher for the hard surgery than for the easy 419 

surgery (hard surgery: 82.75° ± 4.19° s.e., easy surgery: 45.57° ± 3.03° s.e., p < 10-3, paired t-420 

test), and qualitatively matched the experimental results of the cursor error (robust regression, 421 

slope = 0.47 ± 0.15 s.e., p = 0.004, R2 = 0.25) (Fig 3a).  422 

Errors following the easy and hard surgeries can be explained by the residual’s structure (Fig 4, 423 

bottom row). The hard surgery produced a mean rotation of Fres with respect to baseline that was 424 

much larger than that produced by the easy surgery (hard surgery: 113.60° ± 10.15° s.e., easy 425 

surgery: 4.42° ± 1.5° s.e., p < 10-3, paired t-test). Note that although we did not specify the effect 426 

of the virtual surgery on the residual component of force, we found that it is stereotypical according 427 

to the type of surgery. 428 

Shuffling residual EMG activity revealed structure in the residuals 429 

We then shuffled the residual EMG components among trials to all targets to demonstrate 430 

possible structure. Initial error estimates based on the shuffled signals did not indicate a significant 431 

difference in average initial error between the easy and hard virtual surgeries (easy surgery: 66.42° 432 

± 2.31° s.e., hard surgery: 72.41° ± 2.72° s.e., paired t-test, p = 0.10) (Fig 3b, shuffled residuals). 433 

Furthermore, the magnitude of this error lied at an intermediate level between the errors observed 434 

experimentally for the easy and hard surgeries. Importantly, the means of the estimates produced 435 
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by shuffled signals were indistinguishable from estimates produced based on a null residual 436 

condition, that is, exclusively using the synergy component of the EMG to produce estimates 437 

(easy surgery, paired t-test, p = 0.45; hard surgery, paired t-test, p = 0.68) (Fig 3b, null and 438 

shuffled residuals).  439 

Estimated differences between errors for easy and hard surgeries 440 

remained significant for high-dimensional synergy sets 441 

We tested whether building virtual surgeries based on synergy sets with a larger N would abolish 442 

the differences in initial direction error observed in the experiment. For each participant we built 443 

easy and hard surgeries based on surgeries considering N = 1, …, 10 and applied the newly 444 

constructed surgeries to the same set of EMG signals that we used to estimate errors after the 445 

introduction of the surgery. This allowed us to estimate the errors that participants would have 446 

produced if they had experienced these surgeries.  447 

We found that the surgeries produced estimated differences in initial direction errors that were 448 

maximal for N = 1, and gradually decreased until disappearing at N = 10 (as expected, since 449 

activity from 10 muscles was recorded; Fig 5). The estimated error differences remained 450 

significant up to N = 8 (p = 0.001, paired t-test). This indicates that the residual components of 451 

EMG produced a differential effect on the estimated error even when high-dimensional synergy 452 

sets that explained a portion of the variance that largely exceeded the heuristic rule requirements 453 

(R2 = 0.98 ± 0.0087 s.e. at N = 8) were used to build the virtual surgeries.  454 

 455 
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 456 

Fig 5. Estimated errors in initial direction when using easy and hard virtual surgeries based on 457 

muscle synergy sets with N = 1,…,10. 458 

Differences in estimated errors between easy and hard surgeries were significant up to N = 8 (p = 0.001, 459 

paired t-test). Bars represent the mean estimated error across the 15 participants and error bars represent 460 

the standard error of the estimated error. The significance of the difference between the estimated errors 461 

in the hard and easy surgeries is indicated with asterisks on top of each pair of bars. ***: p < 0.0001, **: p 462 

< 0.001, and *: p < 0.005 The solid black line shows the mean across participants of R2, the reconstruction 463 

quality of the baseline EMG signals used for the error estimation when considering N = 1,…,10.  464 

Discussion 465 

Muscle synergy extraction techniques require that combinations of the identified synergies 466 

reconstruct the measured muscle activity to a heuristically defined level of accuracy, such as 467 

accounting for at least 90% of the variance in the EMG. These techniques therefore attribute the 468 

residual muscle activity not reconstructed by the identified synergies to noise. Here we studied 469 

the importance of residual EMG activity in the execution of a virtual motor task. We designed the 470 

virtual task based on a virtual surgery [10, 24] and exploited the property that virtual surgeries can 471 

produce equivalent muscle synergy-force mappings while resulting in different individual muscle-472 
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force mappings. We tested two different virtual surgeries that shared a common muscle synergy-473 

force mapping, but differed maximally in their individual muscle-force mappings (easy and hard 474 

virtual surgeries). The surgeries had the desired effect only on the portion of the EMG signals 475 

explained by the extracted muscle synergies, defined to account for at least 90% of the variability 476 

in the signal. Therefore, the effect on the residual EMG variability was unspecified, allowing for a 477 

possible differential effect on the performance of the task.  478 

We found that participants produced larger errors at the onset of the hard surgery than at the 479 

onset of the easy surgery. We were able to predict this result qualitatively (Fig 3a) by estimating 480 

the forces and errors that would be produced during each virtual surgery by using representative 481 

EMG signals recorded during the baseline phase of the experiment and transforming the 482 

estimated forces using the virtual surgeries. Importantly, this procedure also allowed us to 483 

separate the recorded EMG signals and the estimated forces into their synergy and residual 484 

components (Fig 4). The virtual surgeries produced the expected effects on the synergy 485 

component of the EMG. However, the easy surgery barely produced any changes on the direction 486 

of the forces associated with the residual component, whereas the hard surgery produced large 487 

changes in the direction of these forces. Given that the total force is equal to the sum of the 488 

synergy and residual components, any difference between both virtual surgeries in the estimated 489 

force and error must arise from the difference in the residual components. This provides evidence 490 

that the residual component of the EMG is essential for accounting for our experimental results, 491 

suggesting a latent structure in the residuals. 492 

We also considered the alternative case in which the residual EMG activity is composed of noise. 493 

In this situation, we posited that there would be no differential effect of the easy and hard surgeries 494 

on the initial error, or that this effect would be small. To test this, we used the previously 495 

decomposed EMG signals and shuffled the residual components among all these EMG samples. 496 

This effectively destroyed any potential structure in the residual component, as they became 497 
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randomized. We found that the easy and hard surgeries did not produce significant differential 498 

effects in the estimated initial error across participants when applied to the shuffled EMG signals. 499 

This analysis suggests that the residual component of the EMG cannot be disregarded as purely 500 

noise, and therefore demonstration of a latent structure in the residuals. 501 

Dimensionality reduction techniques such as NMF are useful for extracting patterns from high-502 

dimensional data sets, such as EMG recordings from multiple muscles. These techniques are 503 

usually able to extract as many patterns or synergies as individual muscles. However, there is no 504 

objective means for selecting the number of synergies of interest a priori given the exploratory 505 

nature of the analysis and the lack of a ground truth. Therefore, heuristic rules, such as selecting 506 

the number of synergies based on predefined goodness of reconstruction criteria are a common 507 

practice (i.e., reconstructing the data to a given level of accuracy, or finding an elbow in the 508 

goodness of reconstruction curve). These heuristic rules are necessarily ad hoc, and are tailored 509 

to produce useful results in the domain of the studied problem [25]. 510 

These heuristic rules ignore the role of muscle synergies in the generation of movement. That is, 511 

muscle synergy extraction has mainly focused on describing muscle activity in the input space, 512 

but has neglected the reconstruction of forces and movements in the task space [19, 21]. A 513 

number of studies have attempted the extension from input to task space in the scope of the study 514 

of synergies by incorporating task-relevant constraints, such as force reconstruction, in the 515 

dimensionality reduction procedure [13, 26]. However, in these studies, assumptions of linearity 516 

were made in the relationship between input and task spaces, that is, muscle activations and 517 

forces. Alternatively, other studies took a simulation approach by using muscle synergy activity 518 

derived experimentally as input to a computational biomechanical model to assess the goodness 519 

of the resulting movement reconstruction [27]. However, tuning of muscle activations during the 520 

simulations was necessary to obtain favorable results. Further difficulties in the use of 521 

computational biomechanical models to test for reconstruction of task space variables could stem 522 
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from the difficulty of measuring EMG from all muscles involved in a movement and of building 523 

sufficiently accurate musculoskeletal models. 524 

An alternative approach for studying the influence of extracted synergies on task-space variables 525 

consists in using a virtual isometric task, such as in this study and others [10, 22, 28]. Virtual tasks 526 

overcome the difficulty of obtaining complex biomechanical models, as the task can be defined 527 

by the experimenter. This way, the physics of the system are linear and known, and can be used 528 

in simulations in a straightforward way. A study using this approach showed that the 529 

reconstruction of isometric forces in an EMG-controlled task using muscle synergy decomposition 530 

is acceptable only when the number of synergies is equal to the number of considered muscles 531 

[22]. Otherwise, the reconstruction quality quickly degrades even when the number of synergies 532 

is derived from widely used heuristic rules [22]. Decreasing the number of synergies is associated 533 

with larger residual components of the EMG, which we showed to play an important role in task 534 

performance. Thus, our results further expand on this view, with the additional contribution of not 535 

being limited by the passive reconstruction of forces, but by directly manipulating the contribution 536 

of the residual component of the EMG to isometric force to highlight its importance in the execution 537 

of the task. These results emphasize the need of a shift within the community in the criteria used 538 

to evaluate the goodness of muscle synergies extracted through dimensionality reduction 539 

methods such as NMF.    540 

Our results suggest that humans produce muscle activations that cannot be fully accounted for 541 

by linear combinations of low-dimensional sets of muscle synergies, as extracted via NMF. This 542 

is not in conflict with the notion that the CNS uses muscle synergies as building blocks of 543 

movement embedded in neural circuits, as shown by numerous animal studies [3-6]. Additionally, 544 

synergy control in a myoelectric task (isolating msyn from r) has been shown to produce cursor 545 

trajectories similar to control through individual muscles, showing that synergy control may be 546 

useful for myoelectric interface applications [28]. However, this does not necessarily imply that 547 
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the CNS is limited to a small number of muscles synergies structurally defined in neural circuits. 548 

It is entirely possible that the CNS readily learns and exploits a large number of task-dependent 549 

muscle synergies, which may vary from individual to individual [29]. In this sense, the role of 550 

muscle synergies could be viewed as a source of flexibility in the repertoire of possible motor 551 

commands and stability in movement execution, as opposed to a way to simplify the control of 552 

movement by limiting the number of control inputs [30].  553 

The main limitation of our study is that our experimental design was originally conceived to test 554 

motor learning of virtual surgeries (to be presented in a follow-up manuscript). Therefore, the 555 

virtual surgery trials were presented in blocks after transitions from baseline trials. This could have 556 

induced a small amount of learning in the trials immediately following the perturbation or engaged 557 

exploratory behaviors due to the saliency of the perturbation. These undesired factors could 558 

explain why our initial error estimates do not match the experimental data more closely. A more 559 

appropriate design would randomly introduce catch trials for each surgery type among baseline 560 

trials to reduce learning effects. Nonetheless, because the observed differential effect between 561 

both virtual surgeries was large and robust, the results of a study that addresses these limitations 562 

would probably not be very different from our current results. 563 

Overall, our results indicate that current muscle synergy identification techniques wrongly attribute 564 

the fraction of unexplained variability in the EMG signals to noise. Our study is not able to discern 565 

whether the structure of the residual component of the EMG is due to the inadequacy of an 566 

additive linear model of muscle synergies, additional muscle synergies left out of the analysis by 567 

the 90% variance or other heuristic rules, or due to other possible sources like individual muscle 568 

control. However, it is clear that studies that aim to infer neural structures through EMG recordings 569 

should carefully consider the role of the residual component of the EMG signals. 570 
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