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Abstract

Muscle synergies are usually identified via dimensionality reduction techniques, such that the
identified synergies reconstruct the muscle activity to a level of accuracy defined heuristically,
such as 90% of the variance explained. Here, we question the assumption that the residual
muscle activity not explained by the synergies is due to noise. We hypothesize instead that the
residual activity is structured and can therefore influence the execution of a motor task. Young
healthy subjects performed an isometric reaching task in which surface electromyography of 10
arm muscles was mapped onto estimated two-dimensional forces used to control a cursor. Three
to five synergies were extracted to account for 90% of the variance explained. We then altered the
muscle-force mapping via “hard” and “easy” virtual surgeries. Whereas in both surgeries the forces
associated with synergies spanned the same single dimension of the virtual environment, the
muscle-force mapping was as close as possible to the initial mapping in the easy surgery and as
far as possible in the hard surgery. This design therefore maximized potential differences in
reaching errors attributable to the residual muscle activity. Results show that the easy surgery
produced much smaller directional errors than the hard task. In addition, systematic estimations
of the errors for easy and hard surgeries constructed with 1 to 10 synergies show that the errors
differ significantly for up to 8 synergies, which account for 98% of the variance on average. Our
study therefore indicates the need for cautious interpretations of results derived from synergy

extraction techniques based on heuristics with lenient levels of accuracy.

Author summary: The muscle synergy hypothesis states that the central nervous system
simplifies motor control by grouping muscles that share common functions into modules called
muscle synergies. Current techniques use unsupervised dimensionality reduction algorithms to

identify these synergies. However, these techniques rely on arbitrary criteria to determine the
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number of synergies, which is actually unknown. An example of such criteria is that the identified
synergies must be able to reconstruct the measured muscle activity to at least a 90% level of
accuracy. Thus, the residual muscle activity, the remaining 10% of the muscle activity, is often
disregarded as noise. We show that residual muscle activity following muscle synergy
identification has a large systematic effect on movements even when the number of synergies
approaches the number of muscles. This suggests that current synergy extraction techniques
may discard a component of muscle activity that is important for motor control. Therefore, current

synergy extraction techniques must be updated to identify true physiological synergies.

Introduction

One of the most salient problems the central nervous system (CNS) faces when generating
movements is the redundancy of the motor system [1]. That is, the CNS can generate an infinity
of different motor commands to produce the same action. This redundancy spans the length of
the causal chain of motor control: from neuron to muscle to joint levels. In light of the complexity
of this problem, the muscle synergy hypothesis posits that the CNS groups the control of
functionally similar muscles into modules called muscle synergies [2]. This would reduce the
number of variables that the CNS needs to control to produce a movement, decreasing the

complexity of the computations necessary for motor control [3].

Direct evidence for the muscle synergy hypothesis comes from experiments in animal models [3-
6]. These show that simultaneous stimulation of different groups of motor neurons elicits
movements that correspond to the superposition of the movements obtained by stimulating each
group of neurons separately [3, 5, 6]. However, most of the supporting evidence in humans is
indirect and comes from measurements of electromyography (EMG) from multiple muscles during
a variety of motor tasks [7-11]. Dimensionality reduction techniques, such as non-negative matrix

factorization, show that different muscles tend to co-activate in reliable patterns during task
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execution [12]. One of the interpretations of these results is that they reveal the grouping of
muscles into functional synergies [8, 9, 13, 14]. An alternative interpretation, however, is that the

discovered patterns arise because of biomechanical constraints imposed by the task [15-17].

This controversy notwithstanding [18], dimensionality reduction techniques for the extraction of
muscle synergies rely on the ability of the extracted synergies to reconstruct the originally
measured EMG signals accurately [19]. That is, the extracted synergies must capture a high
proportion of the variability in the recorded EMG, attributing the discarded or residual variability in
the data to measurement and process noise. This proportion is usually adjusted by making the
number of muscle synergies a hyper-parameter to be tuned to best fit the data [20]. A widely used
rule of thumb is to set the number of muscle synergies to the minimum number that accounts for

at least 90% of the variability in the EMG.

However, this method neglects the fundamental role of muscle synergies as building blocks of
movement, as the ability of the extracted muscle synergies to reconstruct the observed movement
is often ignored [19, 21, 22]. Indeed, the ability of muscle synergies to reconstruct measured
forces in an isometric task at the wrist becomes largely degraded as the number of considered
muscle synergies decreases [22]. This is true even when the extracted synergies capture an
acceptable portion of the variability in the EMG signals according to the defined heuristics. This
suggests that the portion of EMG variability that is not captured by the extracted muscle synergies

is important for a full description of the motor action.

Here, we therefore aimed to determine the importance of the residual EMG in the execution of a
motor task. We tested the null hypothesis that following extraction of muscle synergies with non-
negative matrix factorization and using the 90% of explained variance rule to select the number

of synergies, the residual muscle activity is due to noise. Therefore, if our experimental data failed
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88  to support this hypothesis, it would suggest that the residuals are structured and can therefore

89 influence motor performance.

90 To this end, we used the virtual surgery paradigm, which simulates tendon transfer surgeries [10].
91  The virtual surgery alters the pulling forces of arm muscles in a virtual mapping from EMG to two-
92  dimensional isometric force at the wrist, which affects performance during the reaching task. This
93 EMG-force mapping can be simplified into a synergy-force mapping by combining the pulling
94  forces for each arm muscle according to a set of previously identified muscle synergies. Given
95 that the number of muscles is necessarily larger than the number of extracted synergies, it is
96 possible to build virtual surgeries that produce identical synergy-force mappings but different
97 EMG-force mappings. We exploited this property by designing virtual surgeries that modified the

98 EMG-force mapping to two opposite extremes while producing the same synergy-force mapping.

99 The “easy” surgery modified the EMG-force mapping as little as possible with respect to the
100 baseline mapping, and the “hard” surgery modified the mapping as much as possible. The two
101  virtual surgeries were designed based on the extracted muscle synergies that account for at least
102  90% of the variability in the EMG. Consequently, the effect of the surgery on the residual portion
103  of the EMG was not specified, leading to possible differences in the effects of the easy and hard
104  surgeries on task variables. If the EMG residuals are attributable to noise, then both surgeries
105  should produce similar errors in the direction of reaching when introduced suddenly. Alternatively,
106 if the EMG residuals have a latent structure, then both surgeries should have a differential effect
107 on the residuals and on the error in the direction of reaching. We found that the sudden
108 introduction of both kinds of virtual surgeries produced largely different errors, supporting the

109 existence of a latent structure in the EMG residuals.
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110 Materials and Methods

111  Subjects. Fifteen right-handed subjects (mean age, 27.9 + 8.75 years, s.d.; thirteen males)
112 participated in the study after providing written informed consent. All procedures were approved

113 by the Ethical Review Board of the Tokyo Institute of Technology.

114  Experimental setup. Each participant sat on a racecar seat while gripping a handle located at
115 the height of the base of their sternum with their right hand. The arm posture corresponded to an
116  elbow flexion of around 90° and the elbow was supported on a stand at approximately the same
117  height as the hand. A splint was used to immobilize the hand, wrist and forearm. Participants were
118 instructed to lean on the back of the seat for the duration of the experiment. The base of the
119  handle was attached to a six axis force transducer (Dyn Pick; Wacoh-Tech Inc.) used to measure
120 isometric forces. The force transducer was mounted on a 2-D sliding rail to allow for an adjustable
121  configuration for each participant. A virtual environment was displayed on a computer screen
122 placed at the height of the participants’ eyes at a distance of around 1 m. The virtual environment
123 consisted of a circular red cursor (1 cm diameter), and several ring-shaped white targets (2 cm

124  diameter) on a black background.

125 We recorded surface EMG activity from 10 muscles crossing the shoulder and elbow joints:
126  pronator teres, brachioradialis, biceps brachii long head, triceps brachii lateral head, triceps
127  brachii long head, anterior deltoid, middle deltoid, posterior deltoid, pectoralis major, and middle
128  trapezius. Active bipolar electrodes (DE 2.1; Delsys) were used to record EMG activity. EMG
129  signals were bandpass filtered (20-450 Hz) and amplified (gain 1000, Bagnoli-16; Delsys). Force
130 and EMG recordings were digitized at 2 kHz using an USB analog-to-digital converter (USB-6259;

131  National Instruments).
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132 To reduce random oscillations of the cursor caused by the stochastic nature of EMG signals, a
133 mass-spring-damper dynamics filtered the EMG signals further [10]. The mass-spring-damper

134  dynamics governed the movement of the cursor according to:
135 §=-—p-—p+FH) (1)
pP=-_P—_P

136  where p is a vector containing the x and y positions of the cursor on the screen and its derivatives
137  are indicated in dot notation, m is the system’s mass, k is the stiffness, and b is the damping
138 coefficient (m = 0.05 kg, b = 100 kg/s). F(t) is the force recorded by the force transducer (during
139  force control) or the estimated force by the EMG-force mapping (during EMG control). k was
140  calculated as a function of the maximum voluntary force (MVF) (described in the next section), so
141 that targets at equal percentages of MVF required the same cursor displacement across

142 participants.

143  Experimental protocol. In all phases of the experiment, participants performed isometric force
144  tasks. These tasks required the displacement of a cursor on a visual display from a center position
145 to one of eight targets radially and uniformly distributed around the center. Participants first
146  performed a force control task and then an EMG control task (Fig 1a). In the force control task,
147  the cursor was controlled via forces applied by the arm on a load cell (force control). In the EMG
148  control task, the cursor was controlled by a linear approximation of the force derived from EMG

149  measurements of 10 arm muscles (EMG control).
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151 Fig 1. Experimental schedule and virtual surgery construction.

152 a. Experimental schedule. Following a maximum voluntary force (MVF) block, participants performed a
153  force control task. Simultaneous recording of EMG and force data in this task were analyzed to extract
154 muscle synergies, produce the baseline EMG-force mapping, and construct the easy and hard incompatible
155  virtual surgeries. Participants then performed the EMG control tasks, starting with a familiarization block,
156  followed by baseline, and then one of the two virtual surgeries (easy or hard). In this cross-over study,
157 participants then performed the other virtual surgery following a new baseline. Note that in this study, we
158 only analyzed the data from the first block of each of the two virtual surgery procedures. b — d. Virtual
159 surgery construction. c. EMG-force mapping extracted after the force control task for one participant. Each
160  arrow represents the estimated force on the horizontal plane that a single muscle would produce when fully
161  activated in isolation from the rest of the muscles (columns of M matrix). Forces produced by each of the
162  muscle synergies extracted after the force control task (columns of MW matrix). Before applying any virtual
163  surgery, these forces span the 2-dimensional plane completely. b. Hard incompatible surgery. We designed
164  an incompatible surgery by rotating the force vectors in MS so that they became collinear at an angle of

8
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165 135° degrees while maximizing the angles between the column vectors of M and MTw while producing the
166  desired MTHS. d. Easy incompatible surgery. We obtained the easy incompatible surgery by minimizing the
167 angles between the column vectors of MT and MTe while making MTeS equal to MTHS. This way the
168 individual synergies produced the same force in both cases.

169

170  The force control task started with a maximum voluntary force (MVF) block, in which participants
171  were instructed to produce a maximum voluntary force with their right arm in each of eight
172 directions spanning the horizontal plane, with two trials for each direction. The mean MVF was
173  calculated as the mean of the maximum forces recorded across all trials. For each muscle, the
174  value at the 95 percentile of the recorded EMG signal across all trials was used to normalize the

175  values of EMG from the corresponding muscle in all subsequent tasks.

176  Participants then performed an isometric reaching task by applying force with their right arm to
177  reach targets in the virtual environment. The recorded force and EMG signals during this task
178  were processed to compute the EMG-force mapping, extract muscle synergies, and construct the
179  virtual surgeries. Targets were arranged radially in eight directions and required 5, 10, 15 or 20%
180  of MVFto be reached. Each trial started by displaying the target at the central position. The central
181  position corresponded to the position of the cursor when no forces were applied. After placing the
182  cursor inside the central target for two seconds, the central target disappeared and one of the
183  radial targets appeared. After reaching each target, both the cursor and the target disappeared
184  from the screen and participants were asked to hold the applied force as steadily as possible for
185  two seconds. Next, the cursor and the central target reappeared and participants were asked to
186  move the cursor back to the center. After this, another trial began. Each target was presented
187 three times, with a total of 96 trials. Targets were presented in a randomized order. Trials were

188  repeated if participants failed to reach a target.
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189  Next, cursor control was switched to EMG control without the knowledge of the participants, after
190  which participants performed the reaching task under EMG control. The first EMG control block
191  was a familiarization block, and was followed by one type of incompatible surgery, easy or hard,
192  followed by the other in a cross-over design (see Fig 1A). The order of the easy and hard surgeries
193  was pseudo-randomized such that 7 participants started with the easy surgery. Participants rested
194  for 5 minutes between surgery types. Each surgery condition consisted of three phases: baseline,
195 virtual surgery, and washout, which consisted of 6, 12, and 6 blocks, respectively. Each block
196  consisted of 24 trials: three trials for each of the eight targets at a magnitude of 10% MVF
197  randomized within target sets containing each one of the eight targets. The level of baseline noise
198 in each EMG signal was measured at the start of every block while the participant was relaxed.
199  This baseline noise was subtracted from the EMG signals measured during the corresponding

200 block.

201  Note that in this study, we focus exclusively on data recorded during the first set of eight targets
202  following the onset of each virtual surgery. Analysis of the following blocks for each surgery will

203  be covered in a separate manuscript that focuses on learning of incompatible virtual surgeries.

204 EMG-force mapping. Force produced at the hand with the arm in a static posture can be
205 approximated as a linear function of the activations of muscles that actuate the shoulder and

206  elbow [10]:

207 f=Mm 2)

208 where f is a two-dimensional force vector produced on the horizontal plane, m is a ten-
209 dimensional vector of muscle activations, composed by normalized EMG signals recorded from
210 ten muscles simultaneously, and M is a 2 x 10 matrix that maps muscle activations to forces. M
211  was determined via linear regression of 10 EMG signals against 2D forces recorded during every

212 trial of the main force control subtask. Before performing the regression, forces were low-pass

10
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213  filtered (second-order Butterworth; 1 Hz cutoff) and EMG signals were band-pass filtered (second-
214  order Butterworth; 5-20 Hz), rectified, and normalized. The signals were recorded from the time

215  of target go to the end of target hold.

216  Synergy extraction and number of synergies. We used non-negative matrix factorization (NMF)

217  to extract muscle synergies from the EMG signals collected during the main force control subtask:

218 m=Sc 3)

219 where Sis a 10 x N matrix that contains the identified synergies in its columns with N being the
220 number of synergies, and c is an N-dimensional vector of synergy activations. Equation 3

221  assumes perfect matrix factorization (no residual EMG activity).

222  EMG signals collected during the main force control subtask were processed in the same way as
223 described in the EMG-force mapping section. The synergy extraction procedure closely followed
224  a method previously described [10]. Synergies were extracted for all N from 1 to 10. For each
225 case, the synergy extraction algorithm was run 100 times, and the result with the highest
226  reconstruction quality R? of the original EMG signals was kept. Two criteria were required to select
227  N. The first was to set N as the minimum number of synergies necessary to explain at least 90%
228 of the EMG data variance. The second involved calculating the changes in slope in the R? curve
229 as a function of N. Linear regressions were performed on sections of the curve between N and
230  10. Nwas selected as the smallest value for which the mean squared error of the linear regression
231  was < 10*[11]. If the two criteria did not match, N was selected as the case in which the extracted
232 synergies had the smallest number of similar preferred directions (number of adjacent directions

233  separated by less than 20°). This occurred for seven of the participants.

234  Construction of easy and hard incompatible surgeries. As in a previous study [10], we

235 designed virtual surgeries that were incompatible with the muscle synergies extracted by

11
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236  nonnegative matrix factorization (NMF) [23]. A virtual surgery modifies the EMG-force mapping

237 (M) by applying a linear transformation in muscle space [10]:

238 M’ =MT @)

239  where T is a 10 x 10 matrix that constitutes the transformation or virtual surgery.

240  Incompatible virtual surgeries are designed such that muscle activations m produced by synergy
241  combinations Sc are restricted to generate forces along only one dimension of the force space,
242  while the resulting EMG-force mapping M’ spans the whole force space. Therefore, theoretically,
243  any force can still be produced by a new combination of muscle activations m’, but in practice,

244  produced forces are biased towards one dimension of the plane.

245  ltis important to note that the set of incompatible surgeries is infinite. This is because the number
246 of muscles used in the virtual mapping is larger than the number of muscle activity patterns found
247  using muscle synergy analysis. A previous study [10] combined randomness and difficulty

248  matching to select compatible and incompatible virtual surgeries.

249  In contrast, here we specified a series of constraints to yield only two possible virtual surgeries.
250  Specifically, we built hard Tu and easy Te incompatible surgeries such that they were equivalent
251 in the force space spanned by each participant’s extracted muscle synergies (Figs 1b and 1d).
252 We first note that according to equations 2, 3 and 4, forces produced during the surgery are given

253  by:

254 f=M'm = MTSc (5)

255  assuming that muscle activations are generated by combinations of synergies. This equation
256  shows that surgery T can alternatively be thought to transform the extracted synergies S into a

257  new set of synergies:

12


https://doi.org/10.1101/634758
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634758; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

258 f=MS'c (6)

259  In order to build an incompatible surgery it is necessary to find 8’ such that the matrix MS’ is rank
260 deficient. This guarantees that forces produced by this mapping lie in a single dimension.
261  Geometrically, this means that the forces associated with each individual synergy from S’ are

262  collinear (Figs 1c and 19).

263  Easy surgeries were built such that the angles between the column vectors of the original M
264  mapping and of the transformed mapping M’ were as small as possible. In contrast, hard surgeries
265  were built by making these angles as large as possible (Fig 1b). These conditions produced M’
266  mappings that are similar or very different to the original M mapping in the case of easy or hard
267  surgeries, respectively. For this, we used a two-step optimization procedure to first obtain a
268 transformed set of synergies S8’, and second, to compute the incompatible surgery T. We
269  constrained S’ to be equal for both the easy and hard incompatible surgeries. This ensured that
270  the only difference between both virtual surgeries is the transformed mapping MT. We chose a
271  configuration such that the individual force vectors associated to each synergy in S were rotated
272 onto a line that bisected the plane at an angle of 135° with the x-axis. Therefore, each force vector
273 conserved its magnitude, and its direction was assigned to the direction of the bisecting line that
274  was closest to it: 135° or -45°. This can be represented as a system of equations in which the

275 elements of 8’ are the unknowns:

276 MS' =Fgs (7)

277 where Fges is @ 2 x N matrix containing the desired force components associated with each
278  synergy after the virtual surgery in each of its columns, with N being the number of extracted
279  synergies. This problem has 10N unknowns and only 2N equations, so we introduced an
280  optimization objective to arrive to a unigue solution. A reasonable objective is to minimize the sum

281  of the squares of the elements of §’, as this creates a sparse set of synergies. Additionally the

13
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282  elements of S are required to be non-negative. This optimization problem can be posed as a

283  quadratic program:

. v10 ¢N . 2
284 min Yi=12j=15jj

{ MS' = Fyes
s.t

285 s;=0 fori=1,..,10j=1,..,N (8)

286  We transcribed this quadratic program into its canonical form and solved it using the quadprog
287  function in Matlab.

288  After obtaining S’, we computed the incompatible surgery T by noting that

280 S'=TS 9)

290 This is a system of equations where the elements of T are the unknowns. We note that T is a 10
291 x 10 matrix, so in this case there are 100 unknowns and 10N equations. The system is

292  overdetermined in all cases where N < 10, which in our case is guaranteed.

293  In order to find the easy virtual surgery, we used our requirements of similarity between M and M’
294  to introduce an optimization objective to arrive to a unique solution. M and M’ are considered
295  similar when the angles between their corresponding column vectors are as small as possible.
296  The cosine of the angle between two vectors is proportional to the dot product of both vectors.

297  Therefore, we defined the optimization objective as

298 max Y10 h; - hy' (10)

299  where hj and hy’ are the column vectors of M and M’, respectively. This optimization objective is

300 not bounded, so we added constraints to the magnitude of the resulting h’ vectors:

301 ||hy'|| < 150yl (11)

14
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302  This problem can be posed as a linear program with quadratic constraints, with equation 10 as
303 the objective, and equations 9 and 11 as equality and inequality constraints, respectively. The

304  result of this optimization procedure yields Tg, the easy incompatible virtual surgery.

305 In order to compute the hard incompatible virtual surgery Tu, the procedure is the same as for the
306 easy incompatible surgery. The only difference is that the optimization objective is minimized

307 instead of being maximized. In turn, this maximizes the angles between h; and h;’:
308 min Y10 h; - hy' (12)
309  Both linear programs with quadratic constraints were solved using the fmincon function in Matlab.

310 Data analysis

311 Task performance metric. We used the initial angular error as a metric to quantify task
312  performance during the experiment, before possible feedback corrections. The initial angular error
313  was calculated for each trial as |Barget - Ocursor|- Brarget IS the direction of the target. Bcursoris defined
314  as the direction of the line segment that joins the point at which the cursor exits a 2 cm diameter
315 circumference at the center of the screen and the position of the cursor 100 ms after exiting the
316  circumference. We averaged the initial angular error for the targets within sets of eight trials. We
317  only took into account targets that were not aligned with the line of action of the surgery. That is,

318  targets other than those at 135° and -45° from the horizontal on the screen.

319 EMG residual analysis. We analyzed the residual EMG signals obtained after reconstructing the
320 measured EMG signals based on the extracted muscle synergies. After synergy extraction using

321 the NMF algorithm, and extending equation 3, muscle activations can be represented as

322 m=Sc+r=mg,+r (13)
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323  where mgy, is the synergy component of muscle activation, and r is the residual component of
324  muscle activation that cannot be accounted for by the extracted synergies. Consequently, the
325  forces associated with the EMG signals by the EMG-force mapping have a synergy and a residual

326 component:
327  F=Mm= M(Sc+r) = Mmgy, +Mr = Fg, + Fres (14)

328 where Fsyn and Fres are the synergy and residual components of force, respectively. Because
329  virtual surgeries are built based on S, the intended effects of the virtual surgeries are only

330 manifested on the synergy component of force, and the effect on the residual force is not specified.

331  In order to decompose a given EMG sample m into its synergy and residual components (mMsyn
332 and r), we first computed msyn via non-negative least squared regression of S and m, which
333  yielded c. This algorithm optimizes the same cost function as the NMF algorithm. Therefore, using
334  equation 13, msyy is given by the product of S and c. Consequently, r is found by subtracting msyn

335  fromm.

336  We then analyzed the effects of the surgery on both the synergy and residual components of
337 EMG. For this, we used the EMG activity that participants produced when they acquired each
338 target during the first baseline phase of the experiment. We then separated the average EMG

339  activity of each subject and target m into msy, and r.

340 We also estimated both force components Fsyn and Fres produced for each target at the onset of
341 the easy and hard virtual surgeries by substituting M by M’ in equation 14. We then compared the
342  estimated force direction to the intended direction for each target to obtain an estimate of the error

343  that subjects would produce at the onset of each virtual surgery.

344  Shuffling of EMG residuals. Shuffling the residual component of different EMG signal samples

345  creates random residual components with the same statistical properties as the original residuals.
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346  If the residual EMG activity can be disregarded as noise, then shuffling the residuals should have
347  no significant effect on the estimated forces with respect to pre-shuffling. On the contrary, if the
348 residuals have a structured organization, shuffling the residuals would destroy this organization.
349  Consequently, the force estimates would most likely be different from the pre-shuffling estimates.
350 We therefore shuffled the residual components of the EMG samples that we used to estimate
351 forces, and re-estimated the total forces that would be produced at the onset of the easy and hard

352  virtual surgeries. We averaged the results of 1000 different shuffling instances.

;53 Results

354 Hard incompatible virtual surgeries produced larger initial angular

355 errors than easy incompatible virtual surgeries.

356  The number of extracted muscle synergies N for all subjects ranged from three to five (N =3, 1
357 subjects; N = 4, 11 subjects; N = 5, 3 subjects). Fig 2 shows sample cursor trajectories before
358 and after the onset of the virtual surgeries. Both surgeries produced a bias in the cursor movement
359 along the designed direction as predicted, although cursor movements were not perfectly
360 constrained to this direction. Overall, deviations from the line of action of the surgery were closer

361 to the intended target during the easy surgery than during the hard surgery (Fig 2b).
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363 Fig 2. Example of cursor trajectories during the EMG control task by a representative subject.

364  a. Sample cursor trajectories. These trajectories correspond to the last target set of the baseline subtask,
365 and the first target set after the onset of the hard and easy incompatible virtual surgery tasks. This subject
366  experienced the easy virtual surgery first. The trajectories tended to fall along the line of action of the virtual
367  surgery, notably in the hard surgery. b. Comparison of initial directions of cursor movement between the
368 onset of the easy and hard virtual surgeries. Straight-line segments represent the computed direction of
369 movement of the cursor depicted in panel a 100 ms after exiting the central position. Solid lines correspond
370 totheinitial directions during the easy surgery onset and dotted lines correspond to the hard surgery onset.
371  This subject produced larger initial errors at the onset of the hard virtual surgery than at the onset of the
372 easy surgery (see targets at 45° and 90°).

373

374  Over all 15 participants, the mean error for the first set of targets after the onset of the surgery
375 was clearly larger for the hard surgery than for the easy surgery (hard surgery: 81.4° + 3.8° s.e,
376  easy surgery: 54.5° + 4.6° s.e., p < 1073, paired t-test; see Fig 3B, experiment). This difference in
377  errors may appear surprising at first, given that the easy and hard surgeries had the same effect

378 on the synergy component of the force. That is, they restricted the forces associated with the
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379  synergies along one dimension. However, the synergies were only required to account for 90%
380 of the variance in EMG. Therefore, the EMG residuals appeared to generate an additional

381 component of force.
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383 Fig 3. Comparison between actual directional cursor errors and estimated errors.

384 a. Correlation between the estimated average angular error after applying the surgery and the actual
385 average error during the first target set of the virtual surgery for all participants. b. Actual and estimated
386  errors in initial direction of force at the onset of the easy and hard virtual surgeries. In the experiment, the
387 hard surgery produced a larger initial error than the easy surgery. As a comparison, errors were also
388  estimated: i) using only the synergy component of the average EMG signals (null residuals), and ii) using
389 the shuffled residual component of the EMG. The null residual estimate produced error estimates that
390 showed no difference between the hard and the easy virtual surgeries. The EMG signals with shuffled
391 residuals produced error estimates that were similar to those obtained using only the synergy component

392 of the EMG signal.

393 Initial angular error was determined by effect of surgery on residual

394 EMG activity

395  To verify the effect of residuals on movement error, we decomposed the recorded EMG signals

396 into their synergy and residual components (equation 14). Fig 4 shows the estimated forces
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397 corresponding to the total EMG activity F (top), and the synergy (Fsyn) and residual (Fres)
398 components of force (middle and bottom, respectively) at each target for a representative subject
399  (equation 14). The center column shows F, Fsyn and Fres before the onset of the surgeries. The
400 left and right columns show F, Fsyn and Fres after applying the hard and easy surgeries,
401  respectively. The incompatible design of the surgery can be appreciated on Fsyn, as these forces

402 lie on the 135° line of action of the virtual surgery (Fig 4, middle row).

Hard surgery Before surgery Easy surgery
Q
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ST 4— —l
o
e
Estimated error: Estimated error:
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I:syn
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404 Fig 4. Residual forces can explain the differences in initial direction error at surgery onset between
405 the easy and hard surgery conditions.

406  Top row: Estimated forces F at each target before and after applying the hard and easy virtual surgeries.
407  We indicate the average estimated error across targets for each virtual surgery. Middle row: Estimated
408  synergy components of force Fsyn at each target. Bottom row: Estimated residual components of force Fres
409  at each target. We indicate the average rotation of Fes after each virtual surgery with respect to Fes before

410  the surgery. Middle column: F, Fsyn and Fres before the surgery. Left and right columns: F, Fsyn and Fres
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411 after applying the hard and easy surgeries, respectively. Colors represent the eight targets in the task as
412 indicated in the middle bottom diagram. Data shown in this figure corresponds to the same representative
413  subject as in Fig 2.

414

415  Given that the EMG signals that we used to estimate forces were representative of the subjects’
416  actions during baseline, and assuming that subjects produced these EMG signals when suddenly
417  exposed to the virtual surgeries, the directions of the estimated forces after applying the virtual
418  surgery (Equation 5) also provided an estimate of the cursor error to each target (Fig 4, top row).
419 These initial error estimates were consistently higher for the hard surgery than for the easy
420 surgery (hard surgery: 82.75° + 4.19° s.e., easy surgery: 45.57° + 3.03° s.e., p < 103, paired t-
421  test), and qualitatively matched the experimental results of the cursor error (robust regression,

422  slope =0.47 £0.15 s.e., p = 0.004, R? = 0.25) (Fig 3a).

423  Errors following the easy and hard surgeries can be explained by the residual’s structure (Fig 4,
424  bottom row). The hard surgery produced a mean rotation of Fes with respect to baseline that was
425 much larger than that produced by the easy surgery (hard surgery: 113.60° £ 10.15° s.e., easy
426  surgery: 4.42° + 1.5° s.e., p < 1073, paired t-test). Note that although we did not specify the effect
427  of the virtual surgery on the residual component of force, we found that it is stereotypical according

428  to the type of surgery.

429  Shuffling residual EMG activity revealed structure in the residuals

430 We then shuffled the residual EMG components among trials to all targets to demonstrate
431  possible structure. Initial error estimates based on the shuffled signals did not indicate a significant
432  difference in average initial error between the easy and hard virtual surgeries (easy surgery: 66.42°
433  +2.31°s.e., hard surgery: 72.41° + 2.72° s.e., paired t-test, p = 0.10) (Fig 3b, shuffled residuals).
434  Furthermore, the magnitude of this error lied at an intermediate level between the errors observed

435  experimentally for the easy and hard surgeries. Importantly, the means of the estimates produced
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436 by shuffled signals were indistinguishable from estimates produced based on a null residual
437  condition, that is, exclusively using the synergy component of the EMG to produce estimates
438  (easy surgery, paired t-test, p = 0.45; hard surgery, paired t-test, p = 0.68) (Fig 3b, null and

439  shuffled residuals).

440 Estimated differences between errors for easy and hard surgeries

441  remained significant for high-dimensional synergy sets

442  We tested whether building virtual surgeries based on synergy sets with a larger N would abolish
443  the differences in initial direction error observed in the experiment. For each participant we built
444  easy and hard surgeries based on surgeries considering N = 1, ..., 10 and applied the newly
445  constructed surgeries to the same set of EMG signals that we used to estimate errors after the
446  introduction of the surgery. This allowed us to estimate the errors that participants would have

447  produced if they had experienced these surgeries.

448  We found that the surgeries produced estimated differences in initial direction errors that were
449 maximal for N = 1, and gradually decreased until disappearing at N = 10 (as expected, since
450 activity from 10 muscles was recorded; Fig 5). The estimated error differences remained
451  significant up to N = 8 (p = 0.001, paired t-test). This indicates that the residual components of
452  EMG produced a differential effect on the estimated error even when high-dimensional synergy
453  sets that explained a portion of the variance that largely exceeded the heuristic rule requirements

454  (R?=10.98 +0.0087 s.e. at N = 8) were used to build the virtual surgeries.

455
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457 Fig 5. Estimated errors in initial direction when using easy and hard virtual surgeries based on
458 muscle synergy sets with N = 1,...,10.

459  Differences in estimated errors between easy and hard surgeries were significant up to N = 8 (p = 0.001,
460 paired t-test). Bars represent the mean estimated error across the 15 participants and error bars represent
461  the standard error of the estimated error. The significance of the difference between the estimated errors
462 in the hard and easy surgeries is indicated with asterisks on top of each pair of bars. ***: p < 0.0001, **: p
463 < 0.001, and *: p < 0.005 The solid black line shows the mean across participants of R?, the reconstruction

464  quality of the baseline EMG signals used for the error estimation when considering N = 1,...,10.

s Discussion

466  Muscle synergy extraction techniques require that combinations of the identified synergies
467  reconstruct the measured muscle activity to a heuristically defined level of accuracy, such as
468  accounting for at least 90% of the variance in the EMG. These techniques therefore attribute the
469  residual muscle activity not reconstructed by the identified synergies to noise. Here we studied
470 the importance of residual EMG activity in the execution of a virtual motor task. We designed the
471  virtual task based on a virtual surgery [10, 24] and exploited the property that virtual surgeries can

472  produce equivalent muscle synergy-force mappings while resulting in different individual muscle-
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473  force mappings. We tested two different virtual surgeries that shared a common muscle synergy-
474  force mapping, but differed maximally in their individual muscle-force mappings (easy and hard
475  virtual surgeries). The surgeries had the desired effect only on the portion of the EMG signals
476  explained by the extracted muscle synergies, defined to account for at least 90% of the variability
477  in the signal. Therefore, the effect on the residual EMG variability was unspecified, allowing for a

478  possible differential effect on the performance of the task.

479  We found that participants produced larger errors at the onset of the hard surgery than at the
480  onset of the easy surgery. We were able to predict this result qualitatively (Fig 3a) by estimating
481  the forces and errors that would be produced during each virtual surgery by using representative
482 EMG signals recorded during the baseline phase of the experiment and transforming the
483  estimated forces using the virtual surgeries. Importantly, this procedure also allowed us to
484  separate the recorded EMG signals and the estimated forces into their synergy and residual
485 components (Fig 4). The virtual surgeries produced the expected effects on the synergy
486  component of the EMG. However, the easy surgery barely produced any changes on the direction
487  of the forces associated with the residual component, whereas the hard surgery produced large
488 changes in the direction of these forces. Given that the total force is equal to the sum of the
489  synergy and residual components, any difference between both virtual surgeries in the estimated
490 force and error must arise from the difference in the residual components. This provides evidence
491 that the residual component of the EMG is essential for accounting for our experimental results,

492  suggesting a latent structure in the residuals.

493  We also considered the alternative case in which the residual EMG activity is composed of hoise.
494  Inthis situation, we posited that there would be no differential effect of the easy and hard surgeries
495 on the initial error, or that this effect would be small. To test this, we used the previously
496 decomposed EMG signals and shuffled the residual components among all these EMG samples.

497  This effectively destroyed any potential structure in the residual component, as they became
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498 randomized. We found that the easy and hard surgeries did not produce significant differential
499  effects in the estimated initial error across participants when applied to the shuffled EMG signals.
500 This analysis suggests that the residual component of the EMG cannot be disregarded as purely

501 noise, and therefore demonstration of a latent structure in the residuals.

502  Dimensionality reduction techniques such as NMF are useful for extracting patterns from high-
503 dimensional data sets, such as EMG recordings from multiple muscles. These techniques are
504  usually able to extract as many patterns or synergies as individual muscles. However, there is no
505 objective means for selecting the number of synergies of interest a priori given the exploratory
506  nature of the analysis and the lack of a ground truth. Therefore, heuristic rules, such as selecting
507 the number of synergies based on predefined goodness of reconstruction criteria are a common
508 practice (i.e., reconstructing the data to a given level of accuracy, or finding an elbow in the
509 goodness of reconstruction curve). These heuristic rules are necessarily ad hoc, and are tailored

510 to produce useful results in the domain of the studied problem [25].

511  These heuristic rules ignore the role of muscle synergies in the generation of movement. That is,
512  muscle synergy extraction has mainly focused on describing muscle activity in the input space,
513  but has neglected the reconstruction of forces and movements in the task space [19, 21]. A
514  number of studies have attempted the extension from input to task space in the scope of the study
515 of synergies by incorporating task-relevant constraints, such as force reconstruction, in the
516  dimensionality reduction procedure [13, 26]. However, in these studies, assumptions of linearity
517 were made in the relationship between input and task spaces, that is, muscle activations and
518 forces. Alternatively, other studies took a simulation approach by using muscle synergy activity
519  derived experimentally as input to a computational biomechanical model to assess the goodness
520 of the resulting movement reconstruction [27]. However, tuning of muscle activations during the
521 simulations was necessary to obtain favorable results. Further difficulties in the use of

522  computational biomechanical models to test for reconstruction of task space variables could stem
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523  from the difficulty of measuring EMG from all muscles involved in a movement and of building

524  sufficiently accurate musculoskeletal models.

525  An alternative approach for studying the influence of extracted synergies on task-space variables
526  consists in using a virtual isometric task, such as in this study and others [10, 22, 28]. Virtual tasks
527 overcome the difficulty of obtaining complex biomechanical models, as the task can be defined
528 by the experimenter. This way, the physics of the system are linear and known, and can be used
529 in simulations in a straightforward way. A study using this approach showed that the
530 reconstruction of isometric forces in an EMG-controlled task using muscle synergy decomposition
531 is acceptable only when the number of synergies is equal to the number of considered muscles
532  [22]. Otherwise, the reconstruction quality quickly degrades even when the number of synergies
533 is derived from widely used heuristic rules [22]. Decreasing the number of synergies is associated
534  with larger residual components of the EMG, which we showed to play an important role in task
535  performance. Thus, our results further expand on this view, with the additional contribution of not
536  being limited by the passive reconstruction of forces, but by directly manipulating the contribution
537  of the residual component of the EMG to isometric force to highlight its importance in the execution
538  of the task. These results emphasize the need of a shift within the community in the criteria used
539 to evaluate the goodness of muscle synergies extracted through dimensionality reduction

540 methods such as NMF.

541  Our results suggest that humans produce muscle activations that cannot be fully accounted for
542 by linear combinations of low-dimensional sets of muscle synergies, as extracted via NMF. This
543 is not in conflict with the notion that the CNS uses muscle synergies as building blocks of
544  movement embedded in neural circuits, as shown by numerous animal studies [3-6]. Additionally,
545  synergy control in a myoelectric task (isolating msy, from r) has been shown to produce cursor
546  trajectories similar to control through individual muscles, showing that synergy control may be

547  useful for myoelectric interface applications [28]. However, this does not necessarily imply that
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548 the CNS is limited to a small number of muscles synergies structurally defined in neural circuits.
549 It is entirely possible that the CNS readily learns and exploits a large number of task-dependent
550 muscle synergies, which may vary from individual to individual [29]. In this sense, the role of
551 muscle synergies could be viewed as a source of flexibility in the repertoire of possible motor
552 commands and stability in movement execution, as opposed to a way to simplify the control of

553  movement by limiting the number of control inputs [30].

554  The main limitation of our study is that our experimental design was originally conceived to test
555  motor learning of virtual surgeries (to be presented in a follow-up manuscript). Therefore, the
556  virtual surgery trials were presented in blocks after transitions from baseline trials. This could have
557 induced a small amount of learning in the trials immediately following the perturbation or engaged
558  exploratory behaviors due to the saliency of the perturbation. These undesired factors could
559  explain why our initial error estimates do not match the experimental data more closely. A more
560 appropriate design would randomly introduce catch trials for each surgery type among baseline
561 trials to reduce learning effects. Nonetheless, because the observed differential effect between
562  both virtual surgeries was large and robust, the results of a study that addresses these limitations

563  would probably not be very different from our current results.

564  Overall, our results indicate that current muscle synergy identification techniques wrongly attribute
565 the fraction of unexplained variability in the EMG signals to noise. Our study is not able to discern
566  whether the structure of the residual component of the EMG is due to the inadequacy of an
567  additive linear model of muscle synergies, additional muscle synergies left out of the analysis by
568  the 90% variance or other heuristic rules, or due to other possible sources like individual muscle
569  control. However, itis clear that studies that aim to infer neural structures through EMG recordings

570  should carefully consider the role of the residual component of the EMG signals.
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