

- 1 When 90% of the variance is not
- 2 enough: residual EMG from muscle
- 3 synergy extraction influences task
- 4 performance

5
6
7 Victor R. Barradas¹, Jason J. Kutch², Toshihiro Kawase³, Yasuharu Koike³, Nicolas
8 Schweighofer^{2*}
9
10 ¹Biomedical Engineering, University of Southern California, Los Angeles, California, USA

10 ¹Biomedical Engineering, University of Southern California, Los Angeles, California, USA

11 ²Biokinesiology and Physical Therapy, University of Southern California, Los Angeles,
12 California, USA

13 ³Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Japan

14

15 *Corresponding author

16 E-mail: schweigh@usc.edu (NS)

17 Abstract

18 Muscle synergies are usually identified via dimensionality reduction techniques, such that the
19 identified synergies reconstruct the muscle activity to a level of accuracy defined heuristically,
20 such as 90% of the variance explained. Here, we question the assumption that the residual
21 muscle activity not explained by the synergies is due to noise. We hypothesize instead that the
22 residual activity is structured and can therefore influence the execution of a motor task. Young
23 healthy subjects performed an isometric reaching task in which surface electromyography of 10
24 arm muscles was mapped onto estimated two-dimensional forces used to control a cursor. Three
25 to five synergies were extracted to account for 90% of the variance explained. We then altered the
26 muscle-force mapping via “hard” and “easy” virtual surgeries. Whereas in both surgeries the forces
27 associated with synergies spanned the same single dimension of the virtual environment, the
28 muscle-force mapping was as close as possible to the initial mapping in the easy surgery and as
29 far as possible in the hard surgery. This design therefore maximized potential differences in
30 reaching errors attributable to the residual muscle activity. Results show that the easy surgery
31 produced much smaller directional errors than the hard task. In addition, systematic estimations
32 of the errors for easy and hard surgeries constructed with 1 to 10 synergies show that the errors
33 differ significantly for up to 8 synergies, which account for 98% of the variance on average. Our
34 study therefore indicates the need for cautious interpretations of results derived from synergy
35 extraction techniques based on heuristics with lenient levels of accuracy.

36

37 **Author summary:** The muscle synergy hypothesis states that the central nervous system
38 simplifies motor control by grouping muscles that share common functions into modules called
39 muscle synergies. Current techniques use unsupervised dimensionality reduction algorithms to
40 identify these synergies. However, these techniques rely on arbitrary criteria to determine the

41 number of synergies, which is actually unknown. An example of such criteria is that the identified
42 synergies must be able to reconstruct the measured muscle activity to at least a 90% level of
43 accuracy. Thus, the residual muscle activity, the remaining 10% of the muscle activity, is often
44 disregarded as noise. We show that residual muscle activity following muscle synergy
45 identification has a large systematic effect on movements even when the number of synergies
46 approaches the number of muscles. This suggests that current synergy extraction techniques
47 may discard a component of muscle activity that is important for motor control. Therefore, current
48 synergy extraction techniques must be updated to identify true physiological synergies.

49 **Introduction**

50 One of the most salient problems the central nervous system (CNS) faces when generating
51 movements is the redundancy of the motor system [1]. That is, the CNS can generate an infinity
52 of different motor commands to produce the same action. This redundancy spans the length of
53 the causal chain of motor control: from neuron to muscle to joint levels. In light of the complexity
54 of this problem, the muscle synergy hypothesis posits that the CNS groups the control of
55 functionally similar muscles into modules called muscle synergies [2]. This would reduce the
56 number of variables that the CNS needs to control to produce a movement, decreasing the
57 complexity of the computations necessary for motor control [3].

58 Direct evidence for the muscle synergy hypothesis comes from experiments in animal models [3-
59 6]. These show that simultaneous stimulation of different groups of motor neurons elicits
60 movements that correspond to the superposition of the movements obtained by stimulating each
61 group of neurons separately [3, 5, 6]. However, most of the supporting evidence in humans is
62 indirect and comes from measurements of electromyography (EMG) from multiple muscles during
63 a variety of motor tasks [7-11]. Dimensionality reduction techniques, such as non-negative matrix
64 factorization, show that different muscles tend to co-activate in reliable patterns during task

65 execution [12]. One of the interpretations of these results is that they reveal the grouping of
66 muscles into functional synergies [8, 9, 13, 14]. An alternative interpretation, however, is that the
67 discovered patterns arise because of biomechanical constraints imposed by the task [15-17].

68 This controversy notwithstanding [18], dimensionality reduction techniques for the extraction of
69 muscle synergies rely on the ability of the extracted synergies to reconstruct the originally
70 measured EMG signals accurately [19]. That is, the extracted synergies must capture a high
71 proportion of the variability in the recorded EMG, attributing the discarded or residual variability in
72 the data to measurement and process noise. This proportion is usually adjusted by making the
73 number of muscle synergies a hyper-parameter to be tuned to best fit the data [20]. A widely used
74 rule of thumb is to set the number of muscle synergies to the minimum number that accounts for
75 at least 90% of the variability in the EMG.

76 However, this method neglects the fundamental role of muscle synergies as building blocks of
77 movement, as the ability of the extracted muscle synergies to reconstruct the observed movement
78 is often ignored [19, 21, 22]. Indeed, the ability of muscle synergies to reconstruct measured
79 forces in an isometric task at the wrist becomes largely degraded as the number of considered
80 muscle synergies decreases [22]. This is true even when the extracted synergies capture an
81 acceptable portion of the variability in the EMG signals according to the defined heuristics. This
82 suggests that the portion of EMG variability that is not captured by the extracted muscle synergies
83 is important for a full description of the motor action.

84 Here, we therefore aimed to determine the importance of the residual EMG in the execution of a
85 motor task. We tested the null hypothesis that following extraction of muscle synergies with non-
86 negative matrix factorization and using the 90% of explained variance rule to select the number
87 of synergies, the residual muscle activity is due to noise. Therefore, if our experimental data failed

88 to support this hypothesis, it would suggest that the residuals are structured and can therefore
89 influence motor performance.

90 To this end, we used the virtual surgery paradigm, which simulates tendon transfer surgeries [10].
91 The virtual surgery alters the pulling forces of arm muscles in a virtual mapping from EMG to two-
92 dimensional isometric force at the wrist, which affects performance during the reaching task. This
93 EMG-force mapping can be simplified into a synergy-force mapping by combining the pulling
94 forces for each arm muscle according to a set of previously identified muscle synergies. Given
95 that the number of muscles is necessarily larger than the number of extracted synergies, it is
96 possible to build virtual surgeries that produce identical synergy-force mappings but different
97 EMG-force mappings. We exploited this property by designing virtual surgeries that modified the
98 EMG-force mapping to two opposite extremes while producing the same synergy-force mapping.

99 The “easy” surgery modified the EMG-force mapping as little as possible with respect to the
100 baseline mapping, and the “hard” surgery modified the mapping as much as possible. The two
101 virtual surgeries were designed based on the extracted muscle synergies that account for at least
102 90% of the variability in the EMG. Consequently, the effect of the surgery on the residual portion
103 of the EMG was not specified, leading to possible differences in the effects of the easy and hard
104 surgeries on task variables. If the EMG residuals are attributable to noise, then both surgeries
105 should produce similar errors in the direction of reaching when introduced suddenly. Alternatively,
106 if the EMG residuals have a latent structure, then both surgeries should have a differential effect
107 on the residuals and on the error in the direction of reaching. We found that the sudden
108 introduction of both kinds of virtual surgeries produced largely different errors, supporting the
109 existence of a latent structure in the EMG residuals.

110 Materials and Methods

111 **Subjects.** Fifteen right-handed subjects (mean age, 27.9 ± 8.75 years, s.d.; thirteen males)
112 participated in the study after providing written informed consent. All procedures were approved
113 by the Ethical Review Board of the Tokyo Institute of Technology.

114 **Experimental setup.** Each participant sat on a racecar seat while gripping a handle located at
115 the height of the base of their sternum with their right hand. The arm posture corresponded to an
116 elbow flexion of around 90° and the elbow was supported on a stand at approximately the same
117 height as the hand. A splint was used to immobilize the hand, wrist and forearm. Participants were
118 instructed to lean on the back of the seat for the duration of the experiment. The base of the
119 handle was attached to a six axis force transducer (Dyn Pick; Wacoh-Tech Inc.) used to measure
120 isometric forces. The force transducer was mounted on a 2-D sliding rail to allow for an adjustable
121 configuration for each participant. A virtual environment was displayed on a computer screen
122 placed at the height of the participants' eyes at a distance of around 1 m. The virtual environment
123 consisted of a circular red cursor (1 cm diameter), and several ring-shaped white targets (2 cm
124 diameter) on a black background.

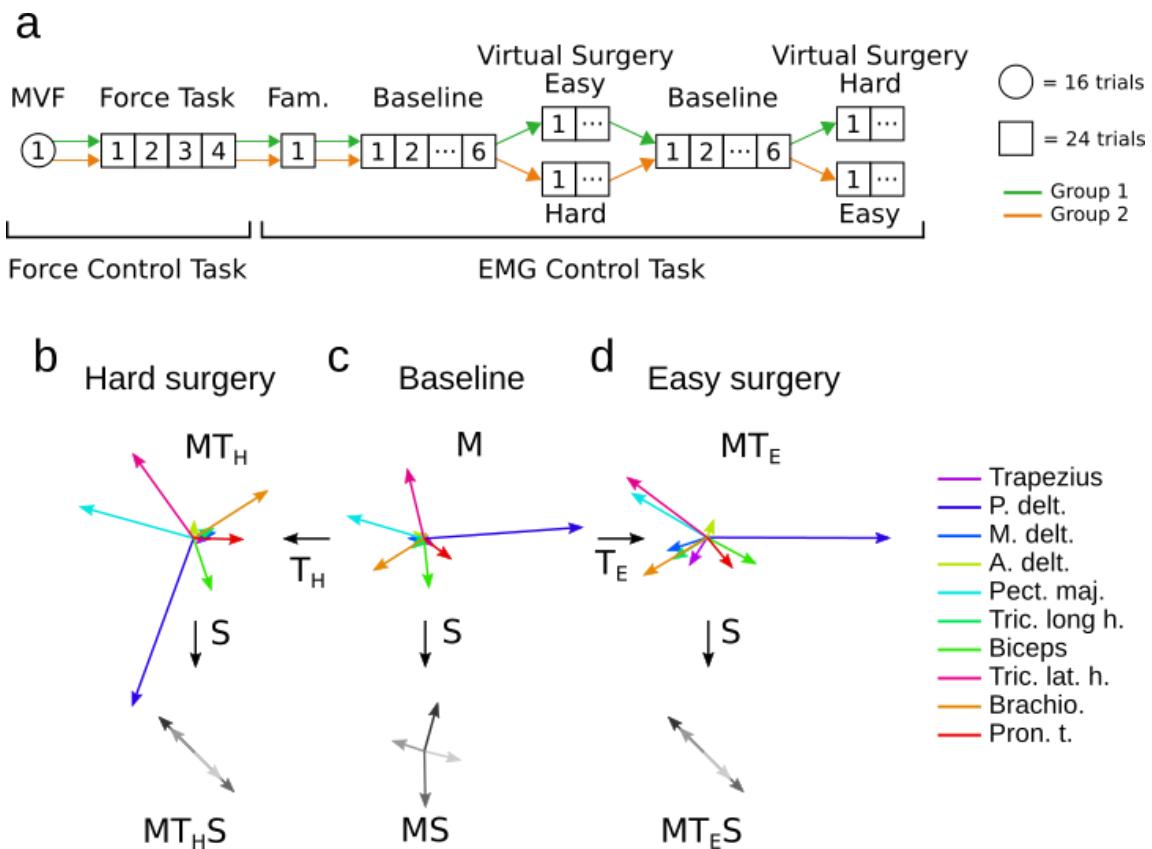
125 We recorded surface EMG activity from 10 muscles crossing the shoulder and elbow joints:
126 pronator teres, brachioradialis, biceps brachii long head, triceps brachii lateral head, triceps
127 brachii long head, anterior deltoid, middle deltoid, posterior deltoid, pectoralis major, and middle
128 trapezius. Active bipolar electrodes (DE 2.1; Delsys) were used to record EMG activity. EMG
129 signals were bandpass filtered (20-450 Hz) and amplified (gain 1000, Bagnoli-16; Delsys). Force
130 and EMG recordings were digitized at 2 kHz using an USB analog-to-digital converter (USB-6259;
131 National Instruments).

132 To reduce random oscillations of the cursor caused by the stochastic nature of EMG signals, a
133 mass-spring-damper dynamics filtered the EMG signals further [10]. The mass-spring-damper
134 dynamics governed the movement of the cursor according to:

135
$$\ddot{\mathbf{p}} = -\frac{b}{m}\dot{\mathbf{p}} - \frac{k}{m}\mathbf{p} + \mathbf{F}(t) \quad (1)$$

136 where \mathbf{p} is a vector containing the x and y positions of the cursor on the screen and its derivatives
137 are indicated in dot notation, m is the system's mass, k is the stiffness, and b is the damping
138 coefficient ($m = 0.05$ kg, $b = 100$ kg/s). $\mathbf{F}(t)$ is the force recorded by the force transducer (during
139 force control) or the estimated force by the EMG-force mapping (during EMG control). k was
140 calculated as a function of the maximum voluntary force (MVF) (described in the next section), so
141 that targets at equal percentages of MVF required the same cursor displacement across
142 participants.

143 **Experimental protocol.** In all phases of the experiment, participants performed isometric force
144 tasks. These tasks required the displacement of a cursor on a visual display from a center position
145 to one of eight targets radially and uniformly distributed around the center. Participants first
146 performed a force control task and then an EMG control task (Fig 1a). In the force control task,
147 the cursor was controlled via forces applied by the arm on a load cell (force control). In the EMG
148 control task, the cursor was controlled by a linear approximation of the force derived from EMG
149 measurements of 10 arm muscles (EMG control).



165 135° degrees while maximizing the angles between the column vectors of M and MT_H while producing the
166 desired MT_HS . **d.** Easy incompatible surgery. We obtained the easy incompatible surgery by minimizing the
167 angles between the column vectors of MT and MT_E while making MT_ES equal to MT_HS . This way the
168 individual synergies produced the same force in both cases.

169

170 The force control task started with a maximum voluntary force (MVF) block, in which participants
171 were instructed to produce a maximum voluntary force with their right arm in each of eight
172 directions spanning the horizontal plane, with two trials for each direction. The mean MVF was
173 calculated as the mean of the maximum forces recorded across all trials. For each muscle, the
174 value at the 95 percentile of the recorded EMG signal across all trials was used to normalize the
175 values of EMG from the corresponding muscle in all subsequent tasks.

176 Participants then performed an isometric reaching task by applying force with their right arm to
177 reach targets in the virtual environment. The recorded force and EMG signals during this task
178 were processed to compute the EMG-force mapping, extract muscle synergies, and construct the
179 virtual surgeries. Targets were arranged radially in eight directions and required 5, 10, 15 or 20%
180 of MVF to be reached. Each trial started by displaying the target at the central position. The central
181 position corresponded to the position of the cursor when no forces were applied. After placing the
182 cursor inside the central target for two seconds, the central target disappeared and one of the
183 radial targets appeared. After reaching each target, both the cursor and the target disappeared
184 from the screen and participants were asked to hold the applied force as steadily as possible for
185 two seconds. Next, the cursor and the central target reappeared and participants were asked to
186 move the cursor back to the center. After this, another trial began. Each target was presented
187 three times, with a total of 96 trials. Targets were presented in a randomized order. Trials were
188 repeated if participants failed to reach a target.

189 Next, cursor control was switched to EMG control without the knowledge of the participants, after
190 which participants performed the reaching task under EMG control. The first EMG control block
191 was a familiarization block, and was followed by one type of incompatible surgery, easy or hard,
192 followed by the other in a cross-over design (see Fig 1A). The order of the easy and hard surgeries
193 was pseudo-randomized such that 7 participants started with the easy surgery. Participants rested
194 for 5 minutes between surgery types. Each surgery condition consisted of three phases: baseline,
195 virtual surgery, and washout, which consisted of 6, 12, and 6 blocks, respectively. Each block
196 consisted of 24 trials: three trials for each of the eight targets at a magnitude of 10% MVF
197 randomized within target sets containing each one of the eight targets. The level of baseline noise
198 in each EMG signal was measured at the start of every block while the participant was relaxed.
199 This baseline noise was subtracted from the EMG signals measured during the corresponding
200 block.

201 Note that in this study, we focus exclusively on data recorded during the first set of eight targets
202 following the onset of each virtual surgery. Analysis of the following blocks for each surgery will
203 be covered in a separate manuscript that focuses on learning of incompatible virtual surgeries.

204 **EMG-force mapping.** Force produced at the hand with the arm in a static posture can be
205 approximated as a linear function of the activations of muscles that actuate the shoulder and
206 elbow [10]:

207
$$\mathbf{f} = \mathbf{Mm} \quad (2)$$

208 where \mathbf{f} is a two-dimensional force vector produced on the horizontal plane, \mathbf{m} is a ten-
209 dimensional vector of muscle activations, composed by normalized EMG signals recorded from
210 ten muscles simultaneously, and \mathbf{M} is a 2×10 matrix that maps muscle activations to forces. \mathbf{M}
211 was determined via linear regression of 10 EMG signals against 2D forces recorded during every
212 trial of the main force control subtask. Before performing the regression, forces were low-pass

213 filtered (second-order Butterworth; 1 Hz cutoff) and EMG signals were band-pass filtered (second-
214 order Butterworth; 5-20 Hz), rectified, and normalized. The signals were recorded from the time
215 of target go to the end of target hold.

216 **Synergy extraction and number of synergies.** We used non-negative matrix factorization (NMF)
217 to extract muscle synergies from the EMG signals collected during the main force control subtask:

218 $\mathbf{m} = \mathbf{S} \mathbf{c}$ (3)

219 where \mathbf{S} is a $10 \times N$ matrix that contains the identified synergies in its columns with N being the
220 number of synergies, and \mathbf{c} is an N -dimensional vector of synergy activations. Equation 3
221 assumes perfect matrix factorization (no residual EMG activity).

222 EMG signals collected during the main force control subtask were processed in the same way as
223 described in the EMG-force mapping section. The synergy extraction procedure closely followed
224 a method previously described [10]. Synergies were extracted for all N from 1 to 10. For each
225 case, the synergy extraction algorithm was run 100 times, and the result with the highest
226 reconstruction quality R^2 of the original EMG signals was kept. Two criteria were required to select
227 N . The first was to set N as the minimum number of synergies necessary to explain at least 90%
228 of the EMG data variance. The second involved calculating the changes in slope in the R^2 curve
229 as a function of N . Linear regressions were performed on sections of the curve between N and
230 10. N was selected as the smallest value for which the mean squared error of the linear regression
231 was $< 10^{-4}$ [11]. If the two criteria did not match, N was selected as the case in which the extracted
232 synergies had the smallest number of similar preferred directions (number of adjacent directions
233 separated by less than 20°). This occurred for seven of the participants.

234 **Construction of easy and hard incompatible surgeries.** As in a previous study [10], we
235 designed virtual surgeries that were incompatible with the muscle synergies extracted by

236 nonnegative matrix factorization (NMF) [23]. A virtual surgery modifies the EMG-force mapping
237 (**M**) by applying a linear transformation in muscle space [10]:

238 $\mathbf{M}' = \mathbf{MT}$ (4)

239 where **T** is a 10×10 matrix that constitutes the transformation or virtual surgery.

240 Incompatible virtual surgeries are designed such that muscle activations **m** produced by synergy
241 combinations **Sc** are restricted to generate forces along only one dimension of the force space,
242 while the resulting EMG-force mapping **M'** spans the whole force space. Therefore, theoretically,
243 any force can still be produced by a new combination of muscle activations **m'**, but in practice,
244 produced forces are biased towards one dimension of the plane.

245 It is important to note that the set of incompatible surgeries is infinite. This is because the number
246 of muscles used in the virtual mapping is larger than the number of muscle activity patterns found
247 using muscle synergy analysis. A previous study [10] combined randomness and difficulty
248 matching to select compatible and incompatible virtual surgeries.

249 In contrast, here we specified a series of constraints to yield only two possible virtual surgeries.
250 Specifically, we built hard **T_H** and easy **T_E** incompatible surgeries such that they were equivalent
251 in the force space spanned by each participant's extracted muscle synergies (Figs 1b and 1d).
252 We first note that according to equations 2, 3 and 4, forces produced during the surgery are given
253 by:

254 $\mathbf{f} = \mathbf{M}'\mathbf{m} = \mathbf{MTSc}$ (5)

255 assuming that muscle activations are generated by combinations of synergies. This equation
256 shows that surgery **T** can alternatively be thought to transform the extracted synergies **S** into a
257 new set of synergies:

258 $\mathbf{f} = \mathbf{MS}'\mathbf{c}$ (6)

259 In order to build an incompatible surgery it is necessary to find \mathbf{S}' such that the matrix \mathbf{MS}' is rank
260 deficient. This guarantees that forces produced by this mapping lie in a single dimension.
261 Geometrically, this means that the forces associated with each individual synergy from \mathbf{S}' are
262 collinear (Figs 1c and 1g).

263 Easy surgeries were built such that the angles between the column vectors of the original \mathbf{M}
264 mapping and of the transformed mapping \mathbf{M}' were as small as possible. In contrast, hard surgeries
265 were built by making these angles as large as possible (Fig 1b). These conditions produced \mathbf{M}'
266 mappings that are similar or very different to the original \mathbf{M} mapping in the case of easy or hard
267 surgeries, respectively. For this, we used a two-step optimization procedure to first obtain a
268 transformed set of synergies \mathbf{S}' , and second, to compute the incompatible surgery \mathbf{T} . We
269 constrained \mathbf{S}' to be equal for both the easy and hard incompatible surgeries. This ensured that
270 the only difference between both virtual surgeries is the transformed mapping \mathbf{MT} . We chose a
271 configuration such that the individual force vectors associated to each synergy in \mathbf{S} were rotated
272 onto a line that bisected the plane at an angle of 135° with the x-axis. Therefore, each force vector
273 conserved its magnitude, and its direction was assigned to the direction of the bisecting line that
274 was closest to it: 135° or -45°. This can be represented as a system of equations in which the
275 elements of \mathbf{S}' are the unknowns:

276 $\mathbf{MS}' = \mathbf{F}_{\text{des}}$ (7)

277 where \mathbf{F}_{des} is a $2 \times N$ matrix containing the desired force components associated with each
278 synergy after the virtual surgery in each of its columns, with N being the number of extracted
279 synergies. This problem has $10N$ unknowns and only $2N$ equations, so we introduced an
280 optimization objective to arrive to a unique solution. A reasonable objective is to minimize the sum
281 of the squares of the elements of \mathbf{S}' , as this creates a sparse set of synergies. Additionally the

282 elements of \mathbf{S} are required to be non-negative. This optimization problem can be posed as a
283 quadratic program:

284
$$\min_{\mathbf{s}} \sum_{i=1}^{10} \sum_{j=1}^N s_{ij}^2$$

285 s. t.
$$\begin{cases} \mathbf{MS}' = \mathbf{F}_{\text{des}} \\ s_{ij} \geq 0 \text{ for } i = 1, \dots, 10 \ j = 1, \dots, N \end{cases} \quad (8)$$

286 We transcribed this quadratic program into its canonical form and solved it using the *quadprog*
287 function in Matlab.

288 After obtaining \mathbf{S}' , we computed the incompatible surgery \mathbf{T} by noting that

289
$$\mathbf{S}' = \mathbf{TS} \quad (9)$$

290 This is a system of equations where the elements of \mathbf{T} are the unknowns. We note that \mathbf{T} is a 10×10 matrix, so in this case there are 100 unknowns and $10N$ equations. The system is
291 overdetermined in all cases where $N < 10$, which in our case is guaranteed.
292

293 In order to find the easy virtual surgery, we used our requirements of similarity between \mathbf{M} and \mathbf{M}'
294 to introduce an optimization objective to arrive to a unique solution. \mathbf{M} and \mathbf{M}' are considered
295 similar when the angles between their corresponding column vectors are as small as possible.
296 The cosine of the angle between two vectors is proportional to the dot product of both vectors.
297 Therefore, we defined the optimization objective as

298
$$\max_{\mathbf{t}} \sum_{i=1}^{10} \mathbf{h}_i \cdot \mathbf{h}'_i \quad (10)$$

299 where \mathbf{h}_i and \mathbf{h}'_i are the column vectors of \mathbf{M} and \mathbf{M}' , respectively. This optimization objective is
300 not bounded, so we added constraints to the magnitude of the resulting \mathbf{h}' vectors:

301
$$\|\mathbf{h}'_i\| \leq 1.5 \|\mathbf{h}_i\| \quad (11)$$

302 This problem can be posed as a linear program with quadratic constraints, with equation 10 as
303 the objective, and equations 9 and 11 as equality and inequality constraints, respectively. The
304 result of this optimization procedure yields \mathbf{T}_E , the easy incompatible virtual surgery.

305 In order to compute the hard incompatible virtual surgery \mathbf{T}_H , the procedure is the same as for the
306 easy incompatible surgery. The only difference is that the optimization objective is minimized
307 instead of being maximized. In turn, this maximizes the angles between \mathbf{h}_i and \mathbf{h}_i' :

308
$$\min_{\mathbf{t}} \sum_{i=1}^{10} \mathbf{h}_i \cdot \mathbf{h}_i' \quad (12)$$

309 Both linear programs with quadratic constraints were solved using the *fmincon* function in Matlab.

310 Data analysis

311 **Task performance metric.** We used the initial angular error as a metric to quantify task
312 performance during the experiment, before possible feedback corrections. The initial angular error
313 was calculated for each trial as $|\theta_{\text{target}} - \theta_{\text{cursor}}|$. θ_{target} is the direction of the target. θ_{cursor} is defined
314 as the direction of the line segment that joins the point at which the cursor exits a 2 cm diameter
315 circumference at the center of the screen and the position of the cursor 100 ms after exiting the
316 circumference. We averaged the initial angular error for the targets within sets of eight trials. We
317 only took into account targets that were not aligned with the line of action of the surgery. That is,
318 targets other than those at 135° and -45° from the horizontal on the screen.

319 **EMG residual analysis.** We analyzed the residual EMG signals obtained after reconstructing the
320 measured EMG signals based on the extracted muscle synergies. After synergy extraction using
321 the NMF algorithm, and extending equation 3, muscle activations can be represented as

322
$$\mathbf{m} = \mathbf{Sc} + \mathbf{r} = \mathbf{m}_{\text{syn}} + \mathbf{r} \quad (13)$$

323 where \mathbf{m}_{syn} is the synergy component of muscle activation, and \mathbf{r} is the residual component of
324 muscle activation that cannot be accounted for by the extracted synergies. Consequently, the
325 forces associated with the EMG signals by the EMG-force mapping have a synergy and a residual
326 component:

327
$$\mathbf{F} = \mathbf{Mm} = \mathbf{M}(\mathbf{Sc} + \mathbf{r}) = \mathbf{Mm}_{\text{syn}} + \mathbf{Mr} = \mathbf{F}_{\text{syn}} + \mathbf{F}_{\text{res}} \quad (14)$$

328 where \mathbf{F}_{syn} and \mathbf{F}_{res} are the synergy and residual components of force, respectively. Because
329 virtual surgeries are built based on \mathbf{S} , the intended effects of the virtual surgeries are only
330 manifested on the synergy component of force, and the effect on the residual force is not specified.

331 In order to decompose a given EMG sample \mathbf{m} into its synergy and residual components (\mathbf{m}_{syn}
332 and \mathbf{r}), we first computed \mathbf{m}_{syn} via non-negative least squared regression of \mathbf{S} and \mathbf{m} , which
333 yielded \mathbf{c} . This algorithm optimizes the same cost function as the NMF algorithm. Therefore, using
334 equation 13, \mathbf{m}_{syn} is given by the product of \mathbf{S} and \mathbf{c} . Consequently, \mathbf{r} is found by subtracting \mathbf{m}_{syn}
335 from \mathbf{m} .

336 We then analyzed the effects of the surgery on both the synergy and residual components of
337 EMG. For this, we used the EMG activity that participants produced when they acquired each
338 target during the first baseline phase of the experiment. We then separated the average EMG
339 activity of each subject and target \mathbf{m} into \mathbf{m}_{syn} and \mathbf{r} .

340 We also estimated both force components \mathbf{F}_{syn} and \mathbf{F}_{res} produced for each target at the onset of
341 the easy and hard virtual surgeries by substituting \mathbf{M} by \mathbf{M}' in equation 14. We then compared the
342 estimated force direction to the intended direction for each target to obtain an estimate of the error
343 that subjects would produce at the onset of each virtual surgery.

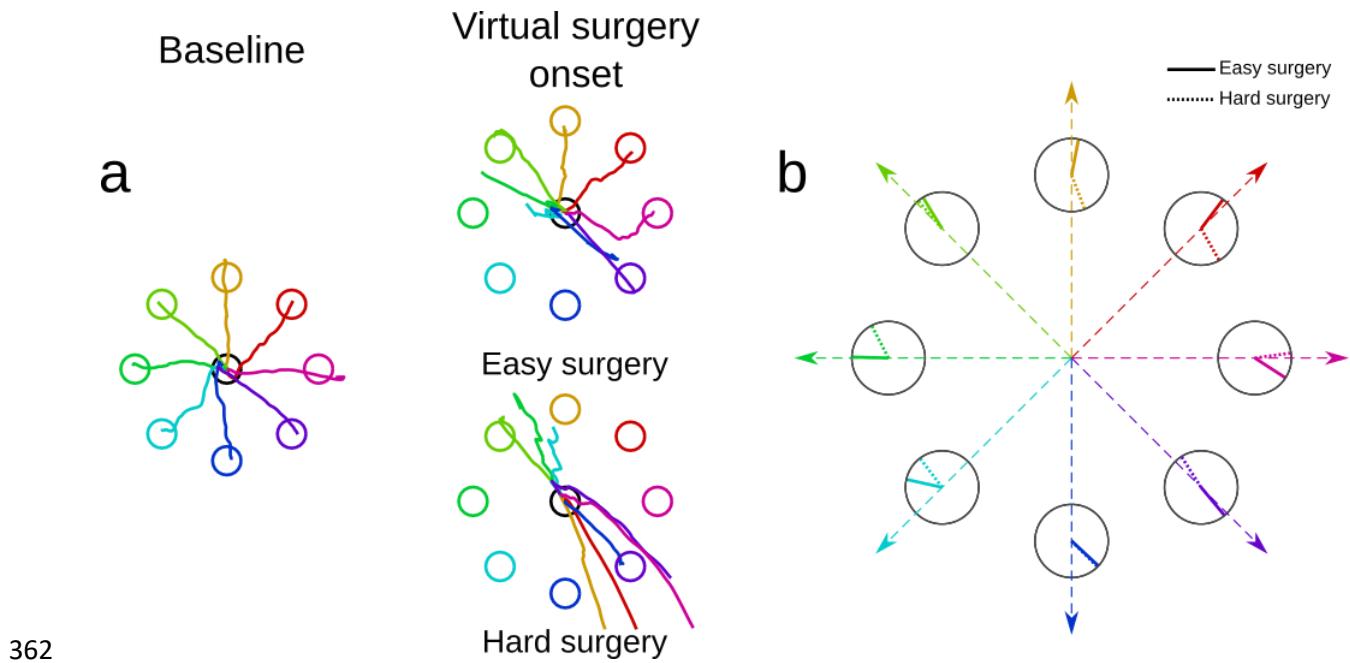
344 **Shuffling of EMG residuals.** Shuffling the residual component of different EMG signal samples
345 creates random residual components with the same statistical properties as the original residuals.

346 If the residual EMG activity can be disregarded as noise, then shuffling the residuals should have
347 no significant effect on the estimated forces with respect to pre-shuffling. On the contrary, if the
348 residuals have a structured organization, shuffling the residuals would destroy this organization.
349 Consequently, the force estimates would most likely be different from the pre-shuffling estimates.
350 We therefore shuffled the residual components of the EMG samples that we used to estimate
351 forces, and re-estimated the total forces that would be produced at the onset of the easy and hard
352 virtual surgeries. We averaged the results of 1000 different shuffling instances.

353 **Results**

354 **Hard incompatible virtual surgeries produced larger initial angular
355 errors than easy incompatible virtual surgeries.**

356 The number of extracted muscle synergies N for all subjects ranged from three to five ($N = 3$, 1
357 subjects; $N = 4$, 11 subjects; $N = 5$, 3 subjects). Fig 2 shows sample cursor trajectories before
358 and after the onset of the virtual surgeries. Both surgeries produced a bias in the cursor movement
359 along the designed direction as predicted, although cursor movements were not perfectly
360 constrained to this direction. Overall, deviations from the line of action of the surgery were closer
361 to the intended target during the easy surgery than during the hard surgery (Fig 2b).



362

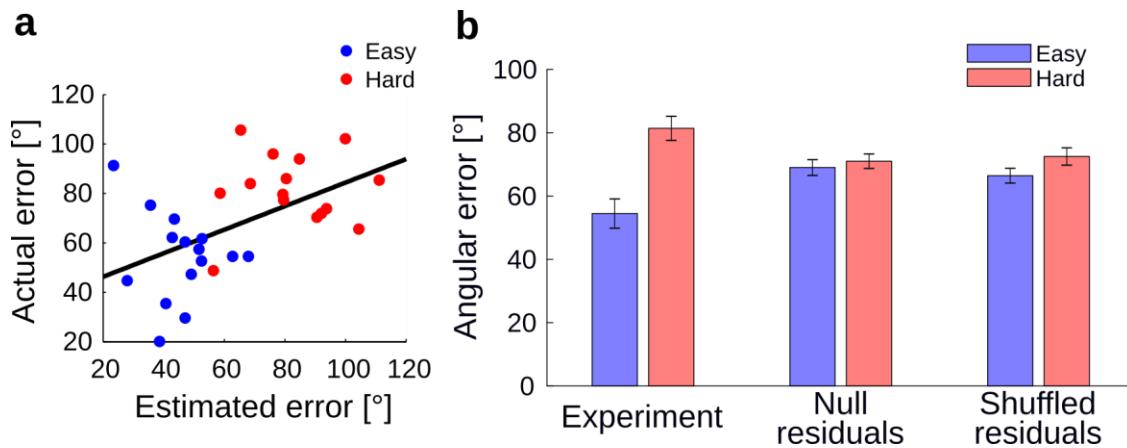
363 **Fig 2. Example of cursor trajectories during the EMG control task by a representative subject.**

364 **a.** Sample cursor trajectories. These trajectories correspond to the last target set of the baseline subtask,
365 and the first target set after the onset of the hard and easy incompatible virtual surgery tasks. This subject
366 experienced the easy virtual surgery first. The trajectories tended to fall along the line of action of the virtual
367 surgery, notably in the hard surgery. **b.** Comparison of initial directions of cursor movement between the
368 onset of the easy and hard virtual surgeries. Straight-line segments represent the computed direction of
369 movement of the cursor depicted in panel a 100 ms after exiting the central position. Solid lines correspond
370 to the initial directions during the easy surgery onset and dotted lines correspond to the hard surgery onset.
371 This subject produced larger initial errors at the onset of the hard virtual surgery than at the onset of the
372 easy surgery (see targets at 45° and 90°).

373

374 Over all 15 participants, the mean error for the first set of targets after the onset of the surgery
375 was clearly larger for the hard surgery than for the easy surgery (hard surgery: $81.4^\circ \pm 3.8^\circ$ s.e.,
376 easy surgery: $54.5^\circ \pm 4.6^\circ$ s.e., $p < 10^{-3}$, paired t-test; see Fig 3B, experiment). This difference in
377 errors may appear surprising at first, given that the easy and hard surgeries had the same effect
378 on the synergy component of the force. That is, they restricted the forces associated with the

379 synergies along one dimension. However, the synergies were only required to account for 90%
380 of the variance in EMG. Therefore, the EMG residuals appeared to generate an additional
381 component of force.

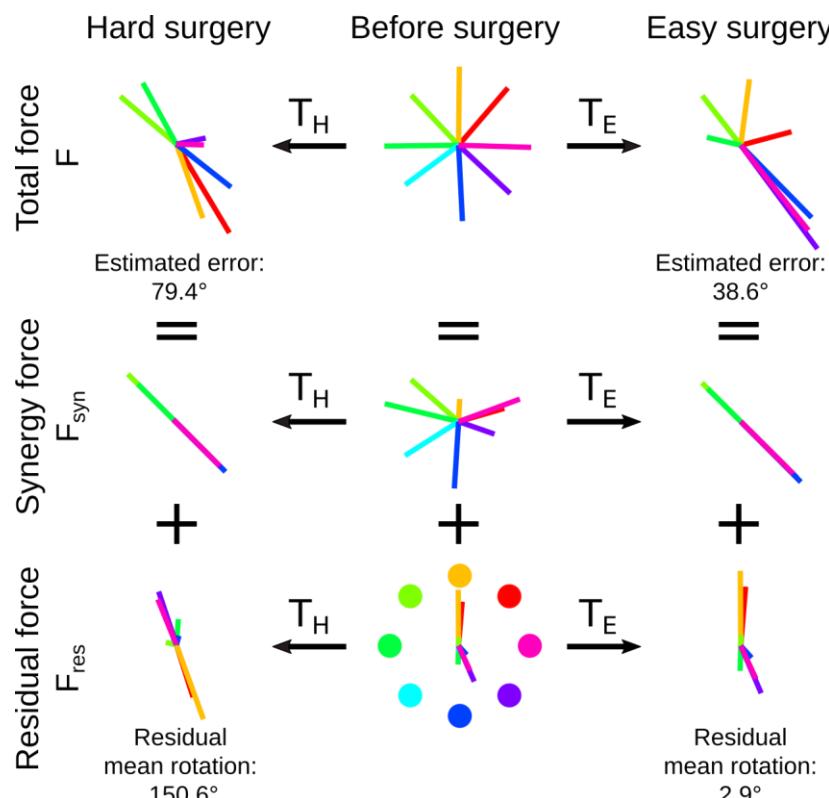


382 **Fig 3. Comparison between actual directional cursor errors and estimated errors.**
383 **a.** Correlation between the estimated average angular error after applying the surgery and the actual
384 average error during the first target set of the virtual surgery for all participants. **b.** Actual and estimated
385 errors in initial direction of force at the onset of the easy and hard virtual surgeries. In the experiment, the
386 hard surgery produced a larger initial error than the easy surgery. As a comparison, errors were also
387 estimated: i) using only the synergy component of the average EMG signals (null residuals), and ii) using
388 the shuffled residual component of the EMG. The null residual estimate produced error estimates that
389 showed no difference between the hard and the easy virtual surgeries. The EMG signals with shuffled
390 residuals produced error estimates that were similar to those obtained using only the synergy component
391 of the EMG signal.

393 **Initial angular error was determined by effect of surgery on residual
394 EMG activity**

395 To verify the effect of residuals on movement error, we decomposed the recorded EMG signals
396 into their synergy and residual components (equation 14). Fig 4 shows the estimated forces

397 corresponding to the total EMG activity \mathbf{F} (top), and the synergy (\mathbf{F}_{syn}) and residual (\mathbf{F}_{res})
 398 components of force (middle and bottom, respectively) at each target for a representative subject
 399 (equation 14). The center column shows \mathbf{F} , \mathbf{F}_{syn} and \mathbf{F}_{res} before the onset of the surgeries. The
 400 left and right columns show \mathbf{F} , \mathbf{F}_{syn} and \mathbf{F}_{res} after applying the hard and easy surgeries,
 401 respectively. The incompatible design of the surgery can be appreciated on \mathbf{F}_{syn} , as these forces
 402 lie on the 135° line of action of the virtual surgery (Fig 4, middle row).



403

404 **Fig 4. Residual forces can explain the differences in initial direction error at surgery onset between**
 405 **the easy and hard surgery conditions.**

406 Top row: Estimated forces \mathbf{F} at each target before and after applying the hard and easy virtual surgeries.
 407 We indicate the average estimated error across targets for each virtual surgery. Middle row: Estimated
 408 synergy components of force \mathbf{F}_{syn} at each target. Bottom row: Estimated residual components of force \mathbf{F}_{res}
 409 at each target. We indicate the average rotation of \mathbf{F}_{res} after each virtual surgery with respect to \mathbf{F}_{res} before
 410 the surgery. Middle column: \mathbf{F} , \mathbf{F}_{syn} and \mathbf{F}_{res} before the surgery. Left and right columns: \mathbf{F} , \mathbf{F}_{syn} and \mathbf{F}_{res}

411 after applying the hard and easy surgeries, respectively. Colors represent the eight targets in the task as
412 indicated in the middle bottom diagram. Data shown in this figure corresponds to the same representative
413 subject as in Fig 2.

414

415 Given that the EMG signals that we used to estimate forces were representative of the subjects'
416 actions during baseline, and assuming that subjects produced these EMG signals when suddenly
417 exposed to the virtual surgeries, the directions of the estimated forces after applying the virtual
418 surgery (Equation 5) also provided an estimate of the cursor error to each target (Fig 4, top row).
419 These initial error estimates were consistently higher for the hard surgery than for the easy
420 surgery (hard surgery: $82.75^\circ \pm 4.19^\circ$ s.e., easy surgery: $45.57^\circ \pm 3.03^\circ$ s.e., $p < 10^{-3}$, paired t-
421 test), and qualitatively matched the experimental results of the cursor error (robust regression,
422 slope = 0.47 ± 0.15 s.e., $p = 0.004$, $R^2 = 0.25$) (Fig 3a).

423 Errors following the easy and hard surgeries can be explained by the residual's structure (Fig 4,
424 bottom row). The hard surgery produced a mean rotation of \mathbf{F}_{res} with respect to baseline that was
425 much larger than that produced by the easy surgery (hard surgery: $113.60^\circ \pm 10.15^\circ$ s.e., easy
426 surgery: $4.42^\circ \pm 1.5^\circ$ s.e., $p < 10^{-3}$, paired t-test). Note that although we did not specify the effect
427 of the virtual surgery on the residual component of force, we found that it is stereotypical according
428 to the type of surgery.

429 **Shuffling residual EMG activity revealed structure in the residuals**

430 We then shuffled the residual EMG components among trials to all targets to demonstrate
431 possible structure. Initial error estimates based on the shuffled signals did not indicate a significant
432 difference in average initial error between the easy and hard virtual surgeries (easy surgery: 66.42°
433 $\pm 2.31^\circ$ s.e., hard surgery: $72.41^\circ \pm 2.72^\circ$ s.e., paired t-test, $p = 0.10$) (Fig 3b, shuffled residuals).
434 Furthermore, the magnitude of this error lied at an intermediate level between the errors observed
435 experimentally for the easy and hard surgeries. Importantly, the means of the estimates produced

436 by shuffled signals were indistinguishable from estimates produced based on a null residual
437 condition, that is, exclusively using the synergy component of the EMG to produce estimates
438 (easy surgery, paired t-test, $p = 0.45$; hard surgery, paired t-test, $p = 0.68$) (Fig 3b, null and
439 shuffled residuals).

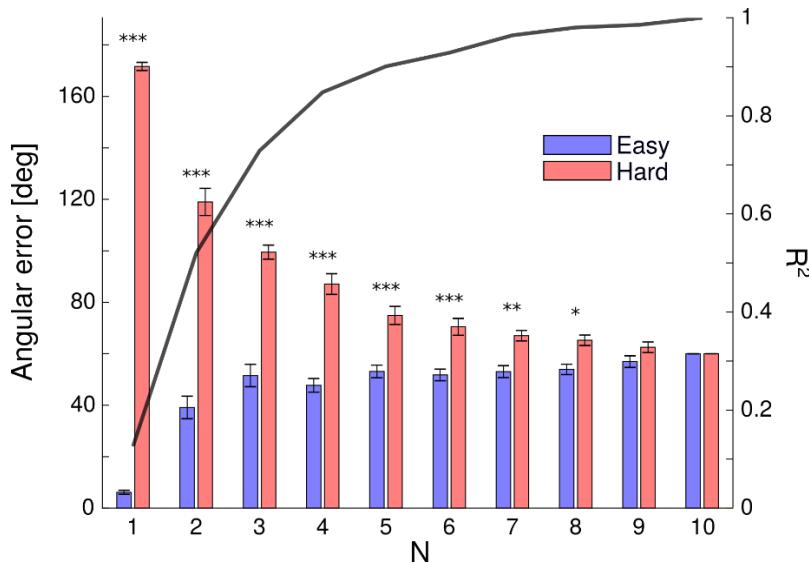
440 **Estimated differences between errors for easy and hard surgeries
441 remained significant for high-dimensional synergy sets**

442 We tested whether building virtual surgeries based on synergy sets with a larger N would abolish
443 the differences in initial direction error observed in the experiment. For each participant we built
444 easy and hard surgeries based on surgeries considering $N = 1, \dots, 10$ and applied the newly
445 constructed surgeries to the same set of EMG signals that we used to estimate errors after the
446 introduction of the surgery. This allowed us to estimate the errors that participants would have
447 produced if they had experienced these surgeries.

448 We found that the surgeries produced estimated differences in initial direction errors that were
449 maximal for $N = 1$, and gradually decreased until disappearing at $N = 10$ (as expected, since
450 activity from 10 muscles was recorded; Fig 5). The estimated error differences remained
451 significant up to $N = 8$ ($p = 0.001$, paired t-test). This indicates that the residual components of
452 EMG produced a differential effect on the estimated error even when high-dimensional synergy
453 sets that explained a portion of the variance that largely exceeded the heuristic rule requirements
454 ($R^2 = 0.98 \pm 0.0087$ s.e. at $N = 8$) were used to build the virtual surgeries.

455

456



457 **Fig 5. Estimated errors in initial direction when using easy and hard virtual surgeries based on**
458 **muscle synergy sets with $N = 1, \dots, 10$.**

459 Differences in estimated errors between easy and hard surgeries were significant up to $N = 8$ ($p = 0.001$,
460 paired t-test). Bars represent the mean estimated error across the 15 participants and error bars represent
461 the standard error of the estimated error. The significance of the difference between the estimated errors
462 in the hard and easy surgeries is indicated with asterisks on top of each pair of bars. ***: $p < 0.0001$, **: p
463 < 0.001 , and *: $p < 0.005$ The solid black line shows the mean across participants of R^2 , the reconstruction
464 quality of the baseline EMG signals used for the error estimation when considering $N = 1, \dots, 10$.

465

Discussion

466 Muscle synergy extraction techniques require that combinations of the identified synergies
467 reconstruct the measured muscle activity to a heuristically defined level of accuracy, such as
468 accounting for at least 90% of the variance in the EMG. These techniques therefore attribute the
469 residual muscle activity not reconstructed by the identified synergies to noise. Here we studied
470 the importance of residual EMG activity in the execution of a virtual motor task. We designed the
471 virtual task based on a virtual surgery [10, 24] and exploited the property that virtual surgeries can
472 produce equivalent muscle synergy-force mappings while resulting in different individual muscle-

473 force mappings. We tested two different virtual surgeries that shared a common muscle synergy-
474 force mapping, but differed maximally in their individual muscle-force mappings (easy and hard
475 virtual surgeries). The surgeries had the desired effect only on the portion of the EMG signals
476 explained by the extracted muscle synergies, defined to account for at least 90% of the variability
477 in the signal. Therefore, the effect on the residual EMG variability was unspecified, allowing for a
478 possible differential effect on the performance of the task.

479 We found that participants produced larger errors at the onset of the hard surgery than at the
480 onset of the easy surgery. We were able to predict this result qualitatively (Fig 3a) by estimating
481 the forces and errors that would be produced during each virtual surgery by using representative
482 EMG signals recorded during the baseline phase of the experiment and transforming the
483 estimated forces using the virtual surgeries. Importantly, this procedure also allowed us to
484 separate the recorded EMG signals and the estimated forces into their synergy and residual
485 components (Fig 4). The virtual surgeries produced the expected effects on the synergy
486 component of the EMG. However, the easy surgery barely produced any changes on the direction
487 of the forces associated with the residual component, whereas the hard surgery produced large
488 changes in the direction of these forces. Given that the total force is equal to the sum of the
489 synergy and residual components, any difference between both virtual surgeries in the estimated
490 force and error must arise from the difference in the residual components. This provides evidence
491 that the residual component of the EMG is essential for accounting for our experimental results,
492 suggesting a latent structure in the residuals.

493 We also considered the alternative case in which the residual EMG activity is composed of noise.
494 In this situation, we posited that there would be no differential effect of the easy and hard surgeries
495 on the initial error, or that this effect would be small. To test this, we used the previously
496 decomposed EMG signals and shuffled the residual components among all these EMG samples.
497 This effectively destroyed any potential structure in the residual component, as they became

498 randomized. We found that the easy and hard surgeries did not produce significant differential
499 effects in the estimated initial error across participants when applied to the shuffled EMG signals.

500 This analysis suggests that the residual component of the EMG cannot be disregarded as purely
501 noise, and therefore demonstration of a latent structure in the residuals.

502 Dimensionality reduction techniques such as NMF are useful for extracting patterns from high-
503 dimensional data sets, such as EMG recordings from multiple muscles. These techniques are
504 usually able to extract as many patterns or synergies as individual muscles. However, there is no
505 objective means for selecting the number of synergies of interest a priori given the exploratory
506 nature of the analysis and the lack of a ground truth. Therefore, heuristic rules, such as selecting
507 the number of synergies based on predefined goodness of reconstruction criteria are a common
508 practice (i.e., reconstructing the data to a given level of accuracy, or finding an elbow in the
509 goodness of reconstruction curve). These heuristic rules are necessarily ad hoc, and are tailored
510 to produce useful results in the domain of the studied problem [25].

511 These heuristic rules ignore the role of muscle synergies in the generation of movement. That is,
512 muscle synergy extraction has mainly focused on describing muscle activity in the input space,
513 but has neglected the reconstruction of forces and movements in the task space [19, 21]. A
514 number of studies have attempted the extension from input to task space in the scope of the study
515 of synergies by incorporating task-relevant constraints, such as force reconstruction, in the
516 dimensionality reduction procedure [13, 26]. However, in these studies, assumptions of linearity
517 were made in the relationship between input and task spaces, that is, muscle activations and
518 forces. Alternatively, other studies took a simulation approach by using muscle synergy activity
519 derived experimentally as input to a computational biomechanical model to assess the goodness
520 of the resulting movement reconstruction [27]. However, tuning of muscle activations during the
521 simulations was necessary to obtain favorable results. Further difficulties in the use of
522 computational biomechanical models to test for reconstruction of task space variables could stem

523 from the difficulty of measuring EMG from all muscles involved in a movement and of building
524 sufficiently accurate musculoskeletal models.

525 An alternative approach for studying the influence of extracted synergies on task-space variables
526 consists in using a virtual isometric task, such as in this study and others [10, 22, 28]. Virtual tasks
527 overcome the difficulty of obtaining complex biomechanical models, as the task can be defined
528 by the experimenter. This way, the physics of the system are linear and known, and can be used
529 in simulations in a straightforward way. A study using this approach showed that the
530 reconstruction of isometric forces in an EMG-controlled task using muscle synergy decomposition
531 is acceptable only when the number of synergies is equal to the number of considered muscles
532 [22]. Otherwise, the reconstruction quality quickly degrades even when the number of synergies
533 is derived from widely used heuristic rules [22]. Decreasing the number of synergies is associated
534 with larger residual components of the EMG, which we showed to play an important role in task
535 performance. Thus, our results further expand on this view, with the additional contribution of not
536 being limited by the passive reconstruction of forces, but by directly manipulating the contribution
537 of the residual component of the EMG to isometric force to highlight its importance in the execution
538 of the task. These results emphasize the need of a shift within the community in the criteria used
539 to evaluate the goodness of muscle synergies extracted through dimensionality reduction
540 methods such as NMF.

541 Our results suggest that humans produce muscle activations that cannot be fully accounted for
542 by linear combinations of low-dimensional sets of muscle synergies, as extracted via NMF. This
543 is not in conflict with the notion that the CNS uses muscle synergies as building blocks of
544 movement embedded in neural circuits, as shown by numerous animal studies [3-6]. Additionally,
545 synergy control in a myoelectric task (isolating m_{syn} from r) has been shown to produce cursor
546 trajectories similar to control through individual muscles, showing that synergy control may be
547 useful for myoelectric interface applications [28]. However, this does not necessarily imply that

548 the CNS is limited to a small number of muscles synergies structurally defined in neural circuits.

549 It is entirely possible that the CNS readily learns and exploits a large number of task-dependent

550 muscle synergies, which may vary from individual to individual [29]. In this sense, the role of

551 muscle synergies could be viewed as a source of flexibility in the repertoire of possible motor

552 commands and stability in movement execution, as opposed to a way to simplify the control of

553 movement by limiting the number of control inputs [30].

554 The main limitation of our study is that our experimental design was originally conceived to test

555 motor learning of virtual surgeries (to be presented in a follow-up manuscript). Therefore, the

556 virtual surgery trials were presented in blocks after transitions from baseline trials. This could have

557 induced a small amount of learning in the trials immediately following the perturbation or engaged

558 exploratory behaviors due to the saliency of the perturbation. These undesired factors could

559 explain why our initial error estimates do not match the experimental data more closely. A more

560 appropriate design would randomly introduce catch trials for each surgery type among baseline

561 trials to reduce learning effects. Nonetheless, because the observed differential effect between

562 both virtual surgeries was large and robust, the results of a study that addresses these limitations

563 would probably not be very different from our current results.

564 Overall, our results indicate that current muscle synergy identification techniques wrongly attribute

565 the fraction of unexplained variability in the EMG signals to noise. Our study is not able to discern

566 whether the structure of the residual component of the EMG is due to the inadequacy of an

567 additive linear model of muscle synergies, additional muscle synergies left out of the analysis by

568 the 90% variance or other heuristic rules, or due to other possible sources like individual muscle

569 control. However, it is clear that studies that aim to infer neural structures through EMG recordings

570 should carefully consider the role of the residual component of the EMG signals.

571 References

572 1. Bernstein N. The co-ordination and regulation of movement. Oxford, UK: Pergamon; 1967.

573 2. Lee WA. Neuromotor synergies as a basis for coordinated intentional action. *Journal of Motor*
574 *Behavior*. 1984;16(2):135-70. PubMed PMID: WOS:A1984TA83100003.

575 3. Bizzi E, Mussa-Ivaldi FA, Giszter S. Computations underlying the execution of movement- a
576 biological perspective. *Science*. 1991;253(5017):287-91. doi: 10.1126/science.1857964. PubMed PMID:
577 WOS:A1991FX22400032.

578 4. Tresch MC, Saltiel P, Bizzi E. The construction of movement by the spinal cord. *Nature*
579 *Neuroscience*. 1999;2(2):162-7. PubMed PMID: WOS:000078231600016.

580 5. Caggiano V, Cheung VCK, Bizzi E. An Optogenetic Demonstration of Motor Modularity in the
581 Mammalian Spinal Cord. *Scientific Reports*. 2016;6:15. doi: 10.1038/srep35185. PubMed PMID:
582 WOS:000385343400001.

583 6. Mussa-Ivaldi FA, Giszter SF, Bizzi E. Linear combinations of primitives in vertebrate motor control.
584 *Proceedings of the National Academy of Sciences of the United States of America*. 1994;91(16):7534-8.
585 doi: 10.1073/pnas.91.16.7534. PubMed PMID: WOS:A1994PA37600033.

586 7. Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F. Coordination of locomotion with
587 voluntary movements in humans. *Journal of Neuroscience*. 2005;25(31):7238-53. doi:
588 10.1523/jneurosci.1327-05.2005. PubMed PMID: WOS:000230987300017.

589 8. Roh J, Rymer WZ, Beer RF. Robustness of muscle synergies underlying three-dimensional force
590 generation at the hand in healthy humans. *Journal of Neurophysiology*. 2012;107(8):2123-42. doi:
591 10.1152/jn.00173.2011. PubMed PMID: WOS:000302910400008.

592 9. Cheung VCK, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, et al. Muscle synergy patterns as
593 physiological markers of motor cortical damage. *Proceedings of the National Academy of Sciences of the*
594 *United States of America*. 2012;109(36):14652-6. doi: 10.1073/pnas.1212056109. PubMed PMID:
595 WOS:000308912600072.

596 10. Berger DJ, Gentner R, Edmunds T, Pai DK, d'Avella A. Differences in Adaptation Rates after Virtual
597 Surgeries Provide Direct Evidence for Modularity. *Journal of Neuroscience*. 2013;33(30):12384-94. doi:
598 10.1523/jneurosci.0122-13.2013. PubMed PMID: WOS:000322168600023.

599 11. d'Avella A, Portone A, Fernandez L, Lacquaniti F. Control of Fast-Reaching Movements by Muscle
600 Synergy Combinations. *The Journal of Neuroscience*. 2006;26(30):7791.

601 12. Tresch MC, Cheung VCK, d'Avella A. Matrix factorization algorithms for the identification of
602 muscle synergies: Evaluation on simulated and experimental data sets. *Journal of Neurophysiology*.
603 2006;95(4):2199-212. doi: 10.1152/jn.00222.2005. PubMed PMID: WOS:000236152100017.

604 13. Torres-Oviedo G, Macpherson JM, Ting LH. Muscle synergy organization is robust across a variety
605 of postural perturbations. *Journal of Neurophysiology*. 2006;96(3):1530-46. doi: 10.1152/jn.00810.2005.
606 PubMed PMID: WOS:000239659000052.

607 14. Bizzi E, Cheung VCK. The neural origin of muscle synergies. *Frontiers in Computational*
608 *Neuroscience*. 2013;7:6. doi: 10.3389/fncom.2013.00051. PubMed PMID: WOS:000318854400001.

609 15. Steele KM, Tresch MC, Perreault EJ. Consequences of biomechanically constrained tasks in the
610 design and interpretation of synergy analyses. *Journal of Neurophysiology*. 2015;113(7):2102-13. doi:
611 10.1152/jn.00769.2013. PubMed PMID: WOS:000355000900012.

612 16. Kutch JJ, Valero-Cuevas FJ. Challenges and New Approaches to Proving the Existence of Muscle
613 Synergies of Neural Origin. *Plos Computational Biology*. 2012;8(5):11. doi: 10.1371/journal.pcbi.1002434.
614 PubMed PMID: WOS:000305964600001.

615 17. Burkholder TJ, van Antwerp KW. Practical limits on muscle synergy identification by non-negative
616 matrix factorization in systems with mechanical constraints. *Medical & Biological Engineering &*
617 *Computing.* 2013;51(1-2):187-96. doi: 10.1007/s11517-012-0983-8. PubMed PMID:
618 WOS:000315450100019.

619 18. Tresch MC, Jarc A. The case for and against muscle synergies. *Current Opinion in Neurobiology.*
620 2009;19(6):601-7. doi: 10.1016/j.conb.2009.09.002. PubMed PMID: WOS:000273864300005.

621 19. Berret B, Delis I, Gaveau J, Jean F. Optimality and modularity in human movement: from optimal
622 control to muscle synergies. *Biomechanics of anthropomorphic systems.* Cham: Springer; 2019. p. 105-
623 33.

624 20. Steele KM, Tresch MC, Perreault EJ. The number and choice of muscles impact the results of
625 muscle synergy analyses. *Frontiers in Computational Neuroscience.* 2013;7:9. doi:
626 10.3389/fncom.2013.00105. PubMed PMID: WOS:000323416400001.

627 21. Alessandro C, Delis I, Nori F, Panzeri S, Berret B. Muscle synergies in neuroscience and robotics:
628 from input-space to task-space perspectives. *Frontiers in Computational Neuroscience.* 2013;7:16. doi:
629 10.3389/fncom.2013.00043. PubMed PMID: WOS:000318857400003.

630 22. de Rugy A, Loeb GE, Carroll TJ. Are muscle synergies useful for neural control? *Frontiers in*
631 *Computational Neuroscience.* 2013;7:13. doi: 10.3389/fncom.2013.00019. PubMed PMID:
632 WOS:000317577200001.

633 23. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. *Nature.*
634 1999;401(6755):788-91.

635 24. de Rugy A, Loeb GE, Carroll TJ. Muscle Coordination Is Habitual Rather than Optimal. *Journal of*
636 *Neuroscience.* 2012;32(21):7384-91. doi: 10.1523/jneurosci.5792-11.2012. PubMed PMID:
637 WOS:000304421000031.

638 25. James G, Witten D, Hastie T, Tibshirani R. *An Introduction to Statistical Learning with Applications*
639 *in R Introduction.* *Introduction to Statistical Learning: with Applications in R.* Springer Texts in Statistics.
640 103. New York: Springer; 2013. p. 1-14.

641 26. Ting LH, Macpherson JM. A limited set of muscle synergies for force control during a postural task.
642 *Journal of Neurophysiology.* 2005;93(1):609-13. doi: 10.1152/jn.00681.2004. PubMed PMID:
643 WOS:000225777900052.

644 27. Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: A simulation study. *Journal of*
645 *Biomechanics.* 2009;42(9):1282-7. doi: 10.1016/j.jbiomech.2009.03.009. PubMed PMID:
646 WOS:000267814600017.

647 28. Berger DJ, d'Avella A. Effective force control by muscle synergies. *Frontiers in Computational*
648 *Neuroscience.* 2014;8:13. doi: 10.3389/fncom.2014.00046. PubMed PMID: WOS:000334412700001.

649 29. Nazarpour K, Barnard A, Jackson A. Flexible Cortical Control of Task-Specific Muscle Synergies.
650 *Journal of Neuroscience.* 2012;32(36):12349-60. doi: 10.1523/jneurosci.5481-11.2012. PubMed PMID:
651 WOS:000308677300005.

652 30. Latash ML, Scholz JP, Schoner G. Toward a new theory of motor synergies. *Motor Control.*
653 2007;11(3):276-308. doi: 10.1123/mcj.11.3.276. PubMed PMID: WOS:000248661900005.

654