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Abstract 
Most regulatory chromatin interactions are mediated by various transcription factors (TFs) 

and involve physically-interacting elements such as enhancers, insulators, or promoters.  

To map these elements and interactions, we developed HIPPIE2 which analyzes raw reads 

from high-throughput chromosome conformation (Hi-C) experiments to identify fine-scale 

physically-interacting regions (PIRs).  Unlike standard genome binning approaches (e.g., 

10K-1Mbp bins), HIPPIE2 dynamically calls physical locations of PIRs with better precision 

and higher resolution based on the pattern of restriction events and relative locations of 

interacting sites inferred from the sequencing readout. 

 

We applied HIPPIE2 to in situ Hi-C datasets across 6 human cell lines (GM12878, IMR90, 

K562, HMEC, HUVEC, NHEK) with matched ENCODE and Roadmap functional genomic 

data. HIPPIE2 detected 1,042,738 distinct PIRs across cell lines, with high resolution 

(average PIR length of 1,006bps) and high reproducibility (92.3% in GM12878 replicates). 

32.8% of PIRs were shared among cell lines. PIRs are enriched for epigenetic marks 

(H3K27ac, H3K4me1) and open chromatin, suggesting active regulatory roles.  HIPPIE2 

identified 2.8M significant intrachromosomal PIR–PIR interactions, 27.2% of which were 

enriched for TF binding sites. 50,608 interactions were enhancer–promoter interactions 

and were enriched for 33 TFs (31 in enhancers/29 in promoters), several of which are 

known to mediate DNA looping/long-distance regulation. 29 TFs were enriched in >1 cell 

line and 4 were cell line-specific. These findings demonstrate that the dynamic approach 

used in HIPPIE2 (https://bitbucket.com/wanglab-upenn/HIPPIE2) characterizes PIR–PIR 

interactions with high resolution and reproducibility.  
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Introduction 

Enhancers are non-coding DNA elements that regulate gene expression by 

recruiting transcription factors which in turn mediate physical interactions with the 

promoters of their target genes to increase transcription of those genes. The 

genome-wide relationship between enhancers and their target genes depends on 

the three-dimensional DNA looping associated with enhancer–promoter 

interactions. To capture genome-wide chromatin interactions in Hi-C (Lieberman-

Aiden et al., 2009), physically-interacting DNA regions and their binding proteins 

are cross-linked, followed by restriction enzyme cleavage and proximity ligation of 

the interacting DNA fragments to localize and capture pairs of interacting DNA 

fragments. These ligated DNA fragments are then sequenced to identify the 

chromatin interaction map genome-wide.  Higher resolution in localizing interacting 

DNA fragments has been achieved by using a restriction enzyme with more frequent 

sites throughout the genome (e.g., MboI, a 4-cutter with a 4 base-pair motif, instead 

of a 6-cutter such as HindIII or NcoI) and by performing the DNA–DNA proximity 

ligation in intact nuclei to generate denser Hi-C contact matrices (Rao et al., 2014). 

Previous methods for analyzing Hi-C data (Ay et al., 2014; Consortium et al., 

2015; Durand et al., 2016; Forcato et al., 2017; Imakaev et al., 2012; Jin et al., 2013; 

Kaplan and Dekker, 2013; Lieberman-Aiden et al., 2009; Lun and Smyth, 2015; Ma et 

al., 2015; Norton et al., 2018; Rao et al., 2014; Yaffe and Tanay, 2011; Yang et al., 

2018) have implemented a binning-based scheme for identifying interacting 
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genomic regions, where reads are aggregated into equally-sized bins by genome 

coordinates and interacting regions are identified as pairs of bins with significant 

enrichments of reads using statistical models accounting for biases (e.g. negative 

correlation between linear genomic distance, number of reads and mappability) of 

the individual bins. While binning is effective at delineating large-scale chromatin 

structure, it does not capture specific physically-interacting DNA regions. The 

methods of Jin et al. and Hwang et al. (Hwang et al., 2013, 2014; Jin et al., 2013) have 

shown that it is possible to study interactions at the level of restriction fragments 

(i.e. the DNA region between two consecutive restriction sites) rather than bins 

using 6-cutter restriction. Restriction fragment-based binning might be problematic 

for more frequent cutters such as 4-cutter (e.g. MboI) (Rao et al., 2014), since 

restriction fragment length is much smaller on average and interacting DNA sites 

are more likely to span more than one restriction fragment.  

To address these limitations, we propose HIPPIE2 (Figure 1a,b), a novel 

computational method that infers the locations of DNA physically-interacting 

regions (PIRs) by identifying regions enclosed by restriction events observed on 

both sides of DNA-protein Hi-C construct (Figure 2, Methods; Supplementary 

Figure 6). This strategy allows HIPPIE2 to identify individual interacting DNA 

elements with better specificity than binning.  HIPPIE2 uses cell type-matched 

functional genomics data to characterize the interacting PIRs into functional 

categories including enhancers and promoters. This enables the high-resolution 
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identification of cell type-specific enhancer–promoter interactions, and we show a 

corresponding enrichment in PIR–PIR interactions of transcription factor binding 

sites (TFBSs) for transcription factors known to be involved in enhancer–promoter 

interactions. HIPPIE2 is open source (https://bitbucket.com/wanglab-

upenn/HIPPIE2) and freely available as a full pipeline to automate analysis from 

raw Hi-C reads to identification of PIRs, significant PIR–PIR interactions, functional 

genomics annotations and TF analysis. 
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Figure 1. Description of HIPPIE2 pipeline and mapping statistics. A) Detailed 

processing pipeline of HIPPIE2. B) Overview of HIPPIE2 algorithm. C) Mapping statistics 

across cell lines. 

6
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Figure 2. Hi-C model and identification of DNA physically-interacting region. A) 

Interacting DNA regions are cut by the MboI restriction enzyme. B) Cut fragments are 

ligated together and size-selected. C) Paired end-sequencing is performed on the ligated 

fragments. D) Read pileups around the cleavage sites inform the identification of the 

physically-interacting region. E) Genomic view of read pileups, restriction sites, and 

interacting regions (PIRs) locations. Upstream (ubl) and downstream (dbl) boundary 

locations for PIRs correspond to most consistently cut (as evidenced by the number of 

reads) restriction/ligation sites. F) Distribution of restriction events (REs) around 

physically-interacting DNA regions (PIRs) identified by HIPPIE2.  Shown is the distribution 

of the restriction events for PIRs in GM12878 cell line. 
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Results 

HIPPIE2 identifies fine-scale physically-interacting DNA regions 

(PIRs) 

 The HIPPIE2 method presented in this manuscript further develops our HIPPIE 

method (Hwang et al., 2014): HIPPIE2 applies a newer read mapping protocol to resolve 

chimeric reads, interaction calling algorithm, and introduces novel algorithms to 

dynamically identify fine-scale interacting regions (Figures 1,2) instead of binning reads 

into full restriction fragments used in HIPPIE (Hwang et al., 2014). To illustrate our 

method, we applied HIPPIE2 to analyze high read depth Hi-C sequencing datasets (Rao et 

al., 2014) using the 4bp-cutter MboI across six  human cell lines that had matching 

functional genomics data from ENCODE or Roadmap (Bernstein et al., 2012; Consortium et 

al., 2015) including K562, HMEC, HUVEC, IMR90, NHEK, and GM12878, with two replicates 

for GM12878 (Figure 1a-b). For each cell line, we mapped the raw Hi-C read-pairs using 

STAR (Dobin et al., 2013) (Methods), uniquely mapping between 73.6% and 85.4% of Hi-C 

reads across the 51 separate libraries for these cell lines (Figure 1c, Supplementary 

Figure 1). Following (Rao et al., 2014), we normalized the read counts using matrix 

normalization by Knight and Ruiz (Knight and Ruiz, 2012). Using normalized counts, 

HIPPIE2 identifies physically-interacting regions (PIRs) as the DNA regions flanked on both 

sides by restriction sites (RSs) that were observed to be consistently cleaved/ligated in a 

given Hi-C sequencing library, using information from the Hi-C sequencing read-out 

including the read mapping coordinates, distances from reads to their nearest restriction 

sites, DNA ligation constraints and strand orientations (+/-) of the mapped read-pairs, and 
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relative locations of DNA interaction sites with respect to mapped reads (Methods, Figure 

2). This dynamic PIR-based approach enables finer-scale identification of specific 

interacting DNA regions compared to the binning approach (Table 1).  

In total, HIPPIE2 called between 1,584,000 and 1,886,000 PIRs from chromosomes 

1-22 and X across cell lines (Figure 3a). These PIRs had an average length of 1,006 base 

pairs consistent across cell lines (Supplementary Figure 2a), which corresponds to 2.4 

average restriction fragment length. Across libraries, these identified PIRs covered 53.2%-

59.3% of the genome (Supplementary Figure 2b). HIPPIE2 annotated these PIRs with 

gene annotations (Pruitt et al., 2014) including promoters, exons, and introns, which found 

that a majority of PIRs in all cell types were intergenic and the next largest class of overlaps 

were in mRNA introns, supporting the regulatory roles of these PIRs (Figure 3b). 

Comparing with DNase-seq-based regions of open chromatin in the matching cell types 

from Roadmap/ENCODE, we found that 73.84-79.04% of open chromatin regions were 

covered by PIRs across cell types, with an average of 69.97% of the open chromatin peaks 

covered by PIRs (Figure 3c). PIR identification by HIPPIE2 is highly robust, with 92.3% 

PIRs (1,649,417) found in the two GM12878 replicates. 
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Figure 3. PIR characteristics. A) Total PIRs identified across cell lines. B) Localization 

patterns of PIRs in various genomic annotations. C) Overlap patterns of PIRs with cell type-

matched open chromatin annotations. Yellow distributions display the proportions of 

individual open chromatin peaks by PIRs and purple bars are proportion of all open 

chromatin peaks with any PIR coverage. 

  

10
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HIPPIE2 detects fine-scale chromatin interactions  

To identify which PIR–PIR pairs are significantly interacting, HIPPIE2 applies Fit-Hi-C 

algorithm (Ay et al., 2014) using the normalized read counts and linear genomic distance 

between pairs of potentially interacting PIRs (Methods). Across cell lines, HIPPIE2 

identified between 42,500 and 1,194,010 intra-chromosomal significant PIR–PIR 

interactions (>5 kb apart, adjusted P value ≤ 0.05, Figure 4a). To investigate robustness of 

interaction calling, we compared the two GM12878 replicates. Consistent with the lower 

sequencing depth of the replicate library (2.5 billion vs 3 billion reads), we identified fewer 

significant interactions and PIRs involved in significant interactions in the replicate library 

(Figure 4a), but found a significant overlap between PIRs and PIR–PIR interactions 

(Figure 4b-c), with majority (66.2%; 274,445/414,343) of PIRs and 31.1% 

(196,343/631,610) of PIR–PIR interactions in the replicate found in the primary library. 

This level of replication is consistent with prior studies of Hi-C replication (Forcato et al., 

2017), which found similar levels of replicated interactions across Hi-C datasets.  

To interrogate the relationship between sequencing depth and interaction replication, 

we binned the interactions from the GM12878 primary library into deciles by read 

coverage (analogous to down-sampling) and compared their replication rates. We found a 

striking positive correlation between read coverage and replication rate (R2 = 0.9398, 

Figure 4d), suggesting that reproducibility between replicates may be increased with a 

higher sequencing depth. 
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Figure 4. Characteristics of significant PIR–PIR interaction identification and 

replication. A) Counts of PIRs involved in significant interactions (left) and number of 

12
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significant PIR–PIR interactions (right) across cell lines. B) Number of PIRs involved in 

significant interactions replicated between the primary and secondary GM12878 libraries. 

C) Number of PIR–PIR interactions replicated between the primary and secondary 

GM12878 libraries. D) Plot of replication rate against PIR read coverage quantiles. 

Correlation is the Pearson correlation. E) Replication of Rao data by HIPPIE2. Interacting 

bins refer to 10kb Rao bins involved in significant interactions and bin–bin interactions are 

significant interactions. 

 

Comparison with uniform binning-based approach 

HIPPIE2 provides a more accurate approach for identifying fine-scale interacting sites by 

design: previous methods that use a binning-based approach maximize their statistical 

power to detect interactions, with a tradeoff of accuracy for identifying the interacting site 

(Table 1). Due to the fundamentally different natures of the binning-based algorithms 

compared to HIPPIE2 and the lack of a ‘ground truth’ dataset of expected Hi-C interactions, 

it is challenging to directly compare the HIPPIE2 interactions with these previous methods. 

However, to explore the differences between the binning approaches and HIPPIE2 PIR-

based approach, we compare the HIPPIE2 results with the results from (Rao et al., 2014) 

obtained using HiCCUPS method   (we note that a detailed comparison among Hi-C 

methods has been reported in the recent study by Forcato et al (Forcato et al., 2017)).    
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Table 1: Comparison of HIPPIE2 with other Hi-C methodologies 

Method Input Resolution Output Downstream 

Analyses 

HIPPIE2 Raw reads Dynamic, 

restriction 

event-based 

(1kb average) 

High-resolution 

restriction site-

based 

physically-

interacting 

regions (PIRs), 

PIR–PIR 

interactions 

Genic and cell type-

specific epigenetic 

annotation of 

interactions, 

identification of 

mediating 

transcription factors, 

identification of 

enhancer–promoter 

interactions 

HIPPIE (Hwang 

et al., 2014) 

Raw reads Restriction 

fragment-based 

(4kb average) 

Full restriction 

fragment-based 

physically-

interacting 

regions 

Annotated 

interactions, 

enhancer–promoter 

interactions 

HiCCUPS 

(Durand et al., 

2016; Rao et al., 

2014) 

Raw reads Fixed bins  loops (bin-bin 

interactions) 

NA 

We compared our HIPPIE2-identified PIRs with the HiCCUPS-identified loop 

anchors and interactions (bin size=10K) (Rao et al., 2014). Across cell lines, the set of PIRs 

identified by HIPPIE2 is consistent with and is complementary to the previously identified 

set of interacting genomic regions: we found that HIPPIE2 PIRs covered an average of 

60.2% of HiCCUPS-identified loop anchors across cell lines, with the highest proportion 

(91.4%) in the primary, most deeply sequenced GM12878 library (Methods, Figure 4e). 

The HMEC, HUVEC, and NHEK cell lines were the only ones with a proportion less than 

50%, corresponding to their shallower sequencing depth (Pearson R2 = 0.862 between 

sequencing depth and replication proportion).  
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Next considering HIPPIE2 PIR–PIR interactions and HiCCUPS loops, we found that 

37.4% of HiCCUPS loops in GM12878 primary library, with an average of 16.6% of 

HiCCUPS loops across cell lines, were supported by significant HIPPIE2 PIR–PIR 

interactions across cell lines (Figure 4e). When we matched the bin size (10k) used in 

HiCCUPS analysis by expanding HIPPIE2 PIR–PIR interactions so that each PIR covered at 

least 10kb, we found that the majority (55.8%) of HiCCUPS loops replicated in the primary 

GM12878 library (highest sequencing depth) and the average proportion of replicated 

HiCCUPS loops across cell lines increased to 28.88% from 16.6%, with an average of 68% 

of HiCCUPS loop anchors replicated (Supplementary Figure 3c). Interestingly, each PIR 

overlapping a HiCCUPS-identified loop anchor was involved in an average of between 5.62 

and 21.52 significant PIR–PIR interactions across cell lines compared to a single interaction 

(loop) reported by HiCCUPS, corresponding to an average fold enrichment of 10.07 more 

interactions identified by HIPPIE2 than by the HiCCUPS binning/loop detection approach. 

Overall, HIPPIE2 identified about two orders of magnitude more interactions than the bin-

based approach across all cell lines (2,794,123 vs 27,827). This illustrates that HIPPIE2 

identifies more, finer-scale regulatory interactions than the bin-based approach to 

maximize power to detect large-scale genomic architecture rather than a multiplicity of 

fine-scale regulatory interactions. For example, in the 1 megabase locus on chr14 

investigated in Rao et al (Rao et al., 2014) (chr14:94,000,000-95,000,000), there were 

1,082 HIPPIE2 significant PIR–PIR interactions within 4 bin-bin interactions that were 

called in the original study (Supplementary Figure 4).   
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HIPPIE2 PIR–PIR interactions are enriched in regulatory genomic 

features 

To evaluate how PIRs co-locate with binding of factors known to be involved in 

genome architecture and transcriptional mechanisms, we overlapped HIPPIE2-identified 

PIRs from the primary GM12878 library, the most deeply sequenced library, with ENCODE 

ChIP-seq binding sites for CTCF, PolII, and P300 (Table 2) from the same cell type 

(Bernstein et al., 2012). We found that HIPPIE2 PIRs overlapped 92% (41,134 out of 

44,597) CTCF sites, consistent with studies that suggests CTCF has a role in mediating 

chromatin interactions (Phillips and Corces, 2009). Similarly, for PolII and P300, associated 

with transcriptional and enhancer activity (Shlyueva et al., 2014), we found high overlaps 

at 96.5% (9,678 out of 10,026) and 96.3% (16,509 out of 17,150 sites), respectively. We 

randomly sampled 1,000 sets of background genomic regions matched to the distribution 

of PIR lengths and calculated percent enrichment of the GM12878 PIRs relative to these 

background sites (Methods, Table 2). We found that the GM12878 PIRs had increases of 

20-23% base pairs of overlap over background and overlapped 18-19% more ChIP-seq 

sites, suggesting that the GM12878 PIRs are involved in genomic architecture and 

regulatory function.  
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Table 2: Enrichment of all GM12878 PIRs in transcriptional and architectural protein 

binding sites relative to randomly sampled background genomic regions 

ChIP-

seq 

dataset 

# of base 

pairs 

overlapped 

by PIRs 

Number of 

ChIP-seq 

peaks 

overlapped 

by PIRs 

% increase in # 

of base pairs 

overlapped by 

PIRs 

% increase in # of 

ChIP-seq peaks 

overlapped by 

PIRs 

Empirical 

P-value 

CTCF 10,214,990 41,134 20.69 18.51 <0.001 

P300 4,662,562 16,509 23.99 19.12 <0.001 

PolII 2,758,845 9,678 23.07 18.21 <0.001 

 
To characterize the function of PIRs involved in significant interactions, HIPPIE2 

automatically annotates PIRs with DNase-based open chromatin regions, enhancers 

defined by combinatorial epigenomic status using ChromHMM (Ernst and Kellis, 2012), the 

enhancer-associated histone modifications H3K4me1 and H3K27ac (Calo and Wysocka, 

2013; Thurman et al., 2012), the inactive or poised enhancer histone modification 

H3K27me3 (Zhu et al., 2013), and the promoter-associated histone modification H3K4me3 

(Bernstein et al., 2006), all in the matching cell types from ENCODE or Roadmap (Bernstein 

et al., 2012; Consortium et al., 2015) (Figure 5a,b). Between 18.35% and 42.26% of PIRs 

involved in significant PIR–PIR interactions overlapped open chromatin sites across cell 

lines, with the lowest proportions in the shallowest sequencing libraries, while the other 

annotations encompassed between 7.4% (H3K4me3) and 17.2% (Roadmap ChromHMM 
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enhancers) of PIRs on average across cell lines. By comparing against samples of length-

matched background intervals (Methods), we found that the PIRs involved in significant 

interactions were enriched for overlaps with all of the active epigenomic marks in every 

cell line except for NHEK, where PIRs were depleted of overlaps with all annotations except 

H3K4me3 (Figure 5b). The repressive mark H3K27me3 had the smallest average 

enrichment (40.75%) across cell lines, suggesting that significant PIR interactions are 

associated with active regulatory elements (Hwang et al., 2013; Rao et al., 2014), which 

showed much stronger enrichments.   
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Figure 5. Regulatory annotation of PIR–PIR interactions. A) Proportion of PIRs 

involved in significant interactions (interactor PIRs) overlapping cell type-matched 

functional annotations. B) Enrichment of interactor PIRs relative to background 

19
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expectation calculated by sampling. C) Ratio of number of observed annotation-annotation 

PIR–PIR interactions relative to background expectations. 

 

HIPPIE2 PIR–PIR interactions are enriched for enhancer–promoter 

mechanisms 

HIPPIE2 identifies specific enhancer–promoter interactions by classifying PIRs as 

enhancers if they overlap 1) an open chromatin region and a shared H3K4me1/H3K27ac 

peak and/or 2) a ChromHMM epigenomic enhancer (Methods). For enhancer elements, 

HIPPIE2 further requires that the putative enhancer PIR display at least one significant 

interaction with a promoter-overlapping PIR and does not overlap any H3K4me3 (active 

promoter mark) or H3K27me3 (repressive mark) peaks in the matching tissue. We found 

that the percentage of regulatory interactions (enhancer–promoter, enhancer–enhancer, or 

promoter–promoter pairs) accounted for an average of 2.36% (ranging from 0.36% - 

3.78%) of significant interactions across cell lines, a significant enrichment compared to 

the background expectation of an average of 0.076% (ranging from 0.0049% - 0.2%) of 

interactions. For enhancer–promoter interactions specifically, we detected an average of 

51.95x enrichment over the background expectation (ranging from 26.79x - 86.47x), and 

these were the most enriched interactions in all cell types, suggesting that the interactions 

identified by HIPPIE2 are indeed reflective of transcriptional regulatory processes 

(Methods, Figure 5c).  
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HIPPIE2 recovers a repertoire of known regulatory TFs mediating 

chromatin interactions 

In order to elucidate the mechanisms underlying the observed enhancer–promoter 

interactions, HIPPIE2 annotates interacting PIRs with transcription factor binding sites 

(TFBS) from the FactorBook database which contains TFBSs for 133 DNA-binding proteins 

identified by ChIP-seq experiments (Wang et al., 2013). Combined with our HIPPIE2-

identified fine-scale PIR annotations, this approach enables HIPPIE2 to identify the 

transcription factors mediating enhancer–promoter interactions with high resolution. We 

found that an average of 14.11% of PIRs involved in all significant interactions had 

overlaps with known TFBS across cell lines, while an average of 39.2% of HIPPIE2-

identified enhancer–promoter interactions across cell lines had an evidence of known TF 

binding (Supplementary Figure 5a). 

To determine whether enhancer–promoter interactions were enriched in 

transcription factor binding sites, we quantified the observed/expected ratio for binding 

motif enrichment and used a binomial model to identify significant enrichments of 

transcription factors involved in enhancer–promoter interactions (Methods). We found 

significant enrichments for 31 TFs in enhancers and 29 in promoters for a total of 33 

unique transcription factors across all cell lines except for HUVEC and NHEK 

(Supplementary Figure 5b, Supplementary Table 3). To test whether these putative 

HIPPIE2-identifed TF–TF interactions correspond to known protein-protein interactions 

(PPI), we compared HIPPIE2 TF-TF interactions to the  BioGRID database (Chatr-

Aryamontri et al., 2015; Tyers et al., 2006). To do this, for each cell line, we identified all the 

TFs involved in significant enhancer–promoter interactions, quantified all their 
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interactions in BioGRID, and determined the proportion of BioGRID interactions involving 

these TFs that were recapitulated by HIPPIE2. We found that HIPPIE2-identified TF–TF 

interactions in GM12878 recapitulated most (78%) of known physical TF–TF interactions 

reported in BioGRID, with an average of 57.5% of known physical interactions between TFs 

in BioGRID (31%-78%) recovered across cell lines. These proportions were strongly 

correlated with the sequencing depth of each cell line (Pearson R2  = 0.88), suggesting that 

increased read depth may recover more BioGRID interactions.   

We then stratified these TFs by how many different cell lines they were enriched in 

to identify regulatory mechanisms common across cellular contexts (Supplementary 

Figure 5c). This identified several TFs enriched in several cell lines that were consistent 

with known enhancer and chromatin architecture biology, including SP1, AP1, MYC, CEBPB, 

YY1, and CTCF. SP1 has been shown to function as a link of both side of DNA, and is able to 

form a tetrameric structure and assemble multiple tetramers that facilitate a DNA looping 

structure (Mastrangelo et al., 1991). AP1 is a transcription factor involved in cellular 

proliferation, transformation, and apoptosis that forms heterodimers with the Jun 

oncogene (Shaulian and Karin, 2002). MYC is an oncogene involved in several different 

cancer types and exerts widespread transcriptional regulatory effects (Dang, 2012). CEBPB 

is another major enhancer-binding protein family which can aid the transition of enhancer 

elements from closed chromatin to a primed or poised state and is involved in immune and 

inflammatory responses (Heinz et al., 2015). CTCF is a major architectural protein with a 

role in defining megabase-scale topologically-associated domains as well as regulating 

smaller-scale enhancer–promoter interactions such as those observed here (Ong and 

Corces, 2014; Phillips and Corces, 2009). YY1 is another major architectural protein that 
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cooperates with CTCF to mediate looping interactions involved in developmental processes 

and enhancer–promoter interactions (Beagan et al., 2017; Weintraub et al., 2017).  

 

Discussion 

In this paper we introduce a novel method for Hi-C data analysis, HIPPIE2, 

which dynamically discovers fine-scale physically-interacting regions (PIRs) of the 

genome with increased resolution compared to previous methods, detects fine-scale 

chromatin interactions, and provides functional and mechanistic characterization of 

these interactions. HIPPIE2 uses the pattern of restriction events as evidenced by 

sequencing read pileups relative to restriction sites to fine-map interacting DNA 

regions. Our results suggest that HIPPIE2 detects more specific, finer-scale 

interactions at the gene-regulatory level of chromatin architecture (average PIR 

length of 1,006bps), offering a complementary approach to the binning-based 

procedures (Ay et al., 2014; Durand et al., 2016; Forcato et al., 2017; Heinz et al., 2010; 

Mifsud et al., 2015; Rao et al., 2014). Our method also complements restriction 

fragment-based methods (Hwang et al., 2014; Jin et al., 2013) as an alternative for 

analyzing data from more frequent cutters with much smaller fragment length and 

interaction regions spanning more than one fragment. 

With our approach designed to work at the inherent resolution of the data (as 

determined by restriction enzyme cutting frequency and restriction efficiency), our 

method will prove useful in the analysis of chromosome conformation capture 
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experiments with further increased sequencing depth or improved restriction 

protocols. Another natural application in which our approach will prove useful is 

the analysis of the data generated by the assays targeting particular types of 

interactions, such as Capture-C and Capture Hi-C (Hughes et al., 2014; Mifsud et al., 

2015) that capture promoter-centric interactions. 

Furthermore, the fine-scale resolution of our method for detecting interacting 

regions enables analysis, identification and interpretation of specific proteins/TF 

complexes mediating these interactions. This TF analysis can be improved by de 

novo motif discovery in PIR sequences, incorporation of protein–protein interaction 

networks to identify protein/TF complexes, and protein domain compatibility 

information. Using the identified interacting sequences and mediating TFs can help 

build predictive models for regulatory interactions such as (Schreiber et al., 2018; 

Whalen et al., 2016).  Another direction in which our fine mapping HIPPIE2 method 

will prove useful is in comparison and analysis of changes in fine-scale regulatory 

networks during development or between different conditions. HIPPIE2 is freely 

available as an open source pipeline (https://bitbucket.org/wanglab-

upenn/HIPPIE2). HIPPIE2 generated interaction data is also available in UCSC 

Genome Browser hub 

(https://genome.ucsc.edu/s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%20

lines%20darker%20interaction%20lines).  
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Methods  

Hi-C data acquisition and genome mapping 

For our analysis, we used the Hi-C datasets for GM12878 (primary and secondary 

replicates), HMEC, HUVEC, IMR90, K562, and NHEK cell lines from (Rao et al., 2014), 

acquired from the GEO database (accession number GSE63525). For each condition, we 

acquired FASTQ files from the SRA files available on GEO corresponding to sequencing 

libraries within each condition. Each library was mapped separately and then combined for 

downstream analyses. HIPPIE2 first aligns the paired-end reads to the human genome 

(hg19 assembly) using the STAR aligner (Dobin et al., 2013) allowing only unique mapping 

(full parameters available in HIPPIE2 open source repository, starMappingToBam.sh 

script). Each of the single-end reads from a read-pair was first mapped separately and then 

re-associated with the corresponding second read in a read-pair. To improve mapping, 

both contiguously mapped and chimeric reads are identified and paired. Both halves of a 

chimeric read were required to map uniquely and have a minimum mapped length of 22 nt. 

For those paired-end reads with a chimeric read involved, we required that the pairing 

partner of the chimeric read (a single-end read) mapped in the proximity of one of the two 

split halves spanned by the chimeric read.  

Hi-C read normalization  

To remove potential random ligation events, including un-cut, self-ligated, or re-

ligated read-pairs, we filtered out the read-pairs that are less than 5,000 bps apart from 

each other as suggested in (Jin et al., 2013; Lajoie et al., 2015). In addition, to correct for all 

possible Hi-C experimental biases including length of the crosslinked DNA fragments, 
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restriction site accessibility, or ligation rate of the restriction enzyme digested fragments, 

we normalized the read counts using the matrix normalization method by Knight and Ruiz 

(Knight and Ruiz, 2012) as used in (Rao et al., 2014). Additionally, to avoid any biases on 

detecting the region that cannot be mapped as a unique genomic locus, we also removed 

from the analysis restriction sites (RSs) that have mappability less than 0.8. We found that 

96% of the RSs have mappability higher than 0.8, i.e. most of RSs had high mappability 

given a relatively long read length (101 nts). 

Identification of physically-interacting regions  

To identify physically-interacting DNA regions (PIRs), we utilized the idea that each 

single-end Hi-C read is always located in the proximity of a restriction site (RS) that serves 

as both the restriction enzyme cleavage and ligation site in the Hi-C protocol. The RSs 

correspond to sites in the genomic DNA containing sequence that can be recognized by the 

restriction enzyme, e.g., “GATC” for restriction enzyme MboI. After HIPPIE2 maps reads, it 

first determines corresponding RSs (cleavage/ligation sites), and infers the relative 

position (upstream or downstream from the RSs) for the DNA-interacting region (PIR).  

The cleavage/ligation sites are identifiable from the mapping information of Hi-C 

paired-end reads because (1) a proper DNA ligation forms a phosphodiester bond between 

the 5' phosphate of the donor DNA and the 3' hydroxyl of the acceptor DNA, and (2) the 

strand orientation pattern reported by Illumina sequencer is restricting the combinations 

of upstream or downstream cleavage/ligation site of each read-pairs. The workflow of 

identifying all physically-interacting regions (PIRs) and PIR–PIR interactions along the 

genome includes three major phases: (I) find ligation junctions for read-pairs (II) identify 
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physically-interacting regions, and (III) find PIR–PIR interactions. Each phase is described 

below. 

i. Identifying ligation junctions for read-pairs 

Each mapped read has two candidate (nearest upstream or downstream) restriction 

sites (RSs) to be assigned as the restriction enzyme cut-and-ligation site. To determine 

the cut-and-ligation site, we first determine which type of interaction has happened based 

on the mapped strand orientation (Supplementary Figure 7, Supplementary Figure 6a, 

Supplementary Figure 8).  We enumerated all the possible ligations types: head/tail, 

tail/head, head/head, or tail/tail ligations; where head is the end with smaller genome 

coordinate and tail is the end that is on a larger coordinate of the chromosome.  

Because (1) the ligation of two DNA fragments is formed by a phosphodiester 

bond between a 3' hydroxyl and a 5' phosphate, and (2) Illumina paired-end sequencing 

reads are generated from opposite strands from the sequenced DNA fragments, we can 

narrow down four possible ligation types for each paired-end reads to two scenarios using 

its strand orientation. For the read strand combinations of +/- or -/+ (different strand), the 

two possible ligation types are either head/tail or tail/head ligations (Supplementary 

Figure 7 left). Similarly, for the read strand combinations of +/+ or -/- (same strand), the 

two possible ligation types are either head/head or tail/tail ligations (Supplementary 

Figure 7 right). Next, because of the size-selection step in the Hi-C protocol, cut-and-

ligation events are expected to generate read pairs within 500bp of the restriction enzyme 

(MboI) cutting sites due to the size selection, to resolve the two possible cases of 
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head/tail or tail/head for +/- and -/+, we calculated the two possible sums of the two 

distances to the nearest cutter sites, and ruled out the ligation event that made the sum 

larger than 300 base pair, which would be result from ligation of nonspecific cleavage 

product (Yaffe and Tanay, 2011)in the Hi-C experiment (Supplementary Figure 8). As 

shown in Supplementary Table 2, the observed fractions of strand orientation 

combinations for sequenced Hi-C read pairs are close to uniform as expected from the 

stochastic nature of the proximity ligation reaction.  

 

ii. Identifying physically-interacting regions (PIRs) 

With the identified RSs that form DNA-DNA ligation junctions, we further identify 

physically-interacting regions (Algorithm in Supplementary Figure 6b). First, we note the 

sum of upstream and downstream read counts (single-end reads from read-pairs) for each 

RS identified in the previous step. To group restriction events corresponding to the same 

interaction (interacting region), we clustered RSs separately for upstream and downstream 

read counts by thresholds of the maximum gap (dcluster) and the minimum read (rthreshold). 

The maximum gap is defined as the third quantile of the restriction fragment distance 

distribution, and the minimum read requirement is defined as the median of the 

normalized read distribution for each chromosome. Within each corresponding cluster, we 

identify the RSs with the maximum read count (i.e. most consistently cut site) as the 

candidate flanking ends for PIRs. Finally, we matched the nearest upstream and 

downstream candidate flanking ends with a max-gap algorithm (in this study, the max-gap 

is 4000 bp), and report the PIRs as regions that are enclosed by the upstream and 
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downstream RSs with the maximum read count in the upstream and downstream 

restriction clusters.  

iii. Finding all PIR–PIR interactions 

We find the interactions between PIRs by tracing the Hi-C read-pairs that 

participated in the identifications of PIRs (Algorithm in Supplementary Figure 6c). For 

each PIR identified in the previous step, IDs of single-end reads in the left and right RS 

clusters are used to identify PIRs containing mate reads (i.e. other single-end reads from 

read-pairs) as interacting partners. All such PIR–PIR interactions are then reported along 

with the read counts. 

 

Identifying significant PIR–PIR interactions genome-wide 

 To identify significant intra-chromosomal PIR–PIR interactions, we  applied the Fit-

Hi-C method (Ay et al., 2014) in R v3.2.3. For each of the autosomal chromosomes (1–22) 

and chromosome X, we split all observed PIR–PIR interactions into 2,000 distance groups 

according to the linear distance (in nucleotides) between interacting PIRs. We filtered out 

the PIR pairs that are less than 5,000 nucleotides apart. For each distance group, we 

calculated the average distance and the average normalized read counts of the interacting 

PIRs. With the 2,000 aggregated data points, we fit the normalized read counts by the 

function of distance using smooth.spline function in R.  After the first spline fitting, we 

removed the outliers as described in (Ay et al., 2014) and fit the second spline function. We 

then reported PIR–PIR interactions that are significant after Benjamini–Hochberg 

correction (adjusted P values <= 0.05). 
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Overlap with DNA loops from Rao et al 

We compared PIR–PIR interactions in our study with the set of DNA loops identified 

in (Rao et al., 2014) using HiCCUPS. We downloaded the set of loops and Hi-C loci (DNA 

regions that are participating in significant DNA loops) and filtered to include only those 

with the highest 10 kb resolution from GEO database under accession number GSE63525. 

We then overlapped these loop anchors and interactions with HIPPIE2-identified PIRs and 

PIR-PIR interactions using a custom script (available in the HIPPIE2 software repository) 

using awk, bedtools v2.25.0 (Quinlan and Hall, 2010), and Python v2.7.9.  

Functional and genomic annotation data 

We downloaded the cell type-specific ChIP-seq peak data for histone modifications 

(H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K36me3), DNase I hypersensitive sites, 

and transcription factors or DNA-binding proteins (RNA Polymerase II, p300, and CTCF) 

from the 2011 freeze of the UCSC Genome Browser (Kent et al., 2002) for ENCODE datasets 

and directly from the web portal 

(https://egg2.wustl.edu/roadmap/web_portal/index.html) for Roadmap datasets 

including combinatorial epigenomic states from ChromHMM that we used to identify 

enhancer states (Supplementary Table 1).  

Enrichment analysis of functional genomic overlaps 

To estimate the extent of overlap between PIRs and regulatory and epigenetic 

marks genome-wide, we calculated the sum of overlapped nucleotides between PIRs and 

each signal track (regulatory/epigenetic mark) genome-wide as the observed value. We 

sampled (1000 times) random genomic regions from the genome with length distribution 
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matched with the length of PIRs. We calculated the average of 1,000 sums of overlaps 

between the sampled regions and each of the signal tracks. We then reported the 

percentage differences between the observed value and the averaged value from the 

background as the enrichment of the PIRs for each of the signal tracks. All region 

intersections were performed with bedtools v2.25.0 (Quinlan and Hall, 2010). 

Regulatory and genetic annotation of the interacting PIRs 

HIPPIE2 annotates PIRs as enhancers, promoters, exons, introns, or intergenic 

elements. To do this, we used the cell-type-matched enhancer annotations described above 

and gene models downloaded from RefSeq (Pruitt et al., 2005). We annotate as enhancers 

the promoter-interacting PIRs that overlapped the enhancer (E) or weak enhancer (WE) 

annotation from the genome segmentation track (ChromHMM). We also annotated all 

promoter-interacting PIRs as an enhancer if they overlapped an open chromatin region 

with H3K4me1 or H3K27ac ChIP-seq peak, while not overlapping H3K4me3 and 

H3K27me3 peaks. The rest of the PIRs were annotated as promoters, exons, introns, and 

intergenic elements using RefSeq gene models (hg19 assembly). The promoters were 

defined as 500 bp-long regions upstream of the RefSeq TSS of protein-coding genes. We 

then annotated PIRs as promoters, exonic, intronic, or intergenic elements (in this 

prioritized order) based on their overlap with RefSeq gene models. To calculate the 

background expectations of interactions between annotations a and b, we used the product 

of the proportion of individual PIRs in annotation a and the proportion of those in 

annotation b.  
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Transcription factor binding analysis of PIR–PIR interactions 

To identify PIRs with evidence of transcription factor binding, we used Factorbook data 

(Wang et al., 2013) that integrates ChIP-seq experimental data from ENCODE with 

computationally-predicted TFBS to comprehensively survey protein–DNA binding genome-

wide. The Factorbook data were obtained from UCSC hg19 database (factorbookMotifPos 

table, release 4). The Factorbook data contains 161 factors and the motifs were discovered 

from 91 cell types. We focused on 133 known DNA-binding transcription factors. We 

filtered out the TFs with less than 10 binding sites with PIRs genome-wide. For each PIR, 

we reported all TFs that have at least one binding site within that PIR. We reported 

enrichment for each of the surveyed binding motifs in PIR–PIR interactions. To do this, we 

categorized PIR–PIR interactions according to the classes of interacting PIR elements 

(enhancers, promoters, exons, introns, or intergenic elements). We estimated binding-

motif enrichment as observed/expected frequency odds ratio. We computed the expected 

probability as the probability of the first class of PIR (Ci) having one motif (Mk) times the 

probability of the second class of PIR (Cj) having another motif (Ml) as follows: 

Prob���, ��observed in �� , ��� �  P���|��� � P���|��� 

�
P���, ���

P����
�

P���, ���

P����
 

�
#���  containing �� �

#��

�
#���  containing �� �

#��

 

We performed a binomial distribution test to report the significance of observed binding 

motifs in each type of PIR–PIR interaction. To compare against the BioGRID database 

(Chatr-Aryamontri et al., 2015; Tyers et al., 2006), we downloaded the list of TF–TF 
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interactions across cell lines and searched for transcription factor matches by name and by 

alias.  

Availability 

HIPPIE2 software is freely available at https://bitbucket.org/wanglab-

upenn/HIPPIE2. The corresponding interaction data tracks are  available on the 

UCSC genome browser: 

https://genome.ucsc.edu/s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%20li

nes%20darker%20interaction%20lines  
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