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Abstract

Most regulatory chromatin interactions are mediated by various transcription factors (TFs)
and involve physically-interacting elements such as enhancers, insulators, or promoters.
To map these elements and interactions, we developed HIPPIEZ which analyzes raw reads
from high-throughput chromosome conformation (Hi-C) experiments to identify fine-scale
physically-interacting regions (PIRs). Unlike standard genome binning approaches (e.g.,
10K-1Mbp bins), HIPPIEZ dynamically calls physical locations of PIRs with better precision
and higher resolution based on the pattern of restriction events and relative locations of

interacting sites inferred from the sequencing readout.

We applied HIPPIE2 to in situ Hi-C datasets across 6 human cell lines (GM12878, IMR90,
K562, HMEC, HUVEC, NHEK) with matched ENCODE and Roadmap functional genomic
data. HIPPIE2 detected 1,042,738 distinct PIRs across cell lines, with high resolution
(average PIR length of 1,006bps) and high reproducibility (92.3% in GM12878 replicates).
32.8% of PIRs were shared among cell lines. PIRs are enriched for epigenetic marks
(H3K27ac, H3K4me1) and open chromatin, suggesting active regulatory roles. HIPPIE2
identified 2.8M significant intrachromosomal PIR-PIR interactions, 27.2% of which were
enriched for TF binding sites. 50,608 interactions were enhancer-promoter interactions
and were enriched for 33 TFs (31 in enhancers/29 in promoters), several of which are
known to mediate DNA looping/long-distance regulation. 29 TFs were enriched in >1 cell
line and 4 were cell line-specific. These findings demonstrate that the dynamic approach

used in HIPPIE2 (https://bitbucket.com/wanglab-upenn/HIPPIEZ) characterizes PIR-PIR

interactions with high resolution and reproducibility.
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Introduction

Enhancers are non-coding DNA elements that regulate gene expression by
recruiting transcription factors which in turn mediate physical interactions with the
promoters of their target genes to increase transcription of those genes. The
genome-wide relationship between enhancers and their target genes depends on
the three-dimensional DNA looping associated with enhancer-promoter
interactions. To capture genome-wide chromatin interactions in Hi-C (Lieberman-
Aiden et al., 2009), physically-interacting DNA regions and their binding proteins
are cross-linked, followed by restriction enzyme cleavage and proximity ligation of
the interacting DNA fragments to localize and capture pairs of interacting DNA
fragments. These ligated DNA fragments are then sequenced to identify the
chromatin interaction map genome-wide. Higher resolution in localizing interacting
DNA fragments has been achieved by using a restriction enzyme with more frequent
sites throughout the genome (e.g., Mbol, a 4-cutter with a 4 base-pair motif, instead
of a 6-cutter such as HindlIII or Ncol) and by performing the DNA-DNA proximity
ligation in intact nuclei to generate denser Hi-C contact matrices (Rao et al.,, 2014).

Previous methods for analyzing Hi-C data (Ay et al., 2014; Consortium et al.,
2015; Durand et al,, 2016; Forcato et al,, 2017; Imakaev et al., 2012; Jin et al., 2013;
Kaplan and Dekker, 2013; Lieberman-Aiden et al., 2009; Lun and Smyth, 2015; Ma et
al.,, 2015; Norton et al,, 2018; Rao et al., 2014; Yaffe and Tanay, 2011; Yang et al.,

2018) have implemented a binning-based scheme for identifying interacting
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genomic regions, where reads are aggregated into equally-sized bins by genome
coordinates and interacting regions are identified as pairs of bins with significant
enrichments of reads using statistical models accounting for biases (e.g. negative
correlation between linear genomic distance, number of reads and mappability) of
the individual bins. While binning is effective at delineating large-scale chromatin
structure, it does not capture specific physically-interacting DNA regions. The
methods of Jin et al. and Hwang et al. (Hwang et al,, 2013, 2014; Jin et al,, 2013) have
shown that it is possible to study interactions at the level of restriction fragments
(i.e. the DNA region between two consecutive restriction sites) rather than bins
using 6-cutter restriction. Restriction fragment-based binning might be problematic
for more frequent cutters such as 4-cutter (e.g. Mbol) (Rao et al., 2014), since
restriction fragment length is much smaller on average and interacting DNA sites
are more likely to span more than one restriction fragment.

To address these limitations, we propose HIPPIE2 (Figure 1a,b), a novel
computational method that infers the locations of DNA physically-interacting
regions (PIRs) by identifying regions enclosed by restriction events observed on
both sides of DNA-protein Hi-C construct (Figure 2, Methods; Supplementary
Figure 6). This strategy allows HIPPIE2 to identify individual interacting DNA
elements with better specificity than binning. HIPPIEZ2 uses cell type-matched
functional genomics data to characterize the interacting PIRs into functional

categories including enhancers and promoters. This enables the high-resolution
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identification of cell type-specific enhancer-promoter interactions, and we show a
corresponding enrichment in PIR-PIR interactions of transcription factor binding
sites (TFBSs) for transcription factors known to be involved in enhancer-promoter

interactions. HIPPIEZ2 is open source (https://bitbucket.com/wanglab-

upenn/HIPPIE2) and freely available as a full pipeline to automate analysis from

raw Hi-C reads to identification of PIRs, significant PIR-PIR interactions, functional

genomics annotations and TF analysis.
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Figure 1. Description of HIPPIE2 pipeline and mapping statistics. A) Detailed

processing pipeline of HIPPIE2. B) Overview of HIPPIE2 algorithm. C) Mapping statistics

across cell lines.
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Figure 2. Hi-C model and identification of DNA physically-interacting region. A)
Interacting DNA regions are cut by the Mbol restriction enzyme. B) Cut fragments are
ligated together and size-selected. C) Paired end-sequencing is performed on the ligated
fragments. D) Read pileups around the cleavage sites inform the identification of the
physically-interacting region. E) Genomic view of read pileups, restriction sites, and
interacting regions (PIRs) locations. Upstream (ubl) and downstream (dbl) boundary
locations for PIRs correspond to most consistently cut (as evidenced by the number of
reads) restriction/ligation sites. F) Distribution of restriction events (REs) around
physically-interacting DNA regions (PIRs) identified by HIPPIE2. Shown is the distribution

of the restriction events for PIRs in GM12878 cell line.
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Results

HIPPIEZ2 identifies fine-scale physically-interacting DNA regions
(PIRs)

The HIPPIE2 method presented in this manuscript further develops our HIPPIE
method (Hwang et al,, 2014): HIPPIEZ applies a newer read mapping protocol to resolve
chimeric reads, interaction calling algorithm, and introduces novel algorithms to
dynamically identify fine-scale interacting regions (Figures 1,2) instead of binning reads
into full restriction fragments used in HIPPIE (Hwang et al., 2014). To illustrate our
method, we applied HIPPIEZ2 to analyze high read depth Hi-C sequencing datasets (Rao et
al., 2014) using the 4bp-cutter Mbol across six human cell lines that had matching
functional genomics data from ENCODE or Roadmap (Bernstein et al., 2012; Consortium et
al,, 2015) including K562, HMEC, HUVEC, IMR90, NHEK, and GM 12878, with two replicates
for GM12878 (Figure 1a-b). For each cell line, we mapped the raw Hi-C read-pairs using
STAR (Dobin et al., 2013) (Methods), uniquely mapping between 73.6% and 85.4% of Hi-C
reads across the 51 separate libraries for these cell lines (Figure 1c, Supplementary
Figure 1). Following (Rao et al.,, 2014), we normalized the read counts using matrix
normalization by Knight and Ruiz (Knight and Ruiz, 2012). Using normalized counts,
HIPPIEZ2 identifies physically-interacting regions (PIRs) as the DNA regions flanked on both
sides by restriction sites (RSs) that were observed to be consistently cleaved/ligated in a
given Hi-C sequencing library, using information from the Hi-C sequencing read-out
including the read mapping coordinates, distances from reads to their nearest restriction

sites, DNA ligation constraints and strand orientations (+/-) of the mapped read-pairs, and
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relative locations of DNA interaction sites with respect to mapped reads (Methods, Figure
2). This dynamic PIR-based approach enables finer-scale identification of specific
interacting DNA regions compared to the binning approach (Table 1).

In total, HIPPIEZ2 called between 1,584,000 and 1,886,000 PIRs from chromosomes
1-22 and X across cell lines (Figure 3a). These PIRs had an average length of 1,006 base
pairs consistent across cell lines (Supplementary Figure 2a), which corresponds to 2.4
average restriction fragment length. Across libraries, these identified PIRs covered 53.2%-
59.3% of the genome (Supplementary Figure 2b). HIPPIEZ annotated these PIRs with
gene annotations (Pruitt et al., 2014) including promoters, exons, and introns, which found
that a majority of PIRs in all cell types were intergenic and the next largest class of overlaps
were in mRNA introns, supporting the regulatory roles of these PIRs (Figure 3b).
Comparing with DNase-seq-based regions of open chromatin in the matching cell types
from Roadmap/ENCODE, we found that 73.84-79.04% of open chromatin regions were
covered by PIRs across cell types, with an average of 69.97% of the open chromatin peaks
covered by PIRs (Figure 3c). PIR identification by HIPPIEZ2 is highly robust, with 92.3%

PIRs (1,649,417) found in the two GM 12878 replicates.
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Figure 3. PIR characteristics. A) Total PIRs identified across cell lines. B) Localization
patterns of PIRs in various genomic annotations. C) Overlap patterns of PIRs with cell type-
matched open chromatin annotations. Yellow distributions display the proportions of
individual open chromatin peaks by PIRs and purple bars are proportion of all open

chromatin peaks with any PIR coverage.
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H1PPI E2 detects fine-scale chromatin interactions

To identify which PIR-PIR pairs are significantly interacting, HIPPIE2 applies Fit-Hi-C
algorithm (Ay et al., 2014) using the normalized read counts and linear genomic distance
between pairs of potentially interacting PIRs (Methods). Across cell lines, HIPPIE2
identified between 42,500 and 1,194,010 intra-chromosomal significant PIR-PIR
interactions (>5 kb apart, adjusted P value < 0.05, Figure 4a). To investigate robustness of
interaction calling, we compared the two GM 12878 replicates. Consistent with the lower
sequencing depth of the replicate library (2.5 billion vs 3 billion reads), we identified fewer
significant interactions and PIRs involved in significant interactions in the replicate library
(Figure 4a), but found a significant overlap between PIRs and PIR-PIR interactions
(Figure 4b-c), with majority (66.2%; 274,445/414,343) of PIRs and 31.1%
(196,343/631,610) of PIR-PIR interactions in the replicate found in the primary library.
This level of replication is consistent with prior studies of Hi-C replication (Forcato et al.,
2017), which found similar levels of replicated interactions across Hi-C datasets.

To interrogate the relationship between sequencing depth and interaction replication,
we binned the interactions from the GM 12878 primary library into deciles by read
coverage (analogous to down-sampling) and compared their replication rates. We found a
striking positive correlation between read coverage and replication rate (R2=0.9398,
Figure 4d), suggesting that reproducibility between replicates may be increased with a

higher sequencing depth.
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Figure 4. Characteristics of significant PIR-PIR interaction identification and

replication. A) Counts of PIRs involved in significant interactions (left) and number of
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significant PIR-PIR interactions (right) across cell lines. B) Number of PIRs involved in
significant interactions replicated between the primary and secondary GM12878 libraries.
C) Number of PIR-PIR interactions replicated between the primary and secondary
GM12878 libraries. D) Plot of replication rate against PIR read coverage quantiles.
Correlation is the Pearson correlation. E) Replication of Rao data by HIPPIEZ. Interacting
bins refer to 10kb Rao bins involved in significant interactions and bin-bin interactions are

significant interactions.

Comparison with uniform binning-based approach

HIPPIEZ2 provides a more accurate approach for identifying fine-scale interacting sites by
design: previous methods that use a binning-based approach maximize their statistical
power to detect interactions, with a tradeoff of accuracy for identifying the interacting site
(Table 1). Due to the fundamentally different natures of the binning-based algorithms
compared to HIPPIE2 and the lack of a ‘ground truth’ dataset of expected Hi-C interactions,
itis challenging to directly compare the HIPPIE2 interactions with these previous methods.
However, to explore the differences between the binning approaches and HIPPIE2 PIR-
based approach, we compare the HIPPIEZ2 results with the results from (Rao et al., 2014)
obtained using HiCCUPS method (we note that a detailed comparison among Hi-C

methods has been reported in the recent study by Forcato et al (Forcato et al., 2017)).
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Table 1: Comparison of HIPPIE2 with other Hi-C methodologies

Method Input Resolution Output Downstream
Analyses
HIPPIE2 Raw reads Dynamic, High-resolution | Genic and cell type-
restriction restriction site- specific epigenetic
event-based based annotation of
(1kb average) physically- interactions,
interacting identification of
regions (PIRs), mediating
PIR-PIR transcription factors,
interactions identification of
enhancer-promoter
interactions
HIPPIE (Hwang | Raw reads Restriction Full restriction Annotated
etal, 2014) fragment-based | fragment-based interactions,
(4kb average) physically- enhancer-promoter
interacting interactions
regions
HiCCUPS Raw reads Fixed bins loops (bin-bin NA
(Durand et al,, interactions)
2016; Rao et al,,
2014)

We compared our HIPPIE2-identified PIRs with the HiICCUPS-identified loop
anchors and interactions (bin size=10K) (Rao et al., 2014). Across cell lines, the set of PIRs
identified by HIPPIEZ2 is consistent with and is complementary to the previously identified
set of interacting genomic regions: we found that HIPPIE2 PIRs covered an average of
60.2% of HiCCUPS-identified loop anchors across cell lines, with the highest proportion
(91.4%) in the primary, most deeply sequenced GM12878 library (Methods, Figure 4e).
The HMEC, HUVEC, and NHEK cell lines were the only ones with a proportion less than
50%, corresponding to their shallower sequencing depth (Pearson R? = 0.862 between

sequencing depth and replication proportion).
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Next considering HIPPIE2 PIR-PIR interactions and HiCCUPS loops, we found that
37.4% of HiCCUPS loops in GM12878 primary library, with an average of 16.6% of
HiCCUPS loops across cell lines, were supported by significant HIPPIE2 PIR-PIR
interactions across cell lines (Figure 4e). When we matched the bin size (10k) used in
HiCCUPS analysis by expanding HIPPIEZ PIR-PIR interactions so that each PIR covered at
least 10kb, we found that the majority (55.8%) of HiICCUPS loops replicated in the primary
GM12878 library (highest sequencing depth) and the average proportion of replicated
HiCCUPS loops across cell lines increased to 28.88% from 16.6%, with an average of 68%
of HICCUPS loop anchors replicated (Supplementary Figure 3c¢). Interestingly, each PIR
overlapping a HiICCUPS-identified loop anchor was involved in an average of between 5.62
and 21.52 significant PIR-PIR interactions across cell lines compared to a single interaction
(loop) reported by HiCCUPS, corresponding to an average fold enrichment of 10.07 more
interactions identified by HIPPIE2 than by the HiCCUPS binning/loop detection approach.
Overall, HIPPIEZ2 identified about two orders of magnitude more interactions than the bin-
based approach across all cell lines (2,794,123 vs 27,827). This illustrates that HIPPIE2
identifies more, finer-scale regulatory interactions than the bin-based approach to
maximize power to detect large-scale genomic architecture rather than a multiplicity of
fine-scale regulatory interactions. For example, in the 1 megabase locus on chr14
investigated in Rao et al (Rao et al., 2014) (chr14:94,000,000-95,000,000), there were
1,082 HIPPIEZ significant PIR-PIR interactions within 4 bin-bin interactions that were

called in the original study (Supplementary Figure 4).
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HIPPIE2 PIR-PIR interactions are enriched in regulatory genomic

features

To evaluate how PIRs co-locate with binding of factors known to be involved in
genome architecture and transcriptional mechanisms, we overlapped HIPPIE2-identified
PIRs from the primary GM12878 library, the most deeply sequenced library, with ENCODE
ChIP-seq binding sites for CTCF, Polll, and P300 (Table 2) from the same cell type
(Bernstein et al,, 2012). We found that HIPPIE2 PIRs overlapped 92% (41,134 out of
44,597) CTCEF sites, consistent with studies that suggests CTCF has a role in mediating
chromatin interactions (Phillips and Corces, 2009). Similarly, for Polll and P300, associated
with transcriptional and enhancer activity (Shlyueva et al,, 2014), we found high overlaps
at 96.5% (9,678 out of 10,026) and 96.3% (16,509 out of 17,150 sites), respectively. We
randomly sampled 1,000 sets of background genomic regions matched to the distribution
of PIR lengths and calculated percent enrichment of the GM12878 PIRs relative to these
background sites (Methods, Table 2). We found that the GM12878 PIRs had increases of
20-23% base pairs of overlap over background and overlapped 18-19% more ChIP-seq
sites, suggesting that the GM12878 PIRs are involved in genomic architecture and

regulatory function.
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Table 2: Enrichment of all GM12878 PIRs in transcriptional and architectural protein

binding sites relative to randomly sampled background genomic regions

Number of
# of base % increase in # | % increase in # of
ChIP- ChIP-seq
pairs of base pairs ChIP-seq peaks | Empirical
seq peaks

overlapped overlapped by overlapped by P-value

dataset overlapped

by PIRs PIRs PIRs
by PIRs

CTCF 10,214,990 41,134 20.69 18.51 <0.001
P300 4,662,562 16,509 23.99 19.12 <0.001
Polll 2,758,845 9,678 23.07 18.21 <0.001

To characterize the function of PIRs involved in significant interactions, HIPPIE2
automatically annotates PIRs with DNase-based open chromatin regions, enhancers
defined by combinatorial epigenomic status using ChromHMM (Ernst and Kellis, 2012), the
enhancer-associated histone modifications H3K4me1 and H3K27ac (Calo and Wysocka,
2013; Thurman et al., 2012), the inactive or poised enhancer histone modification
H3K27me3 (Zhu et al,, 2013), and the promoter-associated histone modification H3K4me3
(Bernstein et al., 2006), all in the matching cell types from ENCODE or Roadmap (Bernstein
etal,, 2012; Consortium et al., 2015) (Figure 5a,b). Between 18.35% and 42.26% of PIRs
involved in significant PIR-PIR interactions overlapped open chromatin sites across cell
lines, with the lowest proportions in the shallowest sequencing libraries, while the other

annotations encompassed between 7.4% (H3K4me3) and 17.2% (Roadmap ChromHMM


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634006; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Genome Research, Methods category 18
HIPPIE2: identifying physically-interacting regions

enhancers) of PIRs on average across cell lines. By comparing against samples of length-
matched background intervals (Methods), we found that the PIRs involved in significant
interactions were enriched for overlaps with all of the active epigenomic marks in every
cell line except for NHEK, where PIRs were depleted of overlaps with all annotations except
H3K4me3 (Figure 5b). The repressive mark H3K27me3 had the smallest average
enrichment (40.75%) across cell lines, suggesting that significant PIR interactions are
associated with active regulatory elements (Hwang et al,, 2013; Rao et al., 2014), which

showed much stronger enrichments.
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Figure 5. Regulatory annotation of PIR-PIR interactions. A) Proportion of PIRs
involved in significant interactions (interactor PIRs) overlapping cell type-matched

functional annotations. B) Enrichment of interactor PIRs relative to background
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expectation calculated by sampling. C) Ratio of number of observed annotation-annotation

PIR-PIR interactions relative to background expectations.

HIPPIE2 PIR-PIR interactions are enriched for enhancer-promoter

mechanisms

HIPPIEZ identifies specific enhancer-promoter interactions by classifying PIRs as
enhancers if they overlap 1) an open chromatin region and a shared H3K4me1/H3K27ac
peak and/or 2) a ChromHMM epigenomic enhancer (Methods). For enhancer elements,
HIPPIEZ2 further requires that the putative enhancer PIR display at least one significant
interaction with a promoter-overlapping PIR and does not overlap any H3K4me3 (active
promoter mark) or H3K27me3 (repressive mark) peaks in the matching tissue. We found
that the percentage of regulatory interactions (enhancer-promoter, enhancer-enhancer, or
promoter-promoter pairs) accounted for an average of 2.36% (ranging from 0.36% -
3.78%) of significant interactions across cell lines, a significant enrichment compared to
the background expectation of an average of 0.076% (ranging from 0.0049% - 0.2%) of
interactions. For enhancer-promoter interactions specifically, we detected an average of
51.95x enrichment over the background expectation (ranging from 26.79x - 86.47x), and
these were the most enriched interactions in all cell types, suggesting that the interactions
identified by HIPPIE2 are indeed reflective of transcriptional regulatory processes

(Methods, Figure 5c).
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HIPPIE2 recovers a repertoire of known regulatory TFs mediating

chromatin interactions

In order to elucidate the mechanisms underlying the observed enhancer-promoter
interactions, HIPPIE2Z annotates interacting PIRs with transcription factor binding sites
(TFBS) from the FactorBook database which contains TFBSs for 133 DNA-binding proteins
identified by ChIP-seq experiments (Wang et al., 2013). Combined with our HIPPIE2-
identified fine-scale PIR annotations, this approach enables HIPPIE2 to identify the
transcription factors mediating enhancer-promoter interactions with high resolution. We
found that an average of 14.11% of PIRs involved in all significant interactions had
overlaps with known TFBS across cell lines, while an average of 39.2% of HIPPIE2-
identified enhancer-promoter interactions across cell lines had an evidence of known TF
binding (Supplementary Figure 5a).

To determine whether enhancer-promoter interactions were enriched in
transcription factor binding sites, we quantified the observed/expected ratio for binding
motif enrichment and used a binomial model to identify significant enrichments of
transcription factors involved in enhancer-promoter interactions (Methods). We found
significant enrichments for 31 TFs in enhancers and 29 in promoters for a total of 33
unique transcription factors across all cell lines except for HUVEC and NHEK
(Supplementary Figure 5b, Supplementary Table 3). To test whether these putative
HIPPIE2-identifed TF-TF interactions correspond to known protein-protein interactions
(PPI), we compared HIPPIE2 TF-TF interactions to the BioGRID database (Chatr-
Aryamontri et al.,, 2015; Tyers et al.,, 2006). To do this, for each cell line, we identified all the

TFs involved in significant enhancer-promoter interactions, quantified all their
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interactions in BioGRID, and determined the proportion of BioGRID interactions involving
these TFs that were recapitulated by HIPPIEZ. We found that HIPPIE2-identified TF-TF
interactions in GM 12878 recapitulated most (78%) of known physical TF-TF interactions
reported in BioGRID, with an average of 57.5% of known physical interactions between TFs
in BioGRID (31%-78%) recovered across cell lines. These proportions were strongly
correlated with the sequencing depth of each cell line (Pearson R? = 0.88), suggesting that
increased read depth may recover more BioGRID interactions.

We then stratified these TFs by how many different cell lines they were enriched in
to identify regulatory mechanisms common across cellular contexts (Supplementary
Figure 5c¢). This identified several TFs enriched in several cell lines that were consistent
with known enhancer and chromatin architecture biology, including SP1, AP1, MYC, CEBPB,
YY1, and CTCF. SP1 has been shown to function as a link of both side of DNA, and is able to
form a tetrameric structure and assemble multiple tetramers that facilitate a DNA looping
structure (Mastrangelo et al., 1991). AP1 is a transcription factor involved in cellular
proliferation, transformation, and apoptosis that forms heterodimers with the Jun
oncogene (Shaulian and Karin, 2002). MYC is an oncogene involved in several different
cancer types and exerts widespread transcriptional regulatory effects (Dang, 2012). CEBPB
is another major enhancer-binding protein family which can aid the transition of enhancer
elements from closed chromatin to a primed or poised state and is involved in immune and
inflammatory responses (Heinz et al., 2015). CTCF is a major architectural protein with a
role in defining megabase-scale topologically-associated domains as well as regulating
smaller-scale enhancer-promoter interactions such as those observed here (Ong and

Corces, 2014; Phillips and Corces, 2009). YY1 is another major architectural protein that
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cooperates with CTCF to mediate looping interactions involved in developmental processes

and enhancer-promoter interactions (Beagan et al., 2017; Weintraub et al., 2017).

Discussion

In this paper we introduce a novel method for Hi-C data analysis, HIPPIEZ,
which dynamically discovers fine-scale physically-interacting regions (PIRs) of the
genome with increased resolution compared to previous methods, detects fine-scale
chromatin interactions, and provides functional and mechanistic characterization of
these interactions. HIPPIEZ uses the pattern of restriction events as evidenced by
sequencing read pileups relative to restriction sites to fine-map interacting DNA
regions. Our results suggest that HIPPIE2 detects more specific, finer-scale
interactions at the gene-regulatory level of chromatin architecture (average PIR
length of 1,006bps), offering a complementary approach to the binning-based
procedures (Ay et al.,, 2014; Durand et al., 2016; Forcato et al., 2017; Heinz et al., 2010;
Mifsud et al., 2015; Rao et al., 2014). Our method also complements restriction
fragment-based methods (Hwang et al.,, 2014; Jin et al,, 2013) as an alternative for
analyzing data from more frequent cutters with much smaller fragment length and
interaction regions spanning more than one fragment.

With our approach designed to work at the inherent resolution of the data (as
determined by restriction enzyme cutting frequency and restriction efficiency), our

method will prove useful in the analysis of chromosome conformation capture
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experiments with further increased sequencing depth or improved restriction
protocols. Another natural application in which our approach will prove useful is
the analysis of the data generated by the assays targeting particular types of
interactions, such as Capture-C and Capture Hi-C (Hughes et al., 2014; Mifsud et al.,
2015) that capture promoter-centric interactions.

Furthermore, the fine-scale resolution of our method for detecting interacting
regions enables analysis, identification and interpretation of specific proteins/TF
complexes mediating these interactions. This TF analysis can be improved by de
novo motif discovery in PIR sequences, incorporation of protein-protein interaction
networks to identify protein/TF complexes, and protein domain compatibility
information. Using the identified interacting sequences and mediating TFs can help
build predictive models for regulatory interactions such as (Schreiber et al., 2018;
Whalen et al,, 2016). Another direction in which our fine mapping HIPPIE2 method
will prove useful is in comparison and analysis of changes in fine-scale regulatory
networks during development or between different conditions. HIPPIEZ2 is freely

available as an open source pipeline (https://bitbucket.org/wanglab-

upenn/HIPPIE2). HIPPIE2 generated interaction data is also available in UCSC

Genome Browser hub

(https://genome.ucsc.edu/s/alexamlie /HIPPIE2%20vs%20Ra0%20all%20cell%20

lines%?20darker%20interaction%20lines).
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Methods

Hi-C data acquisition and genome mapping

For our analysis, we used the Hi-C datasets for GM12878 (primary and secondary
replicates), HMEC, HUVEC, IMR90, K562, and NHEK cell lines from (Rao et al., 2014),
acquired from the GEO database (accession number GSE63525). For each condition, we
acquired FASTAQ files from the SRA files available on GEO corresponding to sequencing
libraries within each condition. Each library was mapped separately and then combined for
downstream analyses. HIPPIE2 first aligns the paired-end reads to the human genome
(hg19 assembly) using the STAR aligner (Dobin et al., 2013) allowing only unique mapping
(full parameters available in HIPPIEZ open source repository, starMappingToBam.sh
script). Each of the single-end reads from a read-pair was first mapped separately and then
re-associated with the corresponding second read in a read-pair. To improve mapping,
both contiguously mapped and chimeric reads are identified and paired. Both halves of a
chimeric read were required to map uniquely and have a minimum mapped length of 22 nt.
For those paired-end reads with a chimeric read involved, we required that the pairing
partner of the chimeric read (a single-end read) mapped in the proximity of one of the two

split halves spanned by the chimeric read.
Hi-C read normalization

To remove potential random ligation events, including un-cut, self-ligated, or re-
ligated read-pairs, we filtered out the read-pairs that are less than 5,000 bps apart from
each other as suggested in (Jin et al., 2013; Lajoie et al., 2015). In addition, to correct for all

possible Hi-C experimental biases including length of the crosslinked DNA fragments,
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restriction site accessibility, or ligation rate of the restriction enzyme digested fragments,
we normalized the read counts using the matrix normalization method by Knight and Ruiz
(Knight and Ruiz, 2012) as used in (Rao et al., 2014). Additionally, to avoid any biases on
detecting the region that cannot be mapped as a unique genomic locus, we also removed
from the analysis restriction sites (RSs) that have mappability less than 0.8. We found that
96% of the RSs have mappability higher than 0.8, i.e. most of RSs had high mappability

given a relatively long read length (101 nts).
Identification of physically-interacting regions

To identify physically-interacting DNA regions (PIRs), we utilized the idea that each
single-end Hi-C read is always located in the proximity of a restriction site (RS) that serves
as both the restriction enzyme cleavage and ligation site in the Hi-C protocol. The RSs
correspond to sites in the genomic DNA containing sequence that can be recognized by the
restriction enzyme, e.g., “GATC” for restriction enzyme Mbol. After HIPPIE2 maps reads, it
first determines corresponding RSs (cleavage/ligation sites), and infers the relative
position (upstream or downstream from the RSs) for the DNA-interacting region (PIR).

The cleavage/ligation sites are identifiable from the mapping information of Hi-C
paired-end reads because (1) a proper DNA ligation forms a phosphodiester bond between
the 5' phosphate of the donor DNA and the 3" hydroxyl of the acceptor DNA, and (2) the
strand orientation pattern reported by [llumina sequencer is restricting the combinations
of upstream or downstream cleavage/ligation site of each read-pairs. The workflow of
identifying all physically-interacting regions (PIRs) and PIR-PIR interactions along the

genome includes three major phases: (I) find ligation junctions for read-pairs (II) identify
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physically-interacting regions, and (III) find PIR-PIR interactions. Each phase is described
below.

I Identifying ligation junctions for read-pairs

Each mapped read has two candidate (nearest upstream or downstream) restriction
sites (RSs) to be assigned as the restriction enzyme cut-and-ligation site. To determine
the cut-and-ligation site, we first determine which type of interaction has happened based
on the mapped strand orientation (Supplementary Figure 7, Supplementary Figure 6a,
Supplementary Figure 8). We enumerated all the possible ligations types. head/tail,
tail/head, head/head, or tail/tail ligations; where head is the end with smaller genome
coordinate and tail isthe end that is on alarger coordinate of the chromosome.

Because (1) theligation of two DNA fragmentsis formed by a phosphodiester
bond between a 3' hydroxyl and a5' phosphate, and (2) Illumina paired-end sequencing
reads are generated from opposite strands from the sequenced DNA fragments, we can

narrow down four possible ligation types for each paired-end reads to two scenarios using

its strand orientation. For the read strand combinations of +/- or -/+ (different strand), the

two possible ligation types are either head/tail or tail/head ligations (Supplementary
Figure 7 left). Similarly, for the read strand combinations of +/+ or -/- (same strand), the
two possible ligation types are either head/head or tail/tail ligations (Supplementary
Figure 7 right). Next, because of the size-selection step in the Hi-C protocol, cut-and-
ligation events are expected to generate read pairs within 500bp of the restriction enzyme

(Mbol) cutting sites due to the size selection, to resolve the two possible cases of
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head/tail or tail/head for +/- and -/+, we calculated the two possible sums of the two

distances to the nearest cutter sites, and ruled out the ligation event that made the sum
larger than 300 base pair, which would be result from ligation of nonspecific cleavage
product (Y affe and Tanay, 2011)in the Hi-C experiment (Supplementary Figure 8). As
shown in Supplementary Table 2, the observed fractions of strand orientation
combinations for sequenced Hi-C read pairs are close to uniform as expected from the

stochastic nature of the proximity ligation reaction.

iL. Identifying physically-interacting regions (PIRs)

With the identified RSs that form DNA-DNA ligation junctions, we further identify
physically-interacting regions (Algorithm in Supplementary Figure 6b). First, we note the
sum of upstream and downstream read counts (single-end reads from read-pairs) for each
RS identified in the previous step. To group restriction events corresponding to the same
interaction (interacting region), we clustered RSs separately for upstream and downstream
read counts by thresholds of the maximum gap (dciuster) and the minimum read (¢hreshora)-
The maximum gap is defined as the third quantile of the restriction fragment distance
distribution, and the minimum read requirement is defined as the median of the
normalized read distribution for each chromosome. Within each corresponding cluster, we
identify the RSs with the maximum read count (i.e. most consistently cut site) as the
candidate flanking ends for PIRs. Finally, we matched the nearest upstream and
downstream candidate flanking ends with a max-gap algorithm (in this study, the max-gap

is 4000 bp), and report the PIRs as regions that are enclosed by the upstream and
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downstream RSs with the maximum read count in the upstream and downstream
restriction clusters.

I, Finding all PIR-PIR interactions

We find the interactions between PIRs by tracing the Hi-C read-pairs that
participated in the identifications of PIRs (Algorithm in Supplementary Figure 6c). For
each PIR identified in the previous step, IDs of single-end reads in the left and right RS
clusters are used to identify PIRs containing mate reads (i.e. other single-end reads from
read-pairs) as interacting partners. All such PIR-PIR interactions are then reported along

with the read counts.

Identifying significant PIR-PIR interactions genome-wide

To identify significant intra-chromosomal PIR-PIR interactions, we applied the Fit-
Hi-C method (Ay et al,, 2014) in R v3.2.3. For each of the autosomal chromosomes (1-22)
and chromosome X, we split all observed PIR-PIR interactions into 2,000 distance groups
according to the linear distance (in nucleotides) between interacting PIRs. We filtered out
the PIR pairs that are less than 5,000 nucleotides apart. For each distance group, we
calculated the average distance and the average normalized read counts of the interacting
PIRs. With the 2,000 aggregated data points, we fit the normalized read counts by the
function of distance using smooth.spline function in R. After the first spline fitting, we
removed the outliers as described in (Ay et al., 2014) and fit the second spline function. We
then reported PIR-PIR interactions that are significant after Benjamini-Hochberg

correction (adjusted P values <= 0.05).
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Overlap with DNA loops from Rao et al

We compared PIR-PIR interactions in our study with the set of DNA loops identified
in (Rao et al., 2014) using HiCCUPS. We downloaded the set of loops and Hi-C loci (DNA
regions that are participating in significant DNA loops) and filtered to include only those
with the highest 10 kb resolution from GEO database under accession number GSE63525.
We then overlapped these loop anchors and interactions with HIPPIE2-identified PIRs and
PIR-PIR interactions using a custom script (available in the HIPPIE2 software repository)

using awk, bedtools v2.25.0 (Quinlan and Hall, 2010), and Python v2.7.9.

Functional and genomic annotation data

We downloaded the cell type-specific ChIP-seq peak data for histone modifications
(H3K4me1l, H3K4me2, H3K4me3, H3K27ac, and H3K36me3), DNase | hypersensitive sites,
and transcription factors or DNA-binding proteins (RNA Polymerase 11, p300, and CTCF)
from the 2011 freeze of the UCSC Genome Browser (Kent et al., 2002) for ENCODE datasets
and directly from the web portal

(https://egg2.wustl.edu/roadmap/web portal/index.html) for Roadmap datasets

including combinatorial epigenomic states from ChromHMM that we used to identify

enhancer states (Supplementary Table 1).
Enrichment analysis of functional genomic overlaps

To estimate the extent of overlap between PIRs and regulatory and epigenetic
marks genome-wide, we calculated the sum of overlapped nucleotides between PIRs and

each signal track (regulatory/epigenetic mark) genome-wide as the observed value. We

sampled (1000 times) random genomic regions from the genome with length distribution
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matched with the length of PIRs. We calculated the average of 1,000 sums of overlaps
between the sampled regions and each of the signal tracks. We then reported the
percentage differences between the observed value and the averaged value from the
background as the enrichment of the PIRs for each of the signal tracks. All region

intersections were performed with bedtools v2.25.0 (Quinlan and Hall, 2010).

Regulatory and genetic annotation of the interacting PIRs

HIPPIEZ annotates PIRs as enhancers, promoters, exons, introns, or intergenic
elements. To do this, we used the cell-type-matched enhancer annotations described above
and gene models downloaded from RefSeq (Pruitt et al., 2005). We annotate as enhancers
the promoter-interacting PIRs that overlapped the enhancer (E) or weak enhancer (WE)
annotation from the genome segmentation track (ChromHMM). We also annotated all
promoter-interacting PIRs as an enhancer if they overlapped an open chromatin region
with H3K4me1 or H3K27ac ChIP-seq peak, while not overlapping H3K4me3 and
H3K27me3 peaks. The rest of the PIRs were annotated as promoters, exons, introns, and
intergenic elements using RefSeq gene models (hg19 assembly). The promoters were
defined as 500 bp-long regions upstream of the RefSeq TSS of protein-coding genes. We
then annotated PIRs as promoters, exonic, intronic, or intergenic elements (in this
prioritized order) based on their overlap with RefSeq gene models. To calculate the
background expectations of interactions between annotations a and b, we used the product
of the proportion of individual PIRs in annotation a and the proportion of those in

annotation b.
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Transcription factor binding analysis of PIR-PIR interactions

To identify PIRs with evidence of transcription factor binding, we used Factorbook data
(Wang et al., 2013) that integrates ChIP-seq experimental data from ENCODE with
computationally-predicted TFBS to comprehensively survey protein-DNA binding genome-
wide. The Factorbook data were obtained from UCSC hg19 database (factorbookMotifPos
table, release 4). The Factorbook data contains 161 factors and the motifs were discovered
from 91 cell types. We focused on 133 known DNA-binding transcription factors. We
filtered out the TFs with less than 10 binding sites with PIRs genome-wide. For each PIR,
we reported all TFs that have at least one binding site within that PIR. We reported
enrichment for each of the surveyed binding motifs in PIR-PIR interactions. To do this, we
categorized PIR-PIR interactions according to the classes of interacting PIR elements
(enhancers, promoters, exons, introns, or intergenic elements). We estimated binding-
motif enrichment as observed/expected frequency odds ratio. We computed the expected
probability as the probability of the first class of PIR (Ci) having one motif (My) times the
probability of the second class of PIR (C;) having another motif (M;) as follows:

Prob(M,, M,observed in C;, C;) = P(M|C;) X P(M,|C;)

_ P(My, C}) » P(M,, C;)
P(Cy) P(C))

_ #(C; containing My, ) “ #(C; containing M, )

#C; #C;

We performed a binomial distribution test to report the significance of observed binding
motifs in each type of PIR-PIR interaction. To compare against the BioGRID database

(Chatr-Aryamontri et al., 2015; Tyers et al., 2006), we downloaded the list of TF-TF
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interactions across cell lines and searched for transcription factor matches by name and by

alias.

Availability

HIPPIE2 software is freely available at https://bitbucket.org/wanglab-

upenn /HIPPIEZ2. The corresponding interaction data tracks are available on the

UCSC genome browser:
https: enome.ucsc.edu/s/alexamlie/HIPPIE2%20vs%20Ra0%20all%20cell%20li

nes%20darker%?20interaction%20lines

References

Ay, F., Bailey, T.L., and Noble, W.S. (2014 ). Statistical confidence estimation for Hi-C

data reveals regulatory chromatin contacts. Genome Res. 24, 999-1011.

Beagan, J.A., Duong, M.T., Titus, K.R., Zhou, L., Cao, Z., M3, ]., Lachanski, C. V., Gillis,
D.R,, and Phillips-Cremins, J.E. (2017). YY1 and CTCF orchestrate a 3D chromatin

looping switch during early neural lineage commitment. Genome Res. 27, 1139-

1152.

Bernstein, B.E., Mikkelsen, T.S,, Xie, X., Kamal, M., Huebert, D.]., Cuff, ], Fry, B,,
Meissner, A., Wernig, M., Plath, K,, et al. (2006). A Bivalent Chromatin Structure
Marks Key Developmental Genes in Embryonic Stem Cells. Cell 125, 315-326.

Bernstein, B.E., Birney, E., Dunham, I, Green, E.D., Gunter, C., and Snyder, M. (2012).
An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-

74.


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634006; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Genome Research, Methods category 34
HIPPIE2: identifying physically-interacting regions
Calo, E., and Wysocka, J. (2013). Modification of enhancer chromatin: what, how, and

why? Mol. Cell 49, 825-837.

Chatr-Aryamontri, A., Breitkreutz, B.-]., Oughtred, R., Boucher, L., Heinicke, S., Chen,
D., Stark, C., Breitkreutz, A., Kolas, N., O'Donnell, L., et al. (2015). The BioGRID
interaction database: 2015 update. Nucleic Acids Res. 43, D470-8.

Consortium, R.E., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-
Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of
111 reference human epigenomes. Nature 518, 317-330.

Dang, C. V. (2012). MYC on the path to cancer. Cell 149, 22-35.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, ]., Zaleski, C,, Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15-21.

Durand, N.C., Shamim, M.S., Machol, I, Rao, S.S.P., Huntley, M.H., Lander, E.S., and
Aiden, E.L. (2016). Juicer Provides a One-Click System for Analyzing Loop-
Resolution Hi-C Experiments. Cell Syst. 3, 95-98.

Ernst, J., and Kellis, M. (2012). ChromHMM: automating chromatin-state discovery
and characterization. Nat. Methods 9, 215-216.

Forcato, M., Nicoletti, C., Pal, K,, Livi, C.M,, Ferrari, F., and Bicciato, S. (2017).
Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679-
685.

Heinz, S., Benner, C., Spann, N., Bertolino, E,, Lin, Y.C,, Laslo, P., Cheng, ].X., Murre, C,,
Singh, H., and Glass, C.K. (2010). Simple Combinations of Lineage-Determining
Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and

B Cell Identities. Mol. Cell 38, 576-589.

Heinz, S., Romanoski, C.E., Benner, C., and Glass, C.K. (2015). The selection and


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634006; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Genome Research, Methods category 35
HIPPIE2: identifying physically-interacting regions

function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144-154.

Hughes, J.R., Roberts, N., Mcgowan, S., Hay, D., Giannoulatou, E., Lynch, M., De Gobbi,
M, Taylor, S., Gibbons, R., and Higgs, D.R. (2014). Analysis of hundreds of cis-
regulatory landscapes at high resolution in a single, high-throughput experiment.

Nat. Genet. 46, 205-212.

Hwang, Y.-C,, Zheng, Q., Gregory, B.D., and Wang, L.-S. (2013). High-throughput
identification of long-range regulatory elements and their target promoters in the

human genome. Nucleic Acids Res. 41, 4835-4846.

Hwang, Y.-C,, Lin, C.-F,, Valladares, O., Malamon, ]., Kuksa, P., Zheng, Q., Gregory, B.D,,
and Wang, L.-S. (2014). HIPPIE: A high-throughput identification pipeline for

promoter interacting enhancer elements. Bioinformatics 1-3.

Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R,,
Dekker, J., and Mirny, L.A. (2012). Iterative correction of Hi-C data reveals hallmarks
of chromosome organization. Nat. Methods 9, 999-1003.

Jin, F, Li, Y., Dixon, ]J.R,, Selvaraj, S., Ye, Z., Lee, A.Y,, Yen, C.-A., Schmitt, A.D., Espinoza,
C.A., and Ren, B. (2013). A high-resolution map of the three-dimensional chromatin

interactome in human cells. Nature 503, 290-294.

Kaplan, N., and Dekker, J. (2013). High-throughput genome scaffolding from in vivo
DNA interaction frequency. Nat. Biotechnol. 31, 1143-1147.

Kent, W], Sugnet, CW.,, Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and
Haussler, a.D. (2002). The Human Genome Browser at UCSC. Genome Res. 12, 996-
1006.

Knight, P.A., and Ruiz, D. (2012). A fast algorithm for matrix balancing. IMA J. Numer.
Anal. 33, 1029-1047.

Lajoie, B.R,, Dekker, |., and Kaplan, N. (2015). The Hitchhiker’s guide to Hi-C


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634006; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Genome Research, Methods category 36
HIPPIE2: identifying physically-interacting regions

analysis: practical guidelines. Methods 72, 65-75.

Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling,
A., Amit, L., Lajoie, B.R,, Sabo, P.]J., Dorschner, M.0O., et al. (2009). Comprehensive
mapping of long-range interactions reveals folding principles of the human genome.

Science (80-.). 326, 289-293.

Lun, A.T.L.,, and Smyth, G.K. (2015). diffHic: A Bioconductor package to detect

differential genomic interactions in Hi-C data. BMC Bioinformatics 16, 1-11.

Ma, W, Ay, F., Lee, C., Gulsoy, G., Deng, X., Cook, S., Hesson, ]., Cavanaugh, C., Ware,
C.B,, Krumm, A,, et al. (2015). Fine-scale chromatin interaction maps reveal the cis-

regulatory landscape of human lincRNA genes. Nat. Methods 12, 71-78.

Mastrangelo, L.A., Courey, A.]., Wall, ].S., Jackson, S.P., and Hough, P. V (1991). DNA
looping and Sp1 multimer links: a mechanism for transcriptional synergism and

enhancement. Proc. Natl. Acad. Sci. 88, 5670-5674.

Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L.,
Wingett, SW., Andrews, S., Grey, W., Ewels, P. a, et al. (2015). Mapping long-range
promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47,

598-606.

Norton, H.K,, Emerson, D.]., Huang, H., Kim, J., Titus, K.R., Gu, S., Bassett, D.S., and
Phillips-Cremins, J.E. (2018). Detecting hierarchical genome folding with network
modularity. Nat. Methods 15, 119-122.

Ong, C.T., and Corces, V.G. (2014). CTCF: An architectural protein bridging genome
topology and function. Nat. Rev. Genet. 15, 234-246.

Phillips, J.E., and Corces, V.G. (2009). CTCF: master weaver of the genome. Cell 137,
1194-1211.

Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2005). NCBI Reference Sequence


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634006; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Genome Research, Methods category 37
HIPPIE2: identifying physically-interacting regions

(RefSeq): a curated non-redundant sequence database of genomes, transcripts and

proteins. Nucleic Acids Res. 33, D501-4.

Pruitt, K.D., Brown, G.R., Hiatt, S.M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, O.,
Farrell, C.M,, Hart, J., Landrum, M.]., McGarvey, K.M,, et al. (2014). RefSeq: An update

on mammalian reference sequences. Nucleic Acids Res. 42, 756-763.

Quinlan, A.R., and Hall, .M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841-842.

Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, 1.D., Robinson, ].T.,
Sanborn, A.L., Machol, 1., Omer, A.D., Lander, E.S,, et al. (2014). A 3D Map of the
Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping.

Cell 159, 1665-1680.

Schreiber, ]., Libbrecht, M., Bilmes, J., and Noble, W. (2018). Nucleotide sequence and

DNasel sensitivity are predictive of 3D chromatin architecture. BioRxiv 103614.

Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat. Cell
Biol. 4, E131-E136.

Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from
properties to genome-wide predictions. Nat. Rev. Genet. 15, 272-286.

Thurman, R.E., Rynes, E., Humbert, R,, Vierstra, J., Maurano, M.T., Haugen, E.,
Sheffield, N.C., Stergachis, A.B., Wang, H., Vernot, B., et al. (2012). The accessible

chromatin landscape of the human genome. Nature 489, 75-82.

Tyers, M., Breitkreutz, A., Stark, C., Reguly, T., Boucher, L., and Breitkreutz, B.-].
(2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34,
D535-539.

Wang, J., Zhuang, J., Iyer, S., Lin, X.-Y., Greven, M.C,, Kim, B.-H., Moore, ]., Pierce, B.G.,
Dong, X., Virgil, D., et al. (2013). Factorbook.org: a Wiki-based database for


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/634006; this version posted May 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Genome Research, Methods category 38
HIPPIE2: identifying physically-interacting regions
transcription factor-binding data generated by the ENCODE consortium. Nucleic

Acids Res. 41, D171-6.

Weintraub, A.S., Li, C.H., Zamudio, A. V., Sigova, A.A.,, Hannett, N.M.,, Day, D.S,,
Abraham, B.]., Cohen, M.A., Nabet, B., Buckley, D.L., et al. (2017). YY1 Is a Structural
Regulator of Enhancer-Promoter Loops. Cell 171, 1573-1588.e28.

Whalen, S., Truty, R.M,, and Pollard, K.S. (2016). Enhancer-promoter interactions
are encoded by complex genomic signatures on looping chromatin. Nat. Genet. 48,

488-496.

Yaffe, E., and Tanay, A. (2011). Probabilistic modeling of Hi-C contact maps
eliminates systematic biases to characterize global chromosomal architecture. Nat.

Genet. 43, 1059-1065.

Yang, D., Jang, L., Choj, ], Kim, M.-S,, Lee, A.]., Kim, H., Eom, J., Kim, D., Jung, 1., and Lee,
B. (2018). 3DIV: A 3D-genome Interaction Viewer and database. Nucleic Acids Res.
46, D52-D57.

Zhu, Y., Sun, L., Chen, Z., Whitaker, ].W., Wang, T., and Wang, W. (2013). Predicting
enhancer transcription and activity from chromatin modifications. Nucleic Acids

Res. 41,10032-10043.


https://doi.org/10.1101/634006
http://creativecommons.org/licenses/by/4.0/

