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Abstract

Immune cell infiltration of tumors can be an important component for determining
patient outcomes, e.g. by inferring immune cell presence by deconvolving gene
expression data drawn from a heterogenous mix of cell types. One particularly powerful
family of deconvolution techniques uses signature matrices of genes that uniquely
identify each cell type as determined from cell type purified gene expression data. Many
methods of this type have been recently published, often including new signature
matrices appropriate for a single purpose, such as investigating a specific type of tumor.
The package ADAPTS helps users make the most of this expanding knowledge base by
introducing a framework for cell type deconvolution. ADAPTS implements modular
tools for customizing signature matrices for new tissue types by adding custom cell
types or building new matrices de novo, including from single cell RNAseq data. It
includes a common interface to several popular deconvolution algorithms that use a
signature matrix to estimate the proportion of cell types present in heterogenous
samples. ADAPTS also implements a novel method for clustering cell types into
groups that are hard to distinguish by deconvolution and then re-splitting those clusters
using hierarchical deconvolution. We demonstrate that the techniques implemented in
ADAPTS improve the ability to reconstruct the cell types present in a single cell
RNAseq data set in a blind predictive analysis. ADAPTS is currently available for use
in R on CRAN and GitHub.

Introduction 1

Determining cell type enrichment from gene expression data is an useful step towards 2

determining tumor immune context [1, 2]. One family of techniques for doing this 3

involves regression with a signature matrix, where each column represents a cell type 4

and each row contains the average gene expression in that cell type [3, 4]. These 5

signature matrices are constructed using gene expression from samples of a purified cell 6

type. Generally, the publicly available versions of these gene expression signature 7

matrices use immune cells purified from peripheral blood. Genes are included in these 8

matrices based on how well they distinguish the constituent cell types. Although 9

examples exist of both general purpose immune signature matrices, e.g. LM22 [5] and 10

Immunostates [6], and more tissue specific ones e.g. M17 [7], these publicly available 11

matrices are most likely not appropriate for all diseases and tissue types. One such 12
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example would be multiple myeloma whole bone marrow samples, which pose multiple 13

challenges: both tumor and immune cells are present, immune cells may have different 14

states than in peripheral blood, and non-immune stromal cells such as osteoblasts and 15

adipocytes are expected play an important role in patient outcomes [8]. 16

One straightforward solution to this problem would be to augment a signature 17

matrix by adding cell types without adding any additional genes. For example, one 18

might find purified adipocyte samples in a public gene expression repository and add 19

the average expression for each gene in the matrix to create an adipocyte augmented 20

signature matrix. While this might work, one might reasonably expect adipocytes to 21

best be identified by genes that are different from those that best characterize 22

leukocytes. Furthermore, it will be unclear which deconvolution algorithm would be 23

most appropriate for applying this new signature matrix to samples. Once cell types 24

have been deconvolved, it will also be unclear which cell types are likely to be confused 25

due to a common lineage or other factors and what to do about that confusion. These 26

problems are exacerbated by newly available single cell RNAseq data, which promises to 27

identify the cell types that are present in a particular sample and gene expression for 28

those cell types, but is hampered by clustering techniques that may incorrectly identify 29

groups of cells as distinct cell types. 30

We have developed the R package ADAPTS (Automated Deconvolution 31

Augmentation of Profiles for Tissue Specific cells) to help solve these problems. 32

ADAPTS is currently available on CRAN 33

(https://cran.r-project.org/web/packages/ADAPTS) and GitHub 34

(https://github.com/sdanzige/ADAPTS). As the package vignettes already provide 35

step-by-step instructions for applying ADAPTS to the aforementioned problems, this 36

manuscript is intended to compliment the package by providing a theoretical 37

understandinf of the ADAPTS methodology. 38

Materials and Methods 39

ADAPTS aids deconvolution techniques that use a signature matrix, here denoted as 40

S, where each column represents a cell type and each row contains the average gene 41

expression in that cell type [3, 4]. These signature matrices are constructed using gene 42

expression from samples of purified cell types, P , and include genes that are good for 43

identifying cells of type c where c 2 C and C is a population of cell types to look for in 44

a sample. 45

Deconvolution estimates the relative frequency of cell types in a matrix of new 46

samples X where each column is a sample and each row is a gene expression 47

measurement according to Eq 1. 48

E = D(S,X) (1)

Eq 1 results in a cell type estimate matrix E, where each column is a sample 49

corresponding to a column in X, and each row is a cell type corresponding to a column 50

in S. 51

One straightforward method to augment a signature matrix, S, would be to add new 52

cell types, NC, without adding any additional genes. For example, one might start with 53

LM22 as an initial signature matrix, S0, with |g
S

0 | = 547 genes (rows) and |C = 22| cell 54

types (columns) and augment with c 2 NC purified cell types. Let NC1 = adipocytes 55

and P

1 be an adipocyte samples matrix with |G| = 20, 000 genes (rows) and |J1| = 9 56

samples (columns) taken from a public gene expression repository such as 57

ArrayExpress [9] or the Gene Expression Omnibus [10]. A new column could be 58

constructed from P

1 from the average expression, A(P 1), for each of the 547 genes 59

(g1...g547) in G

S

0 . Extended to all c 2 NC, this would produce Eq 2. 60
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Thus S1 is a signature matrix augmented with the cell types in NC. While this 61

might work, one might reasonably expect adipocytes to best be identified by genes that 62

are different from those that best characterize the 22 cell types in S

0. 63

Signature Matrix Augmentation 64

ADAPTS provides functionality for augmenting an existing cell type signature matrix 65

with additional genes or even constructing a new signature matrix de novo. In addition 66

to S

0 and P

1, this requires SE0, an extended version S

0 with all genes. From this data, 67

ADAPTS selected N additional genes g
n1...N to augment the signature matrix as 68

shown in Eq 3. 69
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ADAPTS helps a user construct new signature matrices with modular R functions 70

and default parameters to: 71

1. Identify and rank significantly different genes for each cell type. 72

2. Evaluate the stability (condition number, (Sx)) of many signature matrices 73

S

x 2 S. 74

3. Smooth and normalize to meet tolerances for a robust signature matrix. 75

These components are combined into a single function that produces a new 76

deconvolution matrix. First the algorithm ranks each the genes that best differentiate 77

each cell types such that there is a ranked set of genes gc for each c 2 C where C 78

includes the cell types in the original signature matrix, S0 as well as the new cell types 79

NC. Genes, gc (where g

c ✓ G and G is the set of all genes), are ranked in descending 80

order according to scores calculated by Eq 4 and exclude any that do not pass a t-test 81

determined false discover rate cutoff (by default, 0.3). 82

score(g
n

) = ||log2

0
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Thus gc = sort(8n 2 N : score(gc
n

)) and the function pop(gc) will return and remove 83

the gene with the largest absolute average log expression ratio between the cell type, c, 84

and all other cell types, C � {c}. As shown in Algorithm 1, the matrix augmentation 85

algorithm iteratively adds the top gene that is not already in the signature matrix from 86

each c 2 C and calculates the condition number for that matrix. The augmented 87

signature matrix is then chosen that minimizes the condition number, . 88

Algorithm 1 Augment signature matrix

Require: S

0, SE0, and P {as defined for equations 2 and 3}
S

1 = (S0|A(P
g2GS0 )) {S1 is augmented as shown in equation 2}

minCN = CN1 = (S1)
bestIndex = 1
for i = 2 : nIter do
g1...N = 8c 2 C : pop(gc) {i.e. take the top gene for each cell type}
S

i = ((Si�1)||A(P
g1...N )|)| {Si is augmented as shown in equation 3}

CN

i = (Si)
if CN

i

< minCN then
minCN = CN

i

bestIndex = i

end if
end for
{bestIndex might be recalculated after smoothing CN and/or applying a tolerance}
return S

bestIndex

In Algorithm 1: nIter = 100 by default, (s) returns the condition number, and 89

A(P ) returns the mean expression for each gene in each cell type. Optionally, the 90

condition numbers (CN) may be smoothed to ensure a robust minimum. A tolerance 91

may also be applied to find the minimum number of genes that has a CN within some 92

% tolerance of the true minimum. 93

Fig 1 shows a plot of condition numbers when adding 5 cell types to a 22 cell type 94

signature matrix with smoothing and a 1% tolerance. 95

Similarly, ADAPTS can be used to construct a de novo matrix from first principals 96

rather than starting with a pre-calculated S

0. One technique is to build S

0 out of the n 97

(e.g. 100) genes that vary the most between cell types and use ADAPTS to augment 98

that seed matrix. The n initial genes can then be removed from the resulting signature 99

matrix and that new signature matrix can be re-augmented by ADAPTS. 100

Deconvolution Framework 101

The ADAPTS package includes functionality to call several different deconvolution 102

methods using a common interface, thereby allowing a user to test new signature 103

matrices with multiple algorithms. These function calls fit the form D(S,X) presented 104

in Eq 1. 105

The algorithms include: 106

1. DCQ [11]: An elastic net based deconvolution algorithm that consistently best 107

identifies cell proportions. 108

2. SVMDECON [5]: A support vector machine based deconvolution algorithm. 109

3. DeconRNASeq [12]: A non-negative decomposition based deconvolution 110

algorithm. 111

4. Proportions in Admixture [13]: A linear regression based deconvolution 112

algorithm. 113
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Spillover to Convergence 114

In cell-type deconvolution, spillover refers to the tendency of some cell types to be 115

misclassified as other cell types [14]. For example, when using LM22, deconvolving 116

purified activated mast cell samples results predicted cell compositions that are almost 117

equally split between activated and resting mast cells (Figure 2). One approach to 118

exploring this problem might be to cluster the signature matrix, and assume that highly 119

correlated signatures would tend to spill over to each other. However, ADAPTS 120

instead directly calculate what cell types spill over to what other cell types by 121

deconvolving the purified samples, P , used to construct and augment the signature 122

matrices, S. While the cell types that are likely to spill-over detected by both methods 123

are similar, directly calculating the spillover reveals some surprising patterns. For 124

example, based on signature matrix clustering of LM22, ’Dendritic.cells.activated’ and 125

’Dendritic.cells.resting’ tend to cluster together, however the spillover patterns (Figure 126

2) reveal that ’Dendritic.cells.activated’ are most similar to ’Macrophages.M1’ while 127

’Dendritic.cells.resting’ are similar to ’Macrophages.M1’ and ’Macrophages.M2’ . 128

As shown in Algorithm 2, recursively (or iteratively) applying the spillover 129

calculation reveals clear clusters of cells. Eq 5 revisits Eq 1, obtaining an initial spillover 130

matrix, E0, by applying Eq 1 to a signature matrix, S0, and the source data used to 131

construct it, P 0. 132

E

0 = D(S0
, P

0) (5)

Applying A(P ) to average the cell type estimates E across purified samples makes 133

the spillover matrix resemble a signature matrix, leading to Eq 6. 134

S

1 = A(E0) (6)

This new spillover based deconvolution matrix S

1 can be used to re-deconvolve the 135

initial spillover matrix, E0, effectively ’sharpening’ the deconvolution matrix image as 136

shown in Eq 7. 137

E

1 = D(S1
, t(E0)) (7)

Once these values are calculated, the following pseudocode (Algorithm 2) shows how 138

ADAPTS iteratively applies spillover re-deconvolution to cluster cell types likely to be 139

confused by deconvolution. 140

Algorithm 2 Cluster cell types by repeated deconvolution

i = 1
while E

i 6= E

i�1 do
i = i+ 1
S

i = A(Ei�1)
E

i = D(Si

, t(Ei�1))
end while

As shown in Algorithm 2, the signature matrix may never converge onto a single 141

question, but instead may alternate between several solutions such that Ei = E

i�1 is 142

impossible. Therefore ADAPTS includes a parameter forcing the algorithm to break 143

and return an answer after i iterations. However, the algorithm usually converges in less 144

that 30 iterations, resulting in a clustered spillover matrix (e.g. Fig 3). 145

The resulting cell-type clusters (CC) are extracted from E

i by grouping the 146

cell-types for any rows that are identical. For example in Fig 3, ’NK.cells.activated’ and 147

’NK.cells.resting’ would be grouped in one cluster (e.g. CC

3), while ’Neutrophils’ would 148

exist in a cluster by themselves (CC

2), and |CC| = 10. 149
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Hierarchical Deconvolution 150

The clusters calculated by Algorithm 2 allow the hierarchical deconvolution 151

implemented in ADAPTS. ADAPTS includes a function to automatically train 152

deconvolution matrices that include only genes that differentiate cell types that cluster 153

together in Algorithm 2. The first round of deconvolution determines the total fraction 154

of cells in the cluster. The next round of deconvolution determines the relative 155

proportion of all of the cell types in that cluster as shown in Algorithm 3. 156

While this algorithm has not been implemented recursively in ADAPTS, if it was it 157

would resemble a discrete version of the continuous model implemented in MuSiC [15]. 158

Algorithm 3 Hierarchical deconvolution

Require: CC, Pnew, S0, SE0, and P {Pnew has |G| genes ⇥|J | new samples to predict}

S

base = Algorithm 1(S0
, S

E0
, P ){|g| genes ⇥|C| cell types}

E

base = D(Sbase

, P

new){|C| cell types ⇥|J | samples from P

new}
for cc 2 CC do
EB =

P
c

02cc

E

base

c

0
,

vars

cc = 8g 2 G : variance(P cc

g

)

seedSize = dnrow(Sbase)/10e
g

cc = seedSize genes with the top values in vars

cc

S

cc = Algorithm 1(A(P cc

g

cc), P cc

, P

cc)
EC = D(Scc

, P

new)
for c 2 cc do

E

c = EB ⇥ ECc,P
c02cc ECc0,

{1 cell type ⇥|J | samples in P

new}
end for

end for
E

new = ((Ec1)||...|(Ec|C|)|)| {|C| cell types ⇥|J | samples from P

new}

Results 159

The following results section shows how the theory set out in Materials and Methods is 160

applied to detect tumor cells in multiple myeloma samples and to utilize single cell 161

RNAseq data to build a new signature matrix. It contains highlights from two vignettes 162

distributed with the CRAN package (S1 Vig and S2 Vig). 163

Example: Detecting Tumor Cells 164

To demonstrate utility of the ADAPTS package, we show how it can be used to 165

augment the LM22 from [5] to identify myelomatous plasma cells from gene expression 166

profiles of 423 purified tumor (CD138+) samples and 440 whole bone marrow (WBM) 167

samples taken from multiple myeloma patients. The fraction of myeloma cells, which 168

are tumorous plasma cells, were identified in both sample types via quantification of the 169

cell surface marker CD138. Root mean squared error (RMSE) and Pearson’s correlation 170

coefficient (⇢) were used to evaluate accuracy of tumor cell fraction estimates. RMSE 171

proved particularly relevant when deconvolving purified CD138+ sample profiles, 172

because 356 of 423 samples are more than 90% pure tumor resulting in clumping of 173

samples with purity near 100%. 174

The following matrices were used or generated during the evaluation: 175
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Fig 1. MGSM27 Construction
Curve showing the selection of an optimal condition number for MGSM27.

Matrix WBM RMSE WBM ⇢ CD138+RMSE CD138+ ⇢

LM22 38.0± 0.0 0.59± 0.00 27.0± 0.0 0.26± 0.00
LM22 + 5 37.0± 0.0 0.53± 0.00 12.0± 0.0 0.26± 0.00
MGSM27 23.0± 0.0 0.60± 0.00 09.0± 0.2 0.33± 0.01
de novo MGSM27 24.0± 0.0 0.65± 0.00 36.0± 0.0 0.18± 0.00

Table 1. Deconvolution reconstruction of tumor percentage in whole bone marrow
(WBM) and samples sorted to consist of nearly pure CD138+ cells. Classifier accuracy
is measured by root mean square error (RMSE) and Pearson’s correlation coefficient
(⇢). The best scores in each column are bolded.

• LM22: As reported in [5]. The sum of the ’memory B cells’ and ’plasma cells’ 176

deconvolved estimates represent tumor percentage. 177

• LM22 + 5: Builds on LM22 by adding purified sample profiles for myeloma 178

specific cell types as shown in Eq 2: plasma memory cells [16], osteoblasts [9], 179

osteoclasts, adipocytes, and myeloma plasma cells [17]. The sum estimates for 180

’memory B cells’, ’myeloma plasma cells’, ’plasma cells’, and ’plasma memory cells’ 181

represent tumor percentage. 182

• MGSM27: Builds on LM22 by adding 5 myeloma specific cell types using 183

ADAPTS to determine inclusion of additional genes as shown in Eq 3. Fig 1 184

shows ADAPTS evaluating matrix stability after adding different numbers of 185

genes, smoothing the condition numbers, and selecting an optimal number of 186

features. 187

• de novo MGSM27: Builds a de novo MGSM27 by seeding with the 100 most 188

variable genes from publicly available data similar to those mentioned in [5] and 189

the 5 aforementioned myeloma specific cell types. 190

Table 1 displays average RMSE and ⇢ for tumor fraction estimates obtained via 191

application of DCQ deconvolution using the four aforementioned matrices across both 192

myeloma profiling datasets. 193

While the exact genes chosen during each run varies slightly, Table 1 shows that 194

consistently the best accuracy is achieved by augmenting LM22 using ADAPTS. The 195

reduced performance of the de novo MGSM27 on the CD138+ samples is likely due to 196

genes that were present in LM22, but were missing in some of the source data and thus 197

excluded from de novo construction. More details are available in the vignette 198

distributed with the R package. 199

Spillover Matrix 200

Successfully recapturing the known percentage of tumor cells in a sample is a useful 201

intermediate validation step, however, the true value of a deconvolution algorithm lies in 202

it’s ability to determine cell types in a sample that affect patient outcomes. Statistical 203

and machine learning techniques may be applied to identify relevant cell estimates. 204

From there, a correct understanding of the limitations of deconvolution is helpful to 205

reveal the underlying biology. One particularly relevant limitation of deconvolution is 206

how the algorithm may confuse different cell types. ADAPTS’s approach to resolving 207

these problems are outlined in and results in plots such as those shown in Figs 2 and 3. 208

This sort of analysis leads to Algorithm 2 and cell type clusters such as those shown 209

in Fig 3. One way to interpret these results is that co-clustered cell types are those 210
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Fig 2. LM22 Spillover Matrix
Spillover matrix showing mean misclassification of purified samples for LM22. Rows
show purified cell types and columns show what those samples are deconvolved as.

Fig 3. LM22 converged spillover matrix
Iterative deconvolution shows how easily confused cell types conspicuously form clusters.

Fig 4. scRNAseq Signature Matrix Construction
Curve showing the selection of an optimal condition number for the single cell RNAseq

augmented signature matrix data.

cannot be reliably distinguished by deconvolution using a particular deconvolution 211

algorithm and signature matrix. In this example, ’B.cells.naive’, ’B.cells.memory’, and 212

’Plasma.cells’ are all clearly clustered together. These clusters may be particularly 213

valuable for single cell RNAseq analysis where clustering software such as Seurat [18] 214

aid in annotating cell types, but can introduce artificial distinctions due to limitations 215

inherent in clustering. 216

Example: Deconvolving Single Cell Pancreas Samples 217

In this section we demonstrate how ADAPTS can be applied to build a deconvolution 218

matrix from single cell RNAseq data. This example has the additional benefit of 219

illustrating the utility of the algorithms outlined in Spillover to Convergence and 220

Hierarchical Deconvolution to find cell type clusters and distinguish between cell types 221

in those clusters. In this example we use the pancreas single cell RNAseq dataset 222

available in in Array Express [9] as E-MTAB-5061 [19]. All cells of single type were 223

combined and averaged to build pseudo-pure samples of each annotated cell types. A 224

pseudo-bulk RNAseq sample was constructed by adding together all cell types, with the 225

pseudo-bulk cell type percentages assigned based on the proportion of annotated single 226

cells in the mix. The normal pancreas samples were used as the training set and the 227

diabetic pancreas samples as the test set. 228

To demonstrate the utility of augmenting a signature matrix with ADAPTS, we 229

build a signature matrix from the top 100 most variant genes (i.e. Top100) and then 230

augmented this signature (i.e Augmented) as shown in Fig 4. The first test is to predict 231

the normal pseudo-bulk data - essentially predicting the training set (Table 2). The 232

second test is a blind estimation of the diabetic pancreas sample (table 3). As shown in 233

Table 2 the Top100 genes set the baseline correlation coefficient (i.e. ⇢) at 0.05 and the 234

root mean square error (RMSE) at 13.82. Augmenting the signature matrix with 235

ADAPTS Algorithm 1 improved the rho to 0.26 and RMSE to 10.72. 236

Clustering Cell Types Improves Deconvolution Accuracy 237

The spillover clustering algorithm outlined in section was applied to the Top100 and 238

Augmented signature matrices. Fig 5 shows the cell type clusters for the Top100 239

signature matrix, and Fig 6 for the Augmented signature matrix. One way to interpret 240

the results is to assume that the clustered cell-types are indistinguishable from each 241

other, then the correct comparison method is to treat both as the same cell type. 242

Combining the clustered cell types for the Top100 estimates increased the ⇢ to 0.32 but 243

also increased the RMSE to 17.15. Similarly, the Augmented cell estimates had ⇢ = 244

0.58 and RMSE = 16.58. In other words, combining the cell types made it easier to get 245

the relative order of cell type percentages correct, however the predicted fraction of cell 246

types became less accurate. 247
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Fig 5. Clustering of Top 100 gene signature matrix
The cell type clusters identified using the signature matrix constructed from the 100
genes with the highest variance across cell types in the single cell data drawn from a

normal pancreas sample.

Fig 6. Clustering of Augmented gene signature matrix.
The cell types clusters identified using the augmented signature matrix that was seeded

with the 100 genes with the highest variance in the normal pancreas sample.

Cell Type Top 100 Top 100 Augmented Augmented Reference
hierarchical hierarchical

acinar.cell 11.38 7.88 11.56 10.49 10.36
ductal.cell 7.32 7.85 7.85 12.56 43.11
alpha.cell 7.46 7.92 8.34 9.51 12.11
gamma.cell 11.66 7.77 9.68 8.51 1.83
beta.cell 7.11 11.75 7.66 10.77 3.51
co.expression.cell 4.36 16.91 11.49 8.41 14.26
delta.cell 0.00 12.27 2.56 8.04 0.88
unclassified.endocrine.cell 7.02 20.63 6.11 12.29 0.40
endothelial.cell 8.37 0.00 7.63 0.00 8.53
PSC.cell 0.00 0.00 2.13 8.52 0.32
epsilon.cell 0.00 7.02 2.68 6.11 0.16
mast.cell 0.00 0.00 5.96 0.80 2.55
MHC.class.II.cell 35.33 0.00 16.37 4.01 1.99
others 0.00 0.00 0.00 0.00 0.00
RMSE 13.82 12.09 10.72 10.16 0.00
⇢ 0.05 0.12 0.26 0.39 1.00

Table 2. Deconvolution cell type estimates of the normal pancreas training set.

Hierarchical Clustering Improves Deconvolution Accuracy 248

ADAPTS Algorithm 3 (outlined in Hierarchical Deconvolution) was used to build 249

custom signature matrices for breaking apart the clusters shown in Fig 5 and Fig 6. 250

This improved deconvolution accuracies shown in the ’hierarchical’ columns of Table 2. 251

Applying the model built on the normal samples to the diabetic pancreas resulted in the 252

even better blind predictive accuracies shown in Table 3 with the overall best accuracy 253

provided by the hierarchical deconvolution using the Augmented signature matrix: ⇢ = 254

0.46, RMSE = 8.91. 255

Conclusion 256

Table 1 shows an example where using ADAPTS to include additional genes and tissue 257

specific cell types improves the ability of a deconvolution algorithm to identify tumor 258

fractions in microarray-based purified and mixed multiple myeloma gene expression 259

samples. Thus we demonstrate that the techniques implemented in ADAPTS are 260

potentially beneficial for many situations. The functions implemented in ADAPTS 261

enable researchers to build their own custom signature matrices and investigate 262

biosamples consisting of multiple cell types. Tables 2 and 3 show that these methods can 263

build new signature matrices from single cell RNAseq (scRNAseq) data and effectively 264

deconvolve the cell types determined by single cell analysis. This is expected to be 265

particularly useful as researchers use scRNAseq to determine cell types that are present 266

in tissue where large numbers of bulk gene expression samples are already available. 267
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Cell Type Top 100 Top 100 Augmented Augmented Reference
hierarchical hierarchical

acinar.cell 7.40 4.32 10.82 8.89 5.78
alpha.cell 7.93 9.01 7.94 14.41 36.24
beta.cell 8.04 8.44 8.58 9.35 12.39
co.expression.cell 12.33 7.95 10.03 8.55 1.68
delta.cell 9.38 11.50 8.13 10.93 7.35
ductal.cell 5.93 17.06 12.49 8.90 21.74
endothelial.cell 0.00 13.80 2.58 7.91 0.53
epsilon.cell 6.56 21.36 5.83 12.12 0.21
gamma.cell 8.46 0.00 7.61 0.00 9.45
mast.cell 0.00 0.00 1.72 8.51 0.32
MHC.class.II.cell 0.00 6.56 2.88 5.83 0.32
PSC.cell 0.00 0.00 5.93 0.55 2.31
unclassified.endocrine.cell 33.97 0.00 15.47 4.05 1.68
others 0.00 0.00 0.00 0.00 0.00
RMSE 12.76 10.68 9.44 8.91 0.00
⇢ 0.06 0.24 0.35 0.46 1.00

Table 3. Blind deconvolution cell type estimates of the diabetic pancreas test set.

Supporting information 268

S1 Vig. ADAPTS.vignette.html. ADAPTS (Automated Deconvolution 269

Augmentation of Profiles for Tissue Specific cells) Vignette. 270

S2 Vig. ADAPTS2.vignette.html. ADAPTS Vignette 2: Single Cell Analysis. 271
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19. Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun X,
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