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Abstract

Immune cell infiltration of tumors can be an important component for determining
patient outcomes, e.g. by inferring immune cell presence by deconvolving gene
expression data drawn from a heterogenous mix of cell types. One particularly powerful
family of deconvolution techniques uses signature matrices of genes that uniquely
identify each cell type as determined from cell type purified gene expression data. Many
methods of this type have been recently published, often including new signature

matrices appropriate for a single purpose, such as investigating a specific type of tumor.

The package ADAPTS helps users make the most of this expanding knowledge base by
introducing a framework for cell type deconvolution. ADAPTS implements modular
tools for customizing signature matrices for new tissue types by adding custom cell
types or building new matrices de novo, including from single cell RNAseq data. It
includes a common interface to several popular deconvolution algorithms that use a
signature matrix to estimate the proportion of cell types present in heterogenous
samples. ADAPTS also implements a novel method for clustering cell types into
groups that are hard to distinguish by deconvolution and then re-splitting those clusters
using hierarchical deconvolution. We demonstrate that the techniques implemented in
ADAPTS improve the ability to reconstruct the cell types present in a single cell
RNAseq data set in a blind predictive analysis. ADAPTS is currently available for use
in R on CRAN and GitHub.

Introduction

Determining cell type enrichment from gene expression data is an useful step towards
determining tumor immune context [1,2]. One family of techniques for doing this
involves regression with a signature matrix, where each column represents a cell type
and each row contains the average gene expression in that cell type [3,4]. These
signature matrices are constructed using gene expression from samples of a purified cell
type. Generally, the publicly available versions of these gene expression signature
matrices use immune cells purified from peripheral blood. Genes are included in these
matrices based on how well they distinguish the constituent cell types. Although
examples exist of both general purpose immune signature matrices, e.g. LM22 [5] and
Immunostates [6], and more tissue specific ones e.g. M17 [7], these publicly available
matrices are most likely not appropriate for all diseases and tissue types. One such
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example would be multiple myeloma whole bone marrow samples, which pose multiple
challenges: both tumor and immune cells are present, immune cells may have different
states than in peripheral blood, and non-immune stromal cells such as osteoblasts and
adipocytes are expected play an important role in patient outcomes [8].

One straightforward solution to this problem would be to augment a signature
matrix by adding cell types without adding any additional genes. For example, one
might find purified adipocyte samples in a public gene expression repository and add
the average expression for each gene in the matrix to create an adipocyte augmented
signature matrix. While this might work, one might reasonably expect adipocytes to
best be identified by genes that are different from those that best characterize
leukocytes. Furthermore, it will be unclear which deconvolution algorithm would be
most appropriate for applying this new signature matrix to samples. Once cell types
have been deconvolved, it will also be unclear which cell types are likely to be confused
due to a common lineage or other factors and what to do about that confusion. These
problems are exacerbated by newly available single cell RNAseq data, which promises to
identify the cell types that are present in a particular sample and gene expression for
those cell types, but is hampered by clustering techniques that may incorrectly identify
groups of cells as distinct cell types.

We have developed the R package ADAPTS (Automated Deconvolution
Augmentation of Profiles for Tissue Specific cells) to help solve these problems.
ADAPTS is currently available on CRAN
(https://cran.r-project.org/web/packages/ADAPTS) and GitHub
(https://github.com/sdanzige/ADAPTS). As the package vignettes already provide
step-by-step instructions for applying ADAPTS to the aforementioned problems, this
manuscript is intended to compliment the package by providing a theoretical
understandinf of the ADAPTS methodology.

Materials and Methods

ADAPTS aids deconvolution techniques that use a signature matrix, here denoted as
S, where each column represents a cell type and each row contains the average gene
expression in that cell type [3,4]. These signature matrices are constructed using gene
expression from samples of purified cell types, P, and include genes that are good for
identifying cells of type ¢ where ¢ € C and C' is a population of cell types to look for in
a sample.

Deconvolution estimates the relative frequency of cell types in a matrix of new
samples X where each column is a sample and each row is a gene expression
measurement according to Eq 1.

E = D(S,X) (1)

Eq 1 results in a cell type estimate matrix F, where each column is a sample
corresponding to a column in X, and each row is a cell type corresponding to a column
in S.

One straightforward method to augment a signature matrix, .S, would be to add new
cell types, NC, without adding any additional genes. For example, one might start with
LM22 as an initial signature matrix, S°, with |ggo| = 547 genes (rows) and |C' = 22| cell
types (columns) and augment with ¢ € NC purified cell types. Let NC; = adipocytes
and P! be an adipocyte samples matrix with |G| = 20,000 genes (rows) and |J;| = 9
samples (columns) taken from a public gene expression repository such as
ArrayExpress [9] or the Gene Expression Omnibus [10]. A new column could be
constructed from P! from the average expression, A(P!), for each of the 547 genes
(91.--g547) In Ggo. Extended to all ¢ € NC, this would produce Eq 2.
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Thus S! is a signature matrix augmented with the cell types in NC. While this
might work, one might reasonably expect adipocytes to best be identified by genes that
are different from those that best characterize the 22 cell types in S°.

Signature Matrix Augmentation

ADAPTS provides functionality for augmenting an existing cell type signature matrix
with additional genes or even constructing a new signature matrix de novo. In addition
to SY and P!, this requires SF0, an extended version S® with all genes. From this data,
ADAPTS selected N additional genes g,,..n to augment the signature matrix as
shown in Eq 3.

0 0 1 1 1 INC|
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GEO ... gEO ) D NIRRT S o plel
Iny ol In 22 [J1] Inpod [Jinel Inpod
JjEJ1 J€J\Nne|

ADAPTS helps a user construct new signature matrices with modular R functions
and default parameters to:

1. Identify and rank significantly different genes for each cell type.

2. Evaluate the stability (condition number, x£(S%)) of many signature matrices
S*es.

3. Smooth and normalize to meet tolerances for a robust signature matrix.

These components are combined into a single function that produces a new
deconvolution matrix. First the algorithm ranks each the genes that best differentiate
each cell types such that there is a ranked set of genes ¢ for each ¢ € C where C
includes the cell types in the original signature matrix, S as well as the new cell types
NC. Genes, g¢ (where ¢° C G and G is the set of all genes), are ranked in descending
order according to scores calculated by Eq 4 and exclude any that do not pass a t-test
determined false discover rate cutoff (by default, 0.3).

1
w2 P
j€Je
score(gn) = ||loga 2 I (4)

1 C—{c}
[Jo—tey Z Pgmj
J€Jc—{c}
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Thus ¢¢ = sort(¥n € N : score(g:,)) and the function pop(g¢) will return and remove
the gene with the largest absolute average log expression ratio between the cell type, c,
and all other cell types, C' — {c}. As shown in Algorithm 1, the matrix augmentation
algorithm iteratively adds the top gene that is not already in the signature matrix from
each ¢ € C' and calculates the condition number for that matrix. The augmented
signature matrix is then chosen that minimizes the condition number, «.

Algorithm 1 Augment signature matrix

Require: S°, S¥Y and P {as defined for equations 2 and 3}
St = (8°1A(Pyeq,,)) {S" is augmented as shown in equation 2}
minCN = CN; = k(S1)
bestIndex =1
for i = 2 : nlter do
g1..n = Ve € C:pop(g°) {i.e. take the top gene for each cell type}
St=((S"HTIA(P,, ,)T)T {S*is augmented as shown in equation 3}
CN*® = k(5%
if CN; < minCN then
minCN = CN;
bestIndex =1
end if
end for
{bestIndex might be recalculated after smoothing CN and/or applying a tolerance}
return Sbestlndez

In Algorithm 1: nlter = 100 by default, x(s) returns the condition number, and
A(P) returns the mean expression for each gene in each cell type. Optionally, the
condition numbers (C'N) may be smoothed to ensure a robust minimum. A tolerance
may also be applied to find the minimum number of genes that has a C/N within some
% tolerance of the true minimum.

Fig 1 shows a plot of condition numbers when adding 5 cell types to a 22 cell type
signature matrix with smoothing and a 1% tolerance.

Similarly, ADAPTS can be used to construct a de novo matrix from first principals
rather than starting with a pre-calculated S°. One technique is to build S° out of the n
(e.g. 100) genes that vary the most between cell types and use ADAPTS to augment
that seed matrix. The n initial genes can then be removed from the resulting signature
matrix and that new signature matrix can be re-augmented by ADAPTS.

Deconvolution Framework

The ADAPTS package includes functionality to call several different deconvolution
methods using a common interface, thereby allowing a user to test new signature
matrices with multiple algorithms. These function calls fit the form D(S, X) presented
in Eq 1.
The algorithms include:
1. DCQ [11]: An elastic net based deconvolution algorithm that consistently best
identifies cell proportions.

2. SVMDECON [5]: A support vector machine based deconvolution algorithm.

3. DeconRNASeq [12]: A non-negative decomposition based deconvolution
algorithm.

4. Proportions in Admixture [13]: A linear regression based deconvolution
algorithm.
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Spillover to Convergence

In cell-type deconvolution, spillover refers to the tendency of some cell types to be
misclassified as other cell types [14]. For example, when using LM22, deconvolving
purified activated mast cell samples results predicted cell compositions that are almost
equally split between activated and resting mast cells (Figure 2). One approach to
exploring this problem might be to cluster the signature matrix, and assume that highly
correlated signatures would tend to spill over to each other. However, ADAPTS
instead directly calculate what cell types spill over to what other cell types by
deconvolving the purified samples, P, used to construct and augment the signature
matrices, S. While the cell types that are likely to spill-over detected by both methods
are similar, directly calculating the spillover reveals some surprising patterns. For
example, based on signature matrix clustering of LM22, ’Dendritic.cells.activated’ and
"Dendritic.cells.resting’ tend to cluster together, however the spillover patterns (Figure
2) reveal that 'Dendritic.cells.activated’ are most similar to 'Macrophages. M1’ while
’Dendritic.cells.resting’ are similar to "Macrophages. M1’ and "Macrophages. M2’ .

As shown in Algorithm 2, recursively (or iteratively) applying the spillover
calculation reveals clear clusters of cells. Eq 5 revisits Eq 1, obtaining an initial spillover
matrix, E°, by applying Eq 1 to a signature matrix, S°, and the source data used to
construct it, PY.

E = D(S° P%) (5)

Applying A(P) to average the cell type estimates E across purified samples makes
the spillover matrix resemble a signature matrix, leading to Eq 6.

St = A(E?) (6)

This new spillover based deconvolution matrix S* can be used to re-deconvolve the
initial spillover matrix, E, effectively ’sharpening’ the deconvolution matrix image as
shown in Eq 7.

E' = D(S",t(E")) (7)

Once these values are calculated, the following pseudocode (Algorithm 2) shows how
ADAPTS iteratively applies spillover re-deconvolution to cluster cell types likely to be
confused by deconvolution.

Algorithm 2 Cluster cell types by repeated deconvolution

1=1
while E? # E*~! do
t=1+1
St = A(EY)
E' = D(S" t(E"1))
end while

As shown in Algorithm 2, the signature matrix may never converge onto a single
question, but instead may alternate between several solutions such that B¢ = E*~1 is
impossible. Therefore ADAPTS includes a parameter forcing the algorithm to break
and return an answer after i iterations. However, the algorithm usually converges in less
that 30 iterations, resulting in a clustered spillover matrix (e.g. Fig 3).

The resulting cell-type clusters (CC) are extracted from E? by grouping the
cell-types for any rows that are identical. For example in Fig 3, 'NK.cells.activated’ and
"NK.cells.resting’” would be grouped in one cluster (e.g. CC?), while 'Neutrophils’ would
exist in a cluster by themselves (CC?), and |CC| = 10.
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Hierarchical Deconvolution

The clusters calculated by Algorithm 2 allow the hierarchical deconvolution
implemented in ADAPTS. ADAPTS includes a function to automatically train
deconvolution matrices that include only genes that differentiate cell types that cluster
together in Algorithm 2. The first round of deconvolution determines the total fraction
of cells in the cluster. The next round of deconvolution determines the relative
proportion of all of the cell types in that cluster as shown in Algorithm 3.

While this algorithm has not been implemented recursively in ADAPTS, if it was it
would resemble a discrete version of the continuous model implemented in MuSiC [15].

Algorithm 3 Hierarchical deconvolution

Require: CC, P S° SE0 and P {P"*" has |G| genes x|J| new samples to predict}

Gbase — Algorithm 1(S°, SFY P){|g| genes x|C| cell types}
Ebase = p(Stase prew){|C| cell types x|J| samples from Pmev}
for cc € CC do

EB = Zc’eac Egla’se

vars® =Vg € G : variance(P;°)

seedSize = [nrow(S°*¢)/10]

g°¢ = seedSize genes with the top values in vars®

§¢ = Algorithm 1(A(Pyc.), P, P°°)

EC = D(5°, P"ev)

for ¢ € cc do

E¢=EB x ZE%C{I cell type x|J| samples in P™¢*}
cece o,
end for
end for

Erev = ((BE)T|...[(E9)T)T {|C] cell types x|J| samples from P""}

Results

The following results section shows how the theory set out in Materials and Methods is
applied to detect tumor cells in multiple myeloma samples and to utilize single cell
RNAseq data to build a new signature matrix. It contains highlights from two vignettes
distributed with the CRAN package (S1 Vig and S2 Vig).

Example: Detecting Tumor Cells

To demonstrate utility of the ADAPTS package, we show how it can be used to
augment the LM22 from [5] to identify myelomatous plasma cells from gene expression
profiles of 423 purified tumor (CD138%) samples and 440 whole bone marrow (WBM)
samples taken from multiple myeloma patients. The fraction of myeloma cells, which
are tumorous plasma cells, were identified in both sample types via quantification of the
cell surface marker CD138. Root mean squared error (RMSE) and Pearson’s correlation
coefficient (p) were used to evaluate accuracy of tumor cell fraction estimates. RMSE
proved particularly relevant when deconvolving purified CD138T sample profiles,
because 356 of 423 samples are more than 90% pure tumor resulting in clumping of
samples with purity near 100%.

The following matrices were used or generated during the evaluation:
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Fig 1. MGSM27 Construction
Curve showing the selection of an optimal condition number for MGSM27.

Matrix WBM RMSE WBM p CD138"RMSE CD138" p
LM22 38.0£0.0 0.59+£0.00 27.0+£0.0 0.26 £0.00
LM22 + 5 37.0£0.0 0.53+£0.00 12.0+£0.0 0.26 £ 0.00
MGSM27 23.0£0.0 0.60£0.00 09.0£0.2 0.33 £0.01
de novo MGSM27  24.0 £ 0.0 0.65+0.00 36.0+£0.0 0.18 £0.00

Table 1. Deconvolution reconstruction of tumor percentage in whole bone marrow
(WBM) and samples sorted to consist of nearly pure C D1387 cells. Classifier accuracy
is measured by root mean square error (RMSE) and Pearson’s correlation coefficient
(p). The best scores in each column are bolded.

o LM22: As reported in [5]. The sum of the 'memory B cells’ and ’plasma cells’
deconvolved estimates represent tumor percentage.

e LM22 + 5: Builds on LM22 by adding purified sample profiles for myeloma
specific cell types as shown in Eq 2: plasma memory cells [16], osteoblasts [9],
osteoclasts, adipocytes, and myeloma plasma cells [17]. The sum estimates for
‘'memory B cells’, 'myeloma plasma cells’, 'plasma cells’, and 'plasma memory cells
represent tumor percentage.

)

e MGSM27: Builds on LM22 by adding 5 myeloma specific cell types using
ADAPTS to determine inclusion of additional genes as shown in Eq 3. Fig 1
shows ADAPTS evaluating matrix stability after adding different numbers of
genes, smoothing the condition numbers, and selecting an optimal number of
features.

e de novo MGSM27: Builds a de novo MGSM27 by seeding with the 100 most
variable genes from publicly available data similar to those mentioned in [5] and
the 5 aforementioned myeloma specific cell types.

Table 1 displays average RMSFE and p for tumor fraction estimates obtained via
application of DCQ deconvolution using the four aforementioned matrices across both
myeloma profiling datasets.

While the exact genes chosen during each run varies slightly, Table 1 shows that
consistently the best accuracy is achieved by augmenting LM22 using ADAPTS. The
reduced performance of the de novo MGSM27 on the CD138" samples is likely due to
genes that were present in LM22, but were missing in some of the source data and thus
excluded from de movo construction. More details are available in the vignette
distributed with the R package.

Spillover Matrix

Successfully recapturing the known percentage of tumor cells in a sample is a useful
intermediate validation step, however, the true value of a deconvolution algorithm lies in
it’s ability to determine cell types in a sample that affect patient outcomes. Statistical
and machine learning techniques may be applied to identify relevant cell estimates.
From there, a correct understanding of the limitations of deconvolution is helpful to
reveal the underlying biology. One particularly relevant limitation of deconvolution is
how the algorithm may confuse different cell types. ADAPTS’s approach to resolving
these problems are outlined in and results in plots such as those shown in Figs 2 and 3.

This sort of analysis leads to Algorithm 2 and cell type clusters such as those shown
in Fig 3. One way to interpret these results is that co-clustered cell types are those
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Fig 2. LM22 Spillover Matrix
Spillover matrix showing mean misclassification of purified samples for LM22. Rows
show purified cell types and columns show what those samples are deconvolved as.

Fig 3. LM22 converged spillover matrix

Iterative deconvolution shows how easily confused cell types conspicuously form clusters.

Fig 4. scRNAseq Signature Matrix Construction
Curve showing the selection of an optimal condition number for the single cell RNAseq
augmented signature matrix data.

cannot be reliably distinguished by deconvolution using a particular deconvolution
algorithm and signature matrix. In this example, 'B.cells.naive’, 'B.cells.memory’, and
"Plasma.cells’ are all clearly clustered together. These clusters may be particularly
valuable for single cell RNAseq analysis where clustering software such as Seurat [18]
aid in annotating cell types, but can introduce artificial distinctions due to limitations
inherent in clustering.

Example: Deconvolving Single Cell Pancreas Samples

In this section we demonstrate how ADAPTS can be applied to build a deconvolution
matrix from single cell RNAseq data. This example has the additional benefit of
illustrating the utility of the algorithms outlined in Spillover to Convergence and
Hierarchical Deconvolution to find cell type clusters and distinguish between cell types
in those clusters. In this example we use the pancreas single cell RNAseq dataset
available in in Array Express [9] as E-MTAB-5061 [19]. All cells of single type were
combined and averaged to build pseudo-pure samples of each annotated cell types. A
pseudo-bulk RNAseq sample was constructed by adding together all cell types, with the
pseudo-bulk cell type percentages assigned based on the proportion of annotated single
cells in the mix. The normal pancreas samples were used as the training set and the
diabetic pancreas samples as the test set.

To demonstrate the utility of augmenting a signature matrix with ADAPTS, we
build a signature matrix from the top 100 most variant genes (i.e. Top100) and then
augmented this signature (i.e Augmented) as shown in Fig 4. The first test is to predict
the normal pseudo-bulk data - essentially predicting the training set (Table 2). The
second test is a blind estimation of the diabetic pancreas sample (table 3). As shown in
Table 2 the Topl00 genes set the baseline correlation coefficient (i.e. p) at 0.05 and the
root mean square error (RMSFE) at 13.82. Augmenting the signature matrix with
ADAPTS Algorithm 1 improved the rho to 0.26 and RMSE to 10.72.

Clustering Cell Types Improves Deconvolution Accuracy

The spillover clustering algorithm outlined in section was applied to the Top100 and
Augmented signature matrices. Fig 5 shows the cell type clusters for the Top100
signature matrix, and Fig 6 for the Augmented signature matrix. One way to interpret
the results is to assume that the clustered cell-types are indistinguishable from each
other, then the correct comparison method is to treat both as the same cell type.
Combining the clustered cell types for the Top100 estimates increased the p to 0.32 but
also increased the RM SE to 17.15. Similarly, the Augmented cell estimates had p =
0.58 and RMSE = 16.58. In other words, combining the cell types made it easier to get
the relative order of cell type percentages correct, however the predicted fraction of cell
types became less accurate.
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Fig 5. Clustering of Top 100 gene signature matrix
The cell type clusters identified using the signature matrix constructed from the 100
genes with the highest variance across cell types in the single cell data drawn from a
normal pancreas sample.

Fig 6. Clustering of Augmented gene signature matrix.
The cell types clusters identified using the augmented signature matrix that was seeded
with the 100 genes with the highest variance in the normal pancreas sample.

Cell Type Top 100  Top 100 Augmented Augmented Reference
hierarchical hierarchical

acinar.cell 11.38 7.88 11.56 10.49 10.36
ductal.cell 7.32 7.85 7.85 12.56 43.11
alpha.cell 7.46 7.92 8.34 9.51 12.11
gamma.cell 11.66 7.7 9.68 8.51 1.83
beta.cell 7.11 11.75 7.66 10.77 3.51
co.expression.cell 4.36 16.91 11.49 8.41 14.26
delta.cell 0.00 12.27 2.56 8.04 0.88
unclassified.endocrine.cell ~ 7.02 20.63 6.11 12.29 0.40
endothelial.cell 8.37 0.00 7.63 0.00 8.53
PSC.cell 0.00 0.00 2.13 8.52 0.32
epsilon.cell 0.00 7.02 2.68 6.11 0.16
mast.cell 0.00 0.00 5.96 0.80 2.55
MHC.class.II.cell 35.33 0.00 16.37 4.01 1.99
others 0.00 0.00 0.00 0.00 0.00
RMSE 13.82 12.09 10.72 10.16 0.00
p 0.05 0.12 0.26 0.39 1.00

Table 2. Deconvolution cell type estimates of the normal pancreas training set.

Hierarchical Clustering Improves Deconvolution Accuracy 28
ADAPTS Algorithm 3 (outlined in Hierarchical Deconvolution) was used to build 249
custom signature matrices for breaking apart the clusters shown in Fig 5 and Fig 6. 250

This improved deconvolution accuracies shown in the "hierarchical’ columns of Table 2. 2
Applying the model built on the normal samples to the diabetic pancreas resulted in the s
even better blind predictive accuracies shown in Table 3 with the overall best accuracy 2

provided by the hierarchical deconvolution using the Augmented signature matrix: p = 2
0.46, RMSE = 8.91. 255
Conclusion 256

Table 1 shows an example where using ADAPTS to include additional genes and tissue 25
specific cell types improves the ability of a deconvolution algorithm to identify tumor s

fractions in microarray-based purified and mixed multiple myeloma gene expression 250
samples. Thus we demonstrate that the techniques implemented in ADAPTS are 260
potentially beneficial for many situations. The functions implemented in ADAPTS 261
enable researchers to build their own custom signature matrices and investigate 262

biosamples consisting of multiple cell types. Tables 2 and 3 show that these methods can s
build new signature matrices from single cell RNAseq (scRNAseq) data and effectively 26

deconvolve the cell types determined by single cell analysis. This is expected to be 265
particularly useful as researchers use scRNAseq to determine cell types that are present a6
in tissue where large numbers of bulk gene expression samples are already available. 267
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Cell Type Top 100 Top 100 Augmented Augmented Reference
hierarchical hierarchical

acinar.cell 7.40 4.32 10.82 8.89 5.78
alpha.cell 7.93 9.01 7.94 14.41 36.24
beta.cell 8.04 8.44 8.58 9.35 12.39
co.expression.cell 12.33 7.95 10.03 8.55 1.68
delta.cell 9.38 11.50 8.13 10.93 7.35
ductal.cell 5.93 17.06 12.49 8.90 21.74
endothelial.cell 0.00 13.80 2.58 7.91 0.53
epsilon.cell 6.56 21.36 5.83 12.12 0.21
gamma.cell 8.46 0.00 7.61 0.00 9.45
mast.cell 0.00 0.00 1.72 8.51 0.32
MHC.class.II.cell 0.00 6.56 2.88 5.83 0.32
PSC.cell 0.00 0.00 5.93 0.55 2.31
unclassified.endocrine.cell  33.97 0.00 15.47 4.05 1.68
others 0.00 0.00 0.00 0.00 0.00
RMSE 12.76 10.68 9.44 8.91 0.00
p 0.06 0.24 0.35 0.46 1.00

Table 3. Blind deconvolution cell type estimates of the diabetic pancreas test set.

Supporting information -
S1 Vig. ADAPTS.vignette.html. ADAPTS (Automated Deconvolution 269
Augmentation of Profiles for Tissue Specific cells) Vignette. 270

S2 Vig. ADAPTS2.vignette.html. ADAPTS Vignette 2: Single Cell Analysis. n
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