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Structure Learning as Active Inference 2

Abstract

Within computational neuroscience, the algorithmic and neural basis of structure
learning remains poorly understood. Concept learning is one primary example,
which requires both a type of internal model expansion process (adding novel
hidden states that explain new observations), and a model reduction process
(merging different states into one underlying cause and thus reducing model
complexity via meta-learning). Although various algorithmic models of concept
learning have been proposed within machine learning and cognitive science, many
are limited to various degrees by an inability to generalize, the need for very large
amounts of training data, and/or insufficiently established biological plausibility.
Using concept learning as an example case, we introduce a novel approach for
modeling structure learning within the active inference framework and its
accompanying neural process theory. This approach is based on the idea that a
generative model can be equipped with extra (hidden state or cause) ‘slots’ that can
be engaged when an agent learns about novel concepts. This can be combined with a
Bayesian model reduction process, in which any concept learning - associated with
these slots - can be reset in favor of a simpler model with higher model evidence.
We use simulations to illustrate this model’s ability to add new concepts to its state
space (with relatively few observations) and increase the granularity of the
concepts it currently possesses. We also simulate the predicted neural basis of these
processes. We further show that it accomplishes a simple form of ‘one-shot’
generalization to new stimuli. Although deliberately simple, these results suggest

that this general approach to modeling concept learning within active inference
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research may also offer useful resources in developing neurocomputational models

of structure learning more generally.

Keywords: Model Expansion; Structure Learning; Concepts; Computational

Neuroscience; Active Inference
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Structure Learning as Active Inference 4

Introduction

The ability to learn the latent structure of one’s environment - such as
inferring the existence of hidden causes of regularly observed patterns in co-
occurring feature observations - is central to human cognition. For example, we do
not simply observe particular sets of colors, textures, shapes, and sizes — we also
observe identifiable objects such as, say, a ‘screwdriver’. If we were tool experts, we
might also recognize particular types of screwdrivers (e.g., flat vs. Phillip’s head),
designed for a particular use. This ability to learn latent structure, such as learning
to recognize co-occurring features under conceptual categories (as opposed to just
perceiving sensory qualities; e.g., red, round, etc.), is also highly adaptive. Only if we
knew an object was a screwdriver could we efficiently infer that it affords putting
certain structures together and taking them apart; and only if we knew the specific
type of screwdriver could we efficiently infer, say, the artefacts to use it on. Many
concepts of this sort require experience-dependent acquisition (i.e., learning).

From a computational perspective, the ability to acquire a new concept can
be seen as a type of structure learning involving Bayesian model comparison
(Botvinick, Niv, & Barto, 2009; S. J. Gershman & Niv, 2010; MacKay & Peto, 1995;
Salakhutdinov, Tenenbaum, & Torralba, 2013; Tervo, Tenenbaum, & Gershman,
2016). Specifically, concept acquisition can be cast as an agent learning (or
inferring) that a new hypothesis (referred to here as a hidden cause or state) should
be added to the internal or generative model with which she explains her
environment, because existing causes cannot account for new observations (e.g., an

agent might start out believing that the only tools are hammers and screwdrivers,
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Structure Learning as Active Inference 5
but later learn that there are also wrenches). In other words, the structure of the
space of hidden causes itself needs to expand to accommodate new patterns of
observations. This model expansion process is complementary to a process called
Bayesian model reduction (Karl Friston & Penny, 2011); in which the agent can infer
that there is redundancy in her model, and a model with fewer states or parameters
provides a more parsimonious (i.e. simpler) explanation of observations (K] Friston,
Lin, et al.,, 2017; Schmidhuber, 2006). For example, in some instances it may be
more appropriate to differentiate between fish and birds as opposed to salmon,
peacocks and pigeons. This reflects a reduction in model complexity based on a
particular feature space underlying observations and thus resonates with other
accounts of concept learning as dimensionality reduction (Behrens et al.,, 2018;
Stachenfeld, Botvinick, & Gershman, 2016) - a topic we discuss further below.

A growing body of work in a number of domains has approached this
problem from different angles. In developmental psychology and cognitive science,
for example, probability theoretic (Bayesian) models have been proposed to account
for word learning in children and the remarkable human ability to generalize from
very few (or even one) examples in which both broader and narrower categorical
referents could be inferred (Kemp, Perfors, & Tenenbaum, 2007; Lake,
Salakhutdinov, & Tenenbaum, 2015; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Xu &
Tenenbaum, 2007a, 2007b). In statistics, a number of nonparametric Bayesian
models, such as the “Chinese Room” process and the “Indian Buffet” process, have

been used to infer the need for model expansion (S. Gershman & Blei, 2012). There
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Structure Learning as Active Inference 6
91 are also related approaches in machine learning, as applied to things like Gaussian
92  mixture models (McNicholas, 2016).
93 Such approaches employ various clustering algorithms, which take sets of
94  data points in a multidimensional space and divide them into separable clusters
95 (e.g., see (Anderson, 1991; Love, Medin, & Gureckis, 2004; Sanborn, Griffiths, &
96  Navarro, 2010)). While many of these approaches assume the number of clusters is
97  known in advance, various goodness-of-fit criteria may be used to determine the
98 optimal number. However, a number of approaches require much larger amounts of
99  data than humans do to learn new concepts (Geman, Bienenstock, & Doursat, 1992;
100 Hinton etal, 2012; LeCun, Bengio, & Hinton, 2015; Lecun, Bottou, Bengio, & Haffner,
101  1998; Mnih et al.,, 2015). Many also require corrective feedback to learn and yet fail
102  to acquire sufficiently rich conceptual structure to allow for generalization
103 (Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B.
104  Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams &
105 Lombrozo, 2010).
106 Approaches to formally modeling structure learning, including concept
107  learning, have not yet been examined within the emerging field of research on
108  Active Inference models within computational neuroscience (K] Friston, 2010; K]
109  Friston etal., 2016; K] Friston, Lin, et al., 2017; K] Friston, Parr, & de Vries, 2017).
110  This represents one potentially fruitful research avenue that has not yet been
111 examined and, as discussed below, may offer unique advantages in research focused
112  onunderstanding the neural basis of learning latent structure. In this paper, we

113  explore the potential of this approach. In brief, we conclude that structure learning
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Structure Learning as Active Inference 7
is an emergent property of active inference (and learning) under generative models
with ‘spare capacity’; where spare or uncommitted capacity is used to expand the
repertoire of representations (Baker & Tenenbaum, 2014), while Bayesian model
reduction (K] Friston, Lin, et al., 2017; Hobson & Friston, 2012) promotes
generalization by minimizing model complexity - and releasing representations to
replenish ‘spare capacity’.

From a machine learning perspective, Bayesian model reduction affords the
opportunity to consider generative models with a large number of hidden states or
latent factors and then optimize the number (or indeed partitions) of latent factors
with respect to a variational bound on model evidence. This could be regarded as a
bounded form of nonparametric Bayes, in which a potentially infinite number of
latent factors are considered; with appropriate (e.g., Indian buffet process) priors
over the number of hidden states generating data features!. The Bayesian model
reduction approach here is bounded in the sense that an upper bound on the
number of hidden states is specified prior to structure learning. Furthermore, in
virtue of the (biologically plausible) variational schemes used for model reduction,
there is no need to explicitly compute model evidence; thereby emulating the
computational efficiency of nonparametric Bayes (S. Gershman & Blei, 2012), while
accommodating any prior over models.

In what follows, we first provide a brief overview of active inference. We then

introduce a model of concept learning (using basic and subordinate level animal

1 Generally motivated by starting with a finite parametric model and taking the limit as the number
of latent states with more parameters tends to infinity.
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Structure Learning as Active Inference 8
categories), as a representative example of structure learning. We specifically model
cognitive (semantic) processes that add new concepts to a state space and that
optimize the granularity of an existing state space. We then establish the validity of
this model using numerical analyses of concept learning, when repeatedly
presenting a synthetic agent with different animals characterized by different
combinations of observable features. We demonstrate how particular approaches
combining Bayesian model reduction and expansion can reproduce successful
concept learning without the need for corrective feedback - and allow for
generalization. We further demonstrate the ability of this model to generate
predictions about measurable neural responses based on the neural process theory
that accompanies active inference. We conclude with a brief discussion of the
implications of this work. Our goal is to present an introductory proof of concept -
that could be used as the foundation of future research on the neurocomputational

basis of structure learning.

An Active Inference model of concept learning

A primer on Active Inference

Active Inference suggests that the brain is an inference machine that

approximates optimal probabilistic (Bayesian) belief updating across perceptual,

cognitive, and motor domains. Active Inference more specifically postulates that the

brain embodies an internal model of the world that is “generative” in the sense that
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Structure Learning as Active Inference 9
it can simulate the sensory data that it should receive if its model of the world is
correct. These simulated (predicted) sensory data can be compared to actual
observations, and differences between predicted and observed sensations can be
used to update the model. Over short timescales (e.g., a single observation) this
updating corresponds to inference (perception), whereas on longer timescales it
corresponds to learning (i.e., updating expectations about what will be observed
later). Another way of putting this is that perception optimizes beliefs about the
current state of the world, while learning optimizes beliefs about the relationships
between the variables that constitute the world. These processes can be seen as
ensuring the generative model (entailed by recognition processes in the brain)
remains an accurate model of the world that it seeks to regulate (Conant & Ashbey,
1970).

Active Inference casts decision-making in similar terms. Actions can be
chosen to resolve uncertainty about variables within a generative model (i.e.,
sampling from domains in which the model does not make precise predictions),
which can prevent anticipated deviations from predicted outcomes. In addition,
some expectations are treated as a fixed phenotype of an organism. For example, if
an organism did not continue to “expect” to observe certain amounts of food, water,
and shelter, then it would quickly cease to exist (McKay & Dennett, 2009) - as it
would not pursue those behaviors that fulfill these expectations (c.f. the ‘optimism
bias’ (Sharot, 2011)). Thus, a creature should continually seek out observations that
support - or are internally consistent with - its own continued existence. Decision-

making can therefore be cast as a process in which the brain infers the sets of
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Structure Learning as Active Inference 10
actions (policies) that would lead to observations consistent with its own survival-
related expectations (i.e., its “prior preferences”). Mathematically, this can be
described as selecting sequences of actions (policies) that maximize “Bayesian
model evidence” expected under a policy, where model evidence is the (marginal)
likelihood that particular sensory inputs would be observed under a given model.

In real-world settings, directly computing Bayesian model evidence is
generally intractable. Thus, some approximation is necessary. Active Inference
proposes that the brain computes a quantity called “variational free energy” that
provides a bound on model evidence, such that minimization of free energy
indirectly maximizes model evidence (this is exactly the same functional used in
machine learning where it is known as an evidence lower bound or ELBO). In this
case, decision-making will be approximately (Bayes) optimal if it infers (and enacts)
the policy that will minimize expected free energy (i.e., free energy with respect to a
policy, where one takes expected future observations into account). Technically,
expected free energy is the average free energy under the posterior predictive
density over policy-specific outcomes.

Expected free energy can be decomposed in different ways that reflect
uncertainty and prior preferences, respectively (e.g., epistemic and instrumental
affordance or ambiguity and risk). This formulation means that any agent that
minimizes expected free energy engages initially in exploratory behavior to
minimize uncertainty in a new environment. Once uncertainty is resolved, the agent
then exploits that environment to fulfil its prior preferences. The formal basis for

Active Inference has been thoroughly detailed elsewhere (K] Friston, FitzGerald,
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Structure Learning as Active Inference 11
Rigoli, Schwartenbeck, & Pezzulo, 2017), and the reader is referred there for a full
mathematical treatment.

When the generative model is formulated as a partially observable Markov
decision process (a mathematical framework for modeling decision-making in cases
where some outcomes are under the control of the agent and others are not, and
where states of the world are not directly known but must be inferred from
observations), active inference takes a particular form. Here, the generative model is
specified by writing down plausible or allowable policies, hidden states of the world
(that must be inferred from observations), and observable outcomes, as well as a
number of matrices that define the probabilistic relationships between these

quantities (see right panel of figurel).

Task Structure: Time pont

Learning animal concepts from The agent observes the
. . imal

observing co-occurring features (small, c:,'::,":u, o)

Time point 2

{ The agent reports the animal
gY\ type
“PARAKEET"
‘ { “PARROT*
“PIGEON”

“BIRD”
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Structure Learning as Active Inference 12

216  Figure 1. Left: lllustration of the trial structure performed by the agent. At the first time

217  point, the agent is exposed to one of 8 possible animals that are each characterized by a
218  unique combination of visual features. At the 2nd time point, the agent would then report
219  which animal concept matched that feature combination. The agent could report a specific
220  category (e.g., pigeon, hawk, minnow, etc.) or a general category (i.e., bird or fish) if

221 insufficiently certain about the specific category. See the main text for more details. Right:
222  Illustration of the Markov decision process formulation of active inference used in the

223  simulations described in this paper. The generative model is here depicted graphically, such
224  thatarrows indicate dependencies between variables. Here observations (0) depend on
225  hidden states (s), as specified by the A matrix, and those states depend on both previous
226  states (as specified by the B matrix, or the initial states specified by the D matrix) and the
227  policies (m) selected by the agent. The probability of selecting a particular policy in turn
228  depends on the expected free energy (G) of each policy with respect to the prior preferences
229  (C) of the agent. The degree to which expected free energy influences policy selection is also
230  modulated by a prior policy precision parameter (y), which is in turn dependent on beta (f8)
231  -where higher values of beta promote more randomness in policy selection (i.e., less

232  influence of the differences in expected free energy across policies). For more details

233  regarding the associated mathematics, see (K] Friston, Lin, et al., 2017; K] Friston, Parr, et
234  al, 2017).

235

236 The ‘A’ matrix indicates which observations are generated by each

237  combination of hidden states (i.e., the likelihood mapping specifying the probability
238 thata particular set of observations would be observed given a particular set of
239  hidden states). The ‘B’ matrix is a transition matrix, indicating the probability that
240  one hidden state will evolve into another over time. The agent, based on the selected
241  policy, controls some of these transitions (e.g., those that pertain to the positions of
242  itslimbs). The ‘D’ matrix encodes prior expectations about the initial hidden state
243  the agent will occupy. Finally, the ‘C’ matrix specifies prior preferences over

244  observations; it quantifies the degree to which different observed outcomes are
245  rewarding or punishing to the agent. In these models, observations and hidden

246  states can be factorized into multiple outcome modalities and hidden state factors.

247  This means that the likelihood mapping (the ‘A’ matrix) can also model the
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Structure Learning as Active Inference 13
interactions among different hidden states when generating outcomes

(observations).

From principles to process theories

One potential empirical advantage of the present approach stems from the
fact that active inference models have a plausible biological basis that affords
testable neurobiological predictions. Specifically, these models have well-articulated
companion micro-anatomical neural process theories, based on commonly used
message-passing algorithms (K] Friston, FitzGerald, et al., 2017; Parr & Friston,
2018; Parr, Markovic, Kiebel, & Friston, 2019). In these process theories, for
example, the activation level of different neural populations (typically portrayed as
consisting of different cortical columns) can encode posterior probability estimates
over different hidden states. These activation levels can then be updated by synaptic
inputs with particular weights that convey the conditional probabilities encoded in
the ‘A’ and ‘B’ (among other) matrices described above, where active learning then
corresponds to associative synaptic plasticity. Phasic dopamine responses also play
a particular role in these models, by reporting changes in policy precision (i.e., the
degree of confidence in one policy over others) upon new observations (see Figure 2
and the associated legend for more details). In what follows, we describe how the
type of generative model - that underwrites these processes — was specified to

perform concept inference/learning.
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Figure 2. This figure illustrates the mathematical framework of active inference and
associated neural process theory used in the simulations described in this paper. The
differential equations in the left panel approximate Bayesian belief updating within the
graphical model depicted in the right panel of Figure 1 via a gradient descent on free energy
(F). The right panel also illustrates the proposed neural basis by which neurons making up
cortical columns could implement these equations. The equations have been expressed in
terms of two types of prediction errors. State prediction errors (€) signal the difference
between the (logarithms of) expected states (s) under each policy and time point—and the
corresponding predictions based upon outcomes/observations (A matrix) and the
(preceding and subsequent) hidden states (B matrix, and, although not written, the D
matrix for the initial hidden states at the first time point). These represent prior and
likelihood terms respectively - also marked as messages 2, 3, and 4, which are depicted as
being passed between neural populations (colored balls) via particular synaptic
connections in the right panel. These (prediction error) signals drive depolarization (v) in
those neurons encoding hidden states (s), where the probability distribution over hidden
states is then obtained via a softmax (normalized exponential) function (). Outcome
prediction errors (g) instead signal the difference between the (logarithms of) expected
observations (0) and those predicted under prior preferences (C). This term additionally
considers the expected ambiguity or conditional entropy (H) between states and outcomes
as well as a novelty term (W) reflecting the degree to which beliefs about how states
generate outcomes would change upon observing different possible state-outcome
mappings (computed from the A matrix). This prediction error is weighted by the expected
observations to evaluate the expected free energy (G) for each policy (1), conveyed via
message 5. These policy-specific free energies are then integrated to give the policy
expectations via a softmax function, conveyed through message 1. Actions at each time
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298  point (u) are then chosen out of the possible actions under each policy (U) weighted by the
299  value (negative expected free energy) of each policy. In our simulations, the model learned
300  associations between hidden states and observations (A) via a process in which counts
301  were accumulated (a) reflecting the number of times the agent observed a particular

302  outcome when she believed that she occupied each possible hidden state. Although not
303 displayed explicitly, learning prior expectations over initial hidden states (D) is similarly
304  accomplished via accumulation of concentration parameters (d). These prior expectations
305 reflect counts of how many times the agent believes it previously occupied each possible
306 initial state. Concentration parameters are converted into expected log probabilities using
307  digamma functions (3). The way in which Bayesian model reduction was performed in this
308  paperis also written in the lower left (where B indicates a beta function, and m is the

309 posterior probability of each model). Here, the posterior distribution over initial states (d)
310  isused to assess the difference in the evidence (AF) it provides for the number of hidden
311  statesin the current model and other possible models characterized by fewer hidden states.
312  Prior concentration parameters are shown in italics, posterior in bold, and those priors and
313  posteriors associated with the reduced model are equipped with a tilde (~). As already
314  stated, the right panel illustrates a possible neural implementation of the update equations
315  in the left panel. In this implementation, probability estimates have been associated with
316  neuronal populations that are arranged to reproduce known intrinsic (within cortical area)
317  connections. Red connections are excitatory, blue connections are inhibitory, and green
318  connections are modulatory (i.e., involve a multiplication or weighting). These connections
319 mediate the message passing associated with the equations in the left panel. Cyan units
320  correspond to expectations about hidden states and (future) outcomes under each policy,
321  while red states indicate their Bayesian model averages (i.e., a “best guess” based on the
322  average of the probability estimates for the states and outcomes across policies, weighted
323 by the probability estimates for their associated policies. Pink units correspond to (state
324  and outcome) prediction errors that are averaged to evaluate expected free energy and
325  subsequent policy expectations (in the lower part of the network). This (neural) network
326  formulation of belief updating means that connection strengths correspond to the

327  parameters of the generative model described in the text. Learning then corresponds to
328  changes in the synaptic connection strengths. Only exemplar connections are shown to
329  avoid visual clutter. Furthermore, we have just shown neuronal populations encoding

330  hidden states under two policies over three time points (i.e., two transitions), whereas in
331  the task described in this paper there are greater number of allowable policies. For more
332  information regarding the mathematics and processes illustrated in this figure, see (K]

333  Friston, Lin, et al,, 2017; K] Friston, Parr, et al.,, 2017).

334

335 A model of concept inference and learning

336 To model concept inference, we constructed a simple task for an agent to

337 perform (see figure 1, left panel). In this task, the agent was presented with different
338 animals on different trials and asked to answer a question about the type of animal
339 that was seen. As described below, in some simulations the agent was asked to

340 report the type of animal that was learned previously; in other simulations, the
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Structure Learning as Active Inference 16
341 agent was instead asked a question that required conceptual generalization.
342  Crucially, to answer these questions the agent was required to observe different
343  animal features, where the identity of the animal depended on the combination of
344  features. There were three feature categories (size, color, and species-specific;
345  described further below) and two discrete time points in a trial (observe and
346  report).
347 To simulate concept learning (based on the task described above) we needed
348  to specify an appropriate generative model. Once this model has been specified, one
349  can use standard (variational) message passing to simulate belief updating and
350 behavior in a biologically plausible way: for details, please see (K] Friston,
351  FitzGerald, et al., 2017; K] Friston, Parr, et al,, 2017). In our (minimal) model, the
352 first hidden state factor included (up to) eight levels, specifying four possible types
353  of birds and four possible types of fish (Figure 3A). The outcome modalities
354  included: a feature space including two size features (big, small), two color features
355 (gray, colorful), and two species-differentiating features (wings, gills). The ‘A’ matrix
356  specified a likelihood mapping between features and animal concepts, such that
357  each feature combination was predicted by an animal concept (Hawk, Pigeon,
358  Parrot, Parakeet, Sturgeon, Minnow, Whale shark, Clownfish). This model was
359  deliberately simple to allow for a clear illustration, but it is plausibly scalable to
360 include more concepts and a much larger feature space. The ‘B’ matrix for the first
361 hidden state factor was an identity matrix, reflecting the belief that the animal
362 identity was conserved during each trial (i.e., the animals were not switched out

363  mid-trial).
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Generative model

Breports =
Hidden State Factor 1: Verbal Reports
VERBAL REPORTS
o Report  Report Report Report Report ANIMAL
“Parakeet” “Parrot” “Sturgeon”  “Bird” “Fish” CONCEPTS

Correct Correct Ficorract
Start (specific) (basic) Outcome Factor4
FEEDBACK

Figure 3. (A) [llustration of the first hidden state factor containing columns (levels) for 8
different animal concepts. Each of these 8 concepts generated a different pattern of visual
feature observations associated with the outcome modalities of size, color, and species-
specific features. The B matrix was an identity matrix, indicating that the animal being
observed did not change within a trial (white = 1, black = 0). The A matrix illustrates the
specific mapping from animal concepts to feature combinations. As depicted, each concept
corresponded to a unique point in a 3-dimensional feature space. (B) illustration of the 2nd
hidden state factor corresponding to the verbal reports the agent could choose in response
to her observations. These generated feedback as to whether her verbal report was accurate
with respect to a basic category report or a specific category report. As illustrated in the C
matrix, the agent most preferred to be correct about specific categories, but least preferred
being incorrect. Thus, reporting the basic categories was a safer choice if the agent was too
uncertain about the specific identity of the animal.

The second hidden state factor was the agent’s report. That this is assumed
to factorise from the first hidden state factor means that there is no prior constraint
that links the chosen report to the animal generating observations. The agent could
report each of the eight possible specific animal categories, or opt for a less specific

report of a bird or a fish. Only one category could be reported at any time. Thus, the
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Structure Learning as Active Inference 19
386 agent had to choose to report only bird vs. fish or to report a more specific category.
387  In other words, the agent could decide upon the appropriate level of coarse-graining
388 ofherresponses (figure 3B).
389 During learning trials, the policy space was restricted such that the agent
390 could not provide verbal reports or observe corrective feedback (i.e., all it could do
391 is “stay still” in its initial state and observe the feature patterns presented). This
392 allowed the agent to learn concepts in an unsupervised manner (i.e. without being
393  told what the true state was or whether it was correct or incorrect). After learning,
394  active reporting was enabled, and the ‘C’ matrix was set so that the agent preferred
395 toreport correct beliefs. We defined the preferences of the agent such that she
396 preferred correctly reporting specific category knowledge and was averse to
397  incorrect reports. This ensured that she only reported the general category of bird
398  vs.fish, unless sufficiently certain about the more specific category.
399 In the simulations reported below, there were two time points in each trial of
400 categorisation or conceptual inference. At the first time point, the agent was
401 presented with the animals features, and always began in a state of having made no
402  report (the “start” state). The agent’s task was simply to observe the features, infer
403  the animal identity, and then report it (i.e., in reporting trials). Over 32 simulations
404 (i.e. 4 trials per animal), we confirmed that, if the agent already started out with full
405  knowledge of the animal concepts (i.e., a fully precise ‘A’ matrix), it would report the
406  specific category correctly 100% of the time. Over an additional 32 simulations, we
407  also confirmed that, if the agent was only equipped with knowledge of the

408 distinction between wings and gills (i.e., by replacing the rows in the ‘A’ matrix
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Structure Learning as Active Inference 20
corresponding to the mappings from animals to size and color with flat
distributions), it would report the generic category correctly 100% of the time but
would not report the specific categories.2 This was an expected and straightforward
consequence of the generative model - but provides a useful example of how agents

trade off preferences and different types of uncertainty.

Simulating concept learning and the acquisition of expertise

Having confirmed that our model could successfully recognize animals if
equipped with the relevant concepts (i.e., likelihood mappings) - we turn now to

concept learning.

Concept acquisition

We first examined our model’s ability to acquire concept knowledge in two
distinct ways. This included 1) the agent’s ability to “expand” (i.e., fill in an unused
column within) its state space and add new concepts, and 2) the agent’s ability to
increase the granularity of its conceptual state space and learn more specific

concepts, when it already possessed broader concepts.

Adding Concepts

z However, "risky" reporting behavior could be elicited by manipulating the strengths of the agent's
preferences such that she placed a very high value on reporting specific categories correctly (i.e.,
relative to how much she disliked reporting incorrectly).
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Structure Learning as Active Inference 21

To assess whether our agent could expand her state space by acquiring a new
concept, we first set one column of the previously described model’s ‘A’ matrix
(mapping an animal concept to its associated features) to be a uniform distribution3;
creating an imprecise likelihood mapping for one concept - essentially, that concept
predicted all features with nearly equal probability. Here, we chose sturgeon (large,
gray, gills) as the concept for which the agent had no initial knowledge (see Figure
4A, right-most column of left-most ‘pre-learning’ matrix). We then generated 2000
observations based on the outcome statistics of a model with full knowledge of all
eight animals (the “generative process”), to test whether the model could learn the
correct likelihood mapping for sturgeon (note: this excessive number of
observations was used for consistency with later simulations, in which more
concepts had to be learned, and also to evaluate how performance improved as a
function of the number of observations the agent was exposed to; see figure 4B).

In these simulations, learning was implemented via updating (concentration)
parameters for the model’s ‘A’ matrix after each trial. For details of these free energy
minimizing learning processes, please see (K] Friston et al., 2016) as well as the left
panel of Figure 2 and associated legend. An intuitive way to think about this belief
updating process is that the strength of association between a concept and an
observation is quantified simply by counting how often they are inferred to co-
occur. This is exactly the same principle that underwrites Hebbian plasticity and

long-term potentiation (Brown, Zhao, & Leung, 2010). Crucially, policies were

3 To break the symmetry of the uniform distribution, we added small amounts of Gaussian noise
(with a variance of .001) to avoid getting stuck in local free energy minima during learning.
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restricted during learning, such that the agent could not select reporting actions;
thus, learning was driven entirely by repeated exposure to different feature
combinations. We evaluated successful learning in two ways. First, we compared the
‘A’ matrix learned by the model to that of the generative process. Second, we
disabled learning after various trial numbers (i.e., such that concentration
parameters no longer accumulated) and enabled reporting. We then evaluated
reporting accuracy with 20 trials for each of the 8 concepts.

As shown in Figure 4A4, the ‘A’ matrix (likelihood) mapping - learned by the
agent - and the column for sturgeon in particular, strongly resembled that of the
generative process. When first evaluating reporting, the model was 100 % accurate
across 20 reporting trials, when exposed to a sturgeon (reporting accuracy when
exposed to each of the other animals also remained at 100%) and first reached this
level of accuracy after around 50 exposures to all 8 animals (with equal probability)
(figure 4B). The agent also always chose to report specific categories (i.e., it never
chose to only report bird or fish). Model performance was stable over 8 repeated
simulations.

Crucially, during learning, the agent was not told which state was generating
its observations. This meant that it had to solve both an inference and a learning
problem. First, it had to infer whether a given feature combination was better
explained by an existing concept, or by a concept that predicts features uniformly. In
other words, it had to decide that the features were sufficiently different - from
things it had seen before - to assign it a new hypothetical concept. Given that a novel

state is only inferred when another state is not a better explanation, this precludes
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Structure Learning as Active Inference 23
473  learning ‘duplicate’ states that generate the same patterns of observations. The
474  second problem is simpler. Having inferred that these outcomes are caused by
475  something new, the problem becomes one of learning a simple state-outcome
476  mapping through accumulation of Dirichlet parameters.
477 To examine whether this result generalized, we repeated these simulations
478  under conditions in which the agent had to learn more than one concept. When the
479 model needed to learn one bird (parakeet) and one fish (minnow), the model was
480 also able to learn the appropriate likelihood mapping for these 2 concepts (although
481 note that, because the agent did not receive feedback about the state it was in during
482  learning, the new feature mappings were often not assigned to the same columns as
483  in the generative process; see figure 4A). Reporting also reached 100% accuracy,
484  butrequired a notably greater number of trials. Across 8 repeated simulations, the

485 mean accuracy reached by the model after 2000 trials was 98.75% (SD = 2%).
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Figure 4. (A) illustration of representative simulation results in which the agent successfully
learned 1, 2, or 4 new animal concept categories with no prior knowledge beforehand. The
generative process is shown in the upper right, illustrating the feature combinations to be
learned. Pre-learning, either 1, 2 or 4 columns in the likelihood mapping began as a flat
distribution with a slight amount of Gaussian noise. The agent was then provided with 2000
observations of the 8 animals with equal probability. Crucially, the agent was prevented
from providing verbal reports during these 2000 trials and thus did not receive feedback
about the true identity of the animal. Thus, learning was driven completely by repeated
exposure in an unsupervised manner. Also note that, while the agent was successful at
learning the new concepts, it did not always assign the new feature patterns to the same
columns as illustrated in the generative process. This is to be expected given that the agent
received no feedback about the true hidden state that generated her observations. (B)
illustration of how reporting accuracy, and the proportion of basic category and specific
category responses, changed as a function of repeated exposures. This was accomplished by
taking the generative model at a number of representative trials and then testing it with 20
observations of each animal in which reporting was enabled. As can be seen, maximal
accuracy was achieved much more quickly when the agent had to learn fewer concepts.
When it had learned 4 concepts, it also began by reporting the general categories and then
subsequently became sufficiently confident to report the more specific categories.

When the model needed to learn all 4 birds, performance varied somewhat
more when the simulations were repeated. The learned likelihood mappings after
2000 trials always resembled that of the generative process, but with variable levels
of precision; notably, the model again assigned different concepts to different
columns relative to the generative process, as would be expected when the agent is
not given feedback about the state she is in. Over 8 repeated simulations, the model
performed well in 6 (92.50 % - 98.8 % accuracy) and failed to learn one concept in
the other 2 (72.50 % accuracy in each) due to overgeneralization (e.g., mistaking
parrot for Hawk in a majority of trials; i.e., the model simply learned that there are
large birds). Figure 4A and 4B illustrate representative results when the model was
successful (note: the agent never chose to report basic categories in the simulations

where only 1 or 2 concepts needed to be learned).
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Structure Learning as Active Inference 26
To further assess concept learning, we also tested the agent’s ability to
successfully avoid state duplication. That is, we wished to confirm that the model
would only learn a new concept if actually presented with a new animal for which it
did not already have a concept. To do so, we equipped the model with knowledge of
seven out of the eight concept categories, and then repeatedly exposed it only to the
animals it already knew over 80 trials. We subsequently exposed it to the eighth
animal (Hawk) for which it did not already have knowledge over 20 additional
trials. As can be seen in figure 5, the unused concept column was not engaged during
the first 80 trials (bottom left and middle). However, in the final 20 trials, the agent
correctly inferred that her current conceptual repertoire was unable to explain her
new pattern of observations, leading the unused concept column to be adumbrated
and the appropriate state-observation mapping to be learned (bottom right). We
repeated these simulations under conditions in which the agent already had
knowledge of six, five, or four concepts. In all cases, we observed that unused

concept columns were never engaged inappropriately.
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Figure 5. Illustration of representative simulation results when the agent had to avoid
inappropriately learning a new concept (i.e., avoid state duplication) after only being
exposed to animals for which it already had knowledge. Here the agent began with prior
knowledge about seven concept categories and was also equipped with an eighth column
that could be engaged to learn a new concept category (bottom left). The agent was then
presented with several instances of each of the seven animals that she already knew (80
trials in total). In this simulation, the agent was successful in assigning each stimulus to an
animal concept she had already acquired and did not engage the unused concept ‘slot’
(bottom middle). Finally, the agent was presented with a new animal (a hawk) that she did
not already know over 20 trials. In this case, the agent successfully engaged the additional
column (i.e., she inferred that none of the concepts she possessed could account for her new
observations) and learned the correct state-observation mapping (bottom right).

Crucially, these simulations suggest that adaptive concept learning needs to
be informed by existing knowledge about other concepts, such that a novel concept
should only be learned if observations cannot be explained with existing conceptual
knowledge. Here, this is achieved via the interplay of inference and learning, such

that agents initially have to infer whether to assign an observation to an existing
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Structure Learning as Active Inference 28
concept, and only if this is not possible is an ‘open slot’ employed to learn about a

novel concept.

Increasing granularity

Next, to explore the model’s ability to increase the granularity of its concept
space, we first equipped the model with only the distinction between birds and fish
(i.e., the rows of the likelihood mapping corresponding to color and size features
were flattened in the same manner described above). We then performed the same
procedure used in our previous simulations. As can be seen in Figure 6A (bottom
left), the ‘A’ matrix learned by the model now more strongly resembled that of the
generative process. Figure 6B (bottom) also illustrates reporting accuracy and the
proportion of basic and specific category reports as a function of trial number. As
can be seen, the agent initially only reported general categories, and became
sufficiently confident to report specific categories after roughly 50 - 100 trials, but
her accuracy increased gradually over the next 1000 trials (i.e., the agent reported
specific categories considerably before its accuracy improved). Across 8 repeated
simulations, the final accuracy level reached was between 93% - 98% in 7
simulations, but the model failed to learn one concept in the 8th case, with 84.4%
overall accuracy (i.e., a failure to distinguish between pigeon and parakeet, and
therefore only learned a broader category of “small birds”).

To assess whether learning basic categories first was helpful in subsequently
learning specific categories, we also repeated this simulation without any initial

knowledge of the basic categories. As exemplified in figure 6A and 6B, the model
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tended to perform reasonably well, but most often learned a less precise likelihood
mapping and reached a lower reporting accuracy percentage after 2000 learning
trials (across 8 repeated simulations: mean = 81.21%, SD = 6.39%, range from
68.80% - 91.30%). Thus, learning basic concept categories first appeared to

facilitate learning more specific concepts later.
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Figure 6. (A, left) Illustration of representative simulation results when the agent had to
learn to increase the granularity of her concept space. Here the agent began with prior
knowledge about the basic concept categories (i.e., she had learned the broad categories of
“bird” and “fish”) but had not learned the feature patterns (i.e., rows) that differentiate
different types of birds and fish. Post learning (i.e., after 2000 exposures), the agent did
successfully learn all of the more granular concept categories, although again note that
specific concepts were assigned to different columns then depicted in the generative
process due to the unsupervised nature of the learning. (A, right) illustration of the
analogous learning result when the agent had to learn all 8 specific categories without prior
knowledge of the general categories. Although moderately successful, learning tended to be
more difficult in this case. (B) Representative plots of reporting accuracy in each of the 2
learning conditions as a function of the number of exposures. As can be seen, when the
model starts out with prior knowledge about basic categories, it slowly becomes sufficiently
confident to start reporting the more specific categories, and its final accuracy is high. In
contrast, while the agent that did not start out with any prior knowledge of the general
categories also grew confident in reporting specific categories over time, her final accuracy
levels tended to be lower. In both cases, the agent began reporting specific categories before
she achieved significant accuracy levels, therefore showing some initial overconfidence.
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Structure Learning as Active Inference 31
606 Overall, these findings provide a proof of principle that this sort of active
607 inference scheme can add concepts to a state space in an unsupervised manner (i.e.,
608  without feedback) based purely on (expected) free energy minimization. In this
609 case, it was able to accomplish this starting from a completely uninformative
610 likelihood distribution. It could also learn more granular concepts after already
611 acquiring more basic concepts, and our results suggest that learning granular
612  concepts may be facilitated by first learning basic concepts (e.g., as in currently
613 common educational practices).
614 The novel feature of this generative model involved ‘building in’ a number of
615 “reserve” hidden state levels. These initially had uninformative likelihood mappings;
616 yet, if a new pattern of features was repeatedly observed, and the model could not
617  account for this pattern with existing (informative) state-observation mappings,
618 these additional hidden state levels could be engaged to improve the model’s
619  explanatory power. This approach therefore accommodates a simple form of
620  structure learning (i.e.,, model expansion).
621
622 Integrating model expansion and reduction
623
624  We next investigated ways in which model expansion could be combined with
625  Bayesian model reduction (K] Friston, Lin, et al., 2017) - allowing the agent to adjust
626  her model to accommodate new patterns of observations, while also precluding
627  unnecessary conceptual complexity (i.e., over-fitting). To do so, we again allowed

628  the agent to learn from 2000 exposures to different animals as described in the
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Structure Learning as Active Inference 32
629  previous section - but also allowed the model to learn its ‘D’ matrix (i.e., accumulate
630  concentration parameters reflecting prior expectations over initial states). This
631 allowed an assessment of the agent’s probabilistic beliefs about which hidden state
632 factor levels (animals) she had been exposed to. In different simulations, the agent
633  was only exposed to some animals and not others. We then examined whether a
634 subsequent model reduction step could recover the animal concepts presented
635  during the simulation; eliminating those concepts that were unnecessary to explain
636  the data at hand. The success of this 2-step procedure could then license the agent to
637  “reset” the unnecessary hidden state columns after concept acquisition, which
638  would have accrued unnecessary likelihood updates during learning. Doing so
639  would allow the optimal ability for those “reserve” states to be appropriately
640 engaged, if and when the agent was exposed to truly novel stimuli.
641 The 2nd step of this procedure was accomplished by applying Bayesian model
642  reduction to the ‘D’ matrix concentration parameters after learning. This is a form of
643  post-hoc model optimization (K. J. Friston et al., 2016; Karl Friston, Parr, & Zeidman,
644  2018) that rests upon estimation of a ‘full’ model, followed by analytic computation
645  of the evidence that would have been afforded to alternative models (with
646  alternative, reduced’, priors) had they been used instead. Mathematically, this
647  procedure is a generalization of things like automatic relevance determination (Karl
648  Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007; Wipf & Rao, 2007) or
649  the use of the Savage Dickie ratio in model comparison (Cornish & Littenberg,
650 2007). Itis based upon straightforward probability theory and, importantly, has a

651 simple physiological interpretation; namely, synaptic decay and the elimination of
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Structure Learning as Active Inference 33
unused synaptic connections. In this (biological) setting, the concentration
parameters of the implicit Dirichlet distributions can be thought of as synaptic tags.
For a technical description of Bayesian model reduction techniques and their
proposed neural implementation, see (K] Friston, Lin, et al., 2017; Hobson & Friston,
2012; Hobson, Hong, & Friston, 2014); see the left panel of Figure 2 for additional
details).

The posterior concentration parameters were compared to the prior
distribution for a full model (i.e., a flat distribution over 8 concepts) and prior
distributions for possible reduced models (i.e., which retained different possible
combinations of some but not all concepts; technically, reduced models were
defined such that the to-be-eliminated concepts were less likely than the to-be-
retained concepts). If Bayesian model reduction provided more evidence for one or
more reduced models, the reduced model with the most evidence was selected.
Note: an alternative would be to perform model reduction on the ‘A’ matrix, but this
is more complex due to a larger space of possible reduced models; it also does not
address the question of the number of hidden state levels to retain in a
straightforward manner.

In our first simulation, we presented our agent with all animals except for
parakeets with equal probability over 2000 trials. When compared to the full model,
the winning model corresponded to the correct 7-animal model matching the
generative process in 6/8 cases (log evidence differences ranged from -3.12 to -8.3),
and in 2/8 cases it instead selected a 6-animal model due to a failure to distinguish

between 2 specific concepts during learning (log evidence differences = -5.30, -
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Structure Learning as Active Inference 34
7.70). Figure 7 illustrates the results of a representative successful case). In the
successful cases, this would correctly license the removal of changes in the model’s
A’ and ‘D’ matrix parameters for the 8th animal concept during learning in the
previous trials. Similar results were obtained whenever any single animal type was

absent from the generative process.

Bayesian Model Reduction After Learning

Removing Removing Removing
One Concept Two Concepts Three Concepts
PPaPiHCMWMS PPaPiHCWMS PPaPiHCWMS

‘D’ Matrix:

Generative Process . I - I -:I

‘D’ Matrix:
) H N W] e

Posterior
Large
Small
‘A’ Matrix: Colorful
Posterior Gray
Wings
Gills
Winning N B W
Model

Figure 7. Representative illustrations of simulations in which the agent performed Bayesian
model reduction after learning. In these simulations, the agent was first exposed to 2000
trials in which either 7, 6, or 5 animals were actually presented (i.e., illustrated in the top
row, where only the white columns had nonzero probabilities in the generative process). In
each case, model reduction was often successful at identifying the reduced model with the
correct number of animal types presented (bottom row, where black columns should be
removed) based on how much evidence it provided for the posterior distribution over
hidden states learned by the agent (2" row). This would license the agent to reset
the unneeded columns in its likelihood mapping (3rd row) to their initial state (i.e., a
flat distribution over features) such that they could be engaged if/when new types
of animals began to be observed (i.e., as in the simulations illustrated in the previous
sections).
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In a second simulation, the generative process contained 2 birds and all 4
fish. Here, the correct reduced model was correctly selected in 6/8 simulations (log
evidence differences range from -.96 to -8.24, with magnitudes greater than -3 in
5/6 cases), whereas it incorrectly selected the 5-animal model in 2 cases (log
evidence differences = -3.54, -4.50). In a third simulation, the generative process
contained 1 bird and all 4 fish. Here, the correct reduced model had the most
evidence in only 3/8 simulations (log evidence differences = -4.10, -4.11, -5.48),
whereas a 6-animal model was selected in 3/8 cases and a 3-animal and 7-animal
model were each selected once (log evidence differences > -3.0). Figure 7 also
illustrates representative examples of correct model recovery in these 2nd and 3rd
simulations.

While we have used the terms ‘correct’ and ‘incorrect’ above to describe the
model used to generate the data, we acknowledge that ‘all models are wrong’ (Box,
Hunter, & Hunter, 2005), and that the important question is not whether we can
recover the ‘true’ process used to generate the data, but whether we can arrive at
the simplest but accurate explanation for these data. The failures to recover the
‘true’ model highlighted above may reflect that a process other than that used to
generate the data could have been used to do so in a simpler way. Simpler here
means we would have to diverge to a lesser degree, from our prior beliefs, in order
to explain the data under a given model, relative to a more complex model. It is
worth highlighting the importance of the word prior in the previous sentence. This

means that the simplicity of the model is sensitive to our prior beliefs about it. To
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illustrate this, we repeated the same model comparisons as above, but with precise
beliefs in an ‘A’ matrix that complies with that used to generate the data. Specifically,
we repeated the three simulations above but only enabled ‘D’ matrix learning (i.e.,
the model was already equipped with the ‘A’ matrix of the generative process). In
each case, Bayesian model reduction now uniquely identified the correct reduced
model in 100% of cases.

These results demonstrate that — after a naive model has expanded its hidden
state space to include likelihood mappings and initial state priors for a number of
concept categories — Bayesian model reduction can subsequently be used to
eliminate any parameter updates accrued for one or two redundant concept
categories. In practice, the ‘A’ and ‘D’ concentration parameters for these redundant
categories could be reset to their default pre-learning values - and could then be re-
engaged if new patterns of observations were repeatedly observed in the future.
However, when three concepts should have been removed, Bayesian model
reduction was much less reliable. This appeared to be due to imperfect ‘A’ matrix
learning, when occurring simultaneously with the (resultingly noisy) accumulation
of prior expectations over hidden states - as a fully precise ‘A’ matrix led to correct
model reduction in every case tested (i.e., suggesting that this type of model
reduction procedure could be improved by first allowing state-observation learning
to proceed alone, then subsequently allowing the model to learn prior expectations

over hidden states, which could then be used in model reduction).

Can concept acquisition allow for generalization?
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Structure Learning as Active Inference 37
739 One important ability afforded by concept learning is generalization. In a
740 final set of simulations, we asked if our model of concept knowledge could account
741  for generalization. To do so, we altered the model such that it no longer reported
742  what it saw, but instead had to answer a question that depended on generalization
743  from particular cross-category feature combinations. Specifically, the model was
744  shown particular animals and asked: “could this be seen from a distance?” The
745  answer to this question depended on both size and color, such that the answer was
746  yes only for colorful, large animals (i.e., assuming small or gray animals would blend
747  in with the sky or water and be missed).
748 Crucially, this question was asked of animals that the model had not been
749  exposed to, such that it had to generalize from knowledge it already possessed (see
750  Figure 8). To simulate and test for this ability, we equipped the model’s ‘A’ matrix
751  with expert knowledge of 7 out of the 8 animals (i.e., as if these concepts had been
752  learned previously, as in our simulations above). The 8t animal was unknown to the
753  agent, in that it’s likelihood mapping was set such that the 8th animal state “slot”
754  predicted all observations equally (i.e., with a small amount of Gaussian noise, as
755  above). In one variant, the model possessed all concepts except for “parrot,” and it
756  knew that the answer to the question was yes for “whale shark” but not for any
757  other concept it knew. To simulate one-shot generalization, learning was disabled
758 and a parrot (which it had never seen before) was presented 20 times to see if it
759  would correctly generalize and answer “yes” in a reliable manner. In another
760  variant, the model had learned all concepts except “minnow” and was tested the

761  same way to see if it would reliably provide the correct “no” response.
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Structure Learning as Active Inference 38
Here, we observed that in both of these cases (as well as all others we tested)
the model generalized remarkably well. It answered “yes” and “no” correctly in
100% of trials. Thus, the agent did not simply possess concepts to explain things it
saw. It instead demonstrated generalizable knowledge and could correctly answer

questions when seeing a novel stimulus.

Generative Process

Generalization: PPaPiHCWMS
Large
. . Small
Could this novel animal Colorf
be seen from a distance? o
Gills

Parrot: “Yes” Minnow: “No”

Figure 8. Depiction of simulations in which we tested the agent’s ability to generalize from
prior knowledge and correctly answered questions about new animals to which she had not
previously been exposed. In the simulations, the generative model was modified so that the
agent instead chose to report either “yes” or “no” to the question: “could this animal be seen
from a distance?” Here, the answer was only yes if the animal was both large and colorful.
We observed that when the agent started out with no knowledge of parrots it still correctly
answered this question 100% of the time, based only on its knowledge of other animals.
Similarly, when it started with no knowledge of minnows, it also correctly reported “no”
100% of the time. Thus, the agent was able to generalize from prior knowledge with no
additional learning.
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779

780

781 Open questions and relation to other theoretical accounts of concept learning
782

783 As our simulations show, this model allows for learning novel concepts (i.e.,
784  novel hidden states) based on assigning one or more ‘open slots’ that can be utilised
785  tolearn novel feature combinations. In a simple example, we have shown that this
786  setup offers a potential computational mechanism for ‘model expansion’; i.e., the
787  process of expanding a state space to account for novel instances in perceptual

788  categorisation. We also illustrated how this framework can be combined with model
789  reduction, which may be a mechanism for ‘re-setting’ these open slots based on

790  recent experience.

791 This provides a first step towards understanding how agents flexibly expand
792  orreduce their model to adapt to ongoing experience. Yet, several open questions
793  remain, which have partly been addressed in previous work. For example, the

794  proposed framework resonates with previous similarity-based accounts of concept
795  learning. Previous work has proposed a computational framework for arbitrating
796  between assigning an observation to a previously formed memory or forming a

797  novel (hidden) state representation (S. ]J. Gershman, Monfils, Norman, & Niv, 2017),
798  based on evidence that this observation was sampled from an existing or novel

799 latent state. This process is conceptually similar to our application of Bayesian

800 model reduction over states. In the present framework, concept learning relies on a

801 process based on inference and learning. First, agents have to infer whether ongoing
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observations can be sufficiently explained by existing conceptual knowledge - or
speak to the presence of a novel concept that motivates the use of an ‘open slot’.
This process is cast as inference on (hidden) states. Second, if the agent infers that
there is a novel concept that explains current observations, it has to learn about the
specific feature configuration of that concept (i.e., novel state). This process
highlights the interplay between inference, which allows for the acquisition of
knowledge on a relatively short timescale, and learning, which allows for knowledge
acquisition on a longer and more stable timescale.

Similar considerations apply to the degree of ‘similarity’ of observations. In
the framework proposed here, we have assumed that the feature space of
observations is already learned and fixed. However, these feature spaces have to be
learned in the first place, which implies learning the underlying components or
feature dimensions that define observations. This relates closely to notions of
structure learning as dimensionality reduction based on covariance between
observations, as prominently discussed in the context of spatial navigation (Behrens
et al.,, 2018; Dordek, Soudry, Meir, & Derdikman, 2016; Stachenfeld et al., 2016;
Whittington, Muller, Mark, Barry, & Behrens, 2018).

Another important issue is how such abstract conceptual knowledge is
formed across different contexts or tasks. For example, the abstract concept of a
‘bird’ will be useful for learning about the fauna in a novel environment, but specific
types of birds - tied to a previous context - might be less useful in this regard. This
speaks to the formation of abstract, task-general knowledge that results from

training across different tasks, as recently discussed in the context of meta-
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825 reinforcement learning (Ritter, Wang, Kurth-Nelson, & Botvinick, 2018; ] X Wang et
826  al, 2016) with a putative link to the prefrontal cortex (Jane X. Wang et al., 2018). In
827  the present framework, such task-general knowledge would speak to the formation
828  ofahierarchical organisation that allows for the formation of conceptual knowledge
829  both within and across contexts. Also note that our proposed framework depends
830 on apre-defined state space, including a pre-defined set of ‘open slots’ that allow for
831 novel context learning. The contribution of the present framework is to show how
832  these ‘open slots’ can be used for novel concept learning and be re-set based on

833  model reduction. It will be important to extend this approach towards learning the
834  structure of these models in the first place, including the appropriate number of
835  ‘openslots’ (i.e., columns of the A-matrix) for learning in a particular content

836  domain and the relevant feature dimensions of observations (i.e., rows of A-matrix).
837  (Note: In addition to ontogenetic learning, in some cases structural priors regarding
838  the appropriate number of open slots [and relevant feature inputs for learning a
839  given state space of open slots] might also reflect inherited [i.e.,

840 genetically/developmentally pre-specified] patterns of structural neuronal

841 connectivity - based on what was adaptive within the evolutionary niche of a given
842  species - which could then be modified based on subsequent experience.)

843 This corresponds to a potentially powerful and simple application of

844  Bayesian model reduction, in which candidate models (i.e., reduced forms of a full
845 model) are readily identifiable based upon the similarity between the likelihoods
846  conditioned upon different hidden states. If two or more likelihoods are sufficiently

847  similar, the hidden states can be merged (by assigning the concentration
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parameters accumulated during experience-dependent learning to one or other of
the hidden states). The ensuing change in model evidence scores the reduction in
complexity. If this reduction is greater than the loss of accuracy - in relation to
observations previously encountered - Bayesian model reduction will, effectively,
merge one state into another; thereby freeing up a state for the learning of new
concepts. We will demonstrate this form of structure learning via Bayesian model
reduction in future work.

We must also highlight here that cognitive science research on concept and
category learning has a rich empirical and theoretical history, including many
previously proposed formal models. While our primary focus has been on using
concept learning as an example of a more general approach by which state space
expansion and reduction can be implemented within future active inference
research, it is important to recognize this previous work and highlight where it
overlaps with the simulations we’ve presented. For example, our results suggesting
that first learning general categories facilitates the learning of more specific
categories relates to both classic and contemporary findings showing that children
more easily acquire “basic” and “superordinate” (e.g., dog, animal) concepts before
learning “subordinate” (e.g., chihuahua) concepts (Mervis & Rosch 1981; Murphy
2016), and that this may involve a type of “bootstrapping” process (Beck 2017).
Complementary work has also highlighted ways in which learning new words
during development can invoke a type of “placeholder” structure, which then

facilitates the acquisition of a novel concept - which bears some resemblance to our
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notion of blank “concept slots” that can subsequently acquire meaningful semantics
(Gelman & Roberts 2017).

There is also a series of previously proposed formalisms within the literature
on category learning. For example, two previously proposed models - the “rational
model” (Anderson 1991; Sanborn et al. 2010) and the SUSTAIN model (Love et al.
2004) - both describe concept acquisition as involving cluster creation mechanisms
that depend on statistical regularities during learning and that use probabilistic
updating. The updating mechanisms within SUSTAIN are based on
surprise/prediction-error in the context of both supervised and unsupervised
learning. This model also down-weights previously created clusters when their
associated regularities cease to be observed in recent experience. Although not built
in intentionally, this type of mechanism emerges naturally within our model in two
ways. First, when a particular hidden state ceases to be inferred, concentration
parameters will accumulate to higher values for other hidden states in the D matrix,
reflecting relatively stronger prior expectations for hidden states that continue to be
inferred - which would favor future inference of those states over those absent from
recent experience. Second, if one pattern of observations were absent from recent
experience (while other patterns continued to be observed), concentration
parameters in the A matrix would also accumulate to higher values for patterns that
continued to be observed - resulting in relatively less confidence in the state-
outcome mapping for the less-observed pattern. (However, with respect to this
latter mechanism, so long as this mapping was sufficiently precise and distinct from

others [i.e,, it had previously been observed many times farther in the past], this
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893  would not be expected to prevent successful inference if this pattern were observed
894  again.)
895 It is also worth highlighting that, as our model is intended primarily as a
896  proof of concept and a demonstration of an available model expansion/reduction
897  approach that can be used within active inference research, it does not explicitly
898 incorporate some aspects - such as top-down attention - that are of clear
899 importance to cognitive learning processes, and that have been implemented in
900 previous models. For example, the adaptive resonance theory (ART) model
901 (Grossberg 1987) was designed to incorporate top-down attentional mechanisms
902 and feedback mechanisms to address a fundamental knowledge acquisition problem
903 - the temporal instability of previously learned information that can occur when a
904  system also remains sufficiently plastic to learn new (and potentially overlapping)
905 information. While our simulations do not explicitly incorporate these additional
906 complexities, there are clear analogues to the top-down and bottom-up feedback
907 exchange in ART within our model (e.g., the prediction and prediction-error
908 signaling within the neural process theory associated with active inference). ART
909 addresses the temporal instability problem primarily through mechanisms that
910 learn top-down expectancies that guide attention and match them with bottom-up
911 input patterns - which is quite similar to the prior expectations and likelihood
912 mappings used within active inference.
913 As an emergent property of the “first principles” approach in active
914 inference, our model therefore naturally incorporates the top-down effects in ART

915 simulations, which have been used to account for known context effects on
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916  categorical perception within empirical studies (McClelland & Rumelhart 1981).
917  This is also consistent with more recent work on cross-categorization (Shafto et al.
918  2011), which has shown that human category learning is poorly accounted for by
919  both a purely bottom-up process (attempting to explain observed features) and a
920  purely top-down approach (involving attention-based feature selection) - and has
921 instead used simulations to show that a Bayesian joint inference model better fits
922  empirical data.
923 Other proposed Bayesian models of concept learning have also had
924  considerable success in predicting human generalization judgments (Goodman et al.
925  2008). The proof of concept model presented here has not been constructed to
926  explicitly compete with such models. It will be an important direction for future
927  work to explore the model’s ability to scale up to handle more complex concept
928  learning problems. Here we simply highlight that the broadly Bayesian approach
929  within our model is shared with other models that have met with considerable
930  success - supporting the general plausibility of using this approach within active

931 inference research to model and predict the neural basis of these processes (see

932  below).

933

934 Potential advantages of the approach

935 The present approach may offer some potential theoretical and empirical

936 advantages in comparison to previous work. One theoretical advantage corresponds
937  to the parsimony of casting this type of structure learning as an instance of Bayesian

938 model selection. When integrated with other aspects of the active inference
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framework, this entails that perceptual inference, active learning, and structure
learning are all expressions of the same principle; namely, the minimization of
variational free energy, over three distinct timescales. A second, related theoretical
advantage is that, when this type of structure learning is cast as Bayesian model
selection/reduction, there is no need to invoke additional procedures or schemes
(e.g., nonparametric Bayes or ‘stick breaking’ processes; (S. Gershman & Blei,
2012)). Instead, a generative model with the capacity to represent a sufficiently
complex world will automatically learn causal structure in a way that contextualizes
active inference within active learning, and active learning within structure
learning.

Based on the process theories summarized in Figure 2, the present model
would predict that the brain contains “reserve” cortical columns and synapses (most
likely within secondary sensory and association cortices) available to capture new
patterns in observed features. To our knowledge, no direct evidence supporting the
presence of unused cortical columns in the brain has been observed, although the
generation of new neurons (with new synaptic connections) is known to occur in
the hippocampus (Chancey et al.,, 2013). "Silent synapses” have also been observed
in the brain, which does appear consistent with this prediction; such synapses can
persist into adulthood and only become activated when new learning becomes
necessary (e.g., see (Chancey et al., 2013; Funahashi, Maruyama, Yoshimura, &
Komatsu, 2013; Kerchner & Nicoll, 2008)). One way in which this idea of “spare
capacity” or “reserve” cortical columns might be tested in the context of

neuroimaging would be to examine whether greater levels of neural activation -
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within conceptual processing regions - are observed after learning additional
concepts, which would imply that additional populations of neurons become
capable of being activated. In principle, single-cell recording methods might also test
for the presence of neurons that remain at baseline firing rates during task
conditions, but then become sensitive to new stimuli within the relevant conceptual
domain after learning.

Figure 9 provides a concrete example of two specific empirical predictions
that follow from simulating the neural responses that should be observed within our
concept learning task under these process theories. In the left panel, we plot the
firing rates (darker = higher firing rate) and local field potentials (rate of change in
firing rates) associated with neural populations encoding the probability of the
presence of different animals that would be expected across a number of learning
trials. In this particular example, the agent began with knowledge of the basic
categories of ‘bird’ and ‘fish,” but needed to learn the eight more specific animal
categories over 50 interleaved exposures to each animal (only 10 equally spaced
learning trials involving the presentation of a parakeet are shown for simplicity). As
can be seen, early in learning the firing rates and local field potentials remain at
baseline levels; in contrast, as learning progresses, these neural responses take a
characteristic shape with more and more positive changes in firing rate in the
populations representing the most probable animal, while other populations drop
further and further below baseline firing rates.

The right panel depicts a similar simulation, but where the agent was

allowed to self-report what it saw on each trial (for clarity of illustration, we here
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985 show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling
986  policy selection allowed us to simulate expected phasic dopamine responses during
987  the task, corresponding to changes in the precision of the probability distribution
988  over policies after observing a stimulus on each trial. As can be seen, during early
989 trials the model predicts small firing rate increases when the agent is confident in its
990 ability to correctly report the more general animal category after observing a new
991  stimulus, and firing rate decreases when the agent becomes less confident in one
992  policy over others (i.e., as confidence in reporting the specific versus general
993  categories becomes more similar). Larger and larger phasic dopaminergic responses
994  are then expected as the agent becomes more and more confident in her ability to
995  correctly report the specific animal category upon observing a new stimulus. It will
996  be important for future neuroimaging studies to test these predictions in this type of
997  concept learning/stimulus categorization task.
998

999
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Simulated firing rates of neurons encoding the probability of different animal concepts across learningtrials

Each row = one neural population (encodingconfidence in one possible animal concept; darker=higher probability/firing rate)
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Figure 9. Simulated neuronal firing rates, local field potentials, and dopaminergic responses
across learning trials based on the neural process theory associated with active inference
that is summarized in Figure 2. The top left panel displays the predicted firing rates (darker
= higher firing rate) of neural populations encoding the probability of each hidden state
over 50 interleaved exposures to each animal (only 10 equally spaced learning trials
involving the presentation of a parakeet are shown for simplicity) in the case where the
agent starts out with knowledge of the basic animal categories but must learn the more
specific categories. As can be seen, initially each of the four neural populations encoding
possible bird categories (i.e., one row per possible category) have equally low firing rates
(gray); as learning continues, firing rates increase for the ‘parakeet’ population and
decrease for the others. The bottom left panel illustrates the predicted local field potentials
(based on the rate of change in firing rates) that would be measured across the task. The top
right panel displays the predicted firing rates of neural populations in an analogous
simulation in which reporting policies were enabled (for clarity of illustration, we here
show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling policy
selection allowed us to simulate the phasic dopaminergic responses (reporting changes in
the precision of the probability distribution over policies) predicted to occur across
learning trials; here the agent first becomes confident in her ability to correctly report the
general animal category upon observing a stimulus, then becomes unsure about reporting
specific versus general categories, and then becomes confident in her ability to report the
specific categories.
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Discussion

The Active Inference formulation of concept learning presented here
demonstrates a simple way in which a generative model can acquire both basic and
highly granular knowledge of the hidden states/causes in its environment. In
comparison to previous theoretical work using active inference (e.g., (M. Mirza,
Adams, Mathys, & Friston, 2016; Parr & Friston, 2017; Schwartenbeck, FitzGerald,
Mathys, Dolan, & Friston, 2015)), the novel aspect of our model was that it was
further equipped with “reserve” hidden states initially devoid of content (i.e., these
states started out with uninformative likelihood mappings that predicted all
outcomes with roughly equal probability). Over multiple exposures to different
stimuli, these hidden states came to acquire conceptual content that captured
distinct statistical patterns in the features of those stimuli. This was accomplished
via the model’s ability to infer when its currently learned hidden states were unable
to account for a new observation, leading an unused hidden state column to be
engaged that could acquire a new state-observation mapping.

Crucially, the model was able to start with some concepts and then expand its
representational repertoire to learn others - but would only do so when a new
stimulus was observed. This is conceptually similar to nonparametric Bayesian
learning models, such as the “Chinese Room” process and the “Indian Buffet”
process, that can also infer the need to invoke additional hidden causes with

additional data (S. Gershman & Blei, 2012). These statistical learning models do not
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1046 need to build in additional “category slots” for learning as in our model and can, in
1047  principle, entertain infinite state spaces. On the other hand, it is less clear at present
1048 how the brain could implement this type of learning. An advantage of our model is
1049 thatlearning depends solely on biologically plausible Hebbian mechanisms (for a
1050 possible neural implementation of model reduction, see (K] Friston, Lin, et al., 2017;
1051 Hobson & Friston, 2012; Hobson et al,, 2014)).
1052 The distinction between nonparametric Bayesian learning and the current
1053  active learning scheme may be important from a neurodevelopmental perspective
1054  as well. In brief, structure learning in this paper starts with a generative model with
1055  atype of structural prior reflecting a specific amount of built in ‘spare capacity’,
1056  where uncommitted or naive conceptual ‘slots’ are used to explain the sensorium,
1057  during optimization of free energy or model evidence. In contrast, nonparametric
1058  Bayesian approaches add new slots when appropriate. One might imagine that
1059 neonates are equipped with brains with ‘spare capacity’ (Baker & Tenenbaum,
1060 2014) that is progressively leveraged during neurodevelopment, much in the spirit
1061  of curriculum learning (Al-Muhaideb & Menai, 2011). This suggestion appears
1062  consistent with previous work demonstrating varying levels of category learning
1063  ability across the lifespan, which has previously been formally modeled as an
1064  individual difference in values of a parameter constraining the ability to form new
1065  clusters in response to surprising events (Love & Gureckis 2007) — which bears
1066  similarity to the idea of capacity limitations arising from finite numbers of concept

1067  slotsin our model.
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In this sense, the current approach to structure learning may be better
considered as active learning with generative models that are equipped with a large
number of available hidden states capable of acquiring content, which are then
judiciously reduced/reset - via a process of Bayesian model reduction.
Furthermore, as in the acquisition of expertise, our model can also begin with broad
category knowledge and then subsequently learn finer-grained within-category
distinctions, which has received less attention from the perspective of the
aforementioned models. Reporting broad versus specific category recognition is
also a distinct aspect of our model - driven by differing levels of uncertainty and an
expectation (preference) not to incorrectly report a more specific category.

Our simulation results also demonstrated that, when combined with
Bayesian model reduction, the model can guard against learning too many
categories during model expansion - often retaining only the number of hidden
causes actually present in its environment - and to keep “reserve” hidden states for
learning about new causes if or when they appear. With perfect “expert” knowledge
of the possible animal types it could observe (i.e., fully precise likelihood mappings
matching the generative process) this was true in general. Interestingly, however,
with an imperfectly learned likelihood mapping, model reduction only succeeded
when the agent had to remove either 1 or 2 concepts from her model; when 3
potential categories needed to be removed, the correct reduced model was
identified less than half the time. It would be interesting to empirically test whether

similar learning difficulties are present in humans.


https://doi.org/10.1101/633677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/633677; this version posted October 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

aCC-BY-NC-ND 4.0 International license.
Structure Learning as Active Inference 53

Neurobiological theories associated with Active Inference also make
predictions about the neural basis of this process (Hobson & Friston, 2012; Hobson
et al., 2014). Specifically, during periods of rest (e.g., daydreaming) or sleep, it is
suggested that, because sensory information is down-weighted, learning is driven
mainly by internal model simulations (e.g., as appears to happen in the phenomenon
of hippocampal replay; (Feld & Born, 2017; Lewis, Knoblich, & Poe, 2018; Pfeiffer &
Foster, 2013)); this type of learning can accomplish a model reduction process in
which redundant model parameters are identified and removed to prevent model
over-fitting and promote selection of the most parsimonious model that can
successfully account for previous observations. This is consistent with work
suggesting that, during sleep, many (but not all) synaptic strength increases
acquired in the previous day are attenuated (Tononi & Cirelli, 2014). The role of
sleep and daydreaming in keeping “reserve” representational resources available
for model expansion could therefore be especially important to concept learning -
consistent with the known role of sleep in learning and memory (Ackermann &
Rasch, 2014; Feld & Born, 2017; Perogamvros & Schwartz, 2012; Stickgold, Hobson,
Fosse, & Fosse, 2001; Walker & Stickgold, 2010).

In addition, an emergent feature of our model was its ability to generalize
prior knowledge to new stimuli to which it had not previously been exposed. In fact,
the model could correctly generalize upon a single exposure to a new stimulus - a
type of “one-shot learning” capacity qualitatively similar to that observed in humans
(Landau, Smith, & Jones, 1988; E. Markman, 1989; Xu & Tenenbaum, 2007b). While

it should be kept in mind that the example we have provided is very simple, it
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demonstrates the potential usefulness of this novel approach. Some other
prominent approaches in machine-learning (e.g., deep learning) tend to require
larger amounts of data (Geman et al., 1992; Hinton et al., 2012; LeCun et al., 2015;
Lecun et al.,, 1998; Mnih et al., 2015), and do not learn the rich structure that allows
humans to use concept knowledge in a wide variety of generalizable functions
(Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B.
Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams &
Lombrozo, 2010). Other recent hierarchical Bayesian approaches in cognitive
science have made progress in this domain, however, by modeling concepts as types
of probabilistic programs (Ghahramani, 2015; Goodman, Tenenbaum, &
Gerstenberg, 2015; Lake et al., 2015).

It is important to note that this model is deliberately simple and is meant
only to represent a proof of principle that categorical inference and conceptual
knowledge acquisition can be modeled within this particular neurocomputational
framework, and to present this approach as a potentially useful tool in future active
inference research. We chose a particular set of feature combinations to illustrate
this, but it remains to be demonstrated that learning in this model would be equally
successful with a larger feature space and set of learnable hidden causes. Due to
limited scope, we have also not thoroughly addressed all other overlapping lines of
research. For example, work on exemplar models of concepts has also led to other
computational approaches. As one example, the EBRW model (Nosofsky & Palmeri
1997) has demonstrated ways of linking exemplar learning to drift diffusion models.

Another model within this line of research is the ALCOVE model (Nosofsky et al.
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1994) - an error-driven connectionist model of exemplar-based category learning
that employs selective attention and learns attentional weights (this model also
built on earlier work; see (Nosofsky 2011)). Yet another connectionist model with
some conceptual overlap to our own is the DIVA model, which learns categories by
recoding observations as task-constrained principle components and uses model fit
for subsequent recognition (Kurtz 2007). It will be important in future work to
examine the strengths and limitations of a scaled-up version of our approach in
relation to these other models.

Finally, another topic for future work would be the expansion of this type of
model to context-specific learning (e.g., with an additional hidden state factor for
encoding distinct contexts). In such cases, regularities in co-occurring features differ
in different contexts and other cues to context may not be directly observable (e.g.,
the same species of bird could be a slightly different color or size in different parts
of the world that otherwise appear similar) - creating difficulties in inferring when
to update previously learned associations and when to instead acquire competing
associations assigned to new contexts. At present, it is not clear whether the
approach we have illustrated would be successful at performing this additional
function, although the process of inferring the presence of a new hidden state level
in a second hidden state factor encoding context would be similar to what we have
shown within a single state factor (for related work on context-dependent
contingency learning, see (S. ]. Gershman et al., 2017; S. Gershman, Jones, Norman,
Monfils, & Niv, 2013)). Another point worth highlighting is that we have made

particular choices with regard to various model parameters and the number of
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observations provided during learning. Further investigations of the space of these
possible parameter settings will be important. With this in mind, however, our
current modelling results could offer additional benefits. For example, the model’s
simplicity could be amenable to empirical studies of saccadic eye movements
toward specific features during novel category learning (e.g. following the approach
of (M. B. Mirza, Adams, Mathys, & Friston, 2018)). This approach could also be
combined with measures of neural activity in humans or other animals, allowing
more direct tests of the neural predictions highlighted above. In addition, the
introduction of exploratory, novelty-seeking, actions could be used to reduce the
number of samples required for learning, with agents selecting those data that are
most relevant.

In conclusion, the Active Inference scheme we have described illustrates
feature integration in the service of conceptual inference: it can successfully
simulate simple forms of concept acquisition and concept differentiation (i.e.
increasing granularity), and it spontaneously affords one-shot generalization.
Finally, it speaks to empirical work in which behavioral tasks could be designed to
fit such models, which would allow investigation of individual differences in concept
learning and its neural basis. For example, such a model can simulate (neuronal)
belief updating to predict neuroimaging responses as we illustrated above; i.e., to
identify the neural networks engaged in evidence accumulation and learning
(Schwartenbeck et al., 2015). In principle, the model parameters (e.g., ‘A’ matrix
precision) can also be fit to behavioral choices and reaction times - and thereby

phenotype subjects in terms of the priors under which they infer and learn
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1182  (Schwartenbeck & Friston, 2016). This approach could therefore advance

1183 neurocomputational approaches to concept learning in several directions.

1184

1185  Software note

1186  Although the generative model - specified by the various matrices described in this
1187  paper - changes from application to application, the belief updates are generic and
1188  can be implemented using standard routines (here spm_MDP_VB_X.m). These
1189  routines are available as Matlab code in the DEM toolbox of the most recent version

1190 of SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/. The simulations in

1191  this paper can be reproduced (and customized) via running the Matlab code

1192  included here is supplementary material (Concepts_model.m).
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