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Abstract 18 

Within computational neuroscience, the algorithmic and neural basis of structure 19 

learning remains poorly understood. Concept learning is one primary example, 20 

which requires both a type of internal model expansion process (adding novel 21 

hidden states that explain new observations), and a model reduction process 22 

(merging different states into one underlying cause and thus reducing model 23 

complexity via meta-learning). Although various algorithmic models of concept 24 

learning have been proposed within machine learning and cognitive science, many 25 

are limited to various degrees by an inability to generalize, the need for very large 26 

amounts of training data, and/or insufficiently established biological plausibility. 27 

Using concept learning as an example case, we introduce a novel approach for 28 

modeling structure learning within the active inference framework and its 29 

accompanying neural process theory. This approach is based on the idea that a 30 

generative model can be equipped with extra (hidden state or cause) ‘slots’ that can 31 

be engaged when an agent learns about novel concepts. This can be combined with a 32 

Bayesian model reduction process, in which any concept learning – associated with 33 

these slots – can be reset in favor of a simpler model with higher model evidence. 34 

We use simulations to illustrate this model’s ability to add new concepts to its state 35 

space (with relatively few observations) and increase the granularity of the 36 

concepts it currently possesses. We also simulate the predicted neural basis of these 37 

processes. We further show that it accomplishes a simple form of ‘one-shot’ 38 

generalization to new stimuli. Although deliberately simple, these results suggest 39 

that this general approach to modeling concept learning within active inference 40 
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research may also offer useful resources in developing neurocomputational models 41 

of structure learning more generally. 42 

Keywords: Model Expansion; Structure Learning; Concepts; Computational 43 

Neuroscience; Active Inference 44 

  45 
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Introduction 46 

The ability to learn the latent structure of one’s environment – such as 47 

inferring the existence of hidden causes of regularly observed patterns in co-48 

occurring feature observations – is central to human cognition. For example, we do 49 

not simply observe particular sets of colors, textures, shapes, and sizes – we also 50 

observe identifiable objects such as, say, a ‘screwdriver’. If we were tool experts, we 51 

might also recognize particular types of screwdrivers (e.g., flat vs. Phillip’s head), 52 

designed for a particular use. This ability to learn latent structure, such as learning 53 

to recognize co-occurring features under conceptual categories (as opposed to just 54 

perceiving sensory qualities; e.g., red, round, etc.), is also highly adaptive. Only if we 55 

knew an object was a screwdriver could we efficiently infer that it affords putting 56 

certain structures together and taking them apart; and only if we knew the specific 57 

type of screwdriver could we efficiently infer, say, the artefacts to use it on. Many 58 

concepts of this sort require experience-dependent acquisition (i.e., learning).  59 

From a computational perspective, the ability to acquire a new concept can 60 

be seen as a type of structure learning involving Bayesian model comparison 61 

(Botvinick, Niv, & Barto, 2009; S. J. Gershman & Niv, 2010; MacKay & Peto, 1995; 62 

Salakhutdinov, Tenenbaum, & Torralba, 2013; Tervo, Tenenbaum, & Gershman, 63 

2016). Specifically, concept acquisition can be cast as an agent learning (or 64 

inferring) that a new hypothesis (referred to here as a hidden cause or state) should 65 

be added to the internal or generative model with which she explains her 66 

environment, because existing causes cannot account for new observations (e.g., an 67 

agent might start out believing that the only tools are hammers and screwdrivers, 68 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/633677doi: bioRxiv preprint 

https://doi.org/10.1101/633677
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structure Learning as Active Inference 

 
 

5 

but later learn that there are also wrenches). In other words, the structure of the 69 

space of hidden causes itself needs to expand to accommodate new patterns of 70 

observations. This model expansion process is complementary to a process called 71 

Bayesian model reduction (Karl Friston & Penny, 2011); in which the agent can infer 72 

that there is redundancy in her model, and a model with fewer states or parameters 73 

provides a more parsimonious (i.e. simpler) explanation of observations (KJ Friston, 74 

Lin, et al., 2017; Schmidhuber, 2006). For example, in some instances it may be 75 

more appropriate to differentiate between fish and birds as opposed to salmon, 76 

peacocks and pigeons. This reflects a reduction in model complexity based on a 77 

particular feature space underlying observations and thus resonates with other 78 

accounts of concept learning as dimensionality reduction (Behrens et al., 2018; 79 

Stachenfeld, Botvinick, & Gershman, 2016) – a topic we discuss further below. 80 

 A growing body of work in a number of domains has approached this 81 

problem from different angles. In developmental psychology and cognitive science, 82 

for example, probability theoretic (Bayesian) models have been proposed to account 83 

for word learning in children and the remarkable human ability to generalize from 84 

very few (or even one) examples in which both broader and narrower categorical 85 

referents could be inferred (Kemp, Perfors, & Tenenbaum, 2007; Lake, 86 

Salakhutdinov, & Tenenbaum, 2015; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Xu & 87 

Tenenbaum, 2007a, 2007b). In statistics, a number of nonparametric Bayesian 88 

models, such as the “Chinese Room” process and the “Indian Buffet” process, have 89 

been used to infer the need for model expansion (S. Gershman & Blei, 2012). There 90 
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are also related approaches in machine learning, as applied to things like Gaussian 91 

mixture models (McNicholas, 2016).  92 

Such approaches employ various clustering algorithms, which take sets of 93 

data points in a multidimensional space and divide them into separable clusters 94 

(e.g., see (Anderson, 1991; Love, Medin, & Gureckis, 2004; Sanborn, Griffiths, & 95 

Navarro, 2010)). While many of these approaches assume the number of clusters is 96 

known in advance, various goodness-of-fit criteria may be used to determine the 97 

optimal number. However, a number of approaches require much larger amounts of 98 

data than humans do to learn new concepts (Geman, Bienenstock, & Doursat, 1992; 99 

Hinton et al., 2012; LeCun, Bengio, & Hinton, 2015; Lecun, Bottou, Bengio, & Haffner, 100 

1998; Mnih et al., 2015). Many also require corrective feedback to learn and yet fail 101 

to acquire sufficiently rich conceptual structure to allow for generalization 102 

(Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B. 103 

Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams & 104 

Lombrozo, 2010). 105 

Approaches to formally modeling structure learning, including concept 106 

learning, have not yet been examined within the emerging field of research on 107 

Active Inference models within computational neuroscience (KJ Friston, 2010; KJ 108 

Friston et al., 2016; KJ Friston, Lin, et al., 2017; KJ Friston, Parr, & de Vries, 2017). 109 

This represents one potentially fruitful research avenue that has not yet been 110 

examined and, as discussed below, may offer unique advantages in research focused 111 

on understanding the neural basis of learning latent structure. In this paper, we 112 

explore the potential of this approach. In brief, we conclude that structure learning 113 
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is an emergent property of active inference (and learning) under generative models 114 

with ‘spare capacity’; where spare or uncommitted capacity is used to expand the 115 

repertoire of representations (Baker & Tenenbaum, 2014), while Bayesian model 116 

reduction (KJ Friston, Lin, et al., 2017; Hobson & Friston, 2012) promotes 117 

generalization by minimizing model complexity – and releasing representations to 118 

replenish ‘spare capacity’. 119 

From a machine learning perspective, Bayesian model reduction affords the 120 

opportunity to consider generative models with a large number of hidden states or 121 

latent factors and then optimize the number (or indeed partitions) of latent factors 122 

with respect to a variational bound on model evidence. This could be regarded as a 123 

bounded form of nonparametric Bayes, in which a potentially infinite number of 124 

latent factors are considered; with appropriate (e.g., Indian buffet process) priors 125 

over the number of hidden states generating data features1. The Bayesian model 126 

reduction approach here is bounded in the sense that an upper bound on the 127 

number of hidden states is specified prior to structure learning. Furthermore, in 128 

virtue of the (biologically plausible) variational schemes used for model reduction, 129 

there is no need to explicitly compute model evidence; thereby emulating the 130 

computational efficiency of nonparametric Bayes (S. Gershman & Blei, 2012), while 131 

accommodating any prior over models. 132 

In what follows, we first provide a brief overview of active inference. We then 133 

introduce a model of concept learning (using basic and subordinate level animal 134 

                                                        
1 Generally motivated by starting with a finite parametric model and taking the limit as the number 
of latent states with more parameters tends to infinity. 
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categories), as a representative example of structure learning. We specifically model 135 

cognitive (semantic) processes that add new concepts to a state space and that 136 

optimize the granularity of an existing state space. We then establish the validity of 137 

this model using numerical analyses of concept learning, when repeatedly 138 

presenting a synthetic agent with different animals characterized by different 139 

combinations of observable features. We demonstrate how particular approaches 140 

combining Bayesian model reduction and expansion can reproduce successful 141 

concept learning without the need for corrective feedback – and allow for 142 

generalization. We further demonstrate the ability of this model to generate 143 

predictions about measurable neural responses based on the neural process theory 144 

that accompanies active inference. We conclude with a brief discussion of the 145 

implications of this work. Our goal is to present an introductory proof of concept – 146 

that could be used as the foundation of future research on the neurocomputational 147 

basis of structure learning. 148 

 149 

An Active Inference model of concept learning 150 

 151 

A primer on Active Inference  152 

 153 

Active Inference suggests that the brain is an inference machine that 154 

approximates optimal probabilistic (Bayesian) belief updating across perceptual, 155 

cognitive, and motor domains. Active Inference more specifically postulates that the 156 

brain embodies an internal model of the world that is “generative” in the sense that 157 
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it can simulate the sensory data that it should receive if its model of the world is 158 

correct. These simulated (predicted) sensory data can be compared to actual 159 

observations, and differences between predicted and observed sensations can be 160 

used to update the model. Over short timescales (e.g., a single observation) this 161 

updating corresponds to inference (perception), whereas on longer timescales it 162 

corresponds to learning (i.e., updating expectations about what will be observed 163 

later). Another way of putting this is that perception optimizes beliefs about the 164 

current state of the world, while learning optimizes beliefs about the relationships 165 

between the variables that constitute the world. These processes can be seen as 166 

ensuring the generative model (entailed by recognition processes in the brain) 167 

remains an accurate model of the world that it seeks to regulate (Conant & Ashbey, 168 

1970). 169 

Active Inference casts decision-making in similar terms. Actions can be 170 

chosen to resolve uncertainty about variables within a generative model (i.e., 171 

sampling from domains in which the model does not make precise predictions), 172 

which can prevent anticipated deviations from predicted outcomes. In addition, 173 

some expectations are treated as a fixed phenotype of an organism. For example, if 174 

an organism did not continue to “expect” to observe certain amounts of food, water, 175 

and shelter, then it would quickly cease to exist (McKay & Dennett, 2009) – as it 176 

would not pursue those behaviors that fulfill these expectations (c.f. the ‘optimism 177 

bias’ (Sharot, 2011)). Thus, a creature should continually seek out observations that 178 

support – or are internally consistent with – its own continued existence. Decision-179 

making can therefore be cast as a process in which the brain infers the sets of 180 
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actions (policies) that would lead to observations consistent with its own survival-181 

related expectations (i.e., its “prior preferences”). Mathematically, this can be 182 

described as selecting sequences of actions (policies) that maximize “Bayesian 183 

model evidence” expected under a policy, where model evidence is the (marginal) 184 

likelihood that particular sensory inputs would be observed under a given model.  185 

In real-world settings, directly computing Bayesian model evidence is 186 

generally intractable. Thus, some approximation is necessary. Active Inference 187 

proposes that the brain computes a quantity called “variational free energy” that 188 

provides a bound on model evidence, such that minimization of free energy 189 

indirectly maximizes model evidence (this is exactly the same functional used in 190 

machine learning where it is known as an evidence lower bound or ELBO). In this 191 

case, decision-making will be approximately (Bayes) optimal if it infers (and enacts) 192 

the policy that will minimize expected free energy (i.e., free energy with respect to a 193 

policy, where one takes expected future observations into account). Technically, 194 

expected free energy is the average free energy under the posterior predictive 195 

density over policy-specific outcomes. 196 

Expected free energy can be decomposed in different ways that reflect 197 

uncertainty and prior preferences, respectively (e.g., epistemic and instrumental 198 

affordance or ambiguity and risk). This formulation means that any agent that 199 

minimizes expected free energy engages initially in exploratory behavior to 200 

minimize uncertainty in a new environment. Once uncertainty is resolved, the agent 201 

then exploits that environment to fulfil its prior preferences. The formal basis for 202 

Active Inference has been thoroughly detailed elsewhere (KJ Friston, FitzGerald, 203 
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Rigoli, Schwartenbeck, & Pezzulo, 2017), and the reader is referred there for a full 204 

mathematical treatment. 205 

When the generative model is formulated as a partially observable Markov 206 

decision process (a mathematical framework for modeling decision-making in cases 207 

where some outcomes are under the control of the agent and others are not, and 208 

where states of the world are not directly known but must be inferred from 209 

observations), active inference takes a particular form. Here, the generative model is 210 

specified by writing down plausible or allowable policies, hidden states of the world 211 

(that must be inferred from observations), and observable outcomes, as well as a 212 

number of matrices that define the probabilistic relationships between these 213 

quantities (see right panel of figure1). 214 

 215 
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Figure 1. Left: Illustration of the trial structure performed by the agent. At the first time 216 
point, the agent is exposed to one of 8 possible animals that are each characterized by a 217 
unique combination of visual features. At the 2nd time point, the agent would then report 218 
which animal concept matched that feature combination. The agent could report a specific 219 
category (e.g., pigeon, hawk, minnow, etc.) or a general category (i.e., bird or fish) if 220 
insufficiently certain about the specific category. See the main text for more details. Right: 221 
Illustration of the Markov decision process formulation of active inference used in the 222 
simulations described in this paper. The generative model is here depicted graphically, such 223 
that arrows indicate dependencies between variables. Here observations (o) depend on 224 
hidden states (s), as specified by the A matrix, and those states depend on both previous 225 
states (as specified by the B matrix,  or the initial states specified by the D matrix) and the 226 
policies (π) selected by the agent. The probability of selecting a particular policy in turn 227 
depends on the expected free energy (G) of each policy with respect to the prior preferences 228 
(C) of the agent. The degree to which expected free energy influences policy selection is also 229 
modulated by a prior policy precision parameter (γ), which is in turn dependent on beta (β) 230 
–where higher values of beta promote more randomness in policy selection (i.e., less 231 
influence of the differences in expected free energy across policies). For more details 232 
regarding the associated mathematics, see (KJ Friston, Lin, et al., 2017; KJ Friston, Parr, et 233 
al., 2017). 234 

 235 

The ‘A’ matrix indicates which observations are generated by each 236 

combination of hidden states (i.e., the likelihood mapping specifying the probability 237 

that a particular set of observations would be observed given a particular set of 238 

hidden states). The ‘B’ matrix is a transition matrix, indicating the probability that 239 

one hidden state will evolve into another over time. The agent, based on the selected 240 

policy, controls some of these transitions (e.g., those that pertain to the positions of 241 

its limbs). The ‘D’ matrix encodes prior expectations about the initial hidden state 242 

the agent will occupy. Finally, the ‘C’ matrix specifies prior preferences over 243 

observations; it quantifies the degree to which different observed outcomes are 244 

rewarding or punishing to the agent. In these models, observations and hidden 245 

states can be factorized into multiple outcome modalities and hidden state factors. 246 

This means that the likelihood mapping (the ‘A’ matrix) can also model the 247 
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interactions among different hidden states when generating outcomes 248 

(observations).  249 

 250 

From principles to process theories 251 

 252 

One potential empirical advantage of the present approach stems from the 253 

fact that active inference models have a plausible biological basis that affords 254 

testable neurobiological predictions. Specifically, these models have well-articulated 255 

companion micro-anatomical neural process theories, based on commonly used 256 

message-passing algorithms (KJ Friston, FitzGerald, et al., 2017; Parr & Friston, 257 

2018; Parr, Markovic, Kiebel, & Friston, 2019). In these process theories, for 258 

example, the activation level of different neural populations (typically portrayed as 259 

consisting of different cortical columns) can encode posterior probability estimates 260 

over different hidden states. These activation levels can then be updated by synaptic 261 

inputs with particular weights that convey the conditional probabilities encoded in 262 

the ‘A’ and ‘B’ (among other) matrices described above, where active learning then 263 

corresponds to associative synaptic plasticity. Phasic dopamine responses also play 264 

a particular role in these models, by reporting changes in policy precision (i.e., the 265 

degree of confidence in one policy over others) upon new observations (see Figure 2 266 

and the associated legend for more details). In what follows, we describe how the 267 

type of generative model – that underwrites these processes – was specified to 268 

perform concept inference/learning. 269 

 270 
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 271 

 272 

Figure 2. This figure illustrates the mathematical framework of active inference and 273 
associated neural process theory used in the simulations described in this paper. The 274 
differential equations in the left panel approximate Bayesian belief updating within the 275 
graphical model depicted in the right panel of Figure 1 via a gradient descent on free energy 276 
(F). The right panel also illustrates the proposed neural basis by which neurons making up 277 
cortical columns could implement these equations. The equations have been expressed in 278 
terms of two types of prediction errors. State prediction errors (ε) signal the difference 279 
between the (logarithms of) expected states (s) under each policy and time point—and the 280 
corresponding predictions based upon outcomes/observations (A matrix) and the 281 
(preceding and subsequent) hidden states (B matrix, and, although not written, the D 282 
matrix for the initial hidden states at the first time point). These represent prior and 283 
likelihood terms respectively – also marked as messages 2, 3, and 4, which are depicted as 284 
being passed between neural populations (colored balls) via particular synaptic 285 
connections in the right panel. These (prediction error) signals drive depolarization (v) in 286 
those neurons encoding hidden states (s), where the probability distribution over hidden 287 
states is then obtained via a softmax (normalized exponential) function (σ). Outcome 288 
prediction errors (ς) instead signal the difference between the (logarithms of) expected 289 
observations (o) and those predicted under prior preferences (C). This term additionally 290 
considers the expected ambiguity or conditional entropy (H) between states and outcomes 291 
as well as a novelty term (W) reflecting the degree to which beliefs about how states 292 
generate outcomes would change upon observing different possible state-outcome 293 
mappings (computed from the A matrix). This prediction error is weighted by the expected 294 
observations to evaluate the expected free energy (G) for each policy (π), conveyed via 295 
message 5. These policy-specific free energies are then integrated to give the policy 296 
expectations via a softmax function, conveyed through message 1. Actions at each time 297 
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point (u) are then chosen out of the possible actions under each policy (U) weighted by the 298 
value (negative expected free energy) of each policy. In our simulations, the model learned 299 
associations between hidden states and observations (A) via a process in which counts 300 
were accumulated (a) reflecting the number of times the agent observed a particular 301 
outcome when she believed that she occupied each possible hidden state. Although not 302 
displayed explicitly, learning prior expectations over initial hidden states (D) is similarly 303 
accomplished via accumulation of concentration parameters (d). These prior expectations 304 
reflect counts of how many times the agent believes it previously occupied each possible 305 
initial state. Concentration parameters are converted into expected log probabilities using 306 
digamma functions (ψ). The way in which Bayesian model reduction was performed in this 307 
paper is also written in the lower left (where B indicates a beta function, and m is the 308 
posterior probability of each model). Here, the posterior distribution over initial states (d) 309 
is used to assess the difference in the evidence (ΔF) it provides for the number of hidden 310 
states in the current model and other possible models characterized by fewer hidden states. 311 
Prior concentration parameters are shown in italics, posterior in bold, and those priors and 312 
posteriors associated with the reduced model are equipped with a tilde (~). As already 313 
stated, the right panel illustrates a possible neural implementation of the update equations 314 
in the left panel. In this implementation, probability estimates have been associated with 315 
neuronal populations that are arranged to reproduce known intrinsic (within cortical area) 316 
connections. Red connections are excitatory, blue connections are inhibitory, and green 317 
connections are modulatory (i.e., involve a multiplication or weighting). These connections 318 
mediate the message passing associated with the equations in the left panel. Cyan units 319 
correspond to expectations about hidden states and (future) outcomes under each policy, 320 
while red states indicate their Bayesian model averages (i.e., a “best guess” based on the 321 
average of the probability estimates for the states and outcomes across policies, weighted 322 
by the probability estimates for their associated policies. Pink units correspond to (state 323 
and outcome) prediction errors that are averaged to evaluate expected free energy and 324 
subsequent policy expectations (in the lower part of the network). This (neural) network 325 
formulation of belief updating means that connection strengths correspond to the 326 
parameters of the generative model described in the text. Learning then corresponds to 327 
changes in the synaptic connection strengths. Only exemplar connections are shown to 328 
avoid visual clutter. Furthermore, we have just shown neuronal populations encoding 329 
hidden states under two policies over three time points (i.e., two transitions), whereas in 330 
the task described in this paper there are greater number of allowable policies. For more 331 
information regarding the mathematics and processes illustrated in this figure, see (KJ 332 
Friston, Lin, et al., 2017; KJ Friston, Parr, et al., 2017). 333 
 334 

A model of concept inference and learning 335 

 To model concept inference, we constructed a simple task for an agent to 336 

perform (see figure 1, left panel). In this task, the agent was presented with different 337 

animals on different trials and asked to answer a question about the type of animal 338 

that was seen. As described below, in some simulations the agent was asked to 339 

report the type of animal that was learned previously; in other simulations, the 340 
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agent was instead asked a question that required conceptual generalization. 341 

Crucially, to answer these questions the agent was required to observe different 342 

animal features, where the identity of the animal depended on the combination of 343 

features. There were three feature categories (size, color, and species-specific; 344 

described further below) and two discrete time points in a trial (observe and 345 

report).  346 

To simulate concept learning (based on the task described above) we needed 347 

to specify an appropriate generative model. Once this model has been specified, one 348 

can use standard (variational) message passing to simulate belief updating and 349 

behavior in a biologically plausible way: for details, please see (KJ Friston, 350 

FitzGerald, et al., 2017; KJ Friston, Parr, et al., 2017). In our (minimal) model, the 351 

first hidden state factor included (up to) eight levels, specifying four possible types 352 

of birds and four possible types of fish (Figure 3A). The outcome modalities 353 

included: a feature space including two size features (big, small), two color features 354 

(gray, colorful), and two species-differentiating features (wings, gills). The ‘A’ matrix 355 

specified a likelihood mapping between features and animal concepts, such that 356 

each feature combination was predicted by an animal concept (Hawk, Pigeon, 357 

Parrot, Parakeet, Sturgeon, Minnow, Whale shark, Clownfish). This model was 358 

deliberately simple to allow for a clear illustration, but it is plausibly scalable to 359 

include more concepts and a much larger feature space. The ‘B’ matrix for the first 360 

hidden state factor was an identity matrix, reflecting the belief that the animal 361 

identity was conserved during each trial (i.e., the animals were not switched out 362 

mid-trial).  363 
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 365 
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366 
Figure 3. (A) Illustration of the first hidden state factor containing columns (levels) for 8 367 
different animal concepts. Each of these 8 concepts generated a different pattern of visual 368 
feature observations associated with the outcome modalities of size, color, and species-369 
specific features. The B matrix was an identity matrix, indicating that the animal being 370 
observed did not change within a trial (white = 1, black = 0). The A matrix illustrates the 371 
specific mapping from animal concepts to feature combinations. As depicted, each concept 372 
corresponded to a unique point in a 3-dimensional feature space. (B) illustration of the 2nd 373 
hidden state factor corresponding to the verbal reports the agent could choose in response 374 
to her observations. These generated feedback as to whether her verbal report was accurate 375 
with respect to a basic category report or a specific category report. As illustrated in the C 376 
matrix, the agent most preferred to be correct about specific categories, but least preferred 377 
being incorrect. Thus, reporting the basic categories was a safer choice if the agent was too 378 
uncertain about the specific identity of the animal. 379 

 380 

The second hidden state factor was the agent’s report. That this is assumed 381 

to factorise from the first hidden state factor means that there is no prior constraint 382 

that links the chosen report to the animal generating observations. The agent could 383 

report each of the eight possible specific animal categories, or opt for a less specific 384 

report of a bird or a fish. Only one category could be reported at any time. Thus, the 385 
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agent had to choose to report only bird vs. fish or to report a more specific category. 386 

In other words, the agent could decide upon the appropriate level of coarse-graining 387 

of her responses (figure 3B).  388 

During learning trials, the policy space was restricted such that the agent 389 

could not provide verbal reports or observe corrective feedback (i.e., all it could do 390 

is “stay still” in its initial state and observe the feature patterns presented). This 391 

allowed the agent to learn concepts in an unsupervised manner (i.e. without being 392 

told what the true state was or whether it was correct or incorrect). After learning, 393 

active reporting was enabled, and the ‘C’ matrix was set so that the agent preferred 394 

to report correct beliefs. We defined the preferences of the agent such that she 395 

preferred correctly reporting specific category knowledge and was averse to 396 

incorrect reports. This ensured that she only reported the general category of bird 397 

vs. fish, unless sufficiently certain about the more specific category. 398 

In the simulations reported below, there were two time points in each trial of 399 

categorisation or conceptual inference. At the first time point, the agent was 400 

presented with the animals features, and always began in a state of having made no 401 

report (the “start” state). The agent’s task was simply to observe the features, infer 402 

the animal identity, and then report it (i.e., in reporting trials). Over 32 simulations 403 

(i.e., 4 trials per animal), we confirmed that, if the agent already started out with full 404 

knowledge of the animal concepts (i.e., a fully precise ‘A’ matrix), it would report the 405 

specific category correctly 100% of the time. Over an additional 32 simulations, we 406 

also confirmed that, if the agent was only equipped with knowledge of the 407 

distinction between wings and gills (i.e., by replacing the rows in the ‘A’ matrix 408 
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corresponding to the mappings from animals to size and color with flat 409 

distributions), it would report the generic category correctly 100% of the time but 410 

would not report the specific categories.2 This was an expected and straightforward 411 

consequence of the generative model – but provides a useful example of how agents 412 

trade off preferences and different types of uncertainty. 413 

 414 

Simulating concept learning and the acquisition of expertise 415 

 416 

Having confirmed that our model could successfully recognize animals if 417 

equipped with the relevant concepts (i.e., likelihood mappings) – we turn now to 418 

concept learning.  419 

 420 

Concept acquisition  421 

We first examined our model’s ability to acquire concept knowledge in two 422 

distinct ways. This included 1) the agent’s ability to “expand” (i.e., fill in an unused 423 

column within) its state space and add new concepts, and 2) the agent’s ability to 424 

increase the granularity of its conceptual state space and learn more specific 425 

concepts, when it already possessed broader concepts.  426 

 427 

Adding Concepts 428 

                                                        
2 However, "risky" reporting behavior could be elicited by manipulating the strengths of the agent's 
preferences such that she placed a very high value on reporting specific categories correctly (i.e., 
relative to how much she disliked reporting incorrectly). 
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To assess whether our agent could expand her state space by acquiring a new 429 

concept, we first set one column of the previously described model’s ‘A’ matrix 430 

(mapping an animal concept to its associated features) to be a uniform distribution3; 431 

creating an imprecise likelihood mapping for one concept – essentially, that concept 432 

predicted all features with nearly equal probability. Here, we chose sturgeon (large, 433 

gray, gills) as the concept for which the agent had no initial knowledge (see Figure 434 

4A, right-most column of left-most ‘pre-learning’ matrix). We then generated 2000 435 

observations based on the outcome statistics of a model with full knowledge of all 436 

eight animals (the “generative process”), to test whether the model could learn the 437 

correct likelihood mapping for sturgeon (note: this excessive number of 438 

observations was used for consistency with later simulations, in which more 439 

concepts had to be learned, and also to evaluate how performance improved as a 440 

function of the number of observations the agent was exposed to; see figure 4B).  441 

In these simulations, learning was implemented via updating (concentration) 442 

parameters for the model’s ‘A’ matrix after each trial. For details of these free energy 443 

minimizing learning processes, please see (KJ Friston et al., 2016) as well as the left 444 

panel of Figure 2 and associated legend. An intuitive way to think about this belief 445 

updating process is that the strength of association between a concept and an 446 

observation is quantified simply by counting how often they are inferred to co-447 

occur. This is exactly the same principle that underwrites Hebbian plasticity and 448 

long-term potentiation (Brown, Zhao, & Leung, 2010). Crucially, policies were 449 

                                                        
3 To break the symmetry of the uniform distribution, we added small amounts of Gaussian noise 
(with a variance of .001) to avoid getting stuck in local free energy minima during learning. 
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restricted during learning, such that the agent could not select reporting actions; 450 

thus, learning was driven entirely by repeated exposure to different feature 451 

combinations. We evaluated successful learning in two ways. First, we compared the 452 

‘A’ matrix learned by the model to that of the generative process. Second, we 453 

disabled learning after various trial numbers (i.e., such that concentration 454 

parameters no longer accumulated) and enabled reporting. We then evaluated 455 

reporting accuracy with 20 trials for each of the 8 concepts. 456 

 As shown in Figure 4A, the ‘A’ matrix (likelihood) mapping – learned by the 457 

agent – and the column for sturgeon in particular, strongly resembled that of the 458 

generative process. When first evaluating reporting, the model was 100 % accurate 459 

across 20 reporting trials, when exposed to a sturgeon (reporting accuracy when 460 

exposed to each of the other animals also remained at 100%) and first reached this 461 

level of accuracy after around 50 exposures to all 8 animals (with equal probability) 462 

(figure 4B). The agent also always chose to report specific categories (i.e., it never 463 

chose to only report bird or fish). Model performance was stable over 8 repeated 464 

simulations.  465 

Crucially, during learning, the agent was not told which state was generating 466 

its observations. This meant that it had to solve both an inference and a learning 467 

problem. First, it had to infer whether a given feature combination was better 468 

explained by an existing concept, or by a concept that predicts features uniformly. In 469 

other words, it had to decide that the features were sufficiently different – from 470 

things it had seen before – to assign it a new hypothetical concept. Given that a novel 471 

state is only inferred when another state is not a better explanation, this precludes 472 
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learning ‘duplicate’ states that generate the same patterns of observations. The 473 

second problem is simpler. Having inferred that these outcomes are caused by 474 

something new, the problem becomes one of learning a simple state-outcome 475 

mapping through accumulation of Dirichlet parameters.  476 

 To examine whether this result generalized, we repeated these simulations 477 

under conditions in which the agent had to learn more than one concept. When the 478 

model needed to learn one bird (parakeet) and one fish (minnow), the model was 479 

also able to learn the appropriate likelihood mapping for these 2 concepts (although 480 

note that, because the agent did not receive feedback about the state it was in during 481 

learning, the new feature mappings were often not assigned to the same columns as 482 

in the generative process; see figure 4A). Reporting also reached 100% accuracy, 483 

but required a notably greater number of trials. Across 8 repeated simulations, the 484 

mean accuracy reached by the model after 2000 trials was 98.75% (SD = 2%). 485 
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 486 

 487 
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Figure 4. (A) illustration of representative simulation results in which the agent successfully 488 
learned 1, 2, or 4 new animal concept categories with no prior knowledge beforehand. The 489 
generative process is shown in the upper right, illustrating the feature combinations to be 490 
learned. Pre-learning, either 1, 2 or 4 columns in the likelihood mapping began as a flat 491 
distribution with a slight amount of Gaussian noise. The agent was then provided with 2000 492 
observations of the 8 animals with equal probability. Crucially, the agent was prevented 493 
from providing verbal reports during these 2000 trials and thus did not receive feedback 494 
about the true identity of the animal. Thus, learning was driven completely by repeated 495 
exposure in an unsupervised manner. Also note that, while the agent was successful at 496 
learning the new concepts, it did not always assign the new feature patterns to the same 497 
columns as illustrated in the generative process. This is to be expected given that the agent 498 
received no feedback about the true hidden state that generated her observations. (B) 499 
illustration of how reporting accuracy, and the proportion of basic category and specific 500 
category responses, changed as a function of repeated exposures. This was accomplished by 501 
taking the generative model at a number of representative trials and then testing it with 20 502 
observations of each animal in which reporting was enabled. As can be seen, maximal 503 
accuracy was achieved much more quickly when the agent had to learn fewer concepts. 504 
When it had learned 4 concepts, it also began by reporting the general categories and then 505 
subsequently became sufficiently confident to report the more specific categories. 506 
 507 

When the model needed to learn all 4 birds, performance varied somewhat 508 

more when the simulations were repeated. The learned likelihood mappings after 509 

2000 trials always resembled that of the generative process, but with variable levels 510 

of precision; notably, the model again assigned different concepts to different 511 

columns relative to the generative process, as would be expected when the agent is 512 

not given feedback about the state she is in. Over 8 repeated simulations, the model 513 

performed well in 6 (92.50 % – 98.8 % accuracy) and failed to learn one concept in 514 

the other 2 (72.50 % accuracy in each) due to overgeneralization (e.g., mistaking 515 

parrot for Hawk in a majority of trials; i.e., the model simply learned that there are 516 

large birds). Figure 4A and 4B illustrate representative results when the model was 517 

successful (note: the agent never chose to report basic categories in the simulations 518 

where only 1 or 2 concepts needed to be learned). 519 
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To further assess concept learning, we also tested the agent’s ability to 520 

successfully avoid state duplication. That is, we wished to confirm that the model 521 

would only learn a new concept if actually presented with a new animal for which it 522 

did not already have a concept. To do so, we equipped the model with knowledge of 523 

seven out of the eight concept categories, and then repeatedly exposed it only to the 524 

animals it already knew over 80 trials. We subsequently exposed it to the eighth 525 

animal (Hawk) for which it did not already have knowledge over 20 additional 526 

trials. As can be seen in figure 5, the unused concept column was not engaged during 527 

the first 80 trials (bottom left and middle). However, in the final 20 trials, the agent 528 

correctly inferred that her current conceptual repertoire was unable to explain her 529 

new pattern of observations, leading the unused concept column to be adumbrated 530 

and the appropriate state-observation mapping to be learned (bottom right). We 531 

repeated these simulations under conditions in which the agent already had 532 

knowledge of six, five, or four concepts. In all cases, we observed that unused 533 

concept columns were never engaged inappropriately.  534 

 535 
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 536 
Figure 5. Illustration of representative simulation results when the agent had to avoid 537 
inappropriately learning a new concept (i.e., avoid state duplication) after only being 538 
exposed to animals for which it already had knowledge. Here the agent began with prior 539 
knowledge about seven concept categories and was also equipped with an eighth column 540 
that could be engaged to learn a new concept category (bottom left). The agent was then 541 
presented with several instances of each of the seven animals that she already knew (80 542 
trials in total). In this simulation, the agent was successful in assigning each stimulus to an 543 
animal concept she had already acquired and did not engage the unused concept ‘slot’ 544 
(bottom middle). Finally, the agent was presented with a new animal (a hawk) that she did 545 
not already know over 20 trials. In this case, the agent successfully engaged the additional 546 
column (i.e., she inferred that none of the concepts she possessed could account for her new 547 
observations) and learned the correct state-observation mapping (bottom right). 548 

 549 

Crucially, these simulations suggest that adaptive concept learning needs to 550 

be informed by existing knowledge about other concepts, such that a novel concept 551 

should only be learned if observations cannot be explained with existing conceptual 552 

knowledge. Here, this is achieved via the interplay of inference and learning, such 553 

that agents initially have to infer whether to assign an observation to an existing 554 
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concept, and only if this is not possible is an ‘open slot’ employed to learn about a 555 

novel concept. 556 

 557 

Increasing granularity  558 

Next, to explore the model’s ability to increase the granularity of its concept 559 

space, we first equipped the model with only the distinction between birds and fish 560 

(i.e., the rows of the likelihood mapping corresponding to color and size features 561 

were flattened in the same manner described above). We then performed the same 562 

procedure used in our previous simulations. As can be seen in Figure 6A (bottom 563 

left), the ‘A’ matrix learned by the model now more strongly resembled that of the 564 

generative process. Figure 6B (bottom) also illustrates reporting accuracy and the 565 

proportion of basic and specific category reports as a function of trial number. As 566 

can be seen, the agent initially only reported general categories, and became 567 

sufficiently confident to report specific categories after roughly 50 – 100 trials, but 568 

her accuracy increased gradually over the next 1000 trials (i.e., the agent reported 569 

specific categories considerably before its accuracy improved). Across 8 repeated 570 

simulations, the final accuracy level reached was between 93% – 98% in 7 571 

simulations, but the model failed to learn one concept in the 8th case, with 84.4% 572 

overall accuracy (i.e., a failure to distinguish between pigeon and parakeet, and 573 

therefore only learned a broader category of “small birds”).  574 

To assess whether learning basic categories first was helpful in subsequently 575 

learning specific categories, we also repeated this simulation without any initial 576 

knowledge of the basic categories. As exemplified in figure 6A and 6B, the model 577 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/633677doi: bioRxiv preprint 

https://doi.org/10.1101/633677
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structure Learning as Active Inference 

 
 

29 

tended to perform reasonably well, but most often learned a less precise likelihood 578 

mapping and reached a lower reporting accuracy percentage after 2000 learning 579 

trials (across 8 repeated simulations: mean = 81.21%, SD = 6.39%, range from 580 

68.80% – 91.30%). Thus, learning basic concept categories first appeared to 581 

facilitate learning more specific concepts later. 582 

 583 
 584 
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585 
Figure 6. (A, left) Illustration of representative simulation results when the agent had to 586 
learn to increase the granularity of her concept space. Here the agent began with prior 587 
knowledge about the basic concept categories (i.e., she had learned the broad categories of 588 
“bird” and “fish”) but had not learned the feature patterns (i.e., rows) that differentiate 589 
different types of birds and fish. Post learning (i.e., after 2000 exposures), the agent did 590 
successfully learn all of the more granular concept categories, although again note that 591 
specific concepts were assigned to different columns then depicted in the generative 592 
process due to the unsupervised nature of the learning. (A, right) illustration of the 593 
analogous learning result when the agent had to learn all 8 specific categories without prior 594 
knowledge of the general categories. Although moderately successful, learning tended to be 595 
more difficult in this case. (B) Representative plots of reporting accuracy in each of the 2 596 
learning conditions as a function of the number of exposures. As can be seen, when the 597 
model starts out with prior knowledge about basic categories, it slowly becomes sufficiently 598 
confident to start reporting the more specific categories, and its final accuracy is high. In 599 
contrast, while the agent that did not start out with any prior knowledge of the general 600 
categories also grew confident in reporting specific categories over time, her final accuracy 601 
levels tended to be lower. In both cases, the agent began reporting specific categories before 602 
she achieved significant accuracy levels, therefore showing some initial overconfidence. 603 

 604 

 605 
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Overall, these findings provide a proof of principle that this sort of active 606 

inference scheme can add concepts to a state space in an unsupervised manner (i.e., 607 

without feedback) based purely on (expected) free energy minimization. In this 608 

case, it was able to accomplish this starting from a completely uninformative 609 

likelihood distribution. It could also learn more granular concepts after already 610 

acquiring more basic concepts, and our results suggest that learning granular 611 

concepts may be facilitated by first learning basic concepts (e.g., as in currently 612 

common educational practices). 613 

The novel feature of this generative model involved ‘building in’ a number of 614 

“reserve” hidden state levels. These initially had uninformative likelihood mappings; 615 

yet, if a new pattern of features was repeatedly observed, and the model could not 616 

account for this pattern with existing (informative) state-observation mappings, 617 

these additional hidden state levels could be engaged to improve the model’s 618 

explanatory power. This approach therefore accommodates a simple form of 619 

structure learning (i.e., model expansion). 620 

 621 

Integrating model expansion and reduction 622 

 623 

We next investigated ways in which model expansion could be combined with 624 

Bayesian model reduction (KJ Friston, Lin, et al., 2017) – allowing the agent to adjust 625 

her model to accommodate new patterns of observations, while also precluding 626 

unnecessary conceptual complexity (i.e., over-fitting). To do so, we again allowed 627 

the agent to learn from 2000 exposures to different animals as described in the 628 
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previous section – but also allowed the model to learn its ‘D’ matrix (i.e., accumulate 629 

concentration parameters reflecting prior expectations over initial states). This 630 

allowed an assessment of the agent’s probabilistic beliefs about which hidden state 631 

factor levels (animals) she had been exposed to. In different simulations, the agent 632 

was only exposed to some animals and not others. We then examined whether a 633 

subsequent model reduction step could recover the animal concepts presented 634 

during the simulation; eliminating those concepts that were unnecessary to explain 635 

the data at hand. The success of this 2-step procedure could then license the agent to 636 

“reset” the unnecessary hidden state columns after concept acquisition, which 637 

would have accrued unnecessary likelihood updates during learning. Doing so 638 

would allow the optimal ability for those “reserve” states to be appropriately 639 

engaged, if and when the agent was exposed to truly novel stimuli. 640 

 The 2nd step of this procedure was accomplished by applying Bayesian model 641 

reduction to the ‘D’ matrix concentration parameters after learning. This is a form of 642 

post-hoc model optimization (K. J. Friston et al., 2016; Karl Friston, Parr, & Zeidman, 643 

2018) that rests upon estimation of a ‘full’ model, followed by analytic computation 644 

of the evidence that would have been afforded to alternative models (with 645 

alternative, ‘reduced’, priors) had they been used instead. Mathematically, this 646 

procedure is a generalization of things like automatic relevance determination (Karl 647 

Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007; Wipf & Rao, 2007) or 648 

the use of the Savage Dickie ratio in model comparison (Cornish & Littenberg, 649 

2007). It is based upon straightforward probability theory and, importantly, has a 650 

simple physiological interpretation; namely, synaptic decay and the elimination of 651 
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unused synaptic connections. In this (biological) setting, the concentration 652 

parameters of the implicit Dirichlet distributions can be thought of as synaptic tags. 653 

For a technical description of Bayesian model reduction techniques and their 654 

proposed neural implementation, see (KJ Friston, Lin, et al., 2017; Hobson & Friston, 655 

2012; Hobson, Hong, & Friston, 2014); see the left panel of Figure 2 for additional 656 

details). 657 

The posterior concentration parameters were compared to the prior 658 

distribution for a full model (i.e., a flat distribution over 8 concepts) and prior 659 

distributions for possible reduced models (i.e., which retained different possible 660 

combinations of some but not all concepts; technically, reduced models were 661 

defined such that the to-be-eliminated concepts were less likely than the to-be-662 

retained concepts). If Bayesian model reduction provided more evidence for one or 663 

more reduced models, the reduced model with the most evidence was selected. 664 

Note: an alternative would be to perform model reduction on the ‘A’ matrix, but this 665 

is more complex due to a larger space of possible reduced models; it also does not 666 

address the question of the number of hidden state levels to retain in a 667 

straightforward manner. 668 

 In our first simulation, we presented our agent with all animals except for 669 

parakeets with equal probability over 2000 trials. When compared to the full model, 670 

the winning model corresponded to the correct 7-animal model matching the 671 

generative process in 6/8 cases (log evidence differences ranged from -3.12 to -8.3), 672 

and in 2/8 cases it instead selected a 6-animal model due to a failure to distinguish 673 

between 2 specific concepts during learning (log evidence differences = -5.30, -674 
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7.70). Figure 7 illustrates the results of a representative successful case). In the 675 

successful cases, this would correctly license the removal of changes in the model’s 676 

‘A’ and ‘D’ matrix parameters for the 8th animal concept during learning in the 677 

previous trials.  Similar results were obtained whenever any single animal type was 678 

absent from the generative process. 679 

 680 

Figure 7. Representative illustrations of simulations in which the agent performed Bayesian 681 
model reduction after learning. In these simulations, the agent was first exposed to 2000 682 
trials in which either 7, 6, or 5 animals were actually presented (i.e., illustrated in the top 683 
row, where only the white columns had nonzero probabilities in the generative process). In 684 
each case, model reduction was often successful at identifying the reduced model with the 685 
correct number of animal types presented (bottom row, where black columns should be 686 
removed) based on how much evidence it provided for the posterior distribution over 687 
hidden states learned by the agent (2nd row). This would license the agent to reset 688 
the unneeded columns in its likelihood mapping (3rd row) to their initial state (i.e., a 689 
flat distribution over features) such that they could be engaged if/when new types 690 
of animals began to be observed (i.e., as in the simulations illustrated in the previous 691 
sections). 692 
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 693 

In a second simulation, the generative process contained 2 birds and all 4 694 

fish. Here, the correct reduced model was correctly selected in 6/8 simulations (log 695 

evidence differences range from -.96 to -8.24, with magnitudes greater than -3 in 696 

5/6 cases), whereas it incorrectly selected the 5-animal model in 2 cases (log 697 

evidence differences = -3.54, -4.50). In a third simulation, the generative process 698 

contained 1 bird and all 4 fish. Here, the correct reduced model had the most 699 

evidence in only 3/8 simulations (log evidence differences = -4.10, -4.11, -5.48), 700 

whereas a 6-animal model was selected in 3/8 cases and a 3-animal and 7-animal 701 

model were each selected once (log evidence differences > -3.0). Figure 7 also 702 

illustrates representative examples of correct model recovery in these 2nd and 3rd 703 

simulations. 704 

While we have used the terms ‘correct’ and ‘incorrect’ above to describe the 705 

model used to generate the data, we acknowledge that ‘all models are wrong’ (Box, 706 

Hunter, & Hunter, 2005), and that the important question is not whether we can 707 

recover the ‘true’ process used to generate the data, but whether we can arrive at 708 

the simplest but accurate explanation for these data. The failures to recover the 709 

‘true’ model highlighted above may reflect that a process other than that used to 710 

generate the data could have been used to do so in a simpler way. Simpler here 711 

means we would have to diverge to a lesser degree, from our prior beliefs, in order 712 

to explain the data under a given model, relative to a more complex model. It is 713 

worth highlighting the importance of the word prior in the previous sentence. This 714 

means that the simplicity of the model is sensitive to our prior beliefs about it. To 715 
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illustrate this, we repeated the same model comparisons as above, but with precise 716 

beliefs in an ‘A’ matrix that complies with that used to generate the data. Specifically, 717 

we repeated the three simulations above but only enabled ‘D’ matrix learning (i.e., 718 

the model was already equipped with the ‘A’ matrix of the generative process). In 719 

each case, Bayesian model reduction now uniquely identified the correct reduced 720 

model in 100% of cases. 721 

These results demonstrate that – after a naïve model has expanded its hidden 722 

state space to include likelihood mappings and initial state priors for a number of 723 

concept categories – Bayesian model reduction can subsequently be used to 724 

eliminate any parameter updates accrued for one or two redundant concept 725 

categories. In practice, the ‘A’ and ‘D’ concentration parameters for these redundant 726 

categories could be reset to their default pre-learning values – and could then be re-727 

engaged if new patterns of observations were repeatedly observed in the future. 728 

However, when three concepts should have been removed, Bayesian model 729 

reduction was much less reliable. This appeared to be due to imperfect ‘A’ matrix 730 

learning, when occurring simultaneously with the (resultingly noisy) accumulation 731 

of prior expectations over hidden states – as a fully precise ‘A’ matrix led to correct 732 

model reduction in every case tested (i.e., suggesting that this type of model 733 

reduction procedure could be improved by first allowing state-observation learning 734 

to proceed alone, then subsequently allowing the model to learn prior expectations 735 

over hidden states, which could then be used in model reduction). 736 

 737 

Can concept acquisition allow for generalization? 738 
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One important ability afforded by concept learning is generalization. In a 739 

final set of simulations, we asked if our model of concept knowledge could account 740 

for generalization. To do so, we altered the model such that it no longer reported 741 

what it saw, but instead had to answer a question that depended on generalization 742 

from particular cross-category feature combinations. Specifically, the model was 743 

shown particular animals and asked: “could this be seen from a distance?” The 744 

answer to this question depended on both size and color, such that the answer was 745 

yes only for colorful, large animals (i.e., assuming small or gray animals would blend 746 

in with the sky or water and be missed). 747 

 Crucially, this question was asked of animals that the model had not been 748 

exposed to, such that it had to generalize from knowledge it already possessed (see 749 

Figure 8). To simulate and test for this ability, we equipped the model’s ‘A’ matrix 750 

with expert knowledge of 7 out of the 8 animals (i.e., as if these concepts had been 751 

learned previously, as in our simulations above). The 8th animal was unknown to the 752 

agent, in that it’s likelihood mapping was set such that the 8th animal state “slot” 753 

predicted all observations equally (i.e., with a small amount of Gaussian noise, as 754 

above).  In one variant, the model possessed all concepts except for “parrot,” and it 755 

knew that the answer to the question was yes for “whale shark” but not for any 756 

other concept it knew. To simulate one-shot generalization, learning was disabled 757 

and a parrot (which it had never seen before) was presented 20 times to see if it 758 

would correctly generalize and answer “yes” in a reliable manner. In another 759 

variant, the model had learned all concepts except “minnow” and was tested the 760 

same way to see if it would reliably provide the correct “no” response. 761 
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 Here, we observed that in both of these cases (as well as all others we tested) 762 

the model generalized remarkably well. It answered “yes” and “no” correctly in 763 

100% of trials. Thus, the agent did not simply possess concepts to explain things it 764 

saw. It instead demonstrated generalizable knowledge and could correctly answer 765 

questions when seeing a novel stimulus.      766 

 767 

 768 

Figure 8. Depiction of simulations in which we tested the agent’s ability to generalize from 769 
prior knowledge and correctly answered questions about new animals to which she had not 770 
previously been exposed. In the simulations, the generative model was modified so that the 771 
agent instead chose to report either “yes” or “no” to the question: “could this animal be seen 772 
from a distance?” Here, the answer was only yes if the animal was both large and colorful. 773 
We observed that when the agent started out with no knowledge of parrots it still correctly 774 
answered this question 100% of the time, based only on its knowledge of other animals. 775 
Similarly, when it started with no knowledge of minnows, it also correctly reported “no” 776 
100% of the time. Thus, the agent was able to generalize from prior knowledge with no 777 
additional learning. 778 
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 779 

 780 

Open questions and relation to other theoretical accounts of concept learning 781 

 782 

As our simulations show, this model allows for learning novel concepts (i.e., 783 

novel hidden states) based on assigning one or more ‘open slots’ that can be utilised 784 

to learn novel feature combinations. In a simple example, we have shown that this 785 

setup offers a potential computational mechanism for ‘model expansion’; i.e., the 786 

process of expanding a state space to account for novel instances in perceptual 787 

categorisation. We also illustrated how this framework can be combined with model 788 

reduction, which may be a mechanism for ‘re-setting’ these open slots based on 789 

recent experience.  790 

This provides a first step towards understanding how agents flexibly expand 791 

or reduce their model to adapt to ongoing experience. Yet, several open questions 792 

remain, which have partly been addressed in previous work. For example, the 793 

proposed framework resonates with previous similarity-based accounts of concept 794 

learning. Previous work has proposed a computational framework for arbitrating 795 

between assigning an observation to a previously formed memory or forming a 796 

novel (hidden) state representation (S. J. Gershman, Monfils, Norman, & Niv, 2017), 797 

based on evidence that this observation was sampled from an existing or novel 798 

latent state. This process is conceptually similar to our application of Bayesian 799 

model reduction over states. In the present framework, concept learning relies on a 800 

process based on inference and learning. First, agents have to infer whether ongoing 801 
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observations can be sufficiently explained by existing conceptual knowledge – or 802 

speak to the presence of a novel concept that motivates the use of an ‘open slot’. 803 

This process is cast as inference on (hidden) states. Second, if the agent infers that 804 

there is a novel concept that explains current observations, it has to learn about the 805 

specific feature configuration of that concept (i.e., novel state). This process 806 

highlights the interplay between inference, which allows for the acquisition of 807 

knowledge on a relatively short timescale, and learning, which allows for knowledge 808 

acquisition on a longer and more stable timescale. 809 

Similar considerations apply to the degree of ‘similarity’ of observations. In 810 

the framework proposed here, we have assumed that the feature space of 811 

observations is already learned and fixed. However, these feature spaces have to be 812 

learned in the first place, which implies learning the underlying components or 813 

feature dimensions that define observations. This relates closely to notions of 814 

structure learning as dimensionality reduction based on covariance between 815 

observations, as prominently discussed in the context of spatial navigation (Behrens 816 

et al., 2018; Dordek, Soudry, Meir, & Derdikman, 2016; Stachenfeld et al., 2016; 817 

Whittington, Muller, Mark, Barry, & Behrens, 2018).  818 

Another important issue is how such abstract conceptual knowledge is 819 

formed across different contexts or tasks. For example, the abstract concept of a 820 

‘bird’ will be useful for learning about the fauna in a novel environment, but specific 821 

types of birds – tied to a previous context – might be less useful in this regard. This 822 

speaks to the formation of abstract, task-general knowledge that results from 823 

training across different tasks, as recently discussed in the context of meta-824 
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reinforcement learning (Ritter, Wang, Kurth-Nelson, & Botvinick, 2018; J X Wang et 825 

al., 2016) with a putative link to the prefrontal cortex (Jane X. Wang et al., 2018). In 826 

the present framework, such task-general knowledge would speak to the formation 827 

of a hierarchical organisation that allows for the formation of conceptual knowledge 828 

both within and across contexts. Also note that our proposed framework depends 829 

on a pre-defined state space, including a pre-defined set of ‘open slots’ that allow for 830 

novel context learning. The contribution of the present framework is to show how 831 

these ‘open slots’ can be used for novel concept learning and be re-set based on 832 

model reduction. It will be important to extend this approach towards learning the 833 

structure of these models in the first place, including the appropriate number of 834 

‘open slots’ (i.e., columns of the A-matrix) for learning in a particular content 835 

domain and the relevant feature dimensions of observations (i.e., rows of A-matrix). 836 

(Note: In addition to ontogenetic learning, in some cases structural priors regarding 837 

the appropriate number of open slots [and relevant feature inputs for learning a 838 

given state space of open slots] might also reflect inherited [i.e., 839 

genetically/developmentally pre-specified] patterns of structural neuronal 840 

connectivity – based on what was adaptive within the evolutionary niche of a given 841 

species – which could then be modified based on subsequent experience.) 842 

This corresponds to a potentially powerful and simple application of 843 

Bayesian model reduction, in which candidate models (i.e., reduced forms of a full 844 

model) are readily identifiable based upon the similarity between the likelihoods 845 

conditioned upon different hidden states. If two or more likelihoods are sufficiently 846 

similar, the hidden states can be merged (by assigning the concentration 847 
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parameters accumulated during experience-dependent learning to one or other of 848 

the hidden states). The ensuing change in model evidence scores the reduction in 849 

complexity. If this reduction is greater than the loss of accuracy – in relation to 850 

observations previously encountered – Bayesian model reduction will, effectively, 851 

merge one state into another; thereby freeing up a state for the learning of new 852 

concepts. We will demonstrate this form of structure learning via Bayesian model 853 

reduction in future work. 854 

We must also highlight here that cognitive science research on concept and 855 

category learning has a rich empirical and theoretical history, including many 856 

previously proposed formal models. While our primary focus has been on using 857 

concept learning as an example of a more general approach by which state space 858 

expansion and reduction can be implemented within future active inference 859 

research, it is important to recognize this previous work and highlight where it 860 

overlaps with the simulations we’ve presented. For example, our results suggesting 861 

that first learning general categories facilitates the learning of more specific 862 

categories relates to both classic and contemporary findings showing that children 863 

more easily acquire “basic” and “superordinate” (e.g., dog, animal) concepts before 864 

learning “subordinate” (e.g., chihuahua) concepts (Mervis & Rosch 1981; Murphy 865 

2016), and that this may involve a type of “bootstrapping” process (Beck 2017). 866 

Complementary work has also highlighted ways in which learning new words 867 

during development can invoke a type of “placeholder” structure, which then 868 

facilitates the acquisition of a novel concept – which bears some resemblance to our 869 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/633677doi: bioRxiv preprint 

https://doi.org/10.1101/633677
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structure Learning as Active Inference 

 
 

43 

notion of blank “concept slots” that can subsequently acquire meaningful semantics 870 

(Gelman & Roberts 2017). 871 

There is also a series of previously proposed formalisms within the literature 872 

on category learning. For example, two previously proposed models – the “rational 873 

model” (Anderson 1991; Sanborn et al. 2010) and the SUSTAIN model (Love et al. 874 

2004) – both describe concept acquisition as involving cluster creation mechanisms 875 

that depend on statistical regularities during learning and that use probabilistic 876 

updating. The updating mechanisms within SUSTAIN are based on 877 

surprise/prediction-error in the context of both supervised and unsupervised 878 

learning. This model also down-weights previously created clusters when their 879 

associated regularities cease to be observed in recent experience. Although not built 880 

in intentionally, this type of mechanism emerges naturally within our model in two 881 

ways. First, when a particular hidden state ceases to be inferred, concentration 882 

parameters will accumulate to higher values for other hidden states in the D matrix, 883 

reflecting relatively stronger prior expectations for hidden states that continue to be 884 

inferred – which would favor future inference of those states over those absent from 885 

recent experience. Second, if one pattern of observations were absent from recent 886 

experience (while other patterns continued to be observed), concentration 887 

parameters in the A matrix would also accumulate to higher values for patterns that 888 

continued to be observed – resulting in relatively less confidence in the state-889 

outcome mapping for the less-observed pattern. (However, with respect to this 890 

latter mechanism, so long as this mapping was sufficiently precise and distinct from 891 

others [i.e., it had previously been observed many times farther in the past], this 892 
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would not be expected to prevent successful inference if this pattern were observed 893 

again.) 894 

It is also worth highlighting that, as our model is intended primarily as a 895 

proof of concept and a demonstration of an available model expansion/reduction 896 

approach that can be used within active inference research, it does not explicitly 897 

incorporate some aspects – such as top-down attention – that are of clear 898 

importance to cognitive learning processes, and that have been implemented in 899 

previous models. For example, the adaptive resonance theory (ART) model 900 

(Grossberg 1987) was designed to incorporate top-down attentional mechanisms 901 

and feedback mechanisms to address a fundamental knowledge acquisition problem 902 

– the temporal instability of previously learned information that can occur when a 903 

system also remains sufficiently plastic to learn new (and potentially overlapping) 904 

information. While our simulations do not explicitly incorporate these additional 905 

complexities, there are clear analogues to the top-down and bottom-up feedback 906 

exchange in ART within our model (e.g., the prediction and prediction-error 907 

signaling within the neural process theory associated with active inference). ART 908 

addresses the temporal instability problem primarily through mechanisms that 909 

learn top-down expectancies that guide attention and match them with bottom-up 910 

input patterns – which is quite similar to the prior expectations and likelihood 911 

mappings used within active inference.  912 

As an emergent property of the “first principles” approach in active 913 

inference, our model therefore naturally incorporates the top-down effects in ART 914 

simulations, which have been used to account for known context effects on 915 
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categorical perception within empirical studies (McClelland & Rumelhart 1981). 916 

This is also consistent with more recent work on cross-categorization (Shafto et al. 917 

2011), which has shown that human category learning is poorly accounted for by 918 

both a purely bottom-up process (attempting to explain observed features) and a 919 

purely top-down approach (involving attention-based feature selection) – and has 920 

instead used simulations to show that a Bayesian joint inference model better fits 921 

empirical data.  922 

Other proposed Bayesian models of concept learning have also had 923 

considerable success in predicting human generalization judgments (Goodman et al. 924 

2008). The proof of concept model presented here has not been constructed to 925 

explicitly compete with such models. It will be an important direction for future 926 

work to explore the model’s ability to scale up to handle more complex concept 927 

learning problems. Here we simply highlight that the broadly Bayesian approach 928 

within our model is shared with other models that have met with considerable 929 

success – supporting the general plausibility of using this approach within active 930 

inference research to model and predict the neural basis of these processes (see 931 

below).  932 

 933 

Potential advantages of the approach 934 

The present approach may offer some potential theoretical and empirical 935 

advantages in comparison to previous work. One theoretical advantage corresponds 936 

to the parsimony of casting this type of structure learning as an instance of Bayesian 937 

model selection. When integrated with other aspects of the active inference 938 
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framework, this entails that perceptual inference, active learning, and structure 939 

learning are all expressions of the same principle; namely, the minimization of 940 

variational free energy, over three distinct timescales. A second, related theoretical 941 

advantage is that, when this type of structure learning is cast as Bayesian model 942 

selection/reduction, there is no need to invoke additional procedures or schemes 943 

(e.g., nonparametric Bayes or ‘stick breaking’ processes; (S. Gershman & Blei, 944 

2012)). Instead, a generative model with the capacity to represent a sufficiently 945 

complex world will automatically learn causal structure in a way that contextualizes 946 

active inference within active learning, and active learning within structure 947 

learning. 948 

 Based on the process theories summarized in Figure 2, the present model 949 

would predict that the brain contains “reserve” cortical columns and synapses (most 950 

likely within secondary sensory and association cortices) available to capture new 951 

patterns in observed features. To our knowledge, no direct evidence supporting the 952 

presence of unused cortical columns in the brain has been observed, although the 953 

generation of new neurons (with new synaptic connections) is known to occur in 954 

the hippocampus (Chancey et al., 2013). "Silent synapses” have also been observed 955 

in the brain, which does appear consistent with this prediction; such synapses can 956 

persist into adulthood and only become activated when new learning becomes 957 

necessary (e.g., see (Chancey et al., 2013; Funahashi, Maruyama, Yoshimura, & 958 

Komatsu, 2013; Kerchner & Nicoll, 2008)). One way in which this idea of “spare 959 

capacity” or “reserve” cortical columns might be tested in the context of 960 

neuroimaging would be to examine whether greater levels of neural activation – 961 
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within conceptual processing regions – are observed after learning additional 962 

concepts, which would imply that additional populations of neurons become 963 

capable of being activated. In principle, single-cell recording methods might also test 964 

for the presence of neurons that remain at baseline firing rates during task 965 

conditions, but then become sensitive to new stimuli within the relevant conceptual 966 

domain after learning. 967 

Figure 9 provides a concrete example of two specific empirical predictions 968 

that follow from simulating the neural responses that should be observed within our 969 

concept learning task under these process theories. In the left panel, we plot the 970 

firing rates (darker = higher firing rate) and local field potentials (rate of change in 971 

firing rates) associated with neural populations encoding the probability of the 972 

presence of different animals that would be expected across a number of learning 973 

trials. In this particular example, the agent began with knowledge of the basic 974 

categories of ‘bird’ and ‘fish,’ but needed to learn the eight more specific animal 975 

categories over 50 interleaved exposures to each animal (only 10 equally spaced 976 

learning trials involving the presentation of a parakeet are shown for simplicity). As 977 

can be seen, early in learning the firing rates and local field potentials remain at 978 

baseline levels; in contrast, as learning progresses, these neural responses take a 979 

characteristic shape with more and more positive changes in firing rate in the 980 

populations representing the most probable animal, while other populations drop 981 

further and further below baseline firing rates.  982 

The right panel depicts a similar simulation, but where the agent was 983 

allowed to self-report what it saw on each trial (for clarity of illustration, we here 984 
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show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling 985 

policy selection allowed us to simulate expected phasic dopamine responses during 986 

the task, corresponding to changes in the precision of the probability distribution 987 

over policies after observing a stimulus on each trial. As can be seen, during early 988 

trials the model predicts small firing rate increases when the agent is confident in its 989 

ability to correctly report the more general animal category after observing a new 990 

stimulus, and firing rate decreases when the agent becomes less confident in one 991 

policy over others (i.e., as confidence in reporting the specific versus general 992 

categories becomes more similar). Larger and larger phasic dopaminergic responses 993 

are then expected as the agent becomes more and more confident in her ability to 994 

correctly report the specific animal category upon observing a new stimulus. It will 995 

be important for future neuroimaging studies to test these predictions in this type of 996 

concept learning/stimulus categorization task. 997 

 998 

 999 
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 1000 

Figure 9. Simulated neuronal firing rates, local field potentials, and dopaminergic responses 1001 
across learning trials based on the neural process theory associated with active inference 1002 
that is summarized in Figure 2. The top left panel displays the predicted firing rates (darker 1003 
= higher firing rate) of neural populations encoding the probability of each hidden state 1004 
over 50 interleaved exposures to each animal (only 10 equally spaced learning trials 1005 
involving the presentation of a parakeet are shown for simplicity) in the case where the 1006 
agent starts out with knowledge of the basic animal categories but must learn the more 1007 
specific categories. As can be seen, initially each of the four neural populations encoding 1008 
possible bird categories (i.e., one row per possible category) have equally low firing rates 1009 
(gray); as learning continues, firing rates increase for the ‘parakeet’ population and 1010 
decrease for the others. The bottom left panel illustrates the predicted local field potentials 1011 
(based on the rate of change in firing rates) that would be measured across the task. The top 1012 
right panel displays the predicted firing rates of neural populations in an analogous 1013 
simulation in which reporting policies were enabled (for clarity of illustration, we here 1014 
show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling policy 1015 
selection allowed us to simulate the phasic dopaminergic responses (reporting changes in 1016 
the precision of the probability distribution over policies) predicted to occur across 1017 
learning trials; here the agent first becomes confident in her ability to correctly report the 1018 
general animal category upon observing a stimulus, then becomes unsure about reporting 1019 
specific versus general categories, and then becomes confident in her ability to report the 1020 
specific categories. 1021 
 1022 
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 1023 

Discussion 1024 

 1025 

The Active Inference formulation of concept learning presented here 1026 

demonstrates a simple way in which a generative model can acquire both basic and 1027 

highly granular knowledge of the hidden states/causes in its environment. In 1028 

comparison to previous theoretical work using active inference (e.g., (M. Mirza, 1029 

Adams, Mathys, & Friston, 2016; Parr & Friston, 2017; Schwartenbeck, FitzGerald, 1030 

Mathys, Dolan, & Friston, 2015)), the novel aspect of our model was that it was 1031 

further equipped with “reserve” hidden states initially devoid of content (i.e., these 1032 

states started out with uninformative likelihood mappings that predicted all 1033 

outcomes with roughly equal probability). Over multiple exposures to different 1034 

stimuli, these hidden states came to acquire conceptual content that captured 1035 

distinct statistical patterns in the features of those stimuli. This was accomplished 1036 

via the model’s ability to infer when its currently learned hidden states were unable 1037 

to account for a new observation, leading an unused hidden state column to be 1038 

engaged that could acquire a new state-observation mapping. 1039 

Crucially, the model was able to start with some concepts and then expand its 1040 

representational repertoire to learn others – but would only do so when a new 1041 

stimulus was observed. This is conceptually similar to nonparametric Bayesian 1042 

learning models, such as the “Chinese Room” process and the “Indian Buffet” 1043 

process, that can also infer the need to invoke additional hidden causes with 1044 

additional data (S. Gershman & Blei, 2012). These statistical learning models do not 1045 
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need to build in additional “category slots” for learning as in our model and can, in 1046 

principle, entertain infinite state spaces. On the other hand, it is less clear at present 1047 

how the brain could implement this type of learning. An advantage of our model is 1048 

that learning depends solely on biologically plausible Hebbian mechanisms (for a 1049 

possible neural implementation of model reduction, see (KJ Friston, Lin, et al., 2017; 1050 

Hobson & Friston, 2012; Hobson et al., 2014)).  1051 

The distinction between nonparametric Bayesian learning and the current 1052 

active learning scheme may be important from a neurodevelopmental perspective 1053 

as well. In brief, structure learning in this paper starts with a generative model with 1054 

a type of structural prior reflecting a specific amount of built in ‘spare capacity’, 1055 

where uncommitted or naive conceptual ‘slots’ are used to explain the sensorium, 1056 

during optimization of free energy or model evidence. In contrast, nonparametric 1057 

Bayesian approaches add new slots when appropriate. One might imagine that 1058 

neonates are equipped with brains with ‘spare capacity’ (Baker & Tenenbaum, 1059 

2014) that is progressively leveraged during neurodevelopment, much in the spirit 1060 

of curriculum learning (Al-Muhaideb & Menai, 2011). This suggestion appears 1061 

consistent with previous work demonstrating varying levels of category learning 1062 

ability across the lifespan, which has previously been formally modeled as an 1063 

individual difference in values of a parameter constraining the ability to form new 1064 

clusters in response to surprising events (Love & Gureckis 2007) – which bears 1065 

similarity to the idea of capacity limitations arising from finite numbers of concept 1066 

slots in our model.  1067 
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In this sense, the current approach to structure learning may be better 1068 

considered as active learning with generative models that are equipped with a large 1069 

number of available hidden states capable of acquiring content, which are then 1070 

judiciously reduced/reset – via a process of Bayesian model reduction. 1071 

Furthermore, as in the acquisition of expertise, our model can also begin with broad 1072 

category knowledge and then subsequently learn finer-grained within-category 1073 

distinctions, which has received less attention from the perspective of the 1074 

aforementioned models. Reporting broad versus specific category recognition is 1075 

also a distinct aspect of our model – driven by differing levels of uncertainty and an 1076 

expectation (preference) not to incorrectly report a more specific category. 1077 

Our simulation results also demonstrated that, when combined with 1078 

Bayesian model reduction, the model can guard against learning too many 1079 

categories during model expansion – often retaining only the number of hidden 1080 

causes actually present in its environment – and to keep “reserve” hidden states for 1081 

learning about new causes if or when they appear. With perfect “expert” knowledge 1082 

of the possible animal types it could observe (i.e., fully precise likelihood mappings 1083 

matching the generative process) this was true in general. Interestingly, however, 1084 

with an imperfectly learned likelihood mapping, model reduction only succeeded 1085 

when the agent had to remove either 1 or 2 concepts from her model; when 3 1086 

potential categories needed to be removed, the correct reduced model was 1087 

identified less than half the time. It would be interesting to empirically test whether 1088 

similar learning difficulties are present in humans.  1089 
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Neurobiological theories associated with Active Inference also make 1090 

predictions about the neural basis of this process (Hobson & Friston, 2012; Hobson 1091 

et al., 2014). Specifically, during periods of rest (e.g., daydreaming) or sleep, it is 1092 

suggested that, because sensory information is down-weighted, learning is driven 1093 

mainly by internal model simulations (e.g., as appears to happen in the phenomenon 1094 

of hippocampal replay; (Feld & Born, 2017; Lewis, Knoblich, & Poe, 2018; Pfeiffer & 1095 

Foster, 2013)); this type of learning can accomplish a model reduction process in 1096 

which redundant model parameters are identified and removed to prevent model 1097 

over-fitting and promote selection of the most parsimonious model that can 1098 

successfully account for previous observations.  This is consistent with work 1099 

suggesting that, during sleep, many (but not all) synaptic strength increases 1100 

acquired in the previous day are attenuated (Tononi & Cirelli, 2014). The role of 1101 

sleep and daydreaming in keeping “reserve” representational resources available 1102 

for model expansion could therefore be especially important to concept learning – 1103 

consistent with the known role of sleep in learning and memory (Ackermann & 1104 

Rasch, 2014; Feld & Born, 2017; Perogamvros & Schwartz, 2012; Stickgold, Hobson, 1105 

Fosse, & Fosse, 2001; Walker & Stickgold, 2010).   1106 

In addition, an emergent feature of our model was its ability to generalize 1107 

prior knowledge to new stimuli to which it had not previously been exposed. In fact, 1108 

the model could correctly generalize upon a single exposure to a new stimulus – a 1109 

type of “one-shot learning” capacity qualitatively similar to that observed in humans 1110 

(Landau, Smith, & Jones, 1988; E. Markman, 1989; Xu & Tenenbaum, 2007b). While 1111 

it should be kept in mind that the example we have provided is very simple, it 1112 
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demonstrates the potential usefulness of this novel approach. Some other 1113 

prominent approaches in machine-learning (e.g., deep learning) tend to require 1114 

larger amounts of data (Geman et al., 1992; Hinton et al., 2012; LeCun et al., 2015; 1115 

Lecun et al., 1998; Mnih et al., 2015), and do not learn the rich structure that allows 1116 

humans to use concept knowledge in a wide variety of generalizable functions 1117 

(Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B. 1118 

Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams & 1119 

Lombrozo, 2010). Other recent hierarchical Bayesian approaches in cognitive 1120 

science have made progress in this domain, however, by modeling concepts as types 1121 

of probabilistic programs (Ghahramani, 2015; Goodman, Tenenbaum, & 1122 

Gerstenberg, 2015; Lake et al., 2015).  1123 

It is important to note that this model is deliberately simple and is meant 1124 

only to represent a proof of principle that categorical inference and conceptual 1125 

knowledge acquisition can be modeled within this particular neurocomputational 1126 

framework, and to present this approach as a potentially useful tool in future active 1127 

inference research. We chose a particular set of feature combinations to illustrate 1128 

this, but it remains to be demonstrated that learning in this model would be equally 1129 

successful with a larger feature space and set of learnable hidden causes. Due to 1130 

limited scope, we have also not thoroughly addressed all other overlapping lines of 1131 

research. For example, work on exemplar models of concepts has also led to other 1132 

computational approaches. As one example, the EBRW model (Nosofsky & Palmeri 1133 

1997) has demonstrated ways of linking exemplar learning to drift diffusion models. 1134 

Another model within this line of research is the ALCOVE model (Nosofsky et al. 1135 
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1994) – an error-driven connectionist model of exemplar-based category learning 1136 

that employs selective attention and learns attentional weights (this model also 1137 

built on earlier work; see (Nosofsky 2011)). Yet another connectionist model with 1138 

some conceptual overlap to our own is the DIVA model, which learns categories by 1139 

recoding observations as task-constrained principle components and uses model fit 1140 

for subsequent recognition (Kurtz 2007). It will be important in future work to 1141 

examine the strengths and limitations of a scaled-up version of our approach in 1142 

relation to these other models. 1143 

Finally, another topic for future work would be the expansion of this type of 1144 

model to context-specific learning (e.g., with an additional hidden state factor for 1145 

encoding distinct contexts). In such cases, regularities in co-occurring features differ 1146 

in different contexts and other cues to context may not be directly observable (e.g., 1147 

the same species of bird could be a slightly different color or size in different parts 1148 

of the world that otherwise appear similar) – creating difficulties in inferring when 1149 

to update previously learned associations and when to instead acquire competing 1150 

associations assigned to new contexts. At present, it is not clear whether the 1151 

approach we have illustrated would be successful at performing this additional 1152 

function, although the process of inferring the presence of a new hidden state level 1153 

in a second hidden state factor encoding context would be similar to what we have 1154 

shown within a single state factor (for related work on context-dependent 1155 

contingency learning, see (S. J. Gershman et al., 2017; S. Gershman, Jones, Norman, 1156 

Monfils, & Niv, 2013)). Another point worth highlighting is that we have made 1157 

particular choices with regard to various model parameters and the number of 1158 
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observations provided during learning. Further investigations of the space of these 1159 

possible parameter settings will be important. With this in mind, however, our 1160 

current modelling results could offer additional benefits. For example, the model’s 1161 

simplicity could be amenable to empirical studies of saccadic eye movements 1162 

toward specific features during novel category learning (e.g. following the approach 1163 

of (M. B. Mirza, Adams, Mathys, & Friston, 2018)). This approach could also be 1164 

combined with measures of neural activity in humans or other animals, allowing 1165 

more direct tests of the neural predictions highlighted above. In addition, the 1166 

introduction of exploratory, novelty-seeking, actions could be used to reduce the 1167 

number of samples required for learning, with agents selecting those data that are 1168 

most relevant. 1169 

In conclusion, the Active Inference scheme we have described illustrates 1170 

feature integration in the service of conceptual inference: it can successfully 1171 

simulate simple forms of concept acquisition and concept differentiation (i.e. 1172 

increasing granularity), and it spontaneously affords one-shot generalization. 1173 

Finally, it speaks to empirical work in which behavioral tasks could be designed to 1174 

fit such models, which would allow investigation of individual differences in concept 1175 

learning and its neural basis. For example, such a model can simulate (neuronal) 1176 

belief updating to predict neuroimaging responses as we illustrated above; i.e., to 1177 

identify the neural networks engaged in evidence accumulation and learning 1178 

(Schwartenbeck et al., 2015). In principle, the model parameters (e.g., ‘A’ matrix 1179 

precision) can also be fit to behavioral choices and reaction times – and thereby 1180 

phenotype subjects in terms of the priors under which they infer and learn 1181 
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(Schwartenbeck & Friston, 2016). This approach could therefore advance 1182 

neurocomputational approaches to concept learning in several directions. 1183 

 1184 

Software note 1185 

Although the generative model – specified by the various matrices described in this 1186 

paper – changes from application to application, the belief updates are generic and 1187 

can be implemented using standard routines (here spm_MDP_VB_X.m). These 1188 

routines are available as Matlab code in the DEM toolbox of the most recent version 1189 

of SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/. The simulations in 1190 

this paper can be reproduced (and customized) via running the Matlab code 1191 

included here is supplementary material (Concepts_model.m). 1192 

 1193 
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