

1 **An active inference approach to modeling structure learning: concept learning**
2 **as an example case**

3 Ryan Smith,¹ Philipp Schwartenbeck,² Thomas Parr,² Karl J. Friston,²

4

5 ¹Laureate Institute for Brain Research, Tulsa, OK, USA

6 ²Wellcome Centre for Human Neuroimaging, Institute of Neurology, University
7 College London, WC1N 3BG, UK

8

9

10

11

12 **Corresponding Author Information:**

13

14 Ryan Smith

15 Laureate Institute for Brain Research

16 6655 S Yale Ave, Tulsa, OK 74136, USA

17 Email: rsmith@laureateinstitute.org

18

Abstract

19 Within computational neuroscience, the algorithmic and neural basis of structure
20 learning remains poorly understood. Concept learning is one primary example,
21 which requires both a type of internal model expansion process (adding novel
22 hidden states that explain new observations), and a model reduction process
23 (merging different states into one underlying cause and thus reducing model
24 complexity via meta-learning). Although various algorithmic models of concept
25 learning have been proposed within machine learning and cognitive science, many
26 are limited to various degrees by an inability to generalize, the need for very large
27 amounts of training data, and/or insufficiently established biological plausibility.

28 Using concept learning as an example case, we introduce a novel approach for
29 modeling structure learning within the active inference framework and its
30 accompanying neural process theory. This approach is based on the idea that a
31 generative model can be equipped with extra (hidden state or cause) ‘slots’ that can
32 be engaged when an agent learns about novel concepts. This can be combined with a
33 Bayesian model reduction process, in which any concept learning – associated with
34 these slots – can be reset in favor of a simpler model with higher model evidence.

35 We use simulations to illustrate this model’s ability to add new concepts to its state
36 space (with relatively few observations) and increase the granularity of the
37 concepts it currently possesses. We also simulate the predicted neural basis of these
38 processes. We further show that it accomplishes a simple form of ‘one-shot’
39 generalization to new stimuli. Although deliberately simple, these results suggest
40 that this general approach to modeling concept learning within active inference

41 research may also offer useful resources in developing neurocomputational models
42 of structure learning more generally.

43 *Keywords:* Model Expansion; Structure Learning; Concepts; Computational
44 Neuroscience; Active Inference

45

46

Introduction

47 The ability to learn the latent structure of one's environment – such as
48 inferring the existence of hidden causes of regularly observed patterns in co-
49 occurring feature observations – is central to human cognition. For example, we do
50 not simply observe particular sets of colors, textures, shapes, and sizes – we also
51 observe *identifiable objects* such as, say, a 'screwdriver'. If we were tool experts, we
52 might also recognize particular types of screwdrivers (e.g., flat vs. Phillip's head),
53 designed for a particular use. This ability to learn latent structure, such as learning
54 to recognize co-occurring features under conceptual categories (as opposed to just
55 perceiving sensory qualities; e.g., red, round, etc.), is also highly adaptive. Only if we
56 knew an object was a screwdriver could we efficiently infer that it affords putting
57 certain structures together and taking them apart; and only if we knew the specific
58 type of screwdriver could we efficiently infer, say, the artefacts to use it on. Many
59 concepts of this sort require experience-dependent acquisition (i.e., learning).

60 From a computational perspective, the ability to acquire a new concept can
61 be seen as a type of structure learning involving Bayesian model comparison
62 (Botvinick, Niv, & Barto, 2009; S. J. Gershman & Niv, 2010; MacKay & Peto, 1995;
63 Salakhutdinov, Tenenbaum, & Torralba, 2013; Tervo, Tenenbaum, & Gershman,
64 2016). Specifically, concept acquisition can be cast as an agent learning (or
65 inferring) that a new hypothesis (referred to here as a hidden cause or state) should
66 be added to the internal or generative model with which she explains her
67 environment, because existing causes cannot account for new observations (e.g., an
68 agent might start out believing that the only tools are hammers and screwdrivers,

69 but later learn that there are also wrenches). In other words, the structure of the
70 space of hidden causes itself needs to expand to accommodate new patterns of
71 observations. This model expansion process is complementary to a process called
72 Bayesian model reduction (Karl Friston & Penny, 2011); in which the agent can infer
73 that there is redundancy in her model, and a model with fewer states or parameters
74 provides a more parsimonious (i.e. simpler) explanation of observations (KJ Friston,
75 Lin, et al., 2017; Schmidhuber, 2006). For example, in some instances it may be
76 more appropriate to differentiate between fish and birds as opposed to salmon,
77 peacocks and pigeons. This reflects a reduction in model complexity based on a
78 particular feature space underlying observations and thus resonates with other
79 accounts of concept learning as dimensionality reduction (Behrens et al., 2018;
80 Stachenfeld, Botvinick, & Gershman, 2016) – a topic we discuss further below.

81 A growing body of work in a number of domains has approached this
82 problem from different angles. In developmental psychology and cognitive science,
83 for example, probability theoretic (Bayesian) models have been proposed to account
84 for word learning in children and the remarkable human ability to generalize from
85 very few (or even one) examples in which both broader and narrower categorical
86 referents could be inferred (Kemp, Perfors, & Tenenbaum, 2007; Lake,
87 Salakhutdinov, & Tenenbaum, 2015; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Xu &
88 Tenenbaum, 2007a, 2007b). In statistics, a number of nonparametric Bayesian
89 models, such as the “Chinese Room” process and the “Indian Buffet” process, have
90 been used to infer the need for model expansion (S. Gershman & Blei, 2012). There

91 are also related approaches in machine learning, as applied to things like Gaussian
92 mixture models (McNicholas, 2016).

93 Such approaches employ various clustering algorithms, which take sets of
94 data points in a multidimensional space and divide them into separable clusters
95 (e.g., see (Anderson, 1991; Love, Medin, & Gureckis, 2004; Sanborn, Griffiths, &
96 Navarro, 2010)). While many of these approaches assume the number of clusters is
97 known in advance, various goodness-of-fit criteria may be used to determine the
98 optimal number. However, a number of approaches require much larger amounts of
99 data than humans do to learn new concepts (Geman, Bienenstock, & Doursat, 1992;
100 Hinton et al., 2012; LeCun, Bengio, & Hinton, 2015; Lecun, Bottou, Bengio, & Haffner,
101 1998; Mnih et al., 2015). Many also require corrective feedback to learn and yet fail
102 to acquire sufficiently rich conceptual structure to allow for generalization
103 (Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B.
104 Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams &
105 Lombrozo, 2010).

106 Approaches to formally modeling structure learning, including concept
107 learning, have not yet been examined within the emerging field of research on
108 Active Inference models within computational neuroscience (KJ Friston, 2010; KJ
109 Friston et al., 2016; KJ Friston, Lin, et al., 2017; KJ Friston, Parr, & de Vries, 2017).
110 This represents one potentially fruitful research avenue that has not yet been
111 examined and, as discussed below, may offer unique advantages in research focused
112 on understanding the neural basis of learning latent structure. In this paper, we
113 explore the potential of this approach. In brief, we conclude that structure learning

114 is an emergent property of active inference (and learning) under generative models
115 with 'spare capacity'; where spare or uncommitted capacity is used to expand the
116 repertoire of representations (Baker & Tenenbaum, 2014), while Bayesian model
117 reduction (KJ Friston, Lin, et al., 2017; Hobson & Friston, 2012) promotes
118 generalization by minimizing model complexity – and releasing representations to
119 replenish 'spare capacity'.

120 From a machine learning perspective, Bayesian model reduction affords the
121 opportunity to consider generative models with a large number of hidden states or
122 latent factors and then optimize the number (or indeed partitions) of latent factors
123 with respect to a variational bound on model evidence. This could be regarded as a
124 bounded form of nonparametric Bayes, in which a potentially infinite number of
125 latent factors are considered; with appropriate (e.g., Indian buffet process) priors
126 over the number of hidden states generating data features¹. The Bayesian model
127 reduction approach here is bounded in the sense that an upper bound on the
128 number of hidden states is specified prior to structure learning. Furthermore, in
129 virtue of the (biologically plausible) variational schemes used for model reduction,
130 there is no need to explicitly compute model evidence; thereby emulating the
131 computational efficiency of nonparametric Bayes (S. Gershman & Blei, 2012), while
132 accommodating any prior over models.

133 In what follows, we first provide a brief overview of active inference. We then
134 introduce a model of concept learning (using basic and subordinate level animal

¹ Generally motivated by starting with a finite parametric model and taking the limit as the number of latent states with more parameters tends to infinity.

135 categories), as a representative example of structure learning. We specifically model
136 cognitive (semantic) processes that add new concepts to a state space and that
137 optimize the granularity of an existing state space. We then establish the validity of
138 this model using numerical analyses of concept learning, when repeatedly
139 presenting a synthetic agent with different animals characterized by different
140 combinations of observable features. We demonstrate how particular approaches
141 combining Bayesian model reduction and expansion can reproduce successful
142 concept learning without the need for corrective feedback – and allow for
143 generalization. We further demonstrate the ability of this model to generate
144 predictions about measurable neural responses based on the neural process theory
145 that accompanies active inference. We conclude with a brief discussion of the
146 implications of this work. Our goal is to present an introductory proof of concept –
147 that could be used as the foundation of future research on the neurocomputational
148 basis of structure learning.

149

150 **An Active Inference model of concept learning**

151

152 **A primer on Active Inference**

153

154 Active Inference suggests that the brain is an inference machine that
155 approximates optimal probabilistic (Bayesian) belief updating across perceptual,
156 cognitive, and motor domains. Active Inference more specifically postulates that the
157 brain embodies an internal model of the world that is “generative” in the sense that

158 it can simulate the sensory data that it should receive if its model of the world is
159 correct. These simulated (predicted) sensory data can be compared to actual
160 observations, and differences between predicted and observed sensations can be
161 used to update the model. Over short timescales (e.g., a single observation) this
162 updating corresponds to inference (perception), whereas on longer timescales it
163 corresponds to learning (i.e., updating expectations about what will be observed
164 later). Another way of putting this is that perception optimizes beliefs about the
165 current state of the world, while learning optimizes beliefs about the relationships
166 between the variables that constitute the world. These processes can be seen as
167 ensuring the generative model (entailed by recognition processes in the brain)
168 remains an accurate model of the world that it seeks to regulate (Conant & Ashbey,
169 1970).

170 Active Inference casts decision-making in similar terms. Actions can be
171 chosen to resolve uncertainty about variables within a generative model (i.e.,
172 sampling from domains in which the model does not make precise predictions),
173 which can prevent anticipated deviations from predicted outcomes. In addition,
174 some expectations are treated as a fixed phenotype of an organism. For example, if
175 an organism did not continue to “expect” to observe certain amounts of food, water,
176 and shelter, then it would quickly cease to exist (McKay & Dennett, 2009) – as it
177 would not pursue those behaviors that fulfill these expectations (c.f. the ‘optimism
178 bias’ (Sharot, 2011)). Thus, a creature should continually seek out observations that
179 support – or are internally consistent with – its own continued existence. Decision-
180 making can therefore be cast as a process in which the brain infers the sets of

181 actions (policies) that would lead to observations consistent with its own survival-
182 related expectations (i.e., its “prior preferences”). Mathematically, this can be
183 described as selecting sequences of actions (policies) that maximize “Bayesian
184 model evidence” expected under a policy, where model evidence is the (marginal)
185 likelihood that particular sensory inputs would be observed under a given model.

186 In real-world settings, directly computing Bayesian model evidence is
187 generally intractable. Thus, some approximation is necessary. Active Inference
188 proposes that the brain computes a quantity called “variational free energy” that
189 provides a bound on model evidence, such that minimization of free energy
190 indirectly maximizes model evidence (this is exactly the same functional used in
191 machine learning where it is known as an evidence lower bound or ELBO). In this
192 case, decision-making will be approximately (Bayes) optimal if it infers (and enacts)
193 the policy that will minimize expected free energy (i.e., free energy with respect to a
194 policy, where one takes expected future observations into account). Technically,
195 expected free energy is the average free energy under the posterior predictive
196 density over policy-specific outcomes.

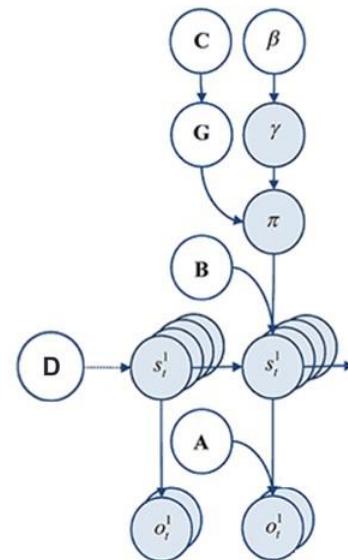
197 Expected free energy can be decomposed in different ways that reflect
198 uncertainty and prior preferences, respectively (e.g., epistemic and instrumental
199 affordance or ambiguity and risk). This formulation means that any agent that
200 minimizes expected free energy engages initially in exploratory behavior to
201 minimize uncertainty in a new environment. Once uncertainty is resolved, the agent
202 then exploits that environment to fulfil its prior preferences. The formal basis for
203 Active Inference has been thoroughly detailed elsewhere (KJ Friston, FitzGerald,

204 Rigoli, Schwartenbeck, & Pezzulo, 2017), and the reader is referred there for a full
205 mathematical treatment.

206 When the generative model is formulated as a partially observable Markov
207 decision process (a mathematical framework for modeling decision-making in cases
208 where some outcomes are under the control of the agent and others are not, and
209 where states of the world are not directly known but must be inferred from
210 observations), active inference takes a particular form. Here, the generative model is
211 specified by writing down plausible or allowable policies, hidden states of the world
212 (that must be inferred from observations), and observable outcomes, as well as a
213 number of matrices that define the probabilistic relationships between these
214 quantities (see right panel of figure1).

Task Structure:

Learning animal concepts from
observing co-occurring features



216 Figure 1. Left: Illustration of the trial structure performed by the agent. At the first time
217 point, the agent is exposed to one of 8 possible animals that are each characterized by a
218 unique combination of visual features. At the 2nd time point, the agent would then report
219 which animal concept matched that feature combination. The agent could report a specific
220 category (e.g., pigeon, hawk, minnow, etc.) or a general category (i.e., bird or fish) if
221 insufficiently certain about the specific category. See the main text for more details. Right:
222 Illustration of the Markov decision process formulation of active inference used in the
223 simulations described in this paper. The generative model is here depicted graphically, such
224 that arrows indicate dependencies between variables. Here observations (**o**) depend on
225 hidden states (**s**), as specified by the **A** matrix, and those states depend on both previous
226 states (as specified by the **B** matrix, or the initial states specified by the **D** matrix) and the
227 policies (π) selected by the agent. The probability of selecting a particular policy in turn
228 depends on the expected free energy (**G**) of each policy with respect to the prior preferences
229 (**C**) of the agent. The degree to which expected free energy influences policy selection is also
230 modulated by a prior policy precision parameter (γ), which is in turn dependent on beta (β)
231 –where higher values of beta promote more randomness in policy selection (i.e., less
232 influence of the differences in expected free energy across policies). For more details
233 regarding the associated mathematics, see (KJ Friston, Lin, et al., 2017; KJ Friston, Parr, et
234 al., 2017).
235

236 The ‘A’ matrix indicates which observations are generated by each
237 combination of hidden states (i.e., the likelihood mapping specifying the probability
238 that a particular set of observations would be observed given a particular set of
239 hidden states). The ‘B’ matrix is a transition matrix, indicating the probability that
240 one hidden state will evolve into another over time. The agent, based on the selected
241 policy, controls some of these transitions (e.g., those that pertain to the positions of
242 its limbs). The ‘D’ matrix encodes prior expectations about the initial hidden state
243 the agent will occupy. Finally, the ‘C’ matrix specifies prior preferences over
244 observations; it quantifies the degree to which different observed outcomes are
245 rewarding or punishing to the agent. In these models, observations and hidden
246 states can be factorized into multiple outcome *modalities* and hidden state *factors*.
247 This means that the likelihood mapping (the ‘A’ matrix) can also model the

248 interactions among different hidden states when generating outcomes
249 (observations).

250

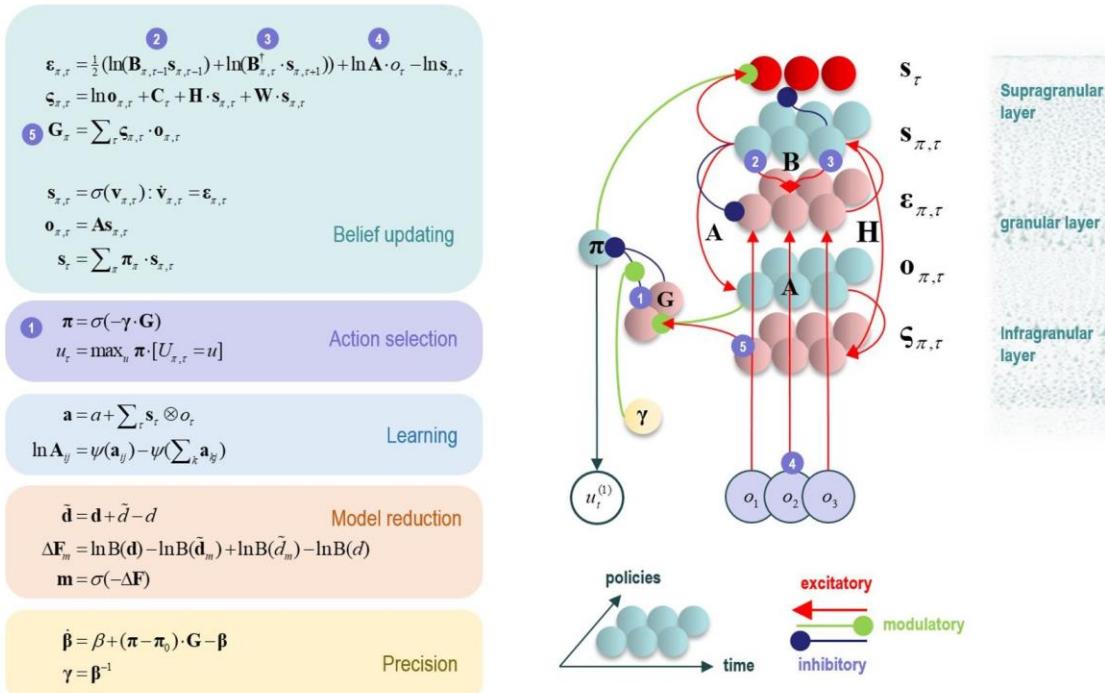
251 **From principles to process theories**

252

253 One potential empirical advantage of the present approach stems from the
254 fact that active inference models have a plausible biological basis that affords
255 testable neurobiological predictions. Specifically, these models have well-articulated
256 companion micro-anatomical neural process theories, based on commonly used
257 message-passing algorithms (KJ Friston, FitzGerald, et al., 2017; Parr & Friston,
258 2018; Parr, Markovic, Kiebel, & Friston, 2019). In these process theories, for
259 example, the activation level of different neural populations (typically portrayed as
260 consisting of different cortical columns) can encode posterior probability estimates
261 over different hidden states. These activation levels can then be updated by synaptic
262 inputs with particular weights that convey the conditional probabilities encoded in
263 the 'A' and 'B' (among other) matrices described above, where active learning then
264 corresponds to associative synaptic plasticity. Phasic dopamine responses also play
265 a particular role in these models, by reporting changes in policy precision (i.e., the
266 degree of confidence in one policy over others) upon new observations (see Figure 2
267 and the associated legend for more details). In what follows, we describe how the
268 type of generative model – that underwrites these processes – was specified to
269 perform concept inference/learning.

270

271



272

273 Figure 2. This figure illustrates the mathematical framework of active inference and
274 associated neural process theory used in the simulations described in this paper. The
275 differential equations in the left panel approximate Bayesian belief updating within the
276 graphical model depicted in the right panel of Figure 1 via a gradient descent on free energy
277 (\mathbf{F}). The right panel also illustrates the proposed neural basis by which neurons making up
278 cortical columns could implement these equations. The equations have been expressed in
279 terms of two types of prediction errors. State prediction errors (ϵ) signal the difference
280 between the (logarithms of) expected states (\mathbf{s}) under each policy and time point—and the
281 corresponding predictions based upon outcomes/observations (\mathbf{A} matrix) and the
282 (preceding and subsequent) hidden states (\mathbf{B} matrix, and, although not written, the \mathbf{D}
283 matrix for the initial hidden states at the first time point). These represent prior and
284 likelihood terms respectively – also marked as messages 2, 3, and 4, which are depicted as
285 being passed between neural populations (colored balls) via particular synaptic
286 connections in the right panel. These (prediction error) signals drive depolarization (\mathbf{v}) in
287 those neurons encoding hidden states (\mathbf{s}), where the probability distribution over hidden
288 states is then obtained via a softmax (normalized exponential) function (σ). Outcome
289 prediction errors (ζ) instead signal the difference between the (logarithms of) expected
290 observations (\mathbf{o}) and those predicted under prior preferences (\mathbf{C}). This term additionally
291 considers the expected ambiguity or conditional entropy (\mathbf{H}) between states and outcomes
292 as well as a novelty term (\mathbf{W}) reflecting the degree to which beliefs about how states
293 generate outcomes would change upon observing different possible state-outcome
294 mappings (computed from the \mathbf{A} matrix). This prediction error is weighted by the expected
295 observations to evaluate the expected free energy (\mathbf{G}) for each policy (π), conveyed via
296 message 5. These policy-specific free energies are then integrated to give the policy
297 expectations via a softmax function, conveyed through message 1. Actions at each time

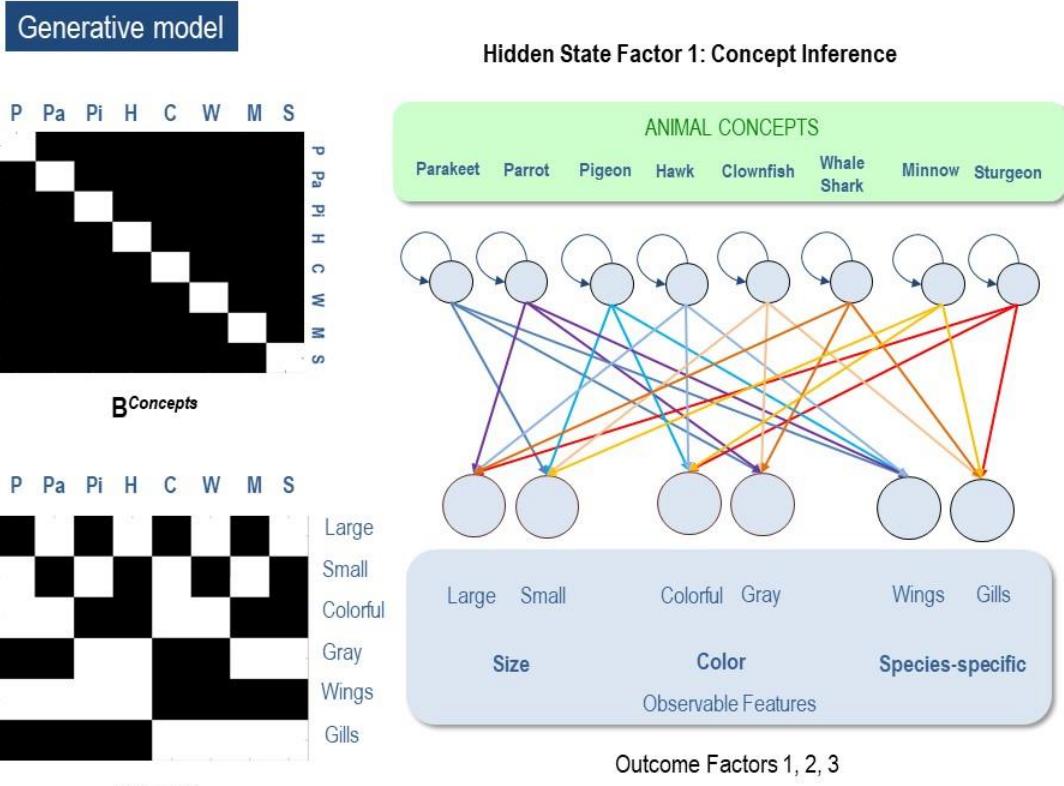
298 point (**u**) are then chosen out of the possible actions under each policy (**U**) weighted by the
299 value (negative expected free energy) of each policy. In our simulations, the model learned
300 associations between hidden states and observations (**A**) via a process in which counts
301 were accumulated (**a**) reflecting the number of times the agent observed a particular
302 outcome when she believed that she occupied each possible hidden state. Although not
303 displayed explicitly, learning prior expectations over initial hidden states (**D**) is similarly
304 accomplished via accumulation of concentration parameters (**d**). These prior expectations
305 reflect counts of how many times the agent believes it previously occupied each possible
306 initial state. Concentration parameters are converted into expected log probabilities using
307 digamma functions (ψ). The way in which Bayesian model reduction was performed in this
308 paper is also written in the lower left (where B indicates a beta function, and **m** is the
309 posterior probability of each model). Here, the posterior distribution over initial states (**d**)
310 is used to assess the difference in the evidence (ΔF) it provides for the number of hidden
311 states in the current model and other possible models characterized by fewer hidden states.
312 Prior concentration parameters are shown in italics, posterior in bold, and those priors and
313 posteriors associated with the reduced model are equipped with a tilde (~). As already
314 stated, the right panel illustrates a possible neural implementation of the update equations
315 in the left panel. In this implementation, probability estimates have been associated with
316 neuronal populations that are arranged to reproduce known intrinsic (within cortical area)
317 connections. Red connections are excitatory, blue connections are inhibitory, and green
318 connections are modulatory (i.e., involve a multiplication or weighting). These connections
319 mediate the message passing associated with the equations in the left panel. Cyan units
320 correspond to expectations about hidden states and (future) outcomes under each policy,
321 while red states indicate their Bayesian model averages (i.e., a “best guess” based on the
322 average of the probability estimates for the states and outcomes across policies, weighted
323 by the probability estimates for their associated policies. Pink units correspond to (state
324 and outcome) prediction errors that are averaged to evaluate expected free energy and
325 subsequent policy expectations (in the lower part of the network). This (neural) network
326 formulation of belief updating means that connection strengths correspond to the
327 parameters of the generative model described in the text. Learning then corresponds to
328 changes in the synaptic connection strengths. Only exemplar connections are shown to
329 avoid visual clutter. Furthermore, we have just shown neuronal populations encoding
330 hidden states under two policies over three time points (i.e., two transitions), whereas in
331 the task described in this paper there are greater number of allowable policies. For more
332 information regarding the mathematics and processes illustrated in this figure, see (KJ
333 Friston, Lin, et al., 2017; KJ Friston, Parr, et al., 2017).
334

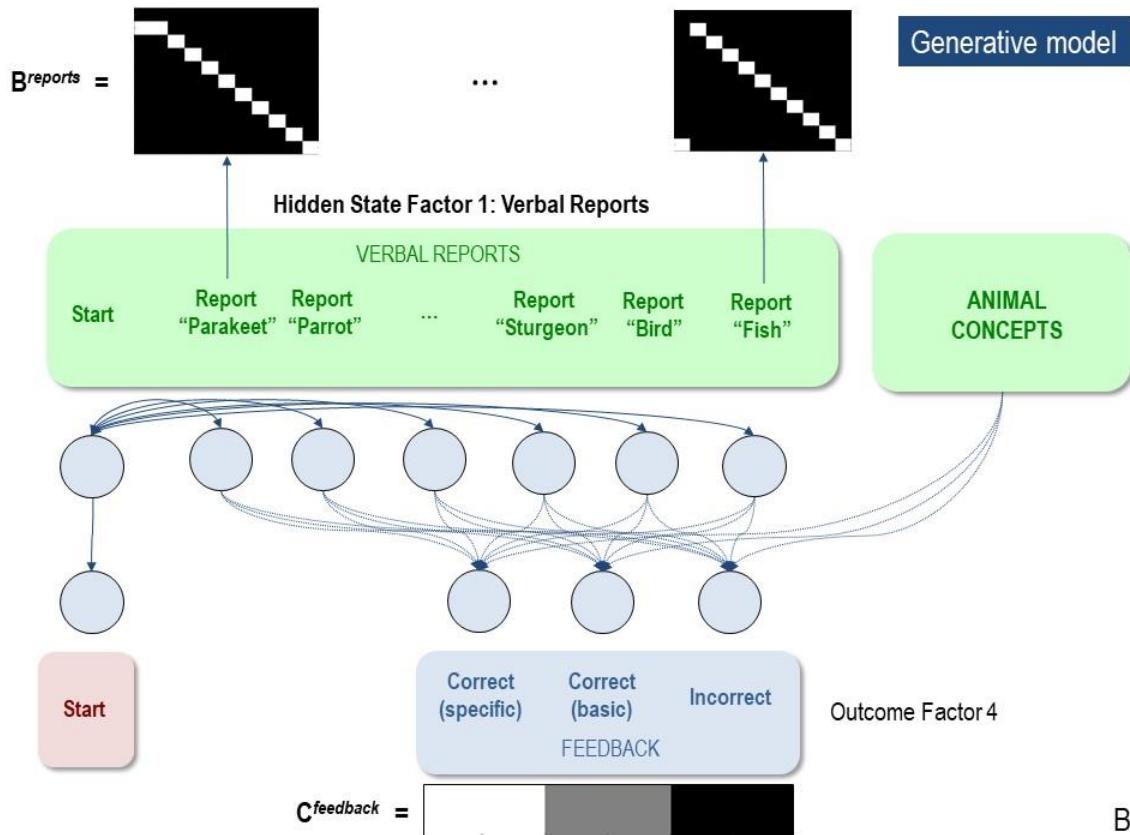
335 **A model of concept inference and learning**

336 To model concept inference, we constructed a simple task for an agent to
337 perform (see figure 1, left panel). In this task, the agent was presented with different
338 animals on different trials and asked to answer a question about the type of animal
339 that was seen. As described below, in some simulations the agent was asked to
340 report the type of animal that was learned previously; in other simulations, the

341 agent was instead asked a question that required conceptual generalization.
342 Crucially, to answer these questions the agent was required to observe different
343 animal features, where the identity of the animal depended on the combination of
344 features. There were three feature categories (size, color, and species-specific;
345 described further below) and two discrete time points in a trial (observe and
346 report).

347 To simulate concept learning (based on the task described above) we needed
348 to specify an appropriate generative model. Once this model has been specified, one
349 can use standard (variational) message passing to simulate belief updating and
350 behavior in a biologically plausible way: for details, please see (KJ Friston,
351 FitzGerald, et al., 2017; KJ Friston, Parr, et al., 2017). In our (minimal) model, the
352 first hidden state factor included (up to) eight levels, specifying four possible types
353 of birds and four possible types of fish (Figure 3A). The outcome modalities
354 included: a feature space including two size features (big, small), two color features
355 (gray, colorful), and two species-differentiating features (wings, gills). The 'A' matrix
356 specified a likelihood mapping between features and animal concepts, such that
357 each feature combination was predicted by an animal concept (Hawk, Pigeon,
358 Parrot, Parakeet, Sturgeon, Minnow, Whale shark, Clownfish). This model was
359 deliberately simple to allow for a clear illustration, but it is plausibly scalable to
360 include more concepts and a much larger feature space. The 'B' matrix for the first
361 hidden state factor was an identity matrix, reflecting the belief that the animal
362 identity was conserved during each trial (i.e., the animals were not switched out
363 mid-trial).





366

367 Figure 3. (A) Illustration of the first hidden state factor containing columns (levels) for 8
368 different animal concepts. Each of these 8 concepts generated a different pattern of visual
369 feature observations associated with the outcome modalities of size, color, and species-
370 specific features. The B matrix was an identity matrix, indicating that the animal being
371 observed did not change within a trial (white = 1, black = 0). The A matrix illustrates the
372 specific mapping from animal concepts to feature combinations. As depicted, each concept
373 corresponded to a unique point in a 3-dimensional feature space. (B) illustration of the 2nd
374 hidden state factor corresponding to the verbal reports the agent could choose in response
375 to her observations. These generated feedback as to whether her verbal report was accurate
376 with respect to a basic category report or a specific category report. As illustrated in the C
377 matrix, the agent most preferred to be correct about specific categories, but least preferred
378 being incorrect. Thus, reporting the basic categories was a safer choice if the agent was too
379 uncertain about the specific identity of the animal.
380

381 The second hidden state factor was the agent's report. That this is assumed
382 to factorise from the first hidden state factor means that there is no prior constraint
383 that links the chosen report to the animal generating observations. The agent could
384 report each of the eight possible specific animal categories, or opt for a less specific
385 report of a bird or a fish. Only one category could be reported at any time. Thus, the

386 agent had to choose to report only bird vs. fish or to report a more specific category.
387 In other words, the agent could decide upon the appropriate level of coarse-graining
388 of her responses (figure 3B).

389 During learning trials, the policy space was restricted such that the agent
390 could not provide verbal reports or observe corrective feedback (i.e., all it could do
391 is “stay still” in its initial state and observe the feature patterns presented). This
392 allowed the agent to learn concepts in an unsupervised manner (i.e. without being
393 told what the true state was or whether it was correct or incorrect). After learning,
394 active reporting was enabled, and the ‘C’ matrix was set so that the agent preferred
395 to report correct beliefs. We defined the preferences of the agent such that she
396 preferred correctly reporting specific category knowledge and was averse to
397 incorrect reports. This ensured that she only reported the general category of bird
398 vs. fish, unless sufficiently certain about the more specific category.

399 In the simulations reported below, there were two time points in each trial of
400 categorisation or conceptual inference. At the first time point, the agent was
401 presented with the animals features, and always began in a state of having made no
402 report (the “start” state). The agent’s task was simply to observe the features, infer
403 the animal identity, and then report it (i.e., in reporting trials). Over 32 simulations
404 (i.e., 4 trials per animal), we confirmed that, if the agent already started out with full
405 knowledge of the animal concepts (i.e., a fully precise ‘A’ matrix), it would report the
406 specific category correctly 100% of the time. Over an additional 32 simulations, we
407 also confirmed that, if the agent was only equipped with knowledge of the
408 distinction between wings and gills (i.e., by replacing the rows in the ‘A’ matrix

409 corresponding to the mappings from animals to size and color with flat
410 distributions), it would report the generic category correctly 100% of the time but
411 would not report the specific categories.² This was an expected and straightforward
412 consequence of the generative model – but provides a useful example of how agents
413 trade off preferences and different types of uncertainty.

414

415 **Simulating concept learning and the acquisition of expertise**

416

417 Having confirmed that our model could successfully recognize animals if
418 equipped with the relevant concepts (i.e., likelihood mappings) – we turn now to
419 concept learning.

420

421 **Concept acquisition**

422 We first examined our model’s ability to acquire concept knowledge in two
423 distinct ways. This included 1) the agent’s ability to “expand” (i.e., fill in an unused
424 column within) its state space and add new concepts, and 2) the agent’s ability to
425 increase the granularity of its conceptual state space and learn more specific
426 concepts, when it already possessed broader concepts.

427

428 *Adding Concepts*

² However, “risky” reporting behavior could be elicited by manipulating the strengths of the agent’s preferences such that she placed a very high value on reporting specific categories correctly (i.e., relative to how much she disliked reporting incorrectly).

429 To assess whether our agent could expand her state space by acquiring a new
430 concept, we first set one column of the previously described model's 'A' matrix
431 (mapping an animal concept to its associated features) to be a uniform distribution³;
432 creating an imprecise likelihood mapping for one concept – essentially, that concept
433 predicted all features with nearly equal probability. Here, we chose sturgeon (large,
434 gray, gills) as the concept for which the agent had no initial knowledge (see Figure
435 4A, right-most column of left-most 'pre-learning' matrix). We then generated 2000
436 observations based on the outcome statistics of a model with full knowledge of all
437 eight animals (the "generative process"), to test whether the model could learn the
438 correct likelihood mapping for sturgeon (note: this excessive number of
439 observations was used for consistency with later simulations, in which more
440 concepts had to be learned, and also to evaluate how performance improved as a
441 function of the number of observations the agent was exposed to; see figure 4B).

442 In these simulations, learning was implemented via updating (concentration)
443 parameters for the model's 'A' matrix after each trial. For details of these free energy
444 minimizing learning processes, please see (KJ Friston et al., 2016) as well as the left
445 panel of Figure 2 and associated legend. An intuitive way to think about this belief
446 updating process is that the strength of association between a concept and an
447 observation is quantified simply by counting how often they are inferred to co-
448 occur. This is exactly the same principle that underwrites Hebbian plasticity and
449 long-term potentiation (Brown, Zhao, & Leung, 2010). Crucially, policies were

³ To break the symmetry of the uniform distribution, we added small amounts of Gaussian noise (with a variance of .001) to avoid getting stuck in local free energy minima during learning.

450 restricted during learning, such that the agent could not select reporting actions;
451 thus, learning was driven entirely by repeated exposure to different feature
452 combinations. We evaluated successful learning in two ways. First, we compared the
453 'A' matrix learned by the model to that of the generative process. Second, we
454 disabled learning after various trial numbers (i.e., such that concentration
455 parameters no longer accumulated) and enabled reporting. We then evaluated
456 reporting accuracy with 20 trials for each of the 8 concepts.

457 As shown in Figure 4A, the 'A' matrix (likelihood) mapping – learned by the
458 agent – and the column for sturgeon in particular, strongly resembled that of the
459 generative process. When first evaluating reporting, the model was 100 % accurate
460 across 20 reporting trials, when exposed to a sturgeon (reporting accuracy when
461 exposed to each of the other animals also remained at 100%) and first reached this
462 level of accuracy after around 50 exposures to all 8 animals (with equal probability)
463 (figure 4B). The agent also always chose to report specific categories (i.e., it never
464 chose to only report bird or fish). Model performance was stable over 8 repeated
465 simulations.

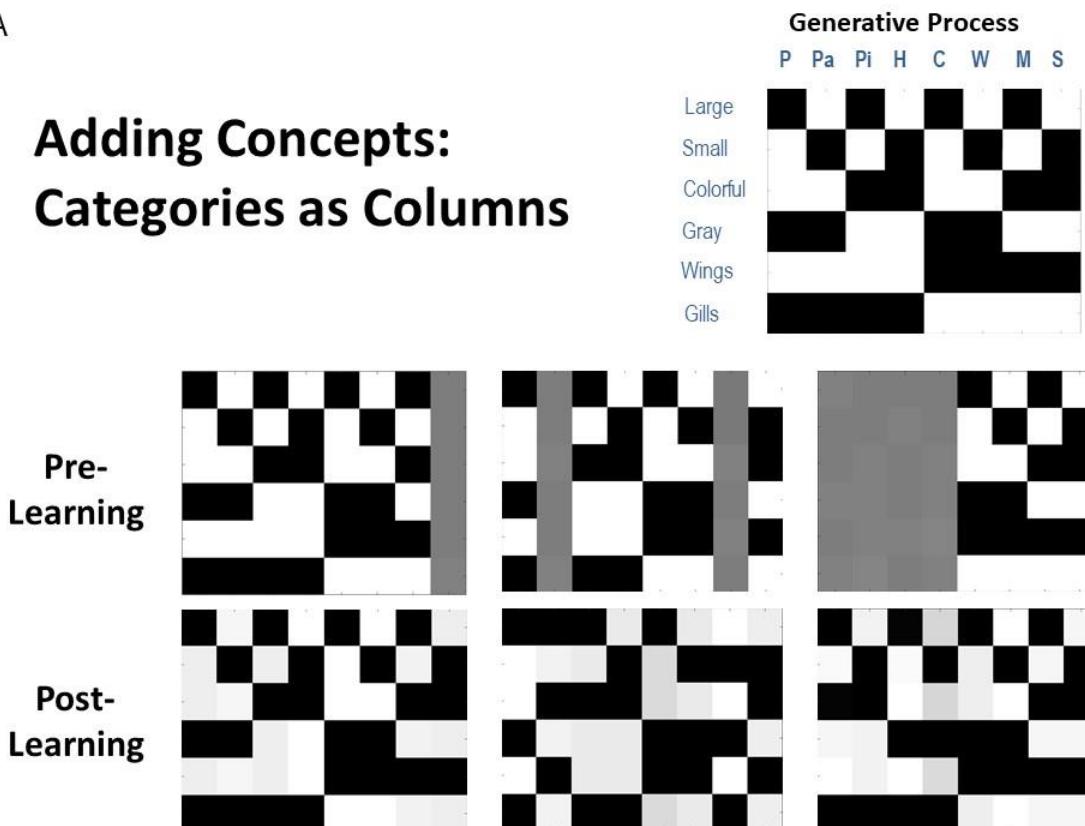
466 Crucially, during learning, the agent was not told which state was generating
467 its observations. This meant that it had to solve both an inference and a learning
468 problem. First, it had to infer whether a given feature combination was better
469 explained by an existing concept, or by a concept that predicts features uniformly. In
470 other words, it had to decide that the features were sufficiently different – from
471 things it had seen before – to assign it a new hypothetical concept. Given that a novel
472 state is only inferred when another state is not a better explanation, this precludes

473 learning ‘duplicate’ states that generate the same patterns of observations. The
474 second problem is simpler. Having inferred that these outcomes are caused by
475 something new, the problem becomes one of learning a simple state-outcome
476 mapping through accumulation of Dirichlet parameters.

477 To examine whether this result generalized, we repeated these simulations
478 under conditions in which the agent had to learn more than one concept. When the
479 model needed to learn one bird (parakeet) and one fish (minnow), the model was
480 also able to learn the appropriate likelihood mapping for these 2 concepts (although
481 note that, because the agent did not receive feedback about the state it was in during
482 learning, the new feature mappings were often not assigned to the same columns as
483 in the generative process; see figure 4A). Reporting also reached 100% accuracy,
484 but required a notably greater number of trials. Across 8 repeated simulations, the
485 mean accuracy reached by the model after 2000 trials was 98.75% (SD = 2%).

A

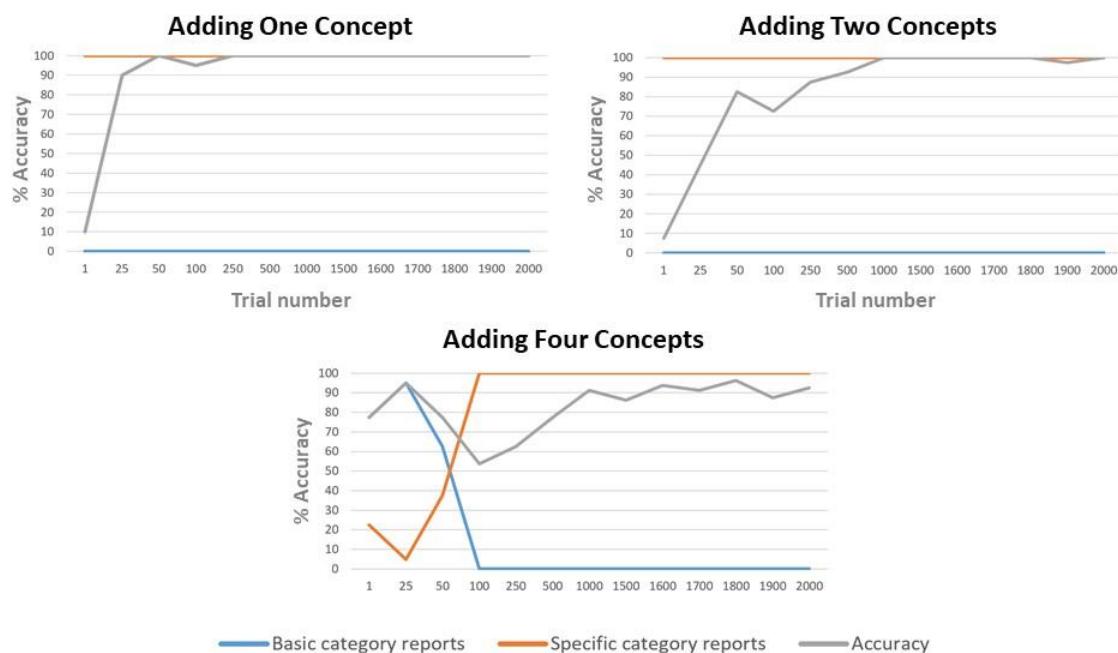
Adding Concepts: Categories as Columns



486

B

Adding Concepts: Reporting Accuracy as a Function of Trial Number (without feedback)



487

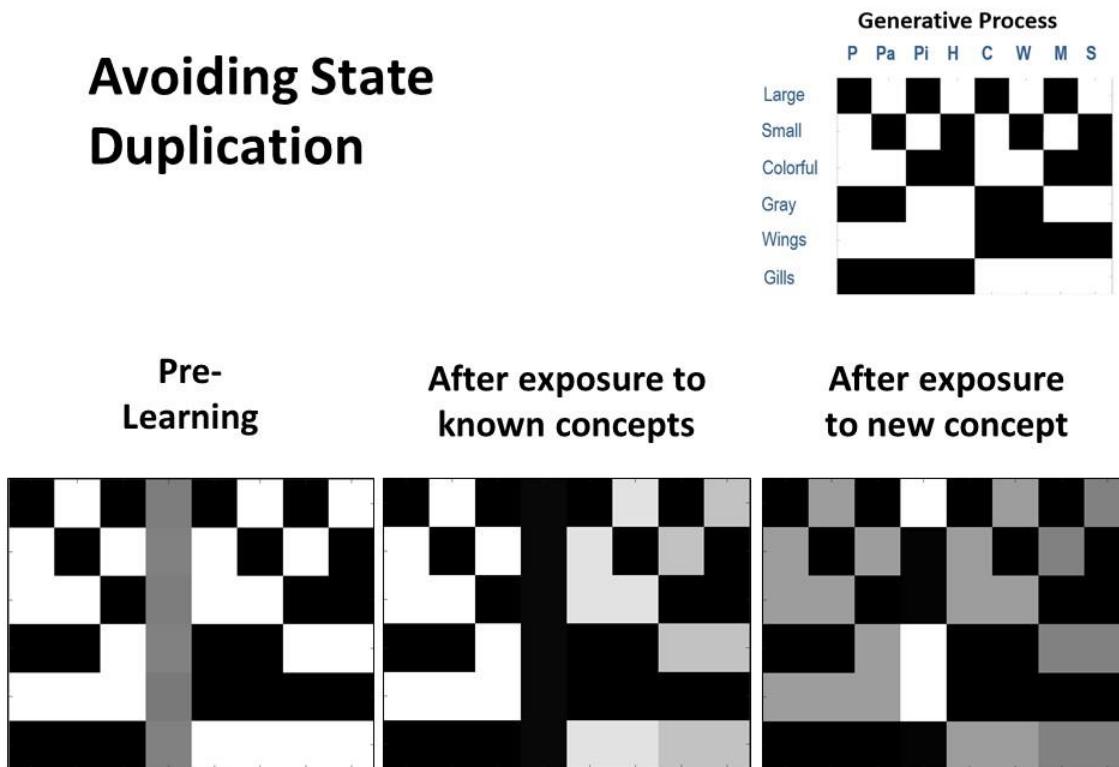
488 Figure 4. (A) illustration of representative simulation results in which the agent successfully
489 learned 1, 2, or 4 new animal concept categories with no prior knowledge beforehand. The
490 generative process is shown in the upper right, illustrating the feature combinations to be
491 learned. Pre-learning, either 1, 2 or 4 columns in the likelihood mapping began as a flat
492 distribution with a slight amount of Gaussian noise. The agent was then provided with 2000
493 observations of the 8 animals with equal probability. Crucially, the agent was prevented
494 from providing verbal reports during these 2000 trials and thus did not receive feedback
495 about the true identity of the animal. Thus, learning was driven completely by repeated
496 exposure in an unsupervised manner. Also note that, while the agent was successful at
497 learning the new concepts, it did not always assign the new feature patterns to the same
498 columns as illustrated in the generative process. This is to be expected given that the agent
499 received no feedback about the true hidden state that generated her observations. (B)
500 illustration of how reporting accuracy, and the proportion of basic category and specific
501 category responses, changed as a function of repeated exposures. This was accomplished by
502 taking the generative model at a number of representative trials and then testing it with 20
503 observations of each animal in which reporting was enabled. As can be seen, maximal
504 accuracy was achieved much more quickly when the agent had to learn fewer concepts.
505 When it had learned 4 concepts, it also began by reporting the general categories and then
506 subsequently became sufficiently confident to report the more specific categories.
507

508 When the model needed to learn all 4 birds, performance varied somewhat
509 more when the simulations were repeated. The learned likelihood mappings after
510 2000 trials always resembled that of the generative process, but with variable levels
511 of precision; notably, the model again assigned different concepts to different
512 columns relative to the generative process, as would be expected when the agent is
513 not given feedback about the state she is in. Over 8 repeated simulations, the model
514 performed well in 6 (92.50 % – 98.8 % accuracy) and failed to learn one concept in
515 the other 2 (72.50 % accuracy in each) due to overgeneralization (e.g., mistaking
516 parrot for Hawk in a majority of trials; i.e., the model simply learned that there are
517 large birds). Figure 4A and 4B illustrate representative results when the model was
518 successful (note: the agent never chose to report basic categories in the simulations
519 where only 1 or 2 concepts needed to be learned).

520 To further assess concept learning, we also tested the agent's ability to
521 successfully avoid state duplication. That is, we wished to confirm that the model
522 would only learn a new concept if actually presented with a new animal for which it
523 did not already have a concept. To do so, we equipped the model with knowledge of
524 seven out of the eight concept categories, and then repeatedly exposed it only to the
525 animals it already knew over 80 trials. We subsequently exposed it to the eighth
526 animal (Hawk) for which it did not already have knowledge over 20 additional
527 trials. As can be seen in figure 5, the unused concept column was not engaged during
528 the first 80 trials (bottom left and middle). However, in the final 20 trials, the agent
529 correctly inferred that her current conceptual repertoire was unable to explain her
530 new pattern of observations, leading the unused concept column to be adumbrated
531 and the appropriate state-observation mapping to be learned (bottom right). We
532 repeated these simulations under conditions in which the agent already had
533 knowledge of six, five, or four concepts. In all cases, we observed that unused
534 concept columns were never engaged inappropriately.

535

Avoiding State Duplication



536
537 Figure 5. Illustration of representative simulation results when the agent had to avoid
538 inappropriately learning a new concept (i.e., avoid state duplication) after only being
539 exposed to animals for which it already had knowledge. Here the agent began with prior
540 knowledge about seven concept categories and was also equipped with an eighth column
541 that could be engaged to learn a new concept category (bottom left). The agent was then
542 presented with several instances of each of the seven animals that she already knew (80
543 trials in total). In this simulation, the agent was successful in assigning each stimulus to an
544 animal concept she had already acquired and did not engage the unused concept 'slot'
545 (bottom middle). Finally, the agent was presented with a new animal (a hawk) that she did
546 not already know over 20 trials. In this case, the agent successfully engaged the additional
547 column (i.e., she inferred that none of the concepts she possessed could account for her new
548 observations) and learned the correct state-observation mapping (bottom right).
549

550 Crucially, these simulations suggest that adaptive concept learning needs to
551 be informed by existing knowledge about other concepts, such that a novel concept
552 should only be learned if observations cannot be explained with existing conceptual
553 knowledge. Here, this is achieved via the interplay of inference and learning, such
554 that agents initially have to infer whether to assign an observation to an existing

555 concept, and only if this is not possible is an ‘open slot’ employed to learn about a
556 novel concept.

557

558 *Increasing granularity*

559 Next, to explore the model’s ability to increase the granularity of its concept
560 space, we first equipped the model with only the distinction between birds and fish
561 (i.e., the rows of the likelihood mapping corresponding to color and size features
562 were flattened in the same manner described above). We then performed the same
563 procedure used in our previous simulations. As can be seen in Figure 6A (bottom
564 left), the ‘A’ matrix learned by the model now more strongly resembled that of the
565 generative process. Figure 6B (bottom) also illustrates reporting accuracy and the
566 proportion of basic and specific category reports as a function of trial number. As
567 can be seen, the agent initially only reported general categories, and became
568 sufficiently confident to report specific categories after roughly 50 – 100 trials, but
569 her accuracy increased gradually over the next 1000 trials (i.e., the agent reported
570 specific categories considerably before its accuracy improved). Across 8 repeated
571 simulations, the final accuracy level reached was between 93% – 98% in 7
572 simulations, but the model failed to learn one concept in the 8th case, with 84.4%
573 overall accuracy (i.e., a failure to distinguish between pigeon and parakeet, and
574 therefore only learned a broader category of “small birds”).

575 To assess whether learning basic categories first was helpful in subsequently
576 learning specific categories, we also repeated this simulation without any initial
577 knowledge of the basic categories. As exemplified in figure 6A and 6B, the model

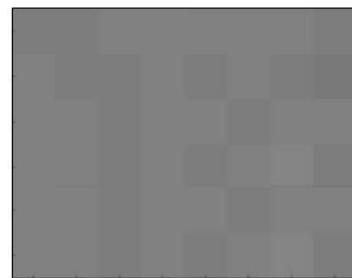
578 tended to perform reasonably well, but most often learned a less precise likelihood
579 mapping and reached a lower reporting accuracy percentage after 2000 learning
580 trials (across 8 repeated simulations: mean = 81.21%, SD = 6.39%, range from
581 68.80% – 91.30%). Thus, learning basic concept categories first appeared to
582 facilitate learning more specific concepts later.

A

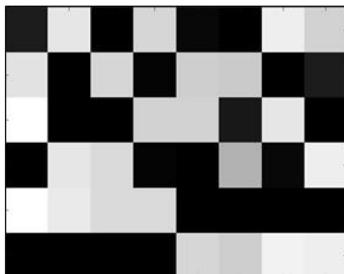
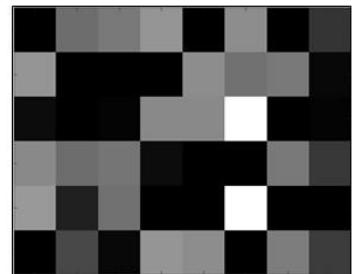
Increasing Granularity: Features as Rows

		Generative Process							
		P	Pa	Pl	H	C	W	M	S
Large	Large	■	■	■	■	■	■	■	■
	Small	■	■	■	■	■	■	■	■
	Colorful	■	■	■	■	■	■	■	■
	Gray	■	■	■	■	■	■	■	■
	Wings	■	■	■	■	■	■	■	■
	Gills	■	■	■	■	■	■	■	■

Pre-
Learning



Post-
Learning



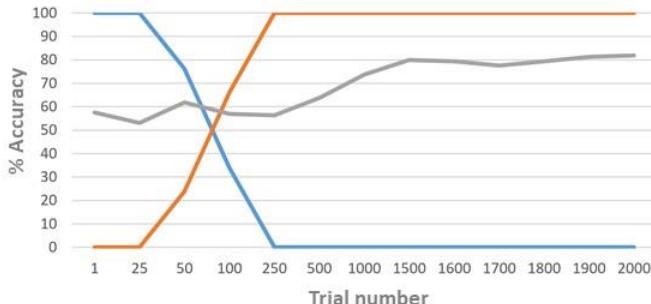
583
584

B

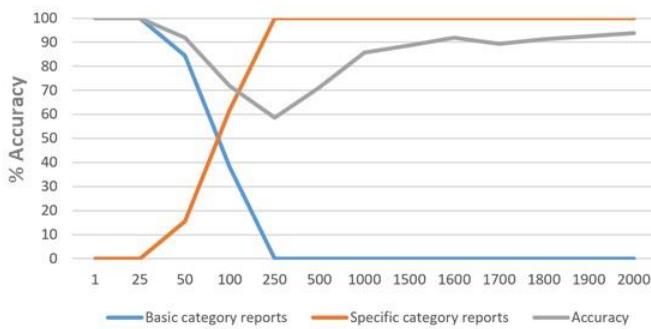
Increasing Granularity:

Reporting Accuracy as a Function of Trial Number (without feedback)

No Prior Knowledge



After Learning Basic Categories



585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

Figure 6. (A, left) Illustration of representative simulation results when the agent had to learn to increase the granularity of her concept space. Here the agent began with prior knowledge about the basic concept categories (i.e., she had learned the broad categories of "bird" and "fish") but had not learned the feature patterns (i.e., rows) that differentiate different types of birds and fish. Post learning (i.e., after 2000 exposures), the agent did successfully learn all of the more granular concept categories, although again note that specific concepts were assigned to different columns then depicted in the generative process due to the unsupervised nature of the learning. (A, right) illustration of the analogous learning result when the agent had to learn all 8 specific categories without prior knowledge of the general categories. Although moderately successful, learning tended to be more difficult in this case. (B) Representative plots of reporting accuracy in each of the 2 learning conditions as a function of the number of exposures. As can be seen, when the model starts out with prior knowledge about basic categories, it slowly becomes sufficiently confident to start reporting the more specific categories, and its final accuracy is high. In contrast, while the agent that did not start out with any prior knowledge of the general categories also grew confident in reporting specific categories over time, her final accuracy levels tended to be lower. In both cases, the agent began reporting specific categories before she achieved significant accuracy levels, therefore showing some initial overconfidence.

606 Overall, these findings provide a proof of principle that this sort of active
607 inference scheme can add concepts to a state space in an unsupervised manner (i.e.,
608 without feedback) based purely on (expected) free energy minimization. In this
609 case, it was able to accomplish this starting from a completely uninformative
610 likelihood distribution. It could also learn more granular concepts after already
611 acquiring more basic concepts, and our results suggest that learning granular
612 concepts may be facilitated by first learning basic concepts (e.g., as in currently
613 common educational practices).

614 The novel feature of this generative model involved ‘building in’ a number of
615 “reserve” hidden state levels. These initially had uninformative likelihood mappings;
616 yet, if a new pattern of features was repeatedly observed, and the model could not
617 account for this pattern with existing (informative) state-observation mappings,
618 these additional hidden state levels could be engaged to improve the model’s
619 explanatory power. This approach therefore accommodates a simple form of
620 structure learning (i.e., model expansion).

621

622 **Integrating model expansion and reduction**

623

624 We next investigated ways in which model expansion could be combined with
625 Bayesian model reduction (KJ Friston, Lin, et al., 2017) – allowing the agent to adjust
626 her model to accommodate new patterns of observations, while also precluding
627 unnecessary conceptual complexity (i.e., over-fitting). To do so, we again allowed
628 the agent to learn from 2000 exposures to different animals as described in the

629 previous section – but also allowed the model to learn its ‘D’ matrix (i.e., accumulate
630 concentration parameters reflecting prior expectations over initial states). This
631 allowed an assessment of the agent’s probabilistic beliefs about which hidden state
632 factor levels (animals) she had been exposed to. In different simulations, the agent
633 was only exposed to some animals and not others. We then examined whether a
634 subsequent model reduction step could recover the animal concepts presented
635 during the simulation; eliminating those concepts that were unnecessary to explain
636 the data at hand. The success of this 2-step procedure could then license the agent to
637 “reset” the unnecessary hidden state columns after concept acquisition, which
638 would have accrued unnecessary likelihood updates during learning. Doing so
639 would allow the optimal ability for those “reserve” states to be appropriately
640 engaged, if and when the agent was exposed to truly novel stimuli.

641 The 2nd step of this procedure was accomplished by applying Bayesian model
642 reduction to the ‘D’ matrix concentration parameters after learning. This is a form of
643 post-hoc model optimization (K. J. Friston et al., 2016; Karl Friston, Parr, & Zeidman,
644 2018) that rests upon estimation of a ‘full’ model, followed by analytic computation
645 of the evidence that would have been afforded to alternative models (with
646 alternative, ‘reduced’, priors) had they been used instead. Mathematically, this
647 procedure is a generalization of things like automatic relevance determination (Karl
648 Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007; Wipf & Rao, 2007) or
649 the use of the Savage Dickie ratio in model comparison (Cornish & Littenberg,
650 2007). It is based upon straightforward probability theory and, importantly, has a
651 simple physiological interpretation; namely, synaptic decay and the elimination of

652 unused synaptic connections. In this (biological) setting, the concentration
653 parameters of the implicit Dirichlet distributions can be thought of as synaptic tags.
654 For a technical description of Bayesian model reduction techniques and their
655 proposed neural implementation, see (KJ Friston, Lin, et al., 2017; Hobson & Friston,
656 2012; Hobson, Hong, & Friston, 2014); see the left panel of Figure 2 for additional
657 details).

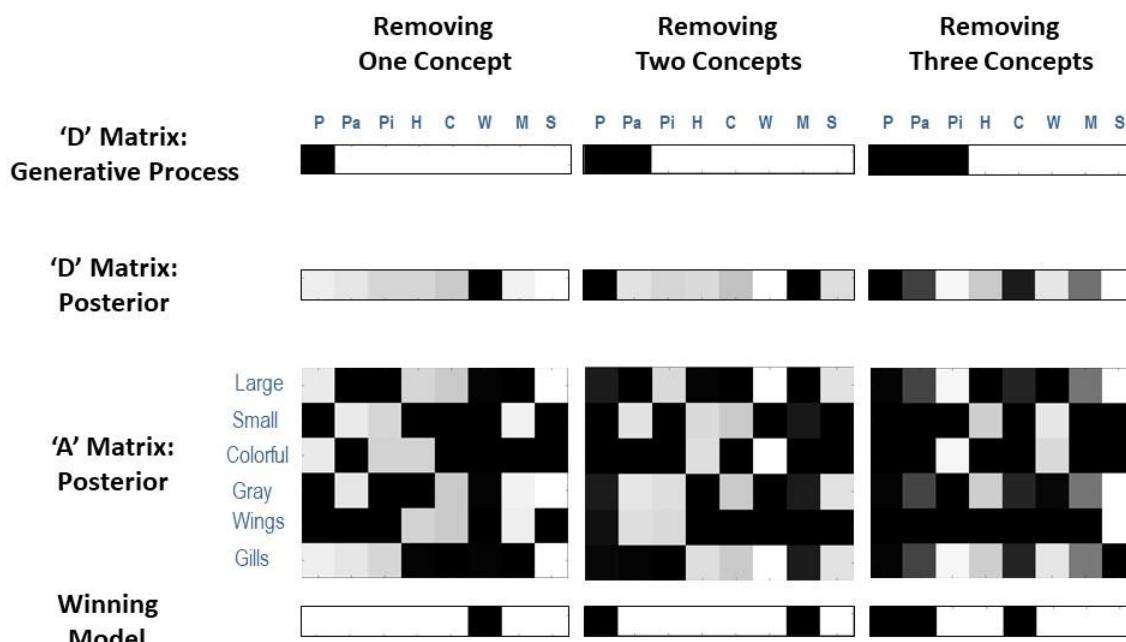
658 The posterior concentration parameters were compared to the prior
659 distribution for a full model (i.e., a flat distribution over 8 concepts) and prior
660 distributions for possible reduced models (i.e., which retained different possible
661 combinations of some but not all concepts; technically, reduced models were
662 defined such that the to-be-eliminated concepts were less likely than the to-be-
663 retained concepts). If Bayesian model reduction provided more evidence for one or
664 more reduced models, the reduced model with the most evidence was selected.

665 Note: an alternative would be to perform model reduction on the 'A' matrix, but this
666 is more complex due to a larger space of possible reduced models; it also does not
667 address the question of the number of hidden state levels to retain in a
668 straightforward manner.

669 In our first simulation, we presented our agent with all animals except for
670 parakeets with equal probability over 2000 trials. When compared to the full model,
671 the winning model corresponded to the correct 7-animal model matching the
672 generative process in 6/8 cases (log evidence differences ranged from -3.12 to -8.3),
673 and in 2/8 cases it instead selected a 6-animal model due to a failure to distinguish
674 between 2 specific concepts during learning (log evidence differences = -5.30, -

675 7.70). Figure 7 illustrates the results of a representative successful case). In the
676 successful cases, this would correctly license the removal of changes in the model's
677 'A' and 'D' matrix parameters for the 8th animal concept during learning in the
678 previous trials. Similar results were obtained whenever any single animal type was
679 absent from the generative process.

Bayesian Model Reduction After Learning



681 Figure 7. Representative illustrations of simulations in which the agent performed Bayesian
682 model reduction after learning. In these simulations, the agent was first exposed to 2000
683 trials in which either 7, 6, or 5 animals were actually presented (i.e., illustrated in the top
684 row, where only the white columns had nonzero probabilities in the generative process). In
685 each case, model reduction was often successful at identifying the reduced model with the
686 correct number of animal types presented (bottom row, where black columns should be
687 removed) based on how much evidence it provided for the posterior distribution over
688 hidden states learned by the agent (2nd row). This would license the agent to reset
689 the unneeded columns in its likelihood mapping (3rd row) to their initial state (i.e., a
690 flat distribution over features) such that they could be engaged if/when new types
691 of animals began to be observed (i.e., as in the simulations illustrated in the previous
692 sections).

693

694 In a second simulation, the generative process contained 2 birds and all 4
695 fish. Here, the correct reduced model was correctly selected in 6/8 simulations (log
696 evidence differences range from -.96 to -8.24, with magnitudes greater than -3 in
697 5/6 cases), whereas it incorrectly selected the 5-animal model in 2 cases (log
698 evidence differences = -3.54, -4.50). In a third simulation, the generative process
699 contained 1 bird and all 4 fish. Here, the correct reduced model had the most
700 evidence in only 3/8 simulations (log evidence differences = -4.10, -4.11, -5.48),
701 whereas a 6-animal model was selected in 3/8 cases and a 3-animal and 7-animal
702 model were each selected once (log evidence differences > -3.0). Figure 7 also
703 illustrates representative examples of correct model recovery in these 2nd and 3rd
704 simulations.

705 While we have used the terms 'correct' and 'incorrect' above to describe the
706 model used to generate the data, we acknowledge that 'all models are wrong' (Box,
707 Hunter, & Hunter, 2005), and that the important question is not whether we can
708 recover the 'true' process used to generate the data, but whether we can arrive at
709 the simplest but accurate explanation for these data. The failures to recover the
710 'true' model highlighted above may reflect that a process other than that used to
711 generate the data could have been used to do so in a simpler way. Simpler here
712 means we would have to diverge to a lesser degree, from our prior beliefs, in order
713 to explain the data under a given model, relative to a more complex model. It is
714 worth highlighting the importance of the word *prior* in the previous sentence. This
715 means that the simplicity of the model is sensitive to our prior beliefs about it. To

716 illustrate this, we repeated the same model comparisons as above, but with precise
717 beliefs in an 'A' matrix that complies with that used to generate the data. Specifically,
718 we repeated the three simulations above but only enabled 'D' matrix learning (i.e.,
719 the model was already equipped with the 'A' matrix of the generative process). In
720 each case, Bayesian model reduction now uniquely identified the correct reduced
721 model in 100% of cases.

722 These results demonstrate that – after a naïve model has expanded its hidden
723 state space to include likelihood mappings and initial state priors for a number of
724 concept categories – Bayesian model reduction can subsequently be used to
725 eliminate any parameter updates accrued for *one or two* redundant concept
726 categories. In practice, the 'A' and 'D' concentration parameters for these redundant
727 categories could be reset to their default pre-learning values – and could then be re-
728 engaged if new patterns of observations were repeatedly observed in the future.

729 However, when three concepts should have been removed, Bayesian model
730 reduction was much less reliable. This appeared to be due to imperfect 'A' matrix
731 learning, when occurring simultaneously with the (resultingly noisy) accumulation
732 of prior expectations over hidden states – as a fully precise 'A' matrix led to correct
733 model reduction in every case tested (i.e., suggesting that this type of model
734 reduction procedure could be improved by first allowing state-observation learning
735 to proceed alone, then subsequently allowing the model to learn prior expectations
736 over hidden states, which could then be used in model reduction).

737

738 **Can concept acquisition allow for generalization?**

739 One important ability afforded by concept learning is generalization. In a
740 final set of simulations, we asked if our model of concept knowledge could account
741 for generalization. To do so, we altered the model such that it no longer reported
742 what it saw, but instead had to answer a question that depended on generalization
743 from particular cross-category feature combinations. Specifically, the model was
744 shown particular animals and asked: “could this be seen from a distance?” The
745 answer to this question depended on both size and color, such that the answer was
746 yes only for colorful, large animals (i.e., assuming small or gray animals would blend
747 in with the sky or water and be missed).

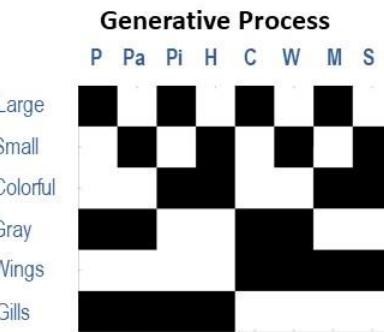
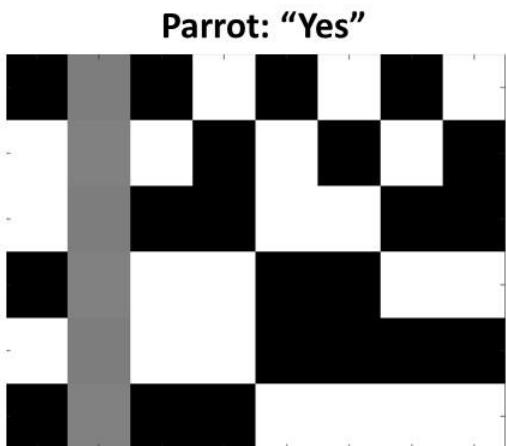
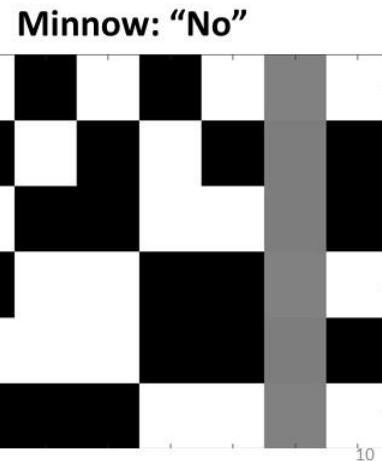
748 Crucially, this question was asked of animals that the model had not been
749 exposed to, such that it had to generalize from knowledge it already possessed (see
750 Figure 8). To simulate and test for this ability, we equipped the model’s ‘A’ matrix
751 with expert knowledge of 7 out of the 8 animals (i.e., as if these concepts had been
752 learned previously, as in our simulations above). The 8th animal was unknown to the
753 agent, in that its likelihood mapping was set such that the 8th animal state “slot”
754 predicted all observations equally (i.e., with a small amount of Gaussian noise, as
755 above). In one variant, the model possessed all concepts except for “parrot,” and it
756 knew that the answer to the question was yes for “whale shark” but not for any
757 other concept it knew. To simulate one-shot generalization, learning was disabled
758 and a parrot (which it had never seen before) was presented 20 times to see if it
759 would correctly generalize and answer “yes” in a reliable manner. In another
760 variant, the model had learned all concepts except “minnow” and was tested the
761 same way to see if it would reliably provide the correct “no” response.

762 Here, we observed that in both of these cases (as well as all others we tested)
763 the model generalized remarkably well. It answered “yes” and “no” correctly in
764 100% of trials. Thus, the agent did not simply possess concepts to explain things it
765 saw. It instead demonstrated generalizable knowledge and could correctly answer
766 questions when seeing a novel stimulus.

767

Generalization:

Could this novel animal
be seen from a distance?



768

769 Figure 8. Depiction of simulations in which we tested the agent’s ability to generalize from
770 prior knowledge and correctly answered questions about new animals to which she had not
771 previously been exposed. In the simulations, the generative model was modified so that the
772 agent instead chose to report either “yes” or “no” to the question: “could this animal be seen
773 from a distance?” Here, the answer was only yes if the animal was both large and colorful.
774 We observed that when the agent started out with no knowledge of parrots it still correctly
775 answered this question 100% of the time, based only on its knowledge of other animals.
776 Similarly, when it started with no knowledge of minnows, it also correctly reported “no”
777 100% of the time. Thus, the agent was able to generalize from prior knowledge with no
778 additional learning.

779

780

781 **Open questions and relation to other theoretical accounts of concept learning**

782

783 As our simulations show, this model allows for learning novel concepts (i.e.,
784 novel hidden states) based on assigning one or more ‘open slots’ that can be utilised
785 to learn novel feature combinations. In a simple example, we have shown that this
786 setup offers a potential computational mechanism for ‘model expansion’; i.e., the
787 process of expanding a state space to account for novel instances in perceptual
788 categorisation. We also illustrated how this framework can be combined with model
789 reduction, which may be a mechanism for ‘re-setting’ these open slots based on
790 recent experience.

791 This provides a first step towards understanding how agents flexibly expand
792 or reduce their model to adapt to ongoing experience. Yet, several open questions
793 remain, which have partly been addressed in previous work. For example, the
794 proposed framework resonates with previous similarity-based accounts of concept
795 learning. Previous work has proposed a computational framework for arbitrating
796 between assigning an observation to a previously formed memory or forming a
797 novel (hidden) state representation (S. J. Gershman, Monfils, Norman, & Niv, 2017),
798 based on evidence that this observation was sampled from an existing or novel
799 latent state. This process is conceptually similar to our application of Bayesian
800 model reduction over states. In the present framework, concept learning relies on a
801 process based on inference and learning. First, agents have to *infer* whether ongoing

802 observations can be sufficiently explained by existing conceptual knowledge – or
803 speak to the presence of a novel concept that motivates the use of an ‘open slot’.
804 This process is cast as inference on (hidden) states. Second, if the agent infers that
805 there is a novel concept that explains current observations, it has to *learn* about the
806 specific feature configuration of that concept (i.e., novel state). This process
807 highlights the interplay between inference, which allows for the acquisition of
808 knowledge on a relatively short timescale, and learning, which allows for knowledge
809 acquisition on a longer and more stable timescale.

810 Similar considerations apply to the degree of ‘similarity’ of observations. In
811 the framework proposed here, we have assumed that the feature space of
812 observations is already learned and fixed. However, these feature spaces have to be
813 learned in the first place, which implies learning the underlying components or
814 feature dimensions that define observations. This relates closely to notions of
815 structure learning as dimensionality reduction based on covariance between
816 observations, as prominently discussed in the context of spatial navigation (Behrens
817 et al., 2018; Dordek, Soudry, Meir, & Derdikman, 2016; Stachenfeld et al., 2016;
818 Whittington, Muller, Mark, Barry, & Behrens, 2018).

819 Another important issue is how such abstract conceptual knowledge is
820 formed across different contexts or tasks. For example, the abstract concept of a
821 ‘bird’ will be useful for learning about the fauna in a novel environment, but specific
822 types of birds – tied to a previous context – might be less useful in this regard. This
823 speaks to the formation of abstract, task-general knowledge that results from
824 training across different tasks, as recently discussed in the context of meta-

825 reinforcement learning (Ritter, Wang, Kurth-Nelson, & Botvinick, 2018; J X Wang et
826 al., 2016) with a putative link to the prefrontal cortex (Jane X. Wang et al., 2018). In
827 the present framework, such task-general knowledge would speak to the formation
828 of a hierarchical organisation that allows for the formation of conceptual knowledge
829 both within and across contexts. Also note that our proposed framework depends
830 on a pre-defined state space, including a pre-defined set of 'open slots' that allow for
831 novel context learning. The contribution of the present framework is to show how
832 these 'open slots' can be used for novel concept learning and be re-set based on
833 model reduction. It will be important to extend this approach towards learning the
834 structure of these models in the first place, including the appropriate number of
835 'open slots' (i.e., columns of the A-matrix) for learning in a particular content
836 domain and the relevant feature dimensions of observations (i.e., rows of A-matrix).
837 (Note: In addition to ontogenetic learning, in some cases structural priors regarding
838 the appropriate number of open slots [and relevant feature inputs for learning a
839 given state space of open slots] might also reflect inherited [i.e.,
840 genetically/developmentally pre-specified] patterns of structural neuronal
841 connectivity – based on what was adaptive within the evolutionary niche of a given
842 species – which could then be modified based on subsequent experience.)

843 This corresponds to a potentially powerful and simple application of
844 Bayesian model reduction, in which candidate models (i.e., reduced forms of a full
845 model) are readily identifiable based upon the similarity between the likelihoods
846 conditioned upon different hidden states. If two or more likelihoods are sufficiently
847 similar, the hidden states can be merged (by assigning the concentration

848 parameters accumulated during experience-dependent learning to one or other of
849 the hidden states). The ensuing change in model evidence scores the reduction in
850 complexity. If this reduction is greater than the loss of accuracy – in relation to
851 observations previously encountered – Bayesian model reduction will, effectively,
852 merge one state into another; thereby freeing up a state for the learning of new
853 concepts. We will demonstrate this form of structure learning via Bayesian model
854 reduction in future work.

855 We must also highlight here that cognitive science research on concept and
856 category learning has a rich empirical and theoretical history, including many
857 previously proposed formal models. While our primary focus has been on using
858 concept learning as an example of a more general approach by which state space
859 expansion and reduction can be implemented within future active inference
860 research, it is important to recognize this previous work and highlight where it
861 overlaps with the simulations we've presented. For example, our results suggesting
862 that first learning general categories facilitates the learning of more specific
863 categories relates to both classic and contemporary findings showing that children
864 more easily acquire “basic” and “superordinate” (e.g., dog, animal) concepts before
865 learning “subordinate” (e.g., chihuahua) concepts (Mervis & Rosch 1981; Murphy
866 2016), and that this may involve a type of “bootstrapping” process (Beck 2017).
867 Complementary work has also highlighted ways in which learning new words
868 during development can invoke a type of “placeholder” structure, which then
869 facilitates the acquisition of a novel concept – which bears some resemblance to our

870 notion of blank “concept slots” that can subsequently acquire meaningful semantics
871 (Gelman & Roberts 2017).

872 There is also a series of previously proposed formalisms within the literature
873 on category learning. For example, two previously proposed models – the “rational
874 model” (Anderson 1991; Sanborn et al. 2010) and the SUSTAIN model (Love et al.
875 2004) – both describe concept acquisition as involving cluster creation mechanisms
876 that depend on statistical regularities during learning and that use probabilistic
877 updating. The updating mechanisms within SUSTAIN are based on
878 surprise/prediction-error in the context of both supervised and unsupervised
879 learning. This model also down-weights previously created clusters when their
880 associated regularities cease to be observed in recent experience. Although not built
881 in intentionally, this type of mechanism emerges naturally within our model in two
882 ways. First, when a particular hidden state ceases to be inferred, concentration
883 parameters will accumulate to higher values for other hidden states in the **D** matrix,
884 reflecting relatively stronger prior expectations for hidden states that continue to be
885 inferred – which would favor future inference of those states over those absent from
886 recent experience. Second, if one pattern of observations were absent from recent
887 experience (while other patterns continued to be observed), concentration
888 parameters in the **A** matrix would also accumulate to higher values for patterns that
889 continued to be observed – resulting in relatively less confidence in the state-
890 outcome mapping for the less-observed pattern. (However, with respect to this
891 latter mechanism, so long as this mapping was sufficiently precise and distinct from
892 others [i.e., it had previously been observed many times farther in the past], this

893 would not be expected to prevent successful inference if this pattern were observed
894 again.)

895 It is also worth highlighting that, as our model is intended primarily as a
896 proof of concept and a demonstration of an available model expansion/reduction
897 approach that can be used within active inference research, it does not explicitly
898 incorporate some aspects – such as top-down attention – that are of clear
899 importance to cognitive learning processes, and that have been implemented in
900 previous models. For example, the adaptive resonance theory (ART) model
901 (Grossberg 1987) was designed to incorporate top-down attentional mechanisms
902 and feedback mechanisms to address a fundamental knowledge acquisition problem
903 – the temporal instability of previously learned information that can occur when a
904 system also remains sufficiently plastic to learn new (and potentially overlapping)
905 information. While our simulations do not explicitly incorporate these additional
906 complexities, there are clear analogues to the top-down and bottom-up feedback
907 exchange in ART within our model (e.g., the prediction and prediction-error
908 signaling within the neural process theory associated with active inference). ART
909 addresses the temporal instability problem primarily through mechanisms that
910 learn top-down expectancies that guide attention and match them with bottom-up
911 input patterns – which is quite similar to the prior expectations and likelihood
912 mappings used within active inference.

913 As an emergent property of the “first principles” approach in active
914 inference, our model therefore naturally incorporates the top-down effects in ART
915 simulations, which have been used to account for known context effects on

916 categorical perception within empirical studies (McClelland & Rumelhart 1981).
917 This is also consistent with more recent work on cross-categorization (Shafto et al.
918 2011), which has shown that human category learning is poorly accounted for by
919 both a purely bottom-up process (attempting to explain observed features) and a
920 purely top-down approach (involving attention-based feature selection) – and has
921 instead used simulations to show that a Bayesian joint inference model better fits
922 empirical data.

923 Other proposed Bayesian models of concept learning have also had
924 considerable success in predicting human generalization judgments (Goodman et al.
925 2008). The proof of concept model presented here has not been constructed to
926 explicitly compete with such models. It will be an important direction for future
927 work to explore the model's ability to scale up to handle more complex concept
928 learning problems. Here we simply highlight that the broadly Bayesian approach
929 within our model is shared with other models that have met with considerable
930 success – supporting the general plausibility of using this approach within active
931 inference research to model and predict the neural basis of these processes (see
932 below).

933

934 **Potential advantages of the approach**

935 The present approach may offer some potential theoretical and empirical
936 advantages in comparison to previous work. One theoretical advantage corresponds
937 to the parsimony of casting this type of structure learning as an instance of Bayesian
938 model selection. When integrated with other aspects of the active inference

939 framework, this entails that perceptual inference, active learning, and structure
940 learning are all expressions of the same principle; namely, the minimization of
941 variational free energy, over three distinct timescales. A second, related theoretical
942 advantage is that, when this type of structure learning is cast as Bayesian model
943 selection/reduction, there is no need to invoke additional procedures or schemes
944 (e.g., nonparametric Bayes or 'stick breaking' processes; (S. Gershman & Blei,
945 2012)). Instead, a generative model with the capacity to represent a sufficiently
946 complex world will automatically learn causal structure in a way that contextualizes
947 active inference within active learning, and active learning within structure
948 learning.

949 Based on the process theories summarized in Figure 2, the present model
950 would predict that the brain contains "reserve" cortical columns and synapses (most
951 likely within secondary sensory and association cortices) available to capture new
952 patterns in observed features. To our knowledge, no direct evidence supporting the
953 presence of unused cortical columns in the brain has been observed, although the
954 generation of new neurons (with new synaptic connections) is known to occur in
955 the hippocampus (Chancey et al., 2013). "Silent synapses" have also been observed
956 in the brain, which does appear consistent with this prediction; such synapses can
957 persist into adulthood and only become activated when new learning becomes
958 necessary (e.g., see (Chancey et al., 2013; Funahashi, Maruyama, Yoshimura, &
959 Komatsu, 2013; Kerchner & Nicoll, 2008)). One way in which this idea of "spare
960 capacity" or "reserve" cortical columns might be tested in the context of
961 neuroimaging would be to examine whether greater levels of neural activation –

962 within conceptual processing regions – are observed after learning additional
963 concepts, which would imply that additional populations of neurons become
964 capable of being activated. In principle, single-cell recording methods might also test
965 for the presence of neurons that remain at baseline firing rates during task
966 conditions, but then become sensitive to new stimuli within the relevant conceptual
967 domain after learning.

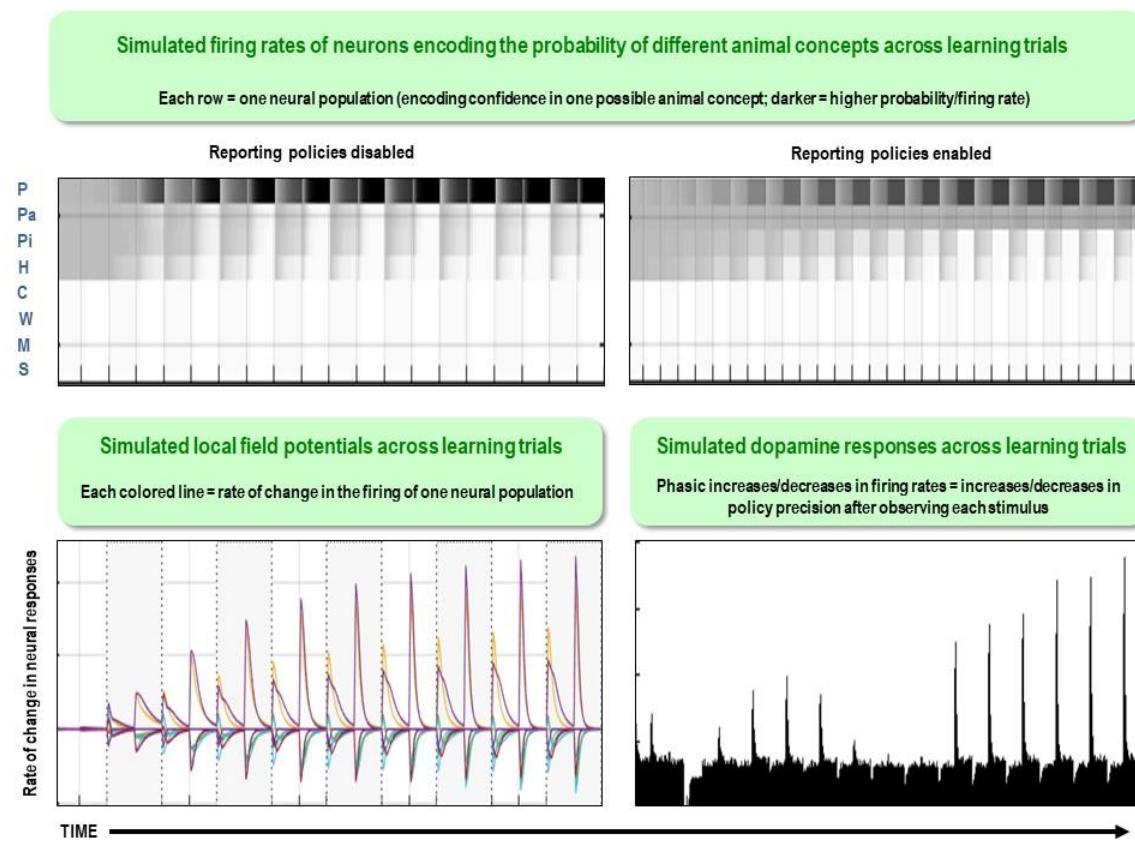
968 Figure 9 provides a concrete example of two specific empirical predictions
969 that follow from simulating the neural responses that should be observed within our
970 concept learning task under these process theories. In the left panel, we plot the
971 firing rates (darker = higher firing rate) and local field potentials (rate of change in
972 firing rates) associated with neural populations encoding the probability of the
973 presence of different animals that would be expected across a number of learning
974 trials. In this particular example, the agent began with knowledge of the basic
975 categories of 'bird' and 'fish,' but needed to learn the eight more specific animal
976 categories over 50 interleaved exposures to each animal (only 10 equally spaced
977 learning trials involving the presentation of a parakeet are shown for simplicity). As
978 can be seen, early in learning the firing rates and local field potentials remain at
979 baseline levels; in contrast, as learning progresses, these neural responses take a
980 characteristic shape with more and more positive changes in firing rate in the
981 populations representing the most probable animal, while other populations drop
982 further and further below baseline firing rates.

983 The right panel depicts a similar simulation, but where the agent was
984 allowed to self-report what it saw on each trial (for clarity of illustration, we here

985 show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling
986 policy selection allowed us to simulate expected phasic dopamine responses during
987 the task, corresponding to changes in the precision of the probability distribution
988 over policies after observing a stimulus on each trial. As can be seen, during early
989 trials the model predicts small firing rate increases when the agent is confident in its
990 ability to correctly report the more general animal category after observing a new
991 stimulus, and firing rate decreases when the agent becomes less confident in one
992 policy over others (i.e., as confidence in reporting the specific versus general
993 categories becomes more similar). Larger and larger phasic dopaminergic responses
994 are then expected as the agent becomes more and more confident in her ability to
995 correctly report the specific animal category upon observing a new stimulus. It will
996 be important for future neuroimaging studies to test these predictions in this type of
997 concept learning/stimulus categorization task.

998

999



1001 Figure 9. Simulated neuronal firing rates, local field potentials, and dopaminergic responses
1002 across learning trials based on the neural process theory associated with active inference
1003 that is summarized in Figure 2. The top left panel displays the predicted firing rates (darker
1004 = higher firing rate) of neural populations encoding the probability of each hidden state
1005 over 50 interleaved exposures to each animal (only 10 equally spaced learning trials
1006 involving the presentation of a parakeet are shown for simplicity) in the case where the
1007 agent starts out with knowledge of the basic animal categories but must learn the more
1008 specific categories. As can be seen, initially each of the four neural populations encoding
1009 possible bird categories (i.e., one row per possible category) have equally low firing rates
1010 (gray); as learning continues, firing rates increase for the 'parakeet' population and
1011 decrease for the others. The bottom left panel illustrates the predicted local field potentials
1012 (based on the rate of change in firing rates) that would be measured across the task. The top
1013 right panel displays the predicted firing rates of neural populations in an analogous
1014 simulation in which reporting policies were enabled (for clarity of illustration, we here
1015 show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling policy
1016 selection allowed us to simulate the phasic dopaminergic responses (reporting changes in
1017 the precision of the probability distribution over policies) predicted to occur across
1018 learning trials; here the agent first becomes confident in her ability to correctly report the
1019 general animal category upon observing a stimulus, then becomes unsure about reporting
1020 specific versus general categories, and then becomes confident in her ability to report the
1021 specific categories.

1022

1023

1024 **Discussion**

1025

1026 The Active Inference formulation of concept learning presented here
1027 demonstrates a simple way in which a generative model can acquire both basic and
1028 highly granular knowledge of the hidden states/causes in its environment. In
1029 comparison to previous theoretical work using active inference (e.g., (M. Mirza,
1030 Adams, Mathys, & Friston, 2016; Parr & Friston, 2017; Schwartenbeck, FitzGerald,
1031 Mathys, Dolan, & Friston, 2015)), the novel aspect of our model was that it was
1032 further equipped with “reserve” hidden states initially devoid of content (i.e., these
1033 states started out with uninformative likelihood mappings that predicted all
1034 outcomes with roughly equal probability). Over multiple exposures to different
1035 stimuli, these hidden states came to acquire conceptual content that captured
1036 distinct statistical patterns in the features of those stimuli. This was accomplished
1037 via the model’s ability to infer when its currently learned hidden states were unable
1038 to account for a new observation, leading an unused hidden state column to be
1039 engaged that could acquire a new state-observation mapping.
1040 Crucially, the model was able to start with some concepts and then expand its
1041 representational repertoire to learn others – but would only do so when a new
1042 stimulus was observed. This is conceptually similar to nonparametric Bayesian
1043 learning models, such as the “Chinese Room” process and the “Indian Buffet”
1044 process, that can also infer the need to invoke additional hidden causes with
1045 additional data (S. Gershman & Blei, 2012). These statistical learning models do not

1046 need to build in additional “category slots” for learning as in our model and can, in
1047 principle, entertain infinite state spaces. On the other hand, it is less clear at present
1048 how the brain could implement this type of learning. An advantage of our model is
1049 that learning depends solely on biologically plausible Hebbian mechanisms (for a
1050 possible neural implementation of model reduction, see (KJ Friston, Lin, et al., 2017;
1051 Hobson & Friston, 2012; Hobson et al., 2014)).

1052 The distinction between nonparametric Bayesian learning and the current
1053 active learning scheme may be important from a neurodevelopmental perspective
1054 as well. In brief, structure learning in this paper starts with a generative model with
1055 a type of structural prior reflecting a specific amount of built in ‘spare capacity’,
1056 where uncommitted or naive conceptual ‘slots’ are used to explain the sensorium,
1057 during optimization of free energy or model evidence. In contrast, nonparametric
1058 Bayesian approaches add new slots when appropriate. One might imagine that
1059 neonates are equipped with brains with ‘spare capacity’ (Baker & Tenenbaum,
1060 2014) that is progressively leveraged during neurodevelopment, much in the spirit
1061 of curriculum learning (Al-Muhaideb & Menai, 2011). This suggestion appears
1062 consistent with previous work demonstrating varying levels of category learning
1063 ability across the lifespan, which has previously been formally modeled as an
1064 individual difference in values of a parameter constraining the ability to form new
1065 clusters in response to surprising events (Love & Gureckis 2007) – which bears
1066 similarity to the idea of capacity limitations arising from finite numbers of concept
1067 slots in our model.

1068 In this sense, the current approach to structure learning may be better
1069 considered as active learning with generative models that are equipped with a large
1070 number of available hidden states capable of acquiring content, which are then
1071 judiciously reduced/reset – via a process of Bayesian model reduction.
1072 Furthermore, as in the acquisition of expertise, our model can also begin with broad
1073 category knowledge and then subsequently learn finer-grained within-category
1074 distinctions, which has received less attention from the perspective of the
1075 aforementioned models. Reporting broad versus specific category recognition is
1076 also a distinct aspect of our model – driven by differing levels of uncertainty and an
1077 expectation (preference) not to incorrectly report a more specific category.

1078 Our simulation results also demonstrated that, when combined with
1079 Bayesian model reduction, the model can guard against learning too many
1080 categories during model expansion – often retaining only the number of hidden
1081 causes actually present in its environment – and to keep “reserve” hidden states for
1082 learning about new causes if or when they appear. With perfect “expert” knowledge
1083 of the possible animal types it could observe (i.e., fully precise likelihood mappings
1084 matching the generative process) this was true in general. Interestingly, however,
1085 with an imperfectly learned likelihood mapping, model reduction only succeeded
1086 when the agent had to remove either 1 or 2 concepts from her model; when 3
1087 potential categories needed to be removed, the correct reduced model was
1088 identified less than half the time. It would be interesting to empirically test whether
1089 similar learning difficulties are present in humans.

1090 Neurobiological theories associated with Active Inference also make
1091 predictions about the neural basis of this process (Hobson & Friston, 2012; Hobson
1092 et al., 2014). Specifically, during periods of rest (e.g., daydreaming) or sleep, it is
1093 suggested that, because sensory information is down-weighted, learning is driven
1094 mainly by internal model simulations (e.g., as appears to happen in the phenomenon
1095 of hippocampal replay; (Feld & Born, 2017; Lewis, Knoblich, & Poe, 2018; Pfeiffer &
1096 Foster, 2013)); this type of learning can accomplish a model reduction process in
1097 which redundant model parameters are identified and removed to prevent model
1098 over-fitting and promote selection of the most parsimonious model that can
1099 successfully account for previous observations. This is consistent with work
1100 suggesting that, during sleep, many (but not all) synaptic strength increases
1101 acquired in the previous day are attenuated (Tononi & Cirelli, 2014). The role of
1102 sleep and daydreaming in keeping “reserve” representational resources available
1103 for model expansion could therefore be especially important to concept learning –
1104 consistent with the known role of sleep in learning and memory (Ackermann &
1105 Rasch, 2014; Feld & Born, 2017; Perogamvros & Schwartz, 2012; Stickgold, Hobson,
1106 Fosse, & Fosse, 2001; Walker & Stickgold, 2010).

1107 In addition, an emergent feature of our model was its ability to generalize
1108 prior knowledge to new stimuli to which it had not previously been exposed. In fact,
1109 the model could correctly generalize upon a single exposure to a new stimulus – a
1110 type of “one-shot learning” capacity qualitatively similar to that observed in humans
1111 (Landau, Smith, & Jones, 1988; E. Markman, 1989; Xu & Tenenbaum, 2007b). While
1112 it should be kept in mind that the example we have provided is very simple, it

1113 demonstrates the potential usefulness of this novel approach. Some other
1114 prominent approaches in machine-learning (e.g., deep learning) tend to require
1115 larger amounts of data (Geman et al., 1992; Hinton et al., 2012; LeCun et al., 2015;
1116 Lecun et al., 1998; Mnih et al., 2015), and do not learn the rich structure that allows
1117 humans to use concept knowledge in a wide variety of generalizable functions
1118 (Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B.
1119 Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams &
1120 Lombrozo, 2010). Other recent hierarchical Bayesian approaches in cognitive
1121 science have made progress in this domain, however, by modeling concepts as types
1122 of probabilistic programs (Ghahramani, 2015; Goodman, Tenenbaum, &
1123 Gerstenberg, 2015; Lake et al., 2015).

1124 It is important to note that this model is deliberately simple and is meant
1125 only to represent a proof of principle that categorical inference and conceptual
1126 knowledge acquisition can be modeled within this particular neurocomputational
1127 framework, and to present this approach as a potentially useful tool in future active
1128 inference research. We chose a particular set of feature combinations to illustrate
1129 this, but it remains to be demonstrated that learning in this model would be equally
1130 successful with a larger feature space and set of learnable hidden causes. Due to
1131 limited scope, we have also not thoroughly addressed all other overlapping lines of
1132 research. For example, work on exemplar models of concepts has also led to other
1133 computational approaches. As one example, the EBRW model (Nosofsky & Palmeri
1134 1997) has demonstrated ways of linking exemplar learning to drift diffusion models.
1135 Another model within this line of research is the ALCOVE model (Nosofsky et al.

1136 1994) – an error-driven connectionist model of exemplar-based category learning
1137 that employs selective attention and learns attentional weights (this model also
1138 built on earlier work; see (Nosofsky 2011)). Yet another connectionist model with
1139 some conceptual overlap to our own is the DIVA model, which learns categories by
1140 recoding observations as task-constrained principle components and uses model fit
1141 for subsequent recognition (Kurtz 2007). It will be important in future work to
1142 examine the strengths and limitations of a scaled-up version of our approach in
1143 relation to these other models.

1144 Finally, another topic for future work would be the expansion of this type of
1145 model to context-specific learning (e.g., with an additional hidden state factor for
1146 encoding distinct contexts). In such cases, regularities in co-occurring features differ
1147 in different contexts and other cues to context may not be directly observable (e.g.,
1148 the same species of bird could be a slightly different color or size in different parts
1149 of the world that otherwise appear similar) – creating difficulties in inferring when
1150 to update previously learned associations and when to instead acquire competing
1151 associations assigned to new contexts. At present, it is not clear whether the
1152 approach we have illustrated would be successful at performing this additional
1153 function, although the process of inferring the presence of a new hidden state level
1154 in a second hidden state factor encoding context would be similar to what we have
1155 shown within a single state factor (for related work on context-dependent
1156 contingency learning, see (S. J. Gershman et al., 2017; S. Gershman, Jones, Norman,
1157 Monfils, & Niv, 2013)). Another point worth highlighting is that we have made
1158 particular choices with regard to various model parameters and the number of

1159 observations provided during learning. Further investigations of the space of these
1160 possible parameter settings will be important. With this in mind, however, our
1161 current modelling results could offer additional benefits. For example, the model's
1162 simplicity could be amenable to empirical studies of saccadic eye movements
1163 toward specific features during novel category learning (e.g. following the approach
1164 of (M. B. Mirza, Adams, Mathys, & Friston, 2018)). This approach could also be
1165 combined with measures of neural activity in humans or other animals, allowing
1166 more direct tests of the neural predictions highlighted above. In addition, the
1167 introduction of exploratory, novelty-seeking, actions could be used to reduce the
1168 number of samples required for learning, with agents selecting those data that are
1169 most relevant.

1170 In conclusion, the Active Inference scheme we have described illustrates
1171 feature integration in the service of conceptual inference: it can successfully
1172 simulate simple forms of concept acquisition and concept differentiation (i.e.
1173 increasing granularity), and it spontaneously affords one-shot generalization.
1174 Finally, it speaks to empirical work in which behavioral tasks could be designed to
1175 fit such models, which would allow investigation of individual differences in concept
1176 learning and its neural basis. For example, such a model can simulate (neuronal)
1177 belief updating to predict neuroimaging responses as we illustrated above; i.e., to
1178 identify the neural networks engaged in evidence accumulation and learning
1179 (Schwartenbeck et al., 2015). In principle, the model parameters (e.g., 'A' matrix
1180 precision) can also be fit to behavioral choices and reaction times – and thereby
1181 phenotype subjects in terms of the priors under which they infer and learn

1182 (Schwartenbeck & Friston, 2016). This approach could therefore advance
1183 neurocomputational approaches to concept learning in several directions.

1184

1185 **Software note**

1186 Although the generative model – specified by the various matrices described in this
1187 paper – changes from application to application, the belief updates are generic and
1188 can be implemented using standard routines (here **spm_MDP_VB_X.m**). These
1189 routines are available as Matlab code in the DEM toolbox of the most recent version
1190 of SPM academic software: <http://www.fil.ion.ucl.ac.uk/spm/>. The simulations in
1191 this paper can be reproduced (and customized) via running the Matlab code
1192 included here in supplementary material (**Concepts_model.m**).

1193

1194

1195 **References**

1196

1197 Ackermann, S., & Rasch, B. (2014). Differential Effects of Non-REM and REM Sleep
1198 on Memory Consolidation? *Current Neurology and Neuroscience Reports*, 14(2),
1199 430. <https://doi.org/10.1007/s11910-013-0430-8>

1200 Al-Muhaiseb, S., & Menai, M. E. B. (2011). Evolutionary computation approaches to
1201 the Curriculum Sequencing problem. *Natural Computing*, 10(2), 891–920.

1202 <https://doi.org/10.1007/s11047-010-9246-5>

1203 Anderson, J. R. (1991). The Adaptive Nature of Human Categorization. *Psychological
1204 Review*, 98(3), 409–429. <https://doi.org/10.1037/0033-295X.98.3.409>

- 1205 Baker, C., & Tenenbaum, J. (2014). Modeling human plan recognition using Bayesian
1206 theory of mind. In G. Sukthankar, C. Geib, H. Dui, D. Pynadath, & R. Goldman
1207 (Eds.), *Plan, activity, and intent recognition* (pp. 177–204). Boston: Morgan
1208 Kaufmann.
- 1209 Barsalou, L. W. (1983). Ad hoc categories. *Memory & Cognition*, 11(3), 211–227.
1210 <https://doi.org/10.3758/bf03196968>
- 1211 Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld,
1212 K. L., & Kurth-Nelson, Z. (2018). What Is a Cognitive Map? Organizing
1213 Knowledge for Flexible Behavior. *Neuron*, 100(2), 490–509.
1214 <https://doi.org/10.1016/J.NEURON.2018.10.002>
- 1215 Biederman, I. (1987). Recognition-by-components: a theory of human image
1216 understanding. *Psychological Review*, 94(2), 115–147.
1217 <https://doi.org/10.1037/0033-295X.94.2.115>
- 1218 Botvinick, M. M., Niv, Y., & Barto, A. C. (2009). Hierarchically organized behavior and
1219 its neural foundations: A reinforcement learning perspective. *Cognition*, 113(3),
1220 262–280. <https://doi.org/10.1016/J.COGNITION.2008.08.011>
- 1221 Box, G. E., Hunter, J. S., & Hunter, W. G. (2005). *Statistics for experimenters. Wiley
1222 Series in Probability and Statistics*. Hoboken, NJ.: Wiley.
- 1223 Brown, T. H., Zhao, Y., & Leung, V. (2010). Hebbian plasticity. In *Encyclopedia of
1224 Neuroscience* (pp. 1049–1056). <https://doi.org/10.1016/B978-008045046-9.00796-8>
- 1226 Chancey, J., Adlaf, E., Sapp, M., Pugh, P., Wadiche, J., & Overstreet-Wadiche, L. (2013).
1227 GABA depolarization is required for experience-dependent synapse unsilencing

- 1228 in adult-born neurons. *The Journal of Neuroscience : The Official Journal of the*
1229 *Society for Neuroscience*, 33(15), 6614–6622.
- 1230 <https://doi.org/10.1523/JNEUROSCI.0781-13.2013>
- 1231 Conant, C., & Ashbey, W. (1970). Every good regulator of a system must be a model
1232 of that system. *International Journal of Systems Science*, 1(2), 89–97.
- 1233 <https://doi.org/10.1080/00207727008920220>
- 1234 Cornish, N. J., & Littenberg, T. B. (2007). Tests of Bayesian model selection
1235 techniques for gravitational wave astronomy. *Physical Review D*, 76(8), 083006.
- 1236 <https://doi.org/10.1103/PhysRevD.76.083006>
- 1237 Dordek, Y., Soudry, D., Meir, R., & Derdikman, D. (2016). Extracting grid cell
1238 characteristics from place cell inputs using non-negative principal component
1239 analysis. *eLife*, 5(MARCH2016), 1–36. <https://doi.org/10.7554/eLife.10094>
- 1240 Feld, G., & Born, J. (2017). Sculpting memory during sleep: concurrent consolidation
1241 and forgetting. *Current Opinion in Neurobiology*, 44, 20–27.
- 1242 <https://doi.org/10.1016/J.CONB.2017.02.012>
- 1243 Feldman, J. (1997). The Structure of Perceptual Categories. *Journal of Mathematical*
1244 *Psychology*, 41(2), 145–170. <https://doi.org/10.1006/jmps.1997.1154>
- 1245 Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B. C. M., ...
- 1246 Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group
1247 (DCM) studies. *NeuroImage*, 128, 413–431.
- 1248 <https://doi.org/10.1016/J.NEUROIMAGE.2015.11.015>
- 1249 Friston, Karl, Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007).
- 1250 Variational free energy and the Laplace approximation. *NeuroImage*, 34(1),

- 1251 220–234. <https://doi.org/10.1016/J.NEUROIMAGE.2006.08.035>
- 1252 Friston, Karl, Parr, T., & Zeidman, P. (2018). Bayesian model reduction. Retrieved
1253 from <http://arxiv.org/abs/1805.07092>
- 1254 Friston, Karl, & Penny, W. (2011). Post hoc Bayesian model selection. *NeuroImage*,
1255 56(4), 2089–2099. <https://doi.org/10.1016/J.NEUROIMAGE.2011.03.062>
- 1256 Friston, KJ. (2010). The free-energy principle: a unified brain theory? *Nature
Reviews. Neuroscience*, 11(2), 127–138. <https://doi.org/10.1038/nrn2787>
- 1258 Friston, KJ, FitzGerald, T., Rigoli, F., Schwartenbeck, P., O Doherty, J., & Pezzulo, G.
- 1259 (2016). Active inference and learning. *Neuroscience and Biobehavioral Reviews*,
1260 68, 862–879. <https://doi.org/10.1016/j.neubiorev.2016.06.022>
- 1261 Friston, KJ, FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active
1262 Inference: A Process Theory. *Neural Computation*, 29(1), 1–49.
1263 https://doi.org/10.1162/NECO_a_00912
- 1264 Friston, KJ, Lin, M., Frith, C., Pezzulo, G., Hobson, J., & Ondobaka, S. (2017). Active
1265 Inference, Curiosity and Insight. *Neural Computation*, 29(10), 2633–2683.
1266 https://doi.org/10.1162/neco_a_00999
- 1267 Friston, KJ, Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation
1268 and active inference. *Network Neuroscience*, 1(4), 381–414.
1269 https://doi.org/10.1162/NETN_a_00018
- 1270 Funahashi, R., Maruyama, T., Yoshimura, Y., & Komatsu, Y. (2013). Silent synapses
1271 persist into adulthood in layer 2/3 pyramidal neurons of visual cortex in dark-
1272 reared mice. *Journal of Neurophysiology*, 109(8), 2064–2076.
- 1273 <https://doi.org/10.1152/jn.00912.2012>

- 1274 Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Networks and the
1275 Bias/Variance Dilemma. *Neural Computation*, 4(1), 1–58.
1276 <https://doi.org/10.1162/neco.1992.4.1.1>
- 1277 Gershman, S., & Blei, D. (2012). A tutorial on Bayesian nonparametric models.
1278 *Journal of Mathematical Psychology*, 56(1), 1–12.
1279 <https://doi.org/10.1016/J.JMP.2011.08.004>
- 1280 Gershman, S. J., Monfils, M.-H., Norman, K. A., & Niv, Y. (2017). The computational
1281 nature of memory modification. *eLife*, 6. <https://doi.org/10.7554/eLife.23763>
- 1282 Gershman, S. J., & Niv, Y. (2010). Learning latent structure: carving nature at its
1283 joints. *Current Opinion in Neurobiology*, 20(2), 251–256.
1284 <https://doi.org/10.1016/J.CONB.2010.02.008>
- 1285 Gershman, S., Jones, C., Norman, K., Monfils, M., & Niv, Y. (2013). Gradual extinction
1286 prevents the return of fear: implications for the discovery of state. *Frontiers in
1287 Behavioral Neuroscience*, 7, 164. <https://doi.org/10.3389/fnbeh.2013.00164>
- 1288 Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence.
1289 *Nature*, 521(7553), 452–459. <https://doi.org/10.1038/nature14541>
- 1290 Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). *Concepts: New
1291 Directions*. (E. Margolis & S. Laurence, Eds.). Cambridge, MA: MIT Press.
- 1292 Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., ... Kingsbury, B. (2012).
1293 Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
1294 Shared Views of Four Research Groups. *IEEE Signal Processing Magazine*, 29(6),
1295 82–97. <https://doi.org/10.1109/MSP.2012.2205597>
- 1296 Hobson, J., & Friston, K. (2012). Waking and dreaming consciousness:

- 1297 neurobiological and functional considerations. *Progress in Neurobiology*, 98(1),
1298 82–98. <https://doi.org/10.1016/j.pneurobio.2012.05.003>
- 1299 Hobson, J., Hong, C.-H., & Friston, K. (2014). Virtual reality and consciousness
1300 inference in dreaming. *Frontiers in Psychology*, 5, 1133.
1301 <https://doi.org/10.3389/fpsyg.2014.01133>
- 1302 Jern, A., & Kemp, C. (2013). A probabilistic account of exemplar and category
1303 generation. *Cognitive Psychology*, 66(1), 85–125.
1304 <https://doi.org/10.1016/j.cogpsych.2012.09.003>
- 1305 Kemp, C., Perfors, A., & Tenenbaum, J. (2007). Learning overhypotheses with
1306 hierarchical Bayesian models. *Developmental Science*, 10(3), 307–321.
1307 <https://doi.org/10.1111/j.1467-7687.2007.00585.x>
- 1308 Kerchner, G., & Nicoll, R. (2008). Silent synapses and the emergence of a
1309 postsynaptic mechanism for LTP. *Nature Reviews. Neuroscience*, 9(11), 813–
1310 825. <https://doi.org/10.1038/nrn2501>
- 1311 Lake, B. B. M., Salakhutdinov, R., & Tenenbaum, J. J. B. (2015). Human-level concept
1312 learning through probabilistic program induction. *Science (New York, N.Y.)*,
1313 350(6266), 1332–1338. <https://doi.org/10.1126/science.aab3050>
- 1314 Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical
1315 learning. *Cognitive Development*, 3(3), 299–321.
1316 [https://doi.org/10.1016/0885-2014\(88\)90014-7](https://doi.org/10.1016/0885-2014(88)90014-7)
- 1317 LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, 521(7553), 436–
1318 444. <https://doi.org/10.1038/nature14539>
- 1319 Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

- 1320 applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278–2324.
- 1321 <https://doi.org/10.1109/5.726791>
- 1322 Lewis, P., Knoblich, G., & Poe, G. (2018). How Memory Replay in Sleep Boosts
- 1323 Creative Problem-Solving. *Trends in Cognitive Sciences*, 22(6), 491–503.
- 1324 <https://doi.org/10.1016/j.tics.2018.03.009>
- 1325 Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: a network model of
- 1326 category learning. *Psychological Review*, 111(2), 309–332.
- 1327 <https://doi.org/10.1037/0033-295X.111.2.309>
- 1328 MacKay, D. J. C., & Peto, L. C. B. (1995). A hierarchical Dirichlet language model.
- 1329 *Natural Language Engineering*, 1(03), 289–308.
- 1330 <https://doi.org/10.1017/S1351324900000218>
- 1331 Markman, A. B., & Makin, V. S. (1998). Referential communication and category
- 1332 acquisition. *Journal of Experimental Psychology. General*, 127(4), 331–354.
- 1333 <https://doi.org/10.1037/0096-3445.127.4.331>
- 1334 Markman, E. (1989). *Categorization and Naming in Children*. Cambridge, MA: MIT
- 1335 Press.
- 1336 McKay, R., & Dennett, D. (2009). The evolution of disbelief. *Behavioral and Brain*
- 1337 *Sciences*, 32(06), 493. <https://doi.org/10.1017/S0140525X09990975>
- 1338 McNicholas, P. (2016). Model-Based Clustering. *Journal of Classification*, 33(3), 331–
- 1339 373. <https://doi.org/10.1007/s00357-016-9211-9>
- 1340 Mirza, M., Adams, R., Mathys, C., & Friston, K. (2016). Scene Construction, Visual
- 1341 Foraging, and Active Inference. *Frontiers in Computational Neuroscience*, 10, 56.
- 1342 <https://doi.org/10.3389/fncom.2016.00056>

- 1343 Mirza, M. B., Adams, R. A., Mathys, C., & Friston, K. J. (2018). Human visual
1344 exploration reduces uncertainty about the sensed world. *PLOS ONE*, 13(1),
1345 e0190429. <https://doi.org/10.1371/journal.pone.0190429>
- 1346 Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ...
1347 Hassabis, D. (2015). Human-level control through deep reinforcement learning.
1348 *Nature*, 518(7540), 529–533. <https://doi.org/10.1038/nature14236>
- 1349 Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a
1350 theory of concepts. *Cognition*, 9(1), 35–58. [https://doi.org/10.1016/0010-0277\(81\)90013-5](https://doi.org/10.1016/0010-0277(81)90013-5)
- 1351 Parr, T., & Friston, K. (2017). Working memory, attention, and salience in active
1352 inference. *Scientific Reports*, 7(1), 14678. <https://doi.org/10.1038/s41598-017-15249-0>
- 1353 Parr, T., & Friston, K. (2018). The Anatomy of Inference: Generative Models and
1354 Brain Structure. *Frontiers in Computational Neuroscience*, 12, 90.
1355 <https://doi.org/10.3389/fncom.2018.00090>
- 1356 Parr, T., Markovic, D., Kiebel, S., & Friston, K. (2019). Neuronal message passing
1357 using Mean-field, Bethe, and Marginal approximations. *Scientific Reports*, 9(1),
1358 1889. <https://doi.org/10.1038/s41598-018-38246-3>
- 1359 Perfors, A., Tenenbaum, J., Griffiths, T., & Xu, F. (2011). A tutorial introduction to
1360 Bayesian models of cognitive development. *Cognition*, 120(3), 302–321.
1361 <https://doi.org/10.1016/j.cognition.2010.11.015>
- 1362 Perogamvros, L., & Schwartz, S. (2012). The roles of the reward system in sleep and
1363 dreaming. *Neuroscience & Biobehavioral Reviews*, 36(8), 1934–1951.

- 1366 <https://doi.org/10.1016/J.NEUBIOREV.2012.05.010>
- 1367 Pfeiffer, B., & Foster, D. (2013). Hippocampal place-cell sequences depict future
- 1368 paths to remembered goals. *Nature*, 497(7447), 74–79.
- 1369 <https://doi.org/10.1038/nature12112>
- 1370 Ritter, S., Wang, J., Kurth-Nelson, Z., & Botvinick, M. (2018). Episodic Control as
- 1371 Meta-Reinforcement Learning. *BioRxiv*, 360537.
- 1372 <https://doi.org/10.1101/360537>
- 1373 Salakhutdinov, R., Tenenbaum, J. B., & Torralba, A. (2013). Learning with
- 1374 hierarchical-deep models. *IEEE Transactions on Pattern Analysis and Machine*
- 1375 *Intelligence*, 35(8), 1958–1971. <https://doi.org/10.1109/TPAMI.2012.269>
- 1376 Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational Approximations to
- 1377 Rational Models: Alternative Algorithms for Category Learning. *Psychological*
- 1378 *Review*, 117(4), 1144–1167. <https://doi.org/10.1037/a0020511>
- 1379 Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity,
- 1380 creativity, music, and the fine arts. *Connection Science*, 18(2), 173–187.
- 1381 <https://doi.org/10.1080/09540090600768658>
- 1382 Schwartenbeck, P., FitzGerald, T., Mathys, C., Dolan, R., & Friston, K. (2015). The
- 1383 Dopaminergic Midbrain Encodes the Expected Certainty about Desired
- 1384 Outcomes. *Cerebral Cortex*, 25(10), 3434–3445.
- 1385 <https://doi.org/10.1093/cercor/bhu159>
- 1386 Schwartenbeck, P., & Friston, K. (2016). Computational Phenotyping in Psychiatry: A
- 1387 Worked Example. *ENeuro*, 3(4), ENEURO.0049-0016.2016.
- 1388 <https://doi.org/10.1523/ENEURO.0049-16.2016>

- 1389 Sharot, T. (2011). The optimism bias. *Current Biology*, 21(23), R941–R945.
- 1390 <https://doi.org/10.1016/J.CUB.2011.10.030>
- 1391 Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2016). The hippocampus as a
- 1392 predictive map.
- 1393 Stickgold, R., Hobson, J., Fosse, R., & Fosse, M. (2001). Sleep, learning, and dreams:
- 1394 off-line memory reprocessing. *Science*, 294(5544), 1052–1057.
- 1395 <https://doi.org/10.1126/science.1063530>
- 1396 Tervo, D. G. R., Tenenbaum, J. B., & Gershman, S. J. (2016). Toward the neural
- 1397 implementation of structure learning. *Current Opinion in Neurobiology*, 37, 99–
- 1398 105. <https://doi.org/10.1016/J.CONB.2016.01.014>
- 1399 Tononi, G., & Cirelli, C. (2014). Sleep and the Price of Plasticity: From Synaptic and
- 1400 Cellular Homeostasis to Memory Consolidation and Integration. *Neuron*, 81(1),
- 1401 12–34. <https://doi.org/10.1016/J.NEURON.2013.12.025>
- 1402 Walker, M., & Stickgold, R. (2010). Overnight alchemy: sleep-dependent memory
- 1403 evolution. *Nature Reviews. Neuroscience*, 11(3), 218; author reply 218.
- 1404 <https://doi.org/10.1038/nrn2762-c1>
- 1405 Wang, J X, Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ...
- 1406 Botvinick, M. (2016). Learning to reinforcement learn. *ArXiv:1611.05763*.
- 1407 Wang, Jane X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., ...
- 1408 Botvinick, M. (2018). Prefrontal cortex as a meta-reinforcement learning
- 1409 system. *Nature Neuroscience*, 21(6), 860–868.
- 1410 <https://doi.org/10.1038/s41593-018-0147-8>
- 1411 Ward, T. B. (1994). Structured Imagination: the Role of Category Structure in

- 1412 Exemplar Generation. *Cognitive Psychology*, 27(1), 1–40.
- 1413 <https://doi.org/10.1006/cogp.1994.1010>
- 1414 Whittington, J. C. R., Muller, T. H., Mark, S., Barry, C., & Behrens, T. E. J. (2018).
- 1415 Generalisation of structural knowledge in the hippocampal-entorhinal system.
- 1416 Williams, J. J., & Lombrozo, T. (2010). The role of explanation in discovery and
- 1417 generalization: evidence from category learning. *Cognitive Science*, 34(5), 776–
- 1418 806. <https://doi.org/10.1111/j.1551-6709.2010.01113.x>
- 1419 Wipf, D. P., & Rao, B. D. (2007). An Empirical Bayesian Strategy for Solving the
- 1420 Simultaneous Sparse Approximation Problem. *IEEE Transactions on Signal*
- 1421 *Processing*, 55(7), 3704–3716. <https://doi.org/10.1109/TSP.2007.894265>
- 1422 Xu, F., & Tenenbaum, J. (2007a). Sensitivity to sampling in Bayesian word learning.
- 1423 *Developmental Science*, 10(3), 288–297. <https://doi.org/10.1111/j.1467->
- 1424 7687.2007.00590.x
- 1425 Xu, F., & Tenenbaum, J. (2007b). Word Learning as Bayesian Inference. *Psychological*
- 1426 *Review*, 114(2), 245–272.
- 1427
- 1428