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Abstract

Recent developments in machine learning implemented dimensionality reduction and clustering
tools to classify the cellular composition of patient-derived tissue in multi-dimensional, single
cell studies. Current approaches, however, require prior knowledge of either categorical clinical
outcomes or cell type identities. These algorithms are not well suited for application in tumor
biology, where clinical outcomes can be continuous and censored and cell identities may be
novel and plastic. Risk Assessment Population IDentification (RAPID) is an unsupervised,
machine learning algorithm that identifies single cell phenotypes and assesses clinical risk
stratification as a continuous variable. Single cell mass cytometry evaluated 34 different
phospho-proteins, transcription factors, and cell identity proteins in tumor tissue resected from
patients bearing IDH wild-type glioblastomas. RAPID identified and characterized multiple
biologically distinct tumor cell subsets that independently and continuously stratified patient
outcome. RAPID is broadly applicable for single cell studies where atypical cancer and immune
cells may drive disease biology and treatment responses.

Introduction

Malignant cells in human tumors are remarkably diverse in their functional cell identities
and this intra-tumor cellular heterogeneity is closely linked to patient outcomes 2. However,
bench and computational tools that have driven our understanding of altered phospho-protein
signaling networks in cancer have historically been under-used in solid tumor research due to a
lack of technology and samples. In blood cancers, single cell profiles of signaling networks have
revealed cancer cells present at diagnosis whose abundance is closely linked to subsequent
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clinical outcomes, including patient survival *’. This single cell snapshot proteomics approach
focuses on a select set of key proteins that govern cell functional identity and can robustly
measure targets, such as phospho-proteins, that are inaccessible to sequencing modalities.
Suspension mass cytometry is a valuable platform for solid tumor analysis, as it is relatively low
cost, well-powered to detect rare and novel cell types, and able to sensitively measure
phosphorylated transcription factors and other mechanistic determinants of cancer cell identity ®
9

Quantitative analysis of single cell cytometry data has recently moved from an era of
human-driven identification of cell types using guide markers (expert gating) and embraced
machine learning tools that can automatically reveal and characterize novel and abnormal cells
1043 In building an automated cytometry workflow, algorithm developers need to decide
whether users will supervise the discovery of cell subsets using clinical knowledge. CITRUS is
an automated cell subset discovery tool that uses prior knowledge of categorical labels, such as
“disease” or “healthy”, to identify cell clusters associated with those labels **. CellCNN is
another supervised analysis tool that requires prospective assignment of samples to categories
and uses convolutional neural networks to learn a filter that predicts whether new cells match
one of the groups *>. Other cell subset discovery approaches do not supervise the analysis with
knowledge of clinical outcomes but do use prior biological knowledge to identify cell
subpopulations and then test whether differential outcomes are associated these cell subsets > ®
" In mass cytometry analysis, another common approach is to use tools for automated,
unsupervised cell discovery and characterization, including SPADE ', t-SNE 8, UMAP *°,
FlowSOM %, and Marker Enrichment Modeling (MEM 2Y). These tools help explore the
structure of multidimensional data and reveal subpopulations that can be overlooked in expert
manual analysis > 21322 However, while it is possible to quickly review enriched features of
the groups 2, it would also be powerful to test whether groups with similar phenotypes share an
association with differential risk of death . RAPID, a fully unsupervised workflow presented
here, implements t-SNE, FlowSOM, and MEM analysis of single cell mass cytometry data to
reveal risk stratifying cell populations %,

Mass cytometry has recently been developed for human solid tumors * & 24 23
including glioblastoma, the most common primary malignant brain tumor in adults *°. The
median survival of glioblastoma patients after diagnosis has remained approximately 12-15
months for over a decade %" %. These highly aggressive tumors are composed of both tumor and
stromal cells, which harbor diverse genomic, transcriptomic, and proteomic expression profiles
reflecting abnormal neural lineages ** 2* **. Previous studies in glioblastomas have either
measured signaling states in bulk primary tumors *** or characterized genomic and
transcriptomic profiles in a modicum of single cells (<1000) % 3% 3 These approaches,
however, have not yet improved clinical practice or outcome for patients with glioblastoma.
Although both inter- and intra-tumoral dysregulation of signaling in glioblastoma, particularly
the disruption of receptor tyrosine kinase (RTK) homeostasis, is hypothesized to drive disease
aggressiveness, very little is known about the activation states of signaling effector proteins in
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glioblastoma and how these signaling changes may be associated with cell subpopulations and
patient clinical outcomes ***”. Novel, molecularly-driven criteria may give valuable insights into
the biology of tumor progression and identify patients more likely to benefit from targeted
therapeutics in development for this devastating malignancy.

Here, two new technologies were created in parallel: 1) a tailored set of 34 antibodies for
single cell mass cytometry of glioblastoma focused on phospho-protein signaling effectors, stem
cell proteins, and transcription factors critical to neural development, and 2) an unsupervised cell
discovery workflow termed RAPID (Risk Assessment Population Identification). These
technologies were combined to reveal and characterize novel populations of risk stratifying
glioblastoma cells.

Comprehensive patient-specific analysis reveals glioblastoma cells with potentiated
signaling and aberrant lineage protein co-expression

Tissue samples were collected from 28 patients with IDH wild-type glioblastoma after
primary surgical resection (Supplementary Table 1). As of February 2019, the median
progression free survival (PFS) and overall survival (OS) after diagnosis were 6.3 and 13
months, respectively, similar to those observed in larger populations of patients undergoing
standard therapy %’. Resected tissues were immediately dissociated into single-cell suspensions
as previously reported . Cells were stained with a customized antibody panel for mass
cytometry designed to capture the expression of known cell surface proteins, intracellular
proteins, and phospho-signaling events (Figure 1, 2, Supplementary Table 2, Supplemental
Information) that are critical for gliomagenesis and pathogenesis 3% 3 4033435 ‘Co|lectively, the
antigens included in this panel positively identified >99% of viable single cells within any given
tumor sample.

The first round of data analysis was patient-specific and used to computationally isolate
the glioblastoma cells from the stromal cells. A patient-specific t-SNE view of single-cell
protein expression was generated for all tumor and stromal cells from each patient’s tumor
(Supplemental Information). These patient-specific t-SNE maps were generated using 26 of the
34 measured markers *® (Supplemental Table 2). Patient specific t-SNE maps revealed non-
glioblastoma populations of immune (CD45") and endothelial (CD45°CD31") cells, consistent
with prior mass cytometry studies of gliomas 2" ?*. Non-immune, non-endothelial cells were
computationally isolated from each individual patient prior to subsequent downstream analysis
of tumor-intrinsic phenotypic parameters (Figure 1, 2). These remaining CD45CD31" cells were
labeled as glioblastoma cells. lon counts for mass-tagged antibody reporters spanned from 0 to
nearly 10,000, representing protein expression from a sensitivity limit of around 400 molecules
per cell to 1 x 10~7 molecules per cell . This sensitivity and the ability to capture at least 4,500
live glioblastoma cells from every patient provided excellent statistical power to observe rare cell
types representing as little as 1% of the cancer cells (which might themselves be as little as 25%
of the tumor cells).
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Within a single patient’s tumor, plots of cell density across the t-SNE embedding
revealed 5 or more phenotypically distinct subpopulations of glioblastoma cells (Figure 2,
Supplemental Information). These intra-tumoral subsets of glioblastoma cells were distinguished
by differences in expression of core neural identity proteins and by aberrant co-expression of
neural lineage and stem cell proteins. For example, in tumor LC26, abnormal glioblastoma cell
subsets were apparent and distinguished by lineage aberrancy. Common abnormal co-expression
phenotypes in glioblastoma cells included expression of astrocytic S100B and stem-like CD133
or co-expression of markers associated with different molecular subtypes of glioblastoma, such
as mesenchymal (CD44) and classical (EGFR) (Figure 2) .

Additional intra-tumoral diversity in glioblastoma cells was revealed by quantification of
the phosphorylation states of eight signaling effectors (Figure 2; p-STAT5 % p-STAT3Y'®, p-
868235/8236, pST AT1Y70L p-NFkB (p65) s529 p- AKTS73 p_ERK1/2T202/Y204 and p_p38T180/Y182).
Subsets of cells distinguished by abnormal lineage expression typically displayed potentiated
basal phospho-protein signaling. For example, simultaneous phosphorylation of S6, STAT5, and
STAT3 was commonly observed in glioblastoma cells that expressed S100B, but not in cells that
expressed EGFR, GFAP, or CD44 (Supplemental Information). In summary, multiple
biologically distinct glioblastoma cells, distinguished by combinations of cellular identity
proteins and potentiated signaling features within individual tumor specimens were revealed by
per patient analysis.

RAPID identifies prognostic cell subsets in glioblastoma disease

The second round of data analysis used an equal number of each patient’s glioblastoma
cells to create a single, common t-SNE map of glioblastoma cell phenotypes across all patients
(N = 131,880 cells; 4,710 cells x 28 patients). Prior to creating this common map, mass
cytometry standardization beads were used to remove batch effects and to set the variance
stabilizing arcsinh scale transformation for each channel following field-standard protocols ** %
. This common t-SNE map was generated using 24 of 34 measured markers (Supplementary
Table 2) and was used for automated analysis of risk stratifying cell subsets.

Once a common, low-dimensional view of all patients was established, the RAPID
algorithm used statistical analysis of cell density, feature variance, and population abundance to
automatically set all computational analysis parameters. Critically, RAPID was designed to set
analysis parameters independent of clinical outcomes. To identify an appropriate number of
stable clusters containing phenotypically homogenous cells, RAPID used iteratively executed
unsupervised self-organizing maps from FlowSOM *2. RAPID repeatedly tested a range of
clusters (5-50) and identified the number of clusters that minimized intra-cluster variance for
each feature while maintaining cluster stability (see Supplemental Methods). Within the
glioblastoma patients examined here, RAPID identified 43 phenotypically distinct glioblastoma
cell subsets (Figure 1). RAPID assigned patients to high or low abundance for a given cluster
based on a cut-point, set as the interquartile range of the population abundance across the
samples (see Supplemental Methods). For example, for cluster 24, the interquartile range was
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0.67% to 3.36%, resulting in a cut point of 2.69% (Supplementary Table 4). Those patients with
< 2.69% were designated ‘low’ for cluster 24 while those with > 2.69% were assigned to the
‘high’ group. Finally, RAPID applied a univariate Cox survival analysis to determine the
correlation between the abundance of tumor cells in each cluster and patient survival outcome.

The output of RAPID, when using t-SNE and FlowSOM, is a PDF containing a color-
coded, 2D t-SNE plot depicting all FlowSOM clusters, a 2D t-SNE plot colored by clusters
which were significantly associated with patient outcome, and Kaplan-Meier survival estimates
of patients for each subset (additional files described in Methods) (Figure 1b).

Distinct glioblastoma cellular phenotypes associate with patient prognostic outcomes

RAPID identified 43 phenotypically distinct glioblastoma cell clusters. Of these, 7
clusters were considered “universal” because cells from every tumor were observed in these
clusters (ranging from 0.02% to 28.05%, Supplemental Table 4). The abundance of the 43
clusters varied extensively across patients. Tumors contained a median of 14 clusters at >1%
with a range from 5 cell clusters in LC06 to a maximum of 27 cell clusters LC25. Overall, the
presence of a greater number of GBM cell clusters at >1% abundance within a tumor was not
observed to be associated with differential survival (p=0.047, p=0.812).

In contrast, the abundance of 9 glioblastoma cell clusters was closely correlated with
overall survival (Fig. 3,4). Clusters were identified here as prognostic by assessing the hazard
ratio (HR) of death in patients who were either high or low for the cell cluster. Negative and
positive prognostic clusters were colored red or blue in graphs if they were significantly
associated (p<0.05) with an HR that was >1 or <1, respectively.

Four Glioblastoma Negative Prognostic (GNP) clusters (red; clusters 33, 34, 37, and 42)
and five Glioblastoma Positive Prognostic (GPP) clusters (blue; clusters 2,3,4,5, and 41) were
identified (Figure 3, 4). The remaining 34 clusters were not associated with differential
prognosis. RAPID was also used to identify glioblastoma cell clusters with differential PFS, as
opposed to OS. Assessing PFS can be especially useful for cancers with longer median survival
where progression-free survival is the most useful clinical assessment. Of the 43 subsets
identified by RAPID, 4 subsets were significantly associated with PFS (subsets 20, 33, and 43
with negative PFS and subset 3 with positive PFS, Supplemental Figure S1).

To determine if the effect of cell subset abundance was continuous and independent of
other features known to stratify glioblastoma survival, a multivariate Cox proportional-hazards
model analysis was performed incorporating known features and GNP or GPP cell abundance.
Known predictors included were age ** *, MGMT promoter methylation status *> “°, and
treatment variables including the extent of surgical resection *” 8, therapy with temozolomide /,
and radiation ** . Multivariate survival analysis of GNP cell abundance on a continuous scale,
keeping the other predictors constant, indicated that each 1% increase in GNP cells was
associated with an approximately 7% increase in mortality compared to baseline (OS
HR=1.07 [95% CI 1.03-1.12], p=0.001). Similarly, a 1% increase in GPP cells was associated
with an approximately 6.5% decrease in mortality rate (OS HR=0.935[0.877-0.997],
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p=0.04) and an approximately 3.6% decrease in time to tumor progression, as compared to
baseline (PFS HR=0.964 [0.930-0.999], p=0.04). When GNP and GPP were assessed
simultaneously, abundance of GNP cells was the primary predictor of mortality (OS HR=1.06
[1.01-1.10], p=0.02), while abundance of GPP cells was the primary predictor of time to tumor
progression (PFS HR =0.96 [0.93-1.00]; p=0.04). Thus, the abundances of GNP and GPP cell
subsets were associated with distinct and contrasting patient outcomes (Figure 3, 4,
Supplemental Figure S1), and their predictive value was independent of each other and known
prognostic factors of patient survival.

Enrichment of divergent signaling effectors in prognostic glioblastoma cell subsets

MEM was used in RAPID to quantify the enriched features of the 43 clusters identified
by RAPID, including GNP and GPP clusters, in a compact label of cell identity. Protein
enrichment was reported on a +10 to -10 scale, where +10 indicates that protein’s expression was
especially enriched and -10 indicated that the protein’s expression was excluded from those cells,
relative to other glioblastoma cell clusters (Supplemental Figure S2, S3). MEM labels were
calculated for both total proteins (P), such as S100B and EGFR, and signaling effectors (S), such
as p-STATS, in the prognostic GNP (Figure 3a) and GPP (Figure 4a) clusters. The MEM label
of each cluster is thus an objective description of what makes that population distinct from the
other 42 clusters identified by RAPID (Supplemental Figure S3). GNP cells aberrantly co-
expressed neural-lineage proteins (astrocytic S100B and stem-like SOX2). Additionally, GNP
cells displayed phosphorylation of RTK signaling effectors known to promote cell survival,
growth, and proliferation (e.g. p-STAT5, p-S6, p-STAT3, cyclin B1) (Figure 3b). The median
and standard deviation of the MEM protein enrichment values for GNP cells included neural
lineage determinants (A S100B™**® SOX2****17) and phospho-proteins (A p-STAT3*284 p-
STAT5"*1%) and identified proteins that were specifically lacking in GNP cells relative to other
GBM cell clusters (WEGFR?**%! GFAP?%08 CD44*%) (Figure 3). In contrast, GPP cells
were positively enriched for EGFR (AEGFR™*"**%) and consistently lacked proliferation
(¥ cyclin B1%*%%) and pro-survival phospho-proteins (¥ p-S6>%32 p-STAT5%?, p-STAT3
%+2) (Figure 4).

Immune cells were intentionally excluded from initial RAPID analyses and subsequent
biaxial gating confirmed that the GNP and GPP subsets did not contain any unexpected residual
CD45- or CD31-positive cells (99.50% and 98.64% non-immune, non-endothelial cells,
respectively, Figure 3, 4). However, infiltrating immune cells can comprise a large proportion of
non-cancer cells in glioblastomas and have highly variable overall abundance across patients >*
5 Notably, GPP-high patients’ tumors all contained > 9% CD45" cells, whereas GNP-high
patients’ tumors were not observed to contain more than 9% CD45" cells (p < 0.001,
Supplementary Figure 4).

Comparable identification of prognostic glioblastoma cells with different subsampling and
dimensionality reduction tools


https://doi.org/10.1101/632208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/632208; this version posted June 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The cells input to RAPID should be equal in number from each patient in order to remove
the possibility that a single patient would disproportionately impact the identification of cell
clusters and risk assessment. However, this limits the RAPID analysis to a number of cells equal
to the smallest observed from any one patient and it creates the possibility that the cells randomly
selected from tumors where many cells were measured might not be representative. For the
tumors studied here, the number of glioblastoma cells measured ranged from 4,710 to 330,000
cells per patient.

To test whether the cells sampled for RAPID were representative of the tumor from
which they were selected, 9 additional t-SNE analyses were created, each with a different sample
of 4,710 cells selected at random, with replacement, from each patient. Each of these 9 t-SNE
maps were then used in a new RAPID analysis, creating 10 total analyses (the original and 9 new
tests). In these analyses, RAPID identified different numbers of optimal clusters ranging from
18 to 48. Of these, a total of 48 clusters from the 9 new runs were considered prognostic.
Because the 10 RAPID analyses ran on different subsampling of cells, the f-measure could not
be calculated on a cell-by-cell basis. However, the average f-measure based on patient
categorization (GNP high, GNP and GPP low, and GPP high) was 0.79 between t-SNE runs.

Thus, to quantify the degree of similarity between the 48 newly identified clusters and the
9 original GNP and GPP clusters, the root-mean-square deviation (RMSD) in the MEM
enrichment values was calculated as a way of determining if the phenotype of the newly
identified clusters was stable, even when different cells were sampled from the tumors. GNP
subsets from subsequent runs were highly similar to the GNP subsets identified by the initial
analysis described above and the same was observed for GPP subsets (Supplemental Figure S5;
GNP v GNP average RMSD = 92.5, GPP v GPP average RMSD = 88.2, and GNP v GPP
average RMSD = 80.8).

To test whether RAPID could use different types of dimensionality reduction values as
input parameters, the algorithm was implemented replacing t-SNE with UMAP (Uniform
Manifold Approximation and Projection), a tool that emphasizes both local and global data
structure *°. RAPID identified 31 populations using UMAP input; 4 of these were prognostic
and significantly associated with OS (1 GNPymap and 3 GPPymap) (Figure 5). GNPymap MEM
scores reflected the characteristic S100B and SOX2 expression observed in the GNP populations
along with an active pro-survival basal signaling status. GPPymap Subsets were similarly defined
by co-expression of EGFR and CD44 and a general lack of the measured phosphorylated
signaling effectors (Figure 5). When the cells identified using t-SNE were overlaid on the UMAP
axes, they occupied similar phenotypic space as UMAP-identified clusters, and vice versa (f-
measure for cell assignment to GNP, GPP, or neither = 0.872, Figure 5). Thus, when UMAP was
used in the RAPID algorithm, GNP and GPP populations were identified that had comparable
phenotypes to those identified previously in t-SNE analyses, confirming that RAPID is not
dependent upon a specific dimensionality reduction tool (Figure 5).

Towards tracking clinically distinct glioblastoma cells in the clinic
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After patterns are recognized by a machine learning approach, it can be valuable to
determine whether the learned features can be identified using simpler models that can be
applied by experts or machines to new datasets. One approach is to create a decision tree using
one- or two-dimensional gating %, consistent with traditional strategies in immunology and
hematopathology. Such gates make the identification of cells computationally less intensive and
more pragmatic for wide-spread clinical use and have been previously used in glioblastoma mass
cytometry 2* . Therefore, a traditional, lower-dimensional strategy was developed to use a small
number of simple gates to capture the GNP and GPP cell populations (Figure 6).

A population that was consistent with both the phenotype and risk stratification of GNP
cells was identifiable using 3 gates and 6 proteins (S100B, EGFR, SOX2, p-STAT5, GFAP, and
CD44, Figure 6). Similarly, GPP cells could be identified with 3 gates and 6 proteins (S100B,
EGFR, cyclin B1, p-STAT5, GFAP, and CD44, Figure 6). This gating scheme accurately
captured both GNP and GPP cells (f-measure of 0.826 for categorizing cells as GNP, GPP, or
neither using RAPID cell populations as truth and biaxial gating as test). GNP and GPP cells
identified by traditional gating were also mapped back onto the t-SNE axes and largely occupied
the same regions of the biaxial t-SNE map as the cells identified by the RAPID algorithm (Figure
6). The cells identified by traditional gating were quantitatively comparable in their phenotype,
as seen by a comparable MEM label for the gating identified GNP and GPP cell subsets (Figure
6). Thus, a simple gating model of GNP or GPP cell identity successfully recovered GNP and
GPP cells by assessing only 7 total key features observed to be enriched following RAPID. This
indicated that, once revealed, GNP and GPP cell subsets were phenotypically cohesive in a
traditional cell biological sense and could be reliably quantified by traditional approaches
compatible with standard clinical flow cytometric profiling.

Discussion

RAPID is a novel automated workflow that identifies cell subpopulations associated with
patient outcomes. The RAPID workflow automatically assigned single tumor cells from IDH
wild-type glioblastomas into computational clusters based on phenotypic similarity, generated a
quantitative phenotypic descriptor of each population, and determined the correlation between
the abundance of populations and clinical outcomes. Two significant glioblastoma cell types
were identified: Glioblastoma Negative Prognostic (GNP) cells, characterized by high expression
of S100B, SOX2, p-STATS3, and p-STATS, were associated with a decreased overall survival,
while Glioblastoma Positive Prognostic (GPP) cells, characterized by high expression of EGFR
and CD44, were associated with longer overall survival. Critically, therapeutically targetable
signaling events were identified as a signature of prognostic cell populations identified by
RAPID, suggesting potentially novel therapeutic strategies for patients with these characteristics.

High-dimensional cytometry was critical to revealing novel prognostic glioblastoma cells
in two ways. First, assessment of a large number of cells per tumor enabled the use of an
unsupervised approach in the identification of rare and novel cell subsets across patients. Second,
per-cell quantification of phosphorylated signaling effector proteins revealed potential
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mechanisms of tumor cell regulation that are not inherently apparent in bulk tumor data.
Supervised analysis of single cell data has previously uncovered signaling events tied to patient
survival in hematologic malignancies ** . To our knowledge, our findings are the first to reveal
a similar connection in a solid malignancy using an automated, unsupervised approach,
reinforcing the importance of cell signaling in multiple human malignancies

Although other workflows and algorithms have been developed to identify cell
populations of interest in cancer samples (CITRUS **, DDPR °, Phenograph *, Cytofast %), these
largely require a level of prior knowledge which may not always be available, especially for
solid tumors. For example, Levine et al. used Phenograph # and an understanding of the coupling
of surface markers and signaling status in healthy bone marrow to classify negative prognostic
leukemia cells. Similarly, a map of the healthy developmental lineage was instrumental in using
DDPR to identify features of negative prognostic leukemia cells ®. Supervised methods,
including CITRUS and Cytofast, require that samples to be grouped at the beginning of the
analysis before generating an overview of cell cluster phenotypes in cytometry data >*. These
methods, however, require that the data have already been clustered and that each sample be
prospectively assigned to a group, whereas RAPID enables analysis with continuous, ungrouped
data. In studies of diseased human tissue, it is difficult to anticipate the number of expected
unique phenotypic subsets and once identified, these subsets can be challenging to manually
annotate as they may reasonably be assigned to one or more cell-type categories (this study and
%), It is particularly valuable to be independent of prior knowledge of expected cell clusters in
studies of diseases like primary glial tumors, where healthy samples are infrequently obtained
and the developmental lineage is largely quiescent. RAPID is designed to be free from
supervision in the identification of the number of clusters and also in the assessment of cluster
abundance in tumors. RAPID also employs MEM to automatically provide a quantitative
description of the features which are most selectively enriched on each cell cluster. Furthermore,
RAPID is modular, such that different dimensionality reduction tools (t-SNE, UMAP) can be
used with different clustering algorithms (dbSCAN, FlowSOM) within the workflow. A benefit
of RAPID is the streamlined, unsupervised application of these tools such that a user can input
raw data files (for example, FCS files from cytometry platforms) or equivalent data types in
conjunction with patient survival data, and RAPID will output quantitatively described cell
clusters and their significance with respect to patient outcome. For the data set used in this study
(131,880 cells), RAPID ran in 15 minutes from start to finish.

In this study, RAPID analysis of glioblastoma patient samples demonstrated a link
between altered signaling and possible abnormal lineage programs in glioblastoma *°. The GNP
signature was defined by abnormal neural development features and simultaneous high basal
phosphorylation of multiple signaling effectors downstream of RTKs (Fig. 3). STATS signaling,
a common feature of all GNP cell subsets, is required in development of many tissues to block
apoptosis and drive cell cycle entry 2. For example, p-STAT5 is an essential feature of negative
prognostic acute myeloid leukemia signaling profiles * #. Here, RAPID identified the connection
between p-STATS and glioblastoma outcome, previously unidentified in primary patient
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samples. STAT3 and S6 phosphorylation, identified here in GNP cells, agreed with prior studies
indicating the importance of p-STAT3 in T cell suppression *® and mTOR-dependent signaling in
tumor formation °" °®. These phosphorylation signaling events in GNP cells should be explored
as a potential therapeutic target and a biomarker of therapy response.

In contrast, the time-to-progression-prolonging GPP signature was defined by EGFR and
CD44 co-enrichment, diminished evidence of proliferation, and specific lack of STAT5
phosphorylation. Previous molecular subtyping predicts EGFR expression in the classical subset
of tumors and CD44 expression in mesenchymal tumors *2. As these studies were based on bulk
tumor data, cells co-expressing EGFR and CD44 (classified as GPP cells in this study) may have
been missed; single glioma cells have been shown to co-express pro-tumor receptors 2 %.
Genetically, glioblastomas commonly have amplified EGFR " *%; however, we noted examples
of tumors with robust EGFR amplification that contained both high and low percentages of GPP
cells (data not shown), highlighting the importance of measuring protein expression in addition
to genomic content. Although EGFR signaling through mTOR and EGFRvIII has been linked
with increased p-S6 and p-STAT3/5 respectively, we did not observe these associations in the
GNP or GPP subsets ** . Instead, these cells showed enrichment of p-NFxB (Fig. 3), a
transcription factor that activates pro-apoptotic programs ®* 2,

Recent studies have revealed significant variation in immune cell abundance and relative
proportions of immune cell subsets across glioblastoma ®% ®*. Here, unfavorable GNP cells were
associated with diminished tumor-infiltrating immune cells and GPP cells were associated with
higher proportions of immune cells in the tumor microenvironment. These results invite the
question of whether an altered immune microenvironment precedes development of an
aggressive glioblastoma or whether more aggressive tumors suppress anti-tumor immunity.
These findings argue that immunotherapy is likely to be more efficacious in tumors containing
GPP cells, but that additional research is needed to understand whether GNP cells directly
suppress microglia or immigrant leukocytes.

The GNP and GPP subsets correlated with survival independent of the effects of other
widely accepted prognostic factors (age ** **, MGMT promoter methylation status ** “°, and
treatment including extent of surgical resection *" %, therapy with temozolomide ', and radiation
49.50) ‘These cells were identified in pre-therapy, untreated patient samples, suggesting that these
phenotypes are linked to biological mechanisms of therapy response or tumor detection by the
immune system. Future studies of recurrent glioma samples would illuminate the persistence of
these populations. If GNP subsets have the capacity to evade therapy and retain their active
proliferation properties, recurrent tumors would be expected to contain higher proportions of
GNP cells and have a more uniform phenotype. Although much has been made of loss or gain of
genetic aberrations post-temozolomide and radiation therapies, little is known about signaling in
recurrent tumor cells and thus it is unclear if clonal evolution and/or a shift in activated phospho-
proteins is necessary for tumor cell survival and repopulation. Other factors have recently been
shown to correlate with patient outcomes including the location of the tumor with respect to the
largest neural stem cell niche in the adult brain, the ventricular-subventricular zone (V-SVZ) ®.
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In the future, one fascinating question will be to determine whether V-SVZ contacting tumors,
which correlate with worse outcomes, contain more cells with a GNP-like phenotype and fewer
GPP-like cells.

Critically, these discoveries using RAPID led to a development of a lower-dimensional
pipeline which can be immediately adopted for clinical stratification. Moreover, the combination
of single-cell snapshot proteomics and the automated RAPID algorithm can be immediately
applied to the discovery of critical onco-signaling events in other types of intractable human
malignancies, providing a needed complement to genomic classification.
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Materials and Methods
Patient samples

Surgical resection specimens of 28 IDH-wildtype glioblastomas collected at Vanderbilt
University Medical Center between 2014 and 2016 were processed into single cell suspensions
following an established protocol *®. Only samples that were confirmed to be IDH-wildtype
glioblastomas by standard pathological diagnosis were used. All samples were collected with
patient informed consent in compliance with the Vanderbilt Institutional Review Board (IRBs
#030372, #131870, #181970), and in accordance with the declaration of Helsinki.

Patient characteristics and collection of clinical data

All patients were adults (> 18 years of age) at the time of their maximal safe surgical
resection of their cerebral (supratentorial) glioblastomas. Extent of surgical resection was
independently classified as either gross total or subtotal resection by a neurosurgeon and a
neuroradiologist. Gross total resection was defined as agreement by both viewers of no
significant residual tumor enhancement on patients’ gadolinium-enhanced magnetic resonance
imaging (MRI) of the brain obtained within 24 hours after surgery. All patients were considered
for treatment with postoperative chemotherapy (temozolomide) and radiation according to the
standard of care %', after determination of MGMT promoter methylation status by
pyrosequencing (Cancer Genetics, Inc., Los Angeles, CA, USA). Multiplex polymerase chain
reaction (PCR) was used to determine IDH1/2 mutational status. Patients’ postoperative course
was followed until February 2019, noting time to first, definitive radiographic progression or
recurrence of glioblastoma as agreed upon by the treating neuro-oncologist and neuroradiologist,
and the time to patients’ death. All deaths were deemed to be due to the natural course of
patients’ glioblastoma. Median overall survival of the analyzed 28 patients with IDH wild-type
glioblastoma was 388.5 days (13 months) and median PFS was 187.5 days (6.3 months), which is typical
for the disease® *'.

Mass cytometry analysis

Cells derived from patient samples were prepared as previously described **. A multi-step
staining protocol was used, which included 1) live surface stain, 2) 0.02% saponin
permeabilization intracellular stain, and 3) intracellular stain after permeabilization with ice-cold
methanol (Supplementary Table 2). After staining, cells were resuspended in deionized water
containing standard normalization beads (Fluidigm)®®, and collected on a CyTOF 1.0 instrument
located in the Mass Cytometry Core Facility at Vanderbilt University. Rhodium viability stain
and cleaved caspase-3 antibody were included in staining to exclude non-viable and apoptotic
cells, respectively. Detection of total histone H3 was used to identify intact, nucleated cells 2*. A
32-dimensional mass cytometry antibody panel was used to analyze over 2 million viable cells
from 28 tumors (ranging from 4,860 to 336,284 cells per tumor). Data were normalized with
MATLAB-based normalization software >3, and were arcsinh transformed (cofactor 5), prior to
analysis using the Cytobank platform .
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Implementation of RAPID in R

FCS files for each patient sample (28) containing only cells of interest (hon-immune,
non-endothelial cells) were input in R. Cell subset identification was performed using the
previously published FlowSOM R package®. t-SNE values (t-SNE1_glioblastoma and t-
SNEZ2_glioblastoma) from t-SNE (or UMAP) analysis of CD45°CD31" glioblastoma cells from
28 patients were used as parameters for cell subset clustering. Within the RAPID workflow, the
optimal number of clusters was determined by first identifying, for each feature, the smallest
number of clusters that minimizes the intra-cluster signal variance for that feature. Then, the
optimal cluster number of the data set was determined by taking the median of the optimal
numbers for each individual feature. Once the cluster number was determined, the abundance of
cell subsets and their clinical significance was assessed using outcome-guided analysis. Patients
were divided into Low and High groups, based on the distribution (interquartile variance) of the
abundance of a given cell subset across the cohort. A univariate Cox regression analysis was then
used to estimate the effect size (hazard ratio, HR, of death) on survival and quantify its statistical
significance with a p-value. The RAPID program output included: 1) two t-SNE (or UMAP)
plots (.png), one color coded by each FlowSOM cluster and one color coded by prognostic status
and p-value; 2) Kaplan-Meier survival curves for cell subsets; 3) .txt files of MEM and Median
values for each feature, enrichment scores, and IQR values; 4) a new FCS file with File ID,
cluster ID, and prognostic status for each cell; and 5) an .rds file with survival statistics for each
cluster. In this study, abundance of Glioblastoma Negative Prognostic (GNP) and Glioblastoma
Positive Prognostic (GPP) cells in each tumor was quantified as percentages per total
glioblastoma cells (i.e. immune and endothelial cells were already excluded). MEM analysis was
performed in R, using the previously published R package *. In short, MEM captured and
quantified cell subset-specific feature enrichment by scaling the magnitude (median) differences
between clusters, depending on the spread (interquartile variance, IQR) of the data. These values
were then computed in comparison to the remaining cells in a given dataset. MEM values were
interpreted as either being positively enriched (A, UP positive values) or negatively enriched
(¥, DN negative values). The variation of a given cellular feature across GNP or GPP cell
subsets was quantified as + standard deviations (SD).

Survival and statistical analysis

Time from surgical resection to death (overall survival, OS) and time from surgical
resection to the initial radiographic recurrence or death before radiographic assessment
(progression free survival, PFS) were plotted and analyzed in R. Survival time points were
censored if, at last follow up, the patient was known to be alive or had not had radiographic
progression. Differences in the survival curves were compared using the Cox univariate
regression model, reporting a hazard ratio (HR) between the survival curves.

A Cox proportional-hazards regression model was created to assess the influence of GNP
and GPP cells on OS and PFS as continuous variables while accounting for other factors known
to affect survival, including age at diagnosis, MGMT promoter methylation status, extent of
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surgical resection (EOR), treatment with temozolomide (TMZ), and radiation (XRT). The hazard
model can be written as:

— h(t) — e(bGNpGNP+bageAg€+bMGMTMGMT+bEOREOR+bXRTXRT+bTMzTMZ)
ho(t)
h(t)

where e represents the ratio of hazard comparing the risk of death at time t to the baseline
0

hazard (obtained when all variables are equal to zero) and e represents the hazard ratio of
variable x. The data were fit using R software, version 3.5 (R foundation for Statistical
Computing, Vienna, Austria). The proportional-hazards assumption was tested in all multivariate
models and supported by a non-significant relationship between Schoenfeld residuals and time
for each covariate included in the model (p > 0.38; degree of freedom = 1) and the overall model
(p = 0.96; degrees of freedom = 6 and 7). Statistical significance a was set at 0.05 for all
statistical analyses, one- or two-tailed noted in figure legends.

An f-measure was used to quantify the level of agreement between classifications
of patients or cells between alternative analysis strategies as wells as multiple RAPID iterations.
The f-measure is the harmonic mean of the precision and recall given by the equation F = 2 *
(Precision * Recall) / (Precision + Recall) where Precision = True Positive / (True Positive +
False Positive) and Recall = True Positive / (True Positive + False Negative). An f-measure of 1
indicates perfect agreement between two different strategies or iterations as opposed to an f-
measure of 0 which would mean no agreement between classifications of patients or cells from
two strategies or iterations. Patients could be classified as GNP high, GNP and GPP low, or GPP
high, while cells were classified as GNP, GPP, or neither. To calculate the f-measure of patient
categorization, the classification of the 28 patients into the three prognostic groups from the t-
SNE implementation of RAPID was used as the reference point from which to compare patient
classification resulting from the UMAP implementation of RAPID or the biaxial gating strategy.
Similarly, the stability of the RAPID workflow in assigning cells to GNP, GPP, or non-
significant clusters was tested by using the t-SNE implementation of RAPID (FlowSOM seed
38) as the reference from which to compare 100 iterations of RAPID (random FlowSOM seed
per iteration). Calculation of the f-measure was implemented using R software, version 3.5.

Data availability
Files will be made available in FlowRepository upon publication following peer review.


https://doi.org/10.1101/632208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/632208; this version posted June 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 1: RAPID identifies single cell phenotypes and assesses clinical risk stratification as a
continuous variable. (a) Graphic of tumor processing and computational workflow. (b) Glioblastoma
cells were identified from 28 patients and computationally pooled for a t-SNE analysis. Cell subsets were
automatically identified by FlowSOM and were systematically assessed for association with patient
overall or progression-free survival. 43 glioblastoma cell subsets were identified and were color-coded
based on hazard ratio of death and p-values (HR>1, red; HR<1, blue) Cell density, FlowSOM cluster, and
cluster significance are depicted on t-SNE plots.

Figure 2: Single-cell quantification of identity proteins and phospho-protein signaling in
glioblastoma. (a) t-SNE plots of cell density (left) and major cell types in a patient tumor colored by
expert gating (right) for antigen presenting cells (APC, blue), other immune cells (non-APC, orange),
endothelial cells (Endo, red), and glioblastoma cells (green) using CD45, CD31, and HLA-DR to identify
cells. Pink lines indicate where expert gates were drawn. (b) MEM protein enrichment scores for
populations indicated by color in (a) (APC, blue; non-APC, orange; endothelial cells, red; glioblastoma
cells, green). (c) Per-cell expression levels of 12 identity proteins, (d) 6 phosphorylated signaling
effectors, and proliferation marker cyclin B1 are depicted. Heat indicates protein or phospho-protein
expression per cell (scale is specific to each measured feature).

Figure 3: Four cell populations identified by RAPID were negatively associated with patient
outcome. (a) Enrichment (upwards arrowhead) or lack (downwards arrowhead) of identity proteins (P)
and phosphorylated signaling effectors (S) on Glioblastoma Negative Prognostic cell subsets was
guantified using MEM. (b) Histogram plots of each GNP cell subset (red) and all other glioblastoma cells
(gray) illustrate the expression of identity proteins and phosphorylated signaling effectors. (c) Combined
GNP cell subsets (red circles) were mapped over biaxial plots of all other tumor cells (black contours). (d)
For each subset, overall survival was compared between patients with high vs low cell abundance (see
Supplementary Methods). (e) Overall survival of patients for high (> 3.1%) total GNP content compared
to patients with low (< 3.1%) GNP content.

Figure 4: Five cell populations identified by RAPID were positively associated with patient outcome.
(@) Enrichment (upwards arrowhead) or lack (downwards arrowhead) of identity proteins (P) and
phosphorylated signaling effectors (S) on Glioblastoma Positive Prognostic cell subsets was quantified
using MEM. (b) Histogram plots of each GPP cell subset (blue) and all other glioblastoma cells (gray)
illustrate the expression of proteins and phosphorylated signaling effectors. (c) Combined GPP cell
subsets (blue circles) were mapped over biaxial plots of all other tumor cells (black contours). (d) For
each subset, overall survival was compared between patients with high vs low cell abundance (see
Supplementary Methods). (e) Overall survival of patients for high (> 8.58%) total GPP content compared
to patients with low (< 8.58%) GPP content.

Figure 5: GNP and GPP cells were also identified using dimensionality reduction tool UMAP in the
RAPID algorithm. (a) UMAP analysis of 131,880 cells from 28 patients. Upper left plot - heat on cell
density; lower left plot — colored by FlowSOM cluster; right plot — colored by GNP(red)/GPP(blue)
designation and p-value. (b) Per-cell expression levels of 5 identity proteins, 3 phosphorylated signaling
effectors, and proliferation marker cyclin B1 are depicted. (c) Enrichment of identity proteins (P) and
phosphorylated signaling effectors (S) of glioblastoma cell subsets was quantified using MEM. GNP and
GPP cells are labeled in red and blue, respectively. (d) Histogram analysis depicts the expression of key
identity proteins and phosphorylation signaling effectors of GNP (red) and GPP (blue) compared to all
other cells (gray, top row). (e) Overall survival curves for four UMAP-identified populations associated
with survival. Cox-proportional hazard model was used to determine a hazard ratio (HR) of death.
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Censored patients are indicated by vertical ticks. (f) GNP (red) and GPP (blue) cells identified via t-SNE
(“t-SNE GNP” or “t-SNE GPP”) and UMAP (“UMAP GNP” or “UMAP GPP”) are overlaid on either
UMAP or t-SNE axes. Localization of GPP cell subsets identified by one tool in the same region as those
identified by the other suggests similar phenotypes across dimensionality reduction methods. (g)
Categorization of each patient (dots) based on GNP high (red), GPP high (blue), or neither (gray)
according to abundance based on RAPID using t-SNE or RAPID using UMAP (f measure = 0.86).

Figure 6: A biaxial gating workflow based on 7 protein markers derived from RAPID effectively
identified clinically distinct glioblastoma cell subsets. (a) Biaxial plots demonstrating a sequential
gating scheme compatible to a standard clinical flow cytometry workflow. Biaxial GNP and GPP cells
were identified using red and blue gates respectively. (b) Biaxial GNP (red) and biaxial GPP (blue) are
overlaid over contours of glioblastoma cells from 28 tumors on common t-SNE axes (as in Figure 1). (¢)
MEM analysis was used to quantify enriched identity proteins (P) and phosphorylated signaling effectors
(S) of biaxial GNP and GPP cells. (d) Histogram analysis depicts the expression of key identity proteins
and phosphorylated signaling effectors of biaxial GNP (red) and biaxial GPP (blue) compared to all
glioblastoma cells (gray, top row). The transformed ratio of medians for each marker on GNP or GPP
cells compared to all glioblastoma cells is shown in the upper right corner of each histogram. (e)
Correlation between GNP (red, p = 0.81) and GPP (blue, p = 0.98) population abundance identified via
biaxial gating and RAPID (left). Categorization of each patient (dots) based on GNP high (red), GPP high
(blue), or GNP and GPP low status according to abundance based on biaxial gating or RAPID. Dots are
colored by RAPID categorization (f measure = 0.71). (f) Overall survival of patients for high total GNP
content (left) or GPP content (right) compared to patients with low GNP or GPP content based on biaxial
gating.

Supplemental Figure S1: RAPID identified four populations associated with time to patient
progression. (a) Enrichment of identity proteins (P) and phosphorylated signaling effectors (S) of PFS
GNP cell subsets was quantified using MEM. (b) Histogram plots of each GNP cell subset (red) and all
other glioblastoma cells (gray) illustrate the expression of proteins and phosphorylated signaling
effectors. (c) Combined GNP cell subsets (red circles) were mapped over biaxial plots of all other tumor
cells (black contours). (d) For each subset, progression free survival was compared between patients with
high vs low cell abundance (see Supplementary Methods). (e) Enrichment of identity proteins (P) and
phosphorylated signaling effectors (S) of the PFS Glioblastoma Positive Prognostic cell subset was
guantified using MEM. (f) Progression free survival was compared between patients with high vs low
GPP cell abundance (g) Histogram plots of the GPP cell subset (blue) and all other glioblastoma cells
(gray) illustrate the expression of proteins and phosphorylated signaling effectors. (h) The GPP cell subset
(blue circles) was mapped over biaxial plots of all other tumor cells (black contours).

Supplemental Figure S2: Glioblastoma cell subsets showed differential enrichment of identity
proteins and phosphorylated signaling effectors. Forty-three glioblastoma cell subsets automatically
identified by FlowSOM are arranged according to their associations with overall survival (HR>1, left;
HR<1, right) and statistical significance of that association (p-values). A heatmap represents the MEM
values of glioblastoma cell subsets (columns). GNP cells are labeled in red, while GPP cells are labeled in
blue. Hierarchical clustering was performed based on MEM values and is depicted on the left of the
heatmap for measured features. HR = hazard ratio of death.

Supplemental Figure S3: Quantitative MEM labels of the enriched identity proteins and signaling
features of all glioblastoma cell subsets identified by RAPID. Enrichment of identity proteins (P) and
phosphorylated signaling effectors (S) of glioblastoma cell subsets identified by RAPID was quantified
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using MEM. GNP and GPP cells are labeled in red and blue, respectively. Populations detected in every
patient sample (abundances ranging from 0.02% to 28.05) are outlined in bold.

Supplemental Figure S4: Abundance of immune cells correlated with the abundance of prognostic
cell subsets. Box and whisker plot of immune abundance (%, 1og10 scale) on the y-axis and patients
divided into three groups: GNP high (red, >3.1% GNP cells), GPP high (blue, >8.58% GPP), or GNP and
GPP low (gray). Box encompasses the 25" to 75™ percentile, gray horizontal line indicates the median,
and whiskers extend to the minimum and maximum values. *** p=0.0008, two-tailed t-test.

Supplemental Figure S5: Subsampling of glioblastoma cells repeatedly resulted in GNP and GPP
subsets with similar phenotypes. RMSD map comparing MEM scores for GNP and GPP subsets
identified in the main figures and from nine additional t-SNE runs. GNP subsets are noted by red circles
and GPP subsets are noted by blue circles. Colored boxes to the right of the red or blue circles indicate the
t-SNE run from which the subset is derived. t-SNE runs are plotted around the heatmap with the
corresponding colored box in the upper left of each plot.

Supplemental Information: Patient specific view of population abundance and mass signal for all
analyzed patients in this study. Additional patient specific plots of the data are available in
supplementary materials online. Each patient is shown on an individual page, with progression-free
and overall survival data (also included in Supplementary Tables 1 and 3) shown at top right. At top left,
the common t-SNE plot derived from analyzing an equal number of glioblastoma (non-immune, non-
endothelial) cells from each of 28 patients (as in Figure 1), with contours indicating event abundance, is
shown. Second from left, the density of events of the individual patient’s tumor is shown. Second from
right, the assignment of cells from the patient to FlowSOM clusters is shown, and furthest right indicates
the distribution of these clusters on the map of all GBM patients’ cells. FlowSOM clusters and the
abundance of these clusters in the individual patient’s sample are shown in column at right side (also
included in Supplementary Table 3). Clusters identified as “high” based on the criteria detailed in
Methods are indicated in bold. Below, t-SNE plots and “heat” for each measured channel on cells from
the individual patient are shown.
(https://www.biorxiv.org/content/biorxiv/early/2019/05/10/632208/DC1/embed/media-
1.pdf?download=true)
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Supplementary Table 1 — Glioblastoma Patient Characteristics

Sample | Gende MGMT Percent Percent PFS PFS oS oS
IDp r Age | TMZ | RT | EOR meth | Total GNP | Total GPP | (days) Status (days) | Status

LC06 Male 41 Yes | Yes | GTR No 0 91.9 1539 Censored 1588 Alive
W11 Male 69 | Yes | Yes | GTR No 0.3 59.3 491 Progressed | 896 Dead
LC26 Male 71 Yes | Yes STR Yes 0.5 28.9 363 Progressed | 836 Alive
RT14 | Female | 55 Yes | Yes | GTR Yes 1.6 19.3 472 Progressed | 571 Dead
KO1 Female | 59 Yes | Yes STR No 0 15.9 176 Progressed | 364 Dead
LC04 Male 65 Yes | Yes | GTR No 0.3 14.4 263 Progressed | 918 Dead
LC25 | Female | 60 | Yes | Yes | GTR No 3.7 10.8 185 Progressed | 731 Dead
W02 Male 75 Yes | Yes STR Yes 2.2 8.6 446 Progressed | 507 Dead
W05 Male 60 | Yes | Yes STR No 0.4 4.4 241 Progressed | 282 Dead
LC22 Male 64 | Yes | Yes STR No 0.4 4.3 263 Progressed | 366 Dead
W12 Male 50 | Yes | Yes STR Yes 3.4 5.6 190 Progressed | 723 Dead
W14 Male 47 | Yes | Yes STR Yes 0.1 2.1 125 Progressed | 488 Dead
LC27 Male 62 Yes | Yes STR No 0.4 2.2 79 Progressed | 252 Dead
RTO1 | Female | 69 Yes Yes STR No 0 1.1 162 Progressed 198 Dead
RT10 Male 56 No No STR Yes 0.3 0.8 22 Progressed | 113 Dead
LC21 | Female | 69 | Yes | Yes | GTR Yes 2.7 2.6 267 Progressed | 267 Dead
W15 Male 50 | Yes | Yes STR Yes 0.8 0.5 603 Progressed | 697 Dead
RT15 | Female | 80 No Yes STR No 1.4 1.1 98 Progressed | 353 Dead
LCO8 | Female | 55 Yes | Yes STR No 2.4 0.3 210 Progressed | 441 Dead
LC11 | Female | 76 Yes | Yes STR Yes 5.4 0.8 111 Progressed | 411 Dead
LC18 Male 69 | Yes | Yes STR No 6.3 0.5 133 Progressed | 240 Dead
W04 Male 60 | Yes | Yes STR No 6.6 0.5 220 Progressed | 456 Dead
LCO03 Male 60 No No STR No 7.7 0.7 57 Progressed 57 Dead
LC09 Male 68 Yes | Yes STR Yes 13.3 5.9 66 Progressed | 110 Dead
LCI10 Male 78 No Yes STR No 14.6 0 117 Censored 178 Dead
RTO7 | Female | 70 Yes | Yes STR No 45.1 0.1 49 Progressed 57 Dead
LCI12 Male 40 | Yes | Yes | GTR Yes 56.6 0.2 606 Progressed | 710 Dead
LC02 Male 67 No No STR No 84.2 0.1 53 Progressed 53 Dead

TMZ = temozolomide
RT = radiation

EOR = extent of resection
STR = subtotal resection

GTR = gross total resection
MGMT meth = MGMT promoter methylation
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Supplementary Table 2 — Mass cytometry antibody panels

Signaling & .
Target Mass Clone proteins Stain
Panel | t-SNE | Live Sap MeOH
Rhodium 103 - ° v
Cyclin B1 139 GNS-1 ° v
TUJ1 141 TUJ1 ° [ ] v
cCasp3 142 5A1E ° v
CD117 143 104D2 ° u v
S100B 144 19/S100B ° [ ] v
CD31 145 WM59 ° m* v
yH2AX 147 JBW301 ° v
CD34 148 581 ° ] v
p-4E-BP1
(T37/T46) 149 236B4 ° v
p-STATS5 (Y694) 150 47 ° [] v
BMX 151 40/BMX ° v
p-AKT (S473) 152 D9E ° [ ] v
p-STAT1 (Y701) 153 58D6 ° [ ] v
CD45 154 HI30 ° m* v
NCAM/CD56 155 HCD56 ° u v
p-p38 (T180/Y182) | 156 D3F9 ° [ ] v
p-STAT3 (Y705) 158 | 4/P-STAT3 ° [ ] v
ITGa6/CD49F 159 GoH3 ° ] v
CD133 160 AC133 ° u v
PDGFRa 161 16A1 ° n v
SOX2 163 030-678 ° [] v
SSEA-1/CD15 164 W6D3 ° u v
EGFR 165 AY13 ° n v
K10-
p-NF«kB p65 (S529) | 166 895.12 50 ° ] v
L1ICAM 167 5G3 ° u v
Nestin 168 10C2 ° [ v
CD44 169 BJ18 ° u v
GFAP 170 1B4 ° ] v
-ERK1/2
(1?202 nY204) 171 | DI13.14.4E . . v
p-S6 (S235/S236) 172 N7-548 ° [ 4
SOX10 173 A-2 ° v
HLA-DR 174 L243 ° ] v
p-HH3 175 HTA28 ° v
Histone H3 176 D1H2 ° v

e = included in the panel

B = included for generation of t-SNE map

* Excluded from t-SNE analyses of only glioblastoma cells
Live = live surface stain

Sap = 0.02% saponin stain

MeOH = stain after ice-cold methanol permeabilization
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