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Abstract

Massive sequencing of genetic markers, such as the 16S rRNA gene for prokaryotes, allows the
comparative analysis of diversity and abundance of whole microbial communities. However, the
data used for profiling microbial communities is usually low in signal and high in noise
preventing the identification of real differences among treatments. PIME (Prevalence Interval for
Microbiome Evaluation) fills this gap by removing those taxa that may be high in relative
abundance in just a few samples but have a low prevalence overall. The reliability and
robustness of PIME were compare against the existing methods and verified by a number of
approaches using 16S rRNA independent datasets. To remove the noise, PIME filters microbial
taxa not shared in a per treatment prevalence interval starting at 5% with increments of 5% at
each filtering step. For each prevalence interval, hundreds of decision trees are calculated to
predict the likelihood of detecting differences in treatments. The best prevalence-filtered dataset
is user-selected by choosing the prevalence interval that keeps the majority of the 16S rRNA
reads in the dataset and shows the lowest error rate. To obtain the likelihood of introducing bias
while building prevalence-filtered datasets, an error detection step based in random
permutations is also included. A reanalysis of previews published datasets with PIME
uncovered previously missed microbial associations improving the ability to detect important

organisms, which may be masked when only relative abundance is considered.
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INTRODUCTION

Sequencing of amplified genetic markers (metataxonomics), e.g. the 16S rRNA gene, is
traditionally used for testing hypotheses based on microbial community composition. Taxonomic
differences among treatments or outcomes in microbiome surveys have changed our
understanding of the role played by microorganisms in the environment, plant and animal hosts,
including humans. The major challenge for using this information is their interpretation for the
discovery of the drivers of microbial diversity, the main taxa related to a given factor and the
reduction in false discovery rates. Generally, as microbiome studies present a large number of
taxa that are low in prevalence in many of the samples (1), these approaches frequently include
a variety of pre-filtering steps. Those steps include, but are not limited, to the exclusion of
sequences and/or taxonomic unities with low abundance, low variation, or low presence across
all samples. Moreover, removing arguably uninformative information, pre-filtering is also
advantageous because low abundance features in metataxonomic surveys might be also due to
sequencing errors or low level of contaminants from commercial kits (2, 3).

Besides filtering low abundance sequences, a frequent approach involves the exclusion
of microbial taxa under low prevalence across all samples. The prevalence of microbes in the
human microbiome is characterized by variable distribution patterns (4) with prominent
abundance of some strains in some subjects and nearly absence in others. While this unusual
distribution might be focus of research for future experimental study (4), identify microbial
taxonomic unities present in the majority of the subjects, also known as microbial core, has
been one of the primary goals of the Human Microbiome Project (5, 6). The central objective of
obtaining a healthy core microbiome is to use it to identify significant deviations from normality
that might be associated with disease states, for example.

Many tools such as DADAZ2 (7), Phyloseq (8), Qiime (9), UPARSE (10), MG-RAST (11),
mothur (12), MicrobiomeAnalyst (13) among others, have been developed to contrast
experimental factors in microbiome studies. The choice of a given analyses package is usually
based on the user's level of experience in bioinformatics and on the available resources at the
user's host institution (14), but unfortunately, the most used approaches embedded in these
packages rarely consider microbial prevalence.

Based on the microbial core concept, here we propose a new workflow designed to
identify and remove the within group variation found in metataxonomic surveys (16S rRNA
datasets) by capturing only biological differences at high sample prevalence levels. That means

in an experiment comparing two treatments (e.g. health against diseased subjects) one core for
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each treatment will be calculated and relevant microbial taxa responsible for differences within
microbial cores will be detected. To implement this concept, we developed an R package called
PIME (Prevalence Interval for Microbiome Evaluation). PIME is a tool specifically designed to
work with datasets presenting high variations among samples. It removes per group microbial
taxa to keep only those taxa that are shared at some level of prevalence, using a machine
learning algorithm. For each prevalence level a list with the most relevant taxa responsible for
differences between or among groups is provided. To obtain the likelihood of introducing bias
while building prevalence-filtered datasets, an error detection step based on randomizations is

also included.

PROGRAM DESCRIPTION AND METHODS
Bioinformatics Workflow

The bioinformatics workflow described here is embedded into an R package called PIME
(Prevalence Intervals for Microbiome Evaluation) available at:
https://github.com/microEcology/PIME. PIME identifies statistically significant bacterial
community differences taking into account the proportion of samples hosting a specific microbial
community in a given time period. For the purpose of this work, prevalence was defined as the
proportion of individuals in a specific group who share taxa, irrespective of the abundance, at
the time of sampling. That is, a prevalence cutoff of 50% means that the taxa selected at this
prevalence interval are found in 50% of subjects. PIME’s strategy is based on four fundamental

steps depicted in Figure 1 and explained below:

I) Prediction of differences on full dataset:

PIME takes a phyloseq object (8) as input, builds hundreds of decision trees using a
supervised machine learning algorithm and combines them into a single model to predict the
likelihood of detecting any user predefined factor (e.g. difference between treatments) as source
of sample variation (15). The model performance is indicated by the out-of-bag (OOB) estimate
of the error rate calculated by training the algorithm on a subset of samples and tested on the
remaining samples. Values can vary from 0 to 1, where zero indicates the model has 100%
accuracy and 1 that the model has zero accuracy. This overall measurement of accuracy can be
interpreted as an estimate of error obtained when the model is applied to new observations.

Higher OOB error indicates low accuracy of the model in predicting differences among the
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variables tested. In this case, PIME might be used as an alternative to reduce noise by
removing microbial taxa with low prevalence among samples. This might help to improve the
model accuracy. This first step using the full dataset is implemented in a function called
pime.oob.error. This function is run using the dataset without any filtering proposed by PIME.
After obtaining the OOB error rate, the user should decide whether or not running PIME is
adequate to the dataset. For instance, an OOB error close to zero indicates the prevalence
filtering with PIME is not necessary, as the model accuracy is already reasonably good. On the
other hand, if OOB error rate is greater than zero, filtering the dataset using PIME might
improve the model accuracy. The wuser might then run the next function -called

pime.split.by.variable, which is described below.

II) Split the dataset by predictor variable and compute prevalence intervals:

The full dataset is split according to treatments (or variables) defined by the user in the
metadata file. PIME can deal with two or more variables. Each variable will be used to define
data subsets. Those per variable subsets will be filtered using different prevalence levels from
5% up to 95% with increments of 5% for each level (see Figure 1 for a simplified schema
illustrating this filtering step). Prevalence levels (usually high prevalence levels — e.g. 90%)
where samples have zero counts are not calculated. After removal of taxa that did not match the
prevalence criteria, the subsets are merged to compose a new filtered dataset (one per
prevalence interval) used in the downstream analysis. This step is implemented in two functions
called: pime.split.by.variable and pime.prevalence. The pime.split.by.variable function uses the
original dataset as input and its output is used as input to the pime.prevalence. The function
pime.prevalence keeps, for each treatment group, every OTU/ASV according to the following

logical equation:

No/Ns > Pj == True

Where: Ny is the number of OTUs/ASVs with Sum>0, Ns is the nhumber of samples and

P is the prevalence interval Pi=0.05, ..., Pmax.
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[II) Computation of OOB error on each prevalence interval and importance of each taxa
to differentiate microbial communities

At this step Random Forests analysis (15) is used to determine the level of prevalence
that provides the best model to predict differences in the communities while still including as
many taxa as possible in the analysis. The approach uses multiple learning algorithms to run
classifications based on decision trees. After prevalence filtering, for each prevalence interval
the OOB error rate, the number of remaining taxa and sequences is calculated. The results are
provided in a table that can be used to decide the best prevalence interval that provides a
classification model with reasonably good accuracy. This step is implemented in a function
called: pime.best.prevalence. Within the same function, the contribution of each taxa to the
mean decrease in classification accuracy is calculated. High values of mean decrease accuracy
indicate the importance of taxa to differentiate two or more microbial communities. The user can

access the importance of taxa in each of the prevalence interval calculated.

IV) Validation

To obtain the likelihood of introducing bias while building prevalence-filtered datasets, an
error detection step is also included under the following rationale: Consider the scenario in
which the null hypothesis of “no difference between groups” is false. If we randomly shuffle the
labels that identify the sample groups and run the test again the expected outcome is that the
randomized dataset will have a small chance to present distinct groups. Running the test
multiple times with the random dataset would produce a high OOB error rate in most cases.
This error detection test is implemented in two functions called pime.error.prediction and
pime.oob.replicate. The first function randomizes the samples labels into arbitrary groupings
using 100 random permutations. For each randomized prevalence filtered dataset, the OOB
error rate is calculated to determine whether differences in the original groups occur by chance.
The second function performs the Random Forest analyses and computes the OOB error for
100 replications in each prevalence interval without randomizing the sample labels. The
biological difference among samples is expected to be greater than the differences generated
randomly. Thus, the greatest fraction of randomizations should generate high error rates. On the

other hand, no improvement in accuracy is expected within the randomized dataset.
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Empirical Validation

The PIME workflow was compared against other existing filtering methods and by using
empirical tests with 16S rDNA datasets. The performance of PIME was compared against
filtering methods based on overall prevalence, low abundance and low variance. Also, four 16S
rDNA datasets were analyzed using PIME to illustrate its usefulness. These include an
assessment of: a) the association between diet and saliva microbiome composition
(unpublished original research); b) the gut microbiome in subjects at high genetic risk for type 1
diabetes (16); c) the vaginal microbiome in pregnant women randomized to receive milk with or
without probiotic bacterial strains (17); and d) the saliva microbome compared the left
antecubital fossa of healthy individuals (Human Microbiome Consortium, 2012).

The 16S rRNA gene sequences generated in this work have been deposited in NCBI's

Short Raw Archive and are accessible through BioProject ID PRINA504439.

Comparison with other existing filtering methods

Comparisons were performed using a dataset composed by 16S rRNA sequences from
microbes extracted from saliva of 125 undergraduate and graduate students from the University
of Florida (accessible through BioProject ID PRINA504439). The following filtering tests were
performed: a) filtering the dataset by overall prevalence. To be kept, taxa must be present in at
least 20% of the subjects; b) filtering the dataset by abundance. To be kept, taxa must have at
least 5 sequences; c) filtering by low variance. To be kept taxa must have variance higher than
20%. Filtered datasets were compared against the prevalence interval of 65% as calculated by
PIME as the best prevalence interval where the OOB error was zero. A record of this analysis

containing a step-by-step R-code and results is provided in the Supplementary File S1.

Performance evaluation with 16S rRNA datasets
A novel and three published datasets were analyzed with PIME. The novel dataset used

in this work comprised of 16S rRNA gene sequences from saliva samples obtained from 125
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undergraduate and graduate students from the University of Florida. The study assessed the
subject’s diet as a factor influencing the saliva microbiome. This study was approved by the
University of Florida’'s Institutional Review Board and assigned number IRB201602134.
Approximately 224 undergraduate and graduate students taking three courses were invited to
anonymously participate in this study as volunteers. A study coordinator was chosen to collect
samples and code the samples so that those who did the analysis were unaware of the identity
of the volunteers. To assess the diet, the subjects also completed the KIDMED survey (18). The

sampling collection, DNA extraction and library preparation are described below.

Sampling collection, DNA extraction and library preparation

Of the 224 students invited, 125 volunteers obtained the saliva sample collection and
provided 2 ml of saliva. The samples were taken from each subject using the GeneFiX™ Saliva
DNA Collection device. The collection kit allows immediate stabilization of the DNA. Total DNA
was extracted using the GeneFix™ Saliva-prep-2 kit (Cell Projects Ltd, Harrietsham, UK)
following the manufacturer’s protocol. DNA samples were stored at -20 °C until use.

To assess the diet, the subjects also completed the KIDMED survey (18). The KIDMED
Index is based on a series of 16 questions, which measures the degree to which a subject
adheres to the Mediterranean diet. The KIDMED index has been validated with nutritional data
(19) and was much simpler to implement than a diet diary or a serum-based nutrition analysis.
Participant’'s age and gender were also obtained.

The 16S rRNA library preparation was performed as described previously (16) and
sequenced with lllumina MiSeq: 2x300 cycles run. The raw fastq files were used to build a table
of exact amplicon sequence variants (ASVs) with DADA2 version 1.8 (7). Taxonomy was
assigned to each ASV using the SILVA ribosomal RNA gene database version v132 (20). A
detailed R script containing the code used to generate the ASV table is provided in the
Supplementary File S2. Downstream analyses were carried out using a rarefied dataset of

24,900 sequences as previously recommended by Lemos et al. (21).

Description of the previously published datasets
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The first previously published dataset used here was described by Davis-Richardson et
al. (16) and comprised of partial 16S rDNA sequences from fecal samples of 76 subjects born
between 1996 and 2007 at the Turku University Hospital in southwestern Finland. All subjects
were at high genetic risk for type 1 diabetes. The cohort was retroactively selected to create an
age-matched genotype-controlled set of subjects for the investigation of the microbiome as an
environmental factor influencing the development of Type-1 diabetes. The raw Fastq files were
obtained and sequences were processed using DADA2 version 1.8 (7), as described above.
Cases were defined as subjects who developed at least two persistent islet cell autoantibody
(ICA), IAA, GADA, or IA-2A. Controls were defined as subjects with no detectable islet
autoantibodies. Samples from subjects older than one year and post seroconversion were
removed.

The second published dataset used here was previously described by Avershina et al.
(17). The dataset comprised of amplified and sequenced 16S rRNA genes from vaginal swab
samples collected from a cohort of 256 pregnant women. These subjects were randomized to
receive a daily dose of fermented milk containing probiotic bacterial strains, or milk without
probiotics. An OTU table with 3,000 reads per sample and the accompanying metadata were
kindly provided by the corresponding author. This table was used in all downstream
bioinformatics and statistical analysis. Only those samples collected at the 36™ week of
gestation were used in these analyses.

The third previously published dataset comprised of 16S rRNA gene sequences from the
V1-V3 hypervariable region downloaded from the NIH Human Microbiome Project
(https:/Iwww.hmpdacc.org/HMQCP/#data). The final OTU table processed by Qiime (9) using an
OTU-clustering strategy and accompanying metadata were obtained and loaded into the R
environment. After removing singletons, only saliva and left antecubital fossa samples were
kept. The final dataset comprised of 113 saliva samples and 59 left antecubital fossa samples
all rarefied at 2,000 sequences pre sample. A record of all statistical analyses comparing the
datasets with and without using PIME including the R-code and results is included in

Supplementary File S3.

Performance of PIME compared against other filtering methods
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The results comparing the performance of PIME with other filtering methods are
presented in Figure 2. After quality filtering the saliva dataset, a total of 4,981,638 high-quality
paired sequences, 400 bp long, were obtained from all subjects. An average 44,258 reads per
sample were obtained. The dataset was rarefied to 24,900 reads per sample in all analyses
commensurate with the lowest number of reads found in any one sample. This number of reads
was sufficient to accurately reflect the microbial diversity in these samples given the low
complexity of saliva samples. The best prevalence interval calculated by PIME was at 65%. This
prevalence interval was used to compare the performance of PIME against the other filtering
methods. The original dataset, without any filtering, presented 4,555 taxa and a total of
3,112,500 sequences after rarefaction. Both prevalence overall and PIME excluded the highest
proportion of ASVs and sequences while filtering by abundance or variance excluded only 78%
of ASVs and kept 99.9% of the reads. Nevertheless, the overall prevalence kept 84% of the
sequences while PIME kept 68% of the total number of sequences. Without using the PIME
filtering the OOB error obtained while attempting to classify the salivary microbe according to
the three diet categories was 44% indicating the model had low accuracy in predicting diet
according to the microbiota. Overall prevalence, abundance and variance filtering also
presented low accuracy in classifying diet according to the microbiota however, after PIME

filtering the accuracy of the model increased to 100%.

PIME application and effectiveness

Different datasets were used to validate the PIME workflow. The computations of the
OOB error rate from random forests, the number of taxa and the number of remaining
sequences for each prevalence interval from the diet-saliva dataset are presented in Table 1.
Stringent criteria for definition of prevalence lead to greater improvement in accuracy for
predicting diet based on the salivary microbiota. The prevalence interval of 65% provided the
best separation of microbial communities (OOB error = zero) while still including the majority of
the sequences in the analysis. This prevalence interval was chosen for further analysis, but
other intervals of prevalence can also be tested. For instance, the prevalence interval of 25%
had OOB error of 7.2%. This indicates that the model is 92.8% accurate, which is a reasonably

good model and keep 88% of sequences. The importance of each ASV in finding microbiome
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differences among diet categories (high, medium, or low diet categories) for the prevalence
interval of 65% is presented in Table 2. The table indicates the ability of each variable to classify
the microbes according to the three diet categories. The ASVs are ordered as most- to least-
important. The more the accuracy of the random forest decreases due to the exclusion of a
single ASV, the more important that variable is, and therefore variables with a large mean
decrease in accuracy are more important for classification of the ASVs according to diet. The
mean decrease accuracy of the unfiltered dataset presented negative values, which are a clear
warning sign the model might be overfitting noise (Table 2). On the other hand, after PIME
filtering, the mean decrease accuracy values were all positive indicating a true contribution of
each ASV to classify diet according to the microbiota. Altogether, the results indicated that after
PIME filtering differences in the saliva microbiome was partially explained by diet rather than by
random distribution patterns. The traditional approach, not accounting for microbial prevalence,
was unable to distinguish these differences.

Following this first test, 16S rDNA data from stool of 76 children at high genetic risk for
type 1 diabetes (16) were tested for prevalence differences in those samples from children who
remained healthy versus those that became autoimmune. The computations of the OOB error
rate from random forests, the number of taxa and the number of remaining sequences for each
prevalence interval from the dataset described by Davis-Richardson et al. (2014) are presented
in Table 3. PIME was able to calculate prevalence interval up to 70%. At prevalence intervals
higher than 70% samples had zero counts and prevalence was not calculated. As expected, the
OOB error rate decreased with higher prevalence intervals. At 60% prevalence interval the OOB
error was zero and the number of remaining sequences was 1,165,304. The importance of each
ASYV in finding microbiome differences among cases and controls subjects under risk for T1
diabetes for the prevalence interval of 60% is presented in Table 4. Comparing the results
obtained by the unfiltered dataset with the PIME filtered dataset we observe an improvement in
accuracy. Previously, Davis-Richardson et al. (2014) discovered that the relative abundance of
Bacteroides was significantly higher in autoimmune vs. control subjects. The higher abundance
of Bacteroides was confirmed by PIME and other Amplicon Sequence Variants (ASVS)
belonging to Bifidobacterium genus were also found associated with autoimmune subjects.

In the third dataset tested, taxa were equally likely to be detected in the probiotic and

placebo groups (17). Prevalence testing by PIME also does not capture any difference between

10
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treatments (Table 5). As the vaginal environment is dominated by Lactobacillus, a severe drop
in the number of sequences at 5% prevalence interval was observed, The OOB error rate of the
overall model obtained by Random Forest analysis suggests that irrespective of the prevalence
interval no distinction between probiotic consumption and placebo exists (Supplementary File
3). Those results confirm the author’'s previous findings and demonstrate our approach is not
prone to type | errors (finding false positive results).

Finally, PIME was tested using the association between saliva microbiome and the left
antecubital fossa, a dataset from the Human Microbiome Project (22). These two distinctive
human microbial habitats were selected as they are expected to harbor very different
communities. As predicted, PIME showed that the microbial habitats tested are very distinct.
The OOB error rate was 0.005 within the original dataset and zero at all prevalence intervals
applied (Table 6) indicating the prevalence filtering does not increase the differentiation between

these very different microbial habitats.

Likelihood of introducing bias while building prevalence-filtered datasets

The results obtained by the PIME error detection step are presented in Figure 3. The
biological difference among samples is expected to be greater than the differences generated
randomly. This way, as the prevalence interval increases the OOB error might decrease. As
expected, the OOB error rate of samples with true biological relevant differences (Figures 3A,
3B and 3D) decreased (or remained constant in low noise datasets — Figure 3D) with the
increase in the prevalence interval definition. On the other hand, random sampling produced
OOB error rate always higher than those obtained based on the original dataset. In datasets
with no expected biological relevant differences (Figure 3C), the OOB error did not decrease
with higher prevalence interval definitions and the randomized dataset produced higher OOB
error rates. Thus, the signal to noise ratio increases with the prevalence intervals generating low
OOB error rate values while no improvements in accuracy are observed within the randomized
datasets. This error detection analysis showed that no bias was introduced while building

prevalence-filtered datasets confirming this workflow is not prone to type | errors.

11
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CONCLUSIONS

Prevalence is a key epidemiological concept involving the counting of the number of
people affected by a disease (23, 24). PIME was designed based on this concept. Here we
argue the importance of a microbial community found in a single sample is smaller than if the
same community is present in the majority of samples. Under such rationale, we designed a
workflow capable of improving the ability to detect important organisms as it considers the
extent to which an organism is present across a given population, which may be masked when
only relative abundance is considered. Challenges in microbiome data include sparcity
(presence of many zeros) and large variance in distribution patters (also known as over-
dispersion) with prominent abundance of some microbes in some subjects/samples and nearly
absence in others (4, 25). The current major challenge for using this information is indubitably
how to convert it into rational biological conclusions providing control for error rates of false
discoveries. Many tools have been successfully developed aiming to contrast experimental
factors but they wusually only take into account the microbial abundance and/or
presence/absence. Thus, PIME is expected surpass those challenges including the concept of a
per treatment microbial prevalence in the analysis. This approach greatly improves the results
by removing interpersonal variation within groups (unique microbes found in a single
subject/sample) and keeping only microbes found in most of the subjects of a population (likely
to be associated with a experimental variable). This approach reveals microbes important in a
disease that may be overlooked by traditional methods leading to a greater understanding of
pathogenesis and the identification of potential probiotic treatment and prevention strategies.

Several tools designed to support microbiome statistical data analysis include data
filtering as one of the first steps. The most commonly used filtering includes the exclusion of low
count features (low abundance) using a minimum, yet arbitrary, cutoff, low variance (assuming
that features under low variance are very unlikely to be significant in the comparative analysis)
and low overall prevalence. Arguably filtering those uninformative taxa can improve the data
sparsity issue, improving statistical power. Here we compare the performance of PIME with
these other filtering methods. PIME outperformed all of those other approaches reducing the
error rate and detecting microbial community differences where none were seen by other

methods. To illustrate the application and the value of PIME, it was also implemented in a
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variety of 16S rRNA datasets. Within all of our tests we confirmed previews findings and
improved the results.

During the course of analysis and tests we also detected some potential limitations of
PIME. As PIME relies strongly on group prevalence, it is sensitive to the quality of sample
groups. Poorly categorized groups made up of subjects/samples with very different microbial
composition might affect the prevalence computations and therefore PIME might not be as
effective in suggesting a good prevalence interval for filtering. For datasets with very large
number of samples, PIME might not find a clear prevalence interval for data filtering. With
increased number of samples, the chance of sampling different “cores” or subpopulations is also
increased. In addition, when there is large heterogeneity within sample groups, coupled with
high data sparsity, prevalence computation might not be successful. Another possible limitation
of PIME rises from random forests method, wrapped in pime.oob.error and
pime.best.prevalence functions. Random forests models are sensitive to multicollinear variables
when informing variable importance, though it doesn’t affect prediction errors. Colinear variables
might have inaccurate importance values as the difference is explained by the, randomly, first

chosen variable and little information is added to the model after this.
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1 Table 1. Computations of the out-of-bag error rate from random forests, number of taxa and
2 number of remaining sequences for each prevalence interval from the diet-saliva dataset.

Prevalence Interval OOB error rate (%) Number of OTUs Number of seqs.
0.05 44.8 1,158 2,915,670
0.10 34.4 627 2,797,858
0.15 24 448 2,715,217
0.20 16.8 327 2,653,319
0.25 7.2 235 2,587,433
0.30 7.2 196 2,547,536
0.35 2.4 169 2,479,055
0.40 0.8 151 2,438,026
0.45 1.6 130 2,383,250
0.50 1.6 104 2,302,147
0.55 1.6 91 2,264,871
0.60 0.8 84 2,222,431
0.65 0 76 2,120,215
0.70 0 66 1,972,958
0.75 0 53 1,824,764
0.80 0.8 43 1,747,231
0.85 0 34 1,612,451
0.90 0 26 1,351,690
0.95 0 17 1,078,200
3
4
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1 Table 2. Importance of ASVs measured by mean decrease accuracy to differentiate the three
2  diet categories (High, Low and Medium) from the diet-saliva dataset.
Mean Decrease Accuracy

High Low Medium Over all classes Genus
Unfiltered Dataset
0.0001 0.0002 -0.0004 -0.0002 Veillonella
0.0005 -0.0001 0.0004 0.0002 Streptococcus
-0.0007 -0.0002 -0.0009 -0.0007 Prevotella_7
0.0006 -0.0013 0.0005 -0.0001 Haemophilus
-0.0003 -0.0008 -0.0008 -0.0007 Veillonella
0.0011 -0.0017 0.0018 0.0007 Veillonella
-0.0003 -0.0004 -0.0006 -0.0005 Veillonella
-0.0018 -0.0016 0.0007 -0.0005 Unclassified Genera
0.0001 -0.0006 -0.0009 -0.0006 Neisseria
0.0001 0.0002 -0.0004 -0.0002 Veillonella
Dataset filtered by PIME
0.0200 0.0287 0.0883 0.0573 Veillonella
0.0490 0.0060 0.0776 0.0504 Neisseria
0.0167 0.0153 0.0567 0.0364 Neisseria
0.0317 0.0455 0.0318 0.0349 Prevotella_7
0.0279 0.0345 0.0260 0.0287 Alloprevotella
0.0236 0.0312 0.0278 0.0276 Prevotella_7
0.0087 0.0046 0.0483 0.0273 Haemophilus
0.0200 0.0653 0.0027 0.0239 Porphyromonas
0.0145 0.0250 0.0250 0.0228 Megasphaera
0.0188 0.0206 0.0233 0.0216 Selenomonas_3

Showing only the first 10 hits. A complete table with the 30 most important ASVs is provided in the
Supplementary File 3.
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Table 3. Computations of the out-of-bag error rate from random forests, number of taxa
and number of remaining sequences for each prevalence interval from the dataset
described by Davis-Richardson et al. (2014)
Prevalence OOB error rate Number of Number of seqs
Interval (%) OTUs '
0.05 13.17 979 3,152,779
0.10 10.64 556 2,975,527
0.15 6.16 431 2,891,465
0.20 3.64 335 2,773,432
0.25 3.36 258 2,556,564
0.30 2.8 219 2,457,867
0.35 2.24 175 2,339,966
0.40 2.24 143 2,119,062
0.45 1.4 115 1,922,701
0.50 2.52 99 1,733,801
0.55 1.12 74 1,357,557
0.60 0 62 1,165,304
0.65 0.28 49 1,026,879
0.70 0.56 39 897,367
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1 Table 4. Importance of ASVs measured by mean decrease accuracy to differentiate the cases
2 and controls at high genetic risk for type 1 diabetes from the dataset described by Davis-
3 Richardson et al. (2014).

Mean Decrease Accuracy

Controls Cases Over all classes Genus
Unfiltered Dataset
0.0028 0.0061 0.0040 Bacteroides
0.0031 0.0033 0.0031 Bacteroides
0.0011 0.0036 0.0020 Bacteroides
0.0037 0.0017 0.0030 Bacteroides
0.0006 0.0012 0.0008 Bacteroides
0.0012 0.0003 0.0008 Bacteroides
0.0025 0.0020 0.0023 Bacteroides
0.0021 0.0015 0.0019 Bacteroides
0.0028 0.0047 0.0035 Bacteroides
0.0005 0.0008 0.0006 Bifidobacterium
Dataset filtered by PIME
0.0588 0.0148 0.0422 Bacteroides
0.0470 0.0119 0.0339 Bacteroides
0.0386 0.0118 0.0284 Bifidobacterium
0.0372 0.0073 0.0260 Bifidobacterium
0.0375 0.0063 0.0257 Bacteroides
0.0366 0.0070 0.0255 Bacteroides
0.0356 0.0074 0.0251 Bacteroides
0.0372 0.0045 0.0251 Bacteroides
0.0366 0.0058 0.0250 Bacteroides
0.0346 0.0076 0.0245 Bacteroides

Showing only the first 10 hits. A complete table with the 30 most important ASVs is provided in the
Supplementary File 3.

~N ook

17


https://doi.org/10.1101/632182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/632182; this version posted May 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 Table 5. Computations of the out-of-bag error rate from random forests, number of taxa
2 and number of remaining sequences for each prevalence interval from the dataset
3 described by Avershina et al., (2017).

Prevalence Interval OOB error rate (%) Number of OTUs Number of segs.
0.05 28.06 123 988,309
0.10 14.93 68 967,461
0.15 20.90 40 954,379
0.20 21.19 26 931,177
0.25 27.46 22 929,563
0.30 25.67 17 903,330
0.35 33.73 14 899,992
0.40 17.91 14 898,656
0.45 20.00 10 889,244
0.50 42.69 7 881,104
0.55 14.63 7 853,874
0.60 17.01 6 853,217
0.65 18.21 5 797,394
0.70 53.73 3 745,832
0.75 47.16 2 663,347
0.80 46.57 2 663,347
0.85 46.87 2 663,347
0.90 47.16 2 663,347
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1 Table 6. Computations of the out-of-bag error rate from random forests, number of taxa
2 and number of remaining sequences for each prevalence interval from the Human
3  Microbiome Project dataset.

Prevalence Interval OOB error rate (%) Number of OTUs gléjqn;l.:)er of
0.05 0 509 190,455
0.10 0 509 189,296
0.15 0 509 188,555
0.20 0 506 188,189
0.25 0 473 183,574
0.30 0 421 176,217
0.35 0 328 161,346
0.40 0 274 151,525
0.45 0 234 142,112
0.50 0 185 129,369
0.55 0 143 112,978
0.60 0 118 104,474
0.65 0 74 82,052
0.70 0 48 62,817
0.75 0 34 56,457
0.80 0 23 46,475
0.85 0 13 34,459
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Figures Captions

FIGURE 1. Empirical representation of steps used in PIME. Top panel. Simplified schema
illustrating PIME method with a subset of 12 saliva’'s microbiome samples. Each sample (red,
yellow and blue circles) is connected to an ASV (white circles) through edges (green). ASVs
observed in more than one sample are connected by at least two edges and are displayed at
the center of the network. ASVs present in only one sample are connected by a single edge and
are displayed at the border of the network. The first step applied by PIME is to split the full
dataset according to the treatments defined by the user. Within this example red, yellow and
blue circles depict three different treatments. At each of the three new groups the low prevalent
ASVs are removed. Finally, the subsets are merged to compose a new filtered dataset used in
the downstream analysis. Bottom panel. Step-by-step representation of PIME workflow and

validation.

FIGURE 2. Performance of PIME compared to other filtering methods. A) Out of Bag error rate
(OOB error rate); B) total number of sequences; C) Total number of ASVs. Prevalence = filter by
overall taxa prevalence in at least 20% of the subjects; Abundance = filter by abundance of at
least 5 sequences; Variance = filter by variance higher than 20%. PIME = filter by prevalence

interval of 65%.

FIGURE 3. Boxplot depicting the PIME error detection step. Red boxes represent the OOB error
rate obtained by randomly shuffling the labels into arbitrary groupings using 100 random
permutations and running pime.error.prediction function at each randomization for each
prevalence interval. Black boxes represent the OOB error rate against the 100 replications in
each prevalence interval against the original sampling labels obtained by running
pime.oob.replicate function. (A) Original dataset from salivary microbiome samples. (B) Data
from the gut microbial of 76 children at high genetic risk for type 1 diabetes. (C) Data from the
vaginal microbiome of pregnant women randomized to receive milk with or without probiotic
bacterial strains. (D) Data from the microbiome of saliva and left antecubital fossa of healthy

individuals. Boxes span the first to third quartiles; the horizontal line inside the boxes represents
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the median. Whiskers extending vertically from the boxes indicate variability outside the upper

and lower quartiles, and the circles indicate outliers.

Table captions

Table 1. Computations of the out-of-bag error rate from random forests, number of taxa and
number of remaining sequences for each prevalence interval from the diet-saliva dataset.

Table 2. Importance of ASVs measured by mean decrease accuracy to differentiate the three
diet categories (High, Low and Medium) from the diet-saliva dataset.

Table 3. Computations of the out-of-bag error rate from random forests, number of taxa and
number of remaining sequences for each prevalence interval from the dataset described by
Davis-Richardson et al. (2014).

Table 4. Importance of ASVs measured by mean decrease accuracy to differentiate the cases
and controls at high genetic risk for type 1 diabetes from the dataset described by Davis-
Richardson et al. (2014).

Table 5. Computations of the out-of-bag error rate from random forests, number of taxa and
number of remaining sequences for each prevalence interval from the dataset described by
7).

Table 6. Computations of the out-of-bag error rate from random forests, number of taxa and
number of remaining sequences for each prevalence interval from the Human Microbiome
Project dataset.

Supplementary information

Supplementary File S1. Comparison of PIME with other existing filtering methods.
Supplementary File S2. The pipeline used to assign 16S rRNA sequences to ASVs.

Supplementary File S3. Detailed and reproducible description of PIME data analysis.
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