

1 **Title:**

2 Intra-individual changes in the frequency of mosaic loss of chromosome Y over time
3 estimated with a new method

4

5 **Authors:**

6 Marcus Danielsson (marcus.danielsson@igp.uu.se)^{1,*}, Jonatan Halvardson
7 (jonatan.halvardson@igp.uu.se)¹, Hanna Davies (hanna.davies@igp.uu.se)¹, Behrooz Torabi
8 Moghadam (behrooz.torabi@igp.uu.se)¹, Jonas Mattisson (jonas.mattisson@igp.uu.se)¹,
9 Edyta Rychlicka-Buniowska (edyta.rychlicka@igp.uu.se)^{1,2}, Janusz Jaszczynski³, Julia Heintz
10 (julia.heintz@igp.uu.se)¹, Lars Lannfelt (Lars.Lannfelt@pubcare.uu.se)⁴, Vilmantas
11 Giedraitis (Vilmantas.Giedraitis@pubcare.uu.se)⁴, Martin Ingelsson
12 (Martin.Ingelsson@pubcare.uu.se)⁴, Jan P. Dumanski (jan.dumanski@igp.uu.se)^{1,2,#} and Lars
13 A. Forsberg (lars.forsberg@igp.uu.se)^{1,5,*,#}

14

15 **Affiliations:**

16 1 Dept. of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala
17 University, 75185 Uppsala, Sweden
18 2 Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
19 3 Dept. of Urology, Maria Skłodowska - Curie Memorial Cancer Centre and Institute of
20 Oncology, Kraków Branch, Kraków, Poland
21 4 Department of Public Health and Caring Sciences, Division of Molecular Geriatrics,
22 Uppsala University, 751 85 Uppsala, Sweden
23 5 Beijer Laboratory of Genome Research, Uppsala University, Uppsala, Sweden

24

25 * To whom correspondence should be addressed

26 # shared senior authors

27 **Abstract**

28 **Background**

29 Mosaic loss of chromosome Y (LOY) is the most common somatic mutation and is associated
30 with all-cause mortality, non-haematological cancers and Alzheimer's disease among other
31 outcomes. The predominant method used for estimating LOY is the intensity data generated
32 by SNP-arrays, which is difficult to interpret due to its logarithmic scale. Here we describe a
33 new way to convert the LOY mosaicism into a non-logarithmic scale, which instead
34 represents the percentage of affected cells.

35 **Methods**

36 We compared three independent LOY readouts from matched samples, generated by SNP-
37 array, whole genome sequencing and droplet digital PCR. The SNP-array standardization was
38 derived from this comparison and was applied in analyses of serially collected samples from a
39 large cohort of aging men. The sampling was performed up to five times, spanning up to 22
40 years.

41 **Results**

42 We observed a higher correlation between the LOY measurements from SNP-array and the
43 two other readouts when using the standardized, instead of the logarithmic, SNP-array data.
44 We also observed a pronounced intra-individual variation of changes in the frequency of LOY
45 within individual males over time.

46 **Conclusions**

47 Describing LOY measurements generated from SNP-arrays in percentage of cells without the
48 Y chromosome makes comparisons to WGS and ddPCR measurements more precise and
49 easier to interpret. This standardization could be applied to the vast amount of SNP-array data
50 already generated in the scientific community, allowing further discoveries of LOY associated
51 disease and outcomes. Additionally, the frequency of LOY in this study changed profoundly
52 within men over time, likely as a result of aberrant clonal expansions.

53

54 **Keywords**

55 Mosaic loss of chromosome Y, LOY, somatic mutation, SNP-array, WGS, ddPCR.

56 **Background**

57 Somatic mosaicism is defined as the presence of post-zygotic mutations in the soma of an
58 organism. Mosaic loss of chromosome Y (LOY) refers to Y chromosome aneuploidy acquired
59 during life and it is the most common post-zygotic mutation in human blood cells, affecting
60 ~1.6% of the genome(1). For over 50 years it has been known that LOY is a frequent event in
61 cells of the hematopoietic system(2) and LOY in leukocytes was long viewed as a neutral
62 event related to normal aging without phenotypical consequences(3). However, recent studies
63 suggest the opposite as LOY has been found to be associated with increased risk for all-cause
64 mortality(4, 5) as well as a growing list of diverse diseases and outcomes such as various
65 forms of cancer(4, 6-9), autoimmune conditions(10, 11), Alzheimer's disease(12), major
66 cardiovascular events(13, 14), suicide completion(15), schizophrenia(16), diabetes(14) as well
67 as age-related macular degeneration (AMD)(17).

68 At the single cell level LOY is a binary event, but it is manifested at the level of an individual
69 as a gradual mosaicism, ranging from zero to 100% of cells without a Y chromosome. Recent
70 studies have established that the frequency of LOY in leukocytes increases with age and that
71 it occurs in about 5-10%, 15-20% and 20-30% of aging men around 60, 70 and 80 years of
72 age, respectively(4, 7, 12, 18, 19). Furthermore, a recent study showed that the frequency of
73 LOY in blood cells was 57% in 93 year old men(20). Although aging itself clearly is a very
74 important risk factor, LOY in blood cells have also been reported in younger men(8, 17, 19)
75 and other tissues (ectodermally-derived buccal mucosa), although in lower frequency than in
76 haematopoietic cells(20). Thus, further studies are needed to fully characterize its prevalence,
77 dynamic changes over time as well as potential phenotypic effects during the entire lifespan
78 and across many tissues. Additional risk factors have been described and include smoking(7,
79 17, 18, 21), exposure to air pollution(22) as well as genetic background(7, 18, 23).

80 Measurements of LOY mosaicism from DNA have and could be performed using
81 technologies such as karyotyping, qPCR, DNA-arrays and next generation sequencing (NGS)
82 (Additional file 2: Supplementary Table 1). During the last decades, many millions of human
83 DNA samples have been characterized in different large scale human genome projects and
84 could readily be analyzed for occurrence of somatic structural variants and aneuploidies such
85 as LOY in individual samples. For example, recent studies have reanalyzed data generated
86 with various SNP-arrays, originally intended for genome wide association studies (GWAS) to
87 estimate the level of LOY. The normalized intensity data captured by the array (Log R Ratio,
88 LRR) reflect the DNA copy number in different regions of the genome. Hence, the
89 measurement of LOY can be calculated from the median of the LRR values of the probes
90 located within the male-specific region of chromosome Y (MSY, chrY: 2,781,480–
91 56,887,902, hg19/GRCh38.p12). This method typically generates an estimation for LOY
92 called mLRRY (median Log R Ratio on male specific chromosome Y) where individuals
93 without LOY display an mLRRY value around zero and a decreasing mLRRY value indicates
94 an increasing level of LOY mosaicism. However, this inverted relationship is a shortcoming
95 for intuitive interpretation of the mosaicism. To solve this problem, we here present a new
96 method to transform the mLRRY data into a more intuitive unit, i.e. the percentage of cells
97 with LOY (LOY%), which range between 0 and 100% and increases with the level of
98 mosaicism. We also applied this transformation in comprehensive analyses of serially
99 collected samples from aging men to characterize previously an unknown intra-individual
100 variation of changes in the frequency of LOY within the blood of individuals studied over
101 time.

102 **Results**

103 We used data generated by SNP-array, whole genome sequencing (WGS) and droplet digital
104 PCR (ddPCR targeting the *AMELX/AMELY* polymorphism) to estimate the level of LOY in

105 DNA samples extracted from peripheral blood nucleated cells. The same DNA samples were
106 analysed using these three methods and the estimated level of LOY in each sample from each
107 technology is provided in Additional file 2: Supplementary Table 2. A detailed description of
108 how LOY was estimated using each approach is provided in the Methods section. Briefly, for
109 SNP-array data, a continuous variable was calculated from the Log R Ratio (mLRRY) as a
110 median intensity value. For WGS, the frequency of cells with the Y chromosome present was
111 estimated from the ratio between the read depth on chromosome Y in relation to the full
112 genome. Finally, in the ddPCR we quantified the relative number of X and Y chromosomes
113 by targeting a 6 bp polymorphism present between the *AMELX* and *AMELY* genes.

114 The generated data enabled us to compare the measurements of LOY among the three
115 independent technologies (Fig. 1) and we found WGS and ddPCR to have the highest
116 concordance in LOY estimation (Fig. 1 panels a and b). Specifically, in the samples analysed
117 with these two independent technologies, a close to perfect correlation in LOY-estimation was
118 achieved ($R^2=0.998$, $p<2.2\times10^{-16}$, Fig. 1 panels a and b). Comparing the level of LOY
119 estimated in the samples analysed using SNP-array and WGS as well as in the samples
120 analysed using SNP-array and ddPCR, also showed a high degree of concordance (Fig. 1
121 panels a, c and d). However, in contrast to the linear correlation between WGS and ddPCR
122 readouts, comparing the level of LOY estimated using SNP-array with WGS or ddPCR
123 showed non-linear relationships (Fig. 1 panels c and d). To increase comparability between
124 SNP-array and other methods, we transformed the SNP-array data according to a new
125 equation ($LOY\% = 100*(1-2^{mLRRY})$) as further described in the Methods section. The
126 transformation was made by adjusting mLRRY data to the LOY estimates for the same
127 samples using WGS and ddPCR and applying the method on the SNP-array data generated a
128 linear relationship (Fig. 1 panels a, e and f).

129

130 **Serial analyses of LOY in 276 aging men**

131 The level of LOY from all available serially collected samples from the cohort Uppsala
132 Longitudinal Study of Adult Men (ULSAM, www.pubcare.uu.se/ulsam) was estimated using
133 Illumina SNP-array data, with both the conventional mLRRY as well as percent of cells with
134 LOY as a metric. The serial analyses included data from 798 separate measurements of LOY
135 in 276 men (median age = 81.9, range = 70-93) and each man was sampled 2-5 times over a
136 period of up to 22.2 years. A main result from the serial analysis was an overall higher
137 frequency of LOY within samples collected at higher ages (Fig. 2), confirming results of
138 previous studies(4, 7, 12, 17-20). Furthermore, the serial analysis also revealed a previously
139 undescribed profound inter-individual variation in the developmental trajectories of LOY
140 clones in different men, i.e. variation in LOY driven aberrant clonal expansions (ACEs(1)),
141 also referred to as clonal haematopoiesis (CH). For example, the result shows that in 67% of
142 the studied individuals, the level of LOY did not change substantially during the study. We
143 also found that the frequency of LOY increased during follow-up time in 26% of the
144 individuals and decreased in 7% of the individuals (Fig. 2, Additional file 1: Supplementary
145 Fig. 9 and Additional file 2: Supplementary Table. 3). More complex patterns could also be
146 observed in a few individuals i.e. initial increase of LOY followed by a decrease but also
147 initial decrease followed by an increase of LOY. These dynamic patterns were observed using
148 both units to estimate LOY from the SNP-array data, i.e. mLRRY and percent of cells with
149 LOY, respectively (Fig. 2 panels a and b).

150 As mentioned above, the frequency of LOY within a subset of the studied individuals showed
151 a clear increase during follow-up time. The dotted lines in panels a and b in Fig. 2 mark a
152 threshold where 30% of the studied cells in the samples are without the Y chromosome. Of
153 the 276 men studied, we found that 65 individuals in at least one time point had a level of
154 LOY on or above this threshold and their 183 measurements of LOY were plotted in Fig. 2

155 panel c. Within this group we observed that a subset of men showed a non-linear increase in
156 frequency of LOY over time while others did not (Additional file 1:Supplementary Fig. 9).
157 We tested for both linear and exponential associations between LOY and age in this group
158 consisting of 183 data points and found that a linear predictor was stronger than the
159 exponential (linear regression: $R^2=0.3442$, $p<2.2\times10^{-16}$ and exponential regression:
160 $R^2=0.3298$, $p<2.2\times10^{-16}$). Nevertheless, these group level analyses fail to reveal cases with a
161 non-linear increase in frequency of LOY over time, which were observed in certain
162 individuals (Fig. 2 and Additional file 1: Supplementary Fig. 9).

163

164 **Discussion**

165 Measurements of LOY from DNA have been performed using many different technologies
166 such as various types of karyotyping, qPCR, genotyping arrays and next generation
167 sequencing (Additional file 2: Supplementary Table 1). Recent studies have reanalyzed data
168 generated with various SNP-arrays, originally intended for genome wide association studies
169 (GWAS), to estimate the level of LOY in individuals and described profound phenotypic
170 effects associated with LOY in leukocytes. We here evaluated the three independent
171 technologies SNP-arrays, WGS and ddPCR (targeting the *AMELX/AMELY* polymorphism)
172 for measuring LOY mosaicism. We analysed the same DNA samples using these three
173 methods which enabled comparisons of the level of LOY estimated by the different
174 technologies.

175 We established that LOY estimation using WGS and ddPCR yielded close to identical results
176 from the same DNA samples tested. However, the corresponding comparisons between SNP-
177 array and WGS or ddPCR showed non-linear relationships, likely as an effect of the
178 logarithmic scale of the intensity data generated by the SNP-array platforms. After scaling the

179 SNP-array data using a new method, the comparisons to other methods increased linearity
180 (Fig. 1). In addition, the unit percentage of cells with LOY, generated by the transformation,
181 represents the studied biological event in a more straightforward way, since a higher
182 percentage represents a higher level of mosaicism.

183 In order to evaluate the new method and the LOY% unit, we studied serial changes in the
184 level of LOY mosaicism in DNA samples collected serially in a unique cohort of aging men
185 called ULSAM. To our knowledge, this is the first study showing comprehensive LOY
186 analyses from samples collected serially from the same men. The participants of the ULSAM
187 study have been followed clinically for 48 years and blood samples have been collected
188 repeatedly from the same participants. The serial sampling allowed us to, for the first time,
189 study changes in the level of LOY within individuals over time and we found three main
190 patterns. First, in a large part of the studied men, the levels of LOY were relatively low during
191 the entire study period. Second, in other men the frequency of LOY increased substantially
192 during follow-up time and third, in a few men we found that the level of LOY showed an
193 initial increase followed by a decrease in frequency (Fig. 2 and Additional file 1:
194 Supplementary Fig. 9). Thus, we validated results from previous studies showing that LOY is
195 more frequent in older men(4, 7, 12, 18-20) and in addition, we described a novel finding of
196 profound inter-individual variation in development of LOY clones in blood (Fig. 2).
197 Interestingly, we observed in a subset of the studied men that the frequency of LOY increased
198 in a non-linear rate (Additional file 1: Supplementary Fig. 9). These results illustrate the
199 dynamic nature of aberrant clonal expansions (ACEs(1)) with LOY in the hematopoietic
200 system. The non-linear increase in frequency of LOY over time is likely an effect of oligo or
201 polyclonal processes, i.e. several hematopoietic progenitor cells giving rise to ACEs with
202 LOY.

203 Here we describe a new method for transformation of LOY data generated by SNP-array and
204 show its advantages applied on a data set where LOY was estimated on serially collected
205 blood samples. The approach to re-analyze SNP-array data could be applied to the millions of
206 experiments already generated in GWAS studies, to further investigate associations between
207 LOY and various diseases and other phenotypic outcomes.

208

209 **Conclusions**

210 Here we describe a new method for standardization of LOY data generated by SNP-array and
211 show its advantages when comparing with LOY estimates using WGS or ddPCR.
212 Furthermore, when applied on a data set where LOY was estimated on serially collected blood
213 samples, data was easier to interpret with the intuitive scale and unit (LOY%). This
214 standardization could be applied to estimate LOY in the millions of SNP-array experiments
215 already generated in GWAS studies to further investigate associations between LOY and
216 various diseases and other phenotypic outcomes.

217

218

219

220 **Methods**

221 **Samples and DNA extraction**

222 DNA was extracted from blood samples of participants in the Uppsala Longitudinal Study of
223 Adult Men (ULSAM, www.pubcare.uu.se/ulsam) using the QIAamp DNA Blood kit (51194,
224 Qiagen) according to the manufacturer's instructions.

225

226 **SNP-array**

227 The mLRRY value was calculated as the median of the Log R Ratio (LRR) value of each
228 probe in the male specific Y (MSY) region of chromosome Y between the pseudoautosomal
229 region 1 and pseudoautosomal region 2 (PAR-1 and PAR-2). The four different Illumina
230 SNP-array platforms used in this study and the number of probes in the MSY and PAR
231 regions for the genotyping platforms used in this study are described in Additional file 2:
232 Supplementary Table 4. The mLRRY value calculated for each sample (N=121) was adjusted
233 for batch effects using the positive tail of the distribution of mLRRY values for each batch as
234 an estimator of the batch specific noise as previously described(4).

235

236 **mLRRY transformation**

237 Transformation from mLRRY generated from MSY to percentage of cells was done in three
238 steps. First mLRRY was antiloged (2^{mLRRY}) and correlated to data from the same samples
239 generated by WGS (N=26) or ddPCR (N=121). Secondly, a power equation was calculated
240 from both correlations and independently of each other resulted in the same formula:
241 $0.9*mLRRY^{1.8}$ ($R^2=0.97$). Finally the formula was rounded to the nearest integer and used to
242 adjust the antilog mLRRY, resulting in the following equations:

243 *Percent of cells with the Y chromosome = $100*2^{2*mLRRY}$*

244 *Percent of LOY cells = $100*(1-2^{2*mLRRY})$*

245 In parallel, data generated from the PAR-region from chromosome Y and X (median B-allele
246 frequency, BAF) is presented in Additional file 1: Supplementary Figure 4 panel b, and was
247 calculated accordingly(24):

248 *Proportion of cells with the Y chromosome = 2BAF/(0.5+BAF)*

249

250 The data describing the proportion of normal cells calculated from B-allele frequency was
251 also correlated to WGS and ddPCR and by rounding the resulting power equation to the
252 nearest integer the relationship to percentage of cells could be described:

253 *Percent of cells with the Y chromosome = 100*(2BAF/(0.5+BAF))³*

254

255 **Whole genome sequencing (WGS)**

256 Sequencing libraries were prepared using the truseq Nano DNA sample preparation kit (T FC-
257 121- 4001/4002, Illumina Inc) extracting 100 ng DNA for each sample. Sequencing libraries
258 were run on an Illumina HiSeq X instrument (version 2.5 sequencing chemistry) and
259 sequenced to a depth of 30x. Each sequenced library had a read length of 150 bp with an
260 insert size of 350 bp.

261 Sequencing reads were aligned to the GRCh37 human reference genome with the BWA
262 aligner (version 0.7.12). Copy number for chromosome Y was estimated by the Control-
263 Freec software using read counts in non-overlapping windows across the genome. These were
264 fitted by the GC content and mappability information and the median ploidy for the Y
265 chromosome was calculated(25).

266

267 **ddPCR**

268 Bio-Rad's QX200 Droplet Digital PCR System was used for the processing and fluorescent
269 measurements of droplets. Additionally, Bio-Rad's software QuantaSoft (version 1.7.4.0917)

270 was used in both data generation and analysis. Extracted DNA samples with concentrations
271 ranging between 300ng/μl to 20ng/μl were pre-digested for 15 minutes in 37°C with HindIII
272 (Thermo Fischer, article number: #FD0504) and diluted with an equal volume of water.
273 Subsequently 50 ng of the digested and diluted DNA sample was mixed in PCR supermix for
274 probes without dUTP (BioRad, article number: 186-3023) together with primers and probes
275 (Thermo Fisher, article number: C_99000001_10). PCR conditions used was an initial
276 denaturation at 95°C for 10 minutes followed by 40 cycles of 94°C denaturation for 30
277 seconds and combined annealing and extension at 60°C for 1 minute. The PCR program ends
278 with 98°C for 10 minutes and finally a 10°C hold. The fluorophores for the TaqMan probes
279 are FAM for *AMELY* and VIC for *AMELX* and the schematics of the *AMELX/AMELY*
280 TaqMan-assay used in this study is described in Additional file 1: Supplementary Figure 5.
281 Samples were run in duplicates and if the standard deviation for the *AMELY/AMELX* ratio
282 exceeded 1.2, it was re-run.

283
284 To estimate the limit of detection (LOD) for LOY, a dilution series was generated by mixing
285 male and female DNA and determined by linear regression accordingly:
286 $LOD=3*Sa/b$
287 Where *Sa* is the standard deviation and *b* is the slope of the dilution series.

288
289 Pairwise two-tailed student t-test was used for comparing the control male DNA to each of the
290 different steps in the dilution series. The measured *AMELY/AMELX* ratio was adjusted for any
291 LOY in the male control DNA. Additionally, the difference between male and female
292 genomic weight was also adjusted for when producing the dilution series.

293

294

295 **Declarations**

296 **Ethics approval and consent to participate**

297 The study had been approved by the Regional Ethical Committee in Uppsala, Sweden. All
298 study participants provided written informed consent for participation. The reference number
299 of the approvals are: Dnr: 02-018 approved 2002-06-05 (ethics for the early ULSAM
300 genetics), dnr: 02-605 approved 2003-02-18 (ULSAM82), dnr: 2007/338 approved 2008-01-
301 23 (ULSAM88) and dnr: 2013/350 approved 2013-10-23 (ULSAM93).

302 **Availability of data and material**

303 The data generated in this study is either available (Additional file 2: Supplementary Table 2)
304 or could be made available by request to corresponding authors.

305 **Competing interests**

306 JPD and LAF are cofounders and shareholders in Cray Innovation AB. All other authors
307 declare no competing interest.

308 **Funding**

309 The study was sponsored by grants, for the purpose of investigating LOY, from the Swedish
310 Cancer Society, the Swedish Research Council, Konung Gustav V:s och Drottning Viktorias
311 Frimurarestiftelse, the Science for Life Laboratory Uppsala, Alzheimerfonden and the
312 Foundation for Polish Science under the International Research Agendas Programme (award
313 nr. MAB/2018/6) to J.P.D, and by grants from the European Research Council (ERC) Starting
314 Grant, the Swedish Research Council, the Olle Enqvist Byggmästare Foundation, the Kjell
315 and Märta Beijers Foundation to L.A.F. Genotyping and sequencing were performed by the
316 SNP&SEQ Technology Platform in Uppsala, which is part of the Science for Life Laboratory
317 at Uppsala University and is supported as a national infrastructure by the Swedish Research
318 Council.

319

320 **Authors' contributions**

321 MD, ERB, LL, VG, JJ, MI, JPD and LAF conceived the study. MD, HD, JPD and LAF
322 designed the study. MD, HD, JH1 & JH2 performed the experiments. MD, JH1, BTM and JM
323 analysed and interpreted the data. MD and LAF wrote the manuscript with input from all
324 other authors. All authors have read and approved the final manuscript.

325

326 **Acknowledgements**

327 We acknowledge K. Ström for collection of samples from the ULSAM. Thanks goes out also
328 to U. Landegren for discussions and feedback on the manuscript.

329

330 **References**

- 331 1. Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease - clones
332 picking up speed. *Nature Reviews Genetics*. 2017;18(2):128-42.
- 333 2. Jacobs PA, Brunton M, Court Brown WM, Doll R, Goldstein H. Change of human
334 chromosome count distribution with age: evidence for a sex differences. *Nature*. 1963;197:1080-1.
- 335 3. UKCCG. Loss of the Y chromosome from normal and neoplastic bone marrows. United
336 Kingdom Cancer Cytogenetics Group (UKCCG). *Genes Chromosom Cancer* 1992;5(1):83-8.
- 337 4. Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S, Pakalapati G, et al. Mosaic
338 loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of
339 cancer. *Nat Genet*. 2014;46(6):624-8.
- 340 5. Loftfield E, Zhou W, Graubard BI, Yeager M, Chanock SJ, Freedman ND, et al.
341 Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. *Sci Rep*.
342 2018;8(1):12316.
- 343 6. Noveski P, Madjunkova S, Sukarova Stefanovska E, Matevska Geshkovska N,
344 Kuzmanovska M, Dimovski A, et al. Loss of Y Chromosome in Peripheral Blood of Colorectal and
345 Prostate Cancer Patients. *PLoS One*. 2016;11(1):e0146264.
- 346 7. Zhou W, Machiela MJ, Freedman ND, Rothman N, Malats N, Dagnall C, et al. Mosaic
347 loss of chromosome Y is associated with common variation near TCL1A. *Nat Genet*. 2016;48(5):563-8.
- 348 8. Machiela MJ, Dagnall CL, Pathak A, Loud JT, Chanock SJ, Greene MH, et al. Mosaic
349 chromosome Y loss and testicular germ cell tumor risk. *J Hum Genet*. 2017;62(6):637-40.
- 350 9. Ganster C, Kampfe D, Jung K, Braulke F, Shirneshan K, Machherndl-Spandl S, et al. New
351 data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. *Genes Chromosomes
352 Cancer*. 2015;54(12):717-24.
- 353 10. Persani L, Bonomi M, Lleo A, Pasini S, Civardi F, Bianchi I, et al. Increased loss of the Y
354 chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. *J Autoimmun*.
355 2012;38(2-3):J193-6.
- 356 11. Lleo A, Oertelt-Prigione S, Bianchi I, Caliari L, Finelli P, Miozzo M, et al. Y chromosome
357 loss in male patients with primary biliary cirrhosis. *J Autoimmun*. 2013;41:87-91.

358 12. Dumanski JP, Lambert JC, Rasi C, Giedraitis V, Davies H, Grenier-Boley B, et al. Mosaic
359 Loss of Chromosome Y in Blood Is Associated with Alzheimer Disease. *Am J Hum Genet.*
360 2016;98(6):1208-19.

361 13. Haitjema S, Kofink D, van Setten J, van der Laan SW, Schoneveld AH, Eales J, et al. Loss
362 of Y Chromosome in Blood Is Associated with Major Cardiovascular Events during Follow-up in Men
363 after Carotid Endarterectomy. *Circ Cardiovasc Genet.* 2017;10:e001544.

364 14. Loftfield E, Zhou W, Graubard BI, Yeager M, Chanock SJ, Freedman ND, et al.
365 Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. *Scientific
366 Reports.* 2018;8(1):12316.

367 15. Kimura A, Hishimoto A, Otsuka I, Okazaki S, Boku S, Horai T, et al. Loss of chromosome
368 Y in blood, but not in brain, of suicide completers. *PLoS One.* 2018;13(1):e0190667.

369 16. Hirata T, Hishimoto A, Otsuka I, Okazaki S, Boku S, Kimura A, et al. Investigation of
370 chromosome Y loss in men with schizophrenia. *Neuropsychiatr Dis Treat.* 2018;14:2115-22.

371 17. Grassmann F, Kiel C, den Hollander AJ, Weeks DE, Lotery A, Cipriani V, et al. Y
372 chromosome mosaicism is associated with age-1 related macular degeneration. *Eur J Hum Genet.*
373 2018; this issue.

374 18. Wright DJ, Day FR, Kerrison ND, Zink F, Cardona A, Sulem P, et al. Genetic variants
375 associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer
376 susceptibility. *Nat Genet.* 2017;49(5):674-9.

377 19. Zink F, Stacey SN, Nordahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal
378 hematopoiesis, with and without candidate driver mutations, is common in the elderly. *Blood.*
379 2017;130(6):742-52.

380 20. Forsberg LA, Halvardson J, Rychlicka-Buniowska E, Danielsson M, Moghadam BT,
381 Mattisson J, et al. Mosaic loss of chromosome Y in leukocytes matters. *Nature Genetics.* 2018.

382 21. Dumanski JP, Rasi C, Lonn M, Davies H, Ingelsson M, Giedraitis V, et al. Smoking is
383 associated with mosaic loss of chromosome Y. *Science.* 2015;347(6217):81-3.

384 22. Wong JYY, Margolis HG, Machiela M, Zhou W, Odden MC, Psaty BM, et al. Outdoor air
385 pollution and mosaic loss of chromosome Y in older men from the Cardiovascular Health Study.
386 *Environ Int.* 2018;116:239-47.

387 23. Thompson D, Genovese G, Halvardson J, Uliirsch J, Wright D, Terao C, et al. Genetic
388 predisposition to mosaic Y chromosome loss in blood is associated with genomic instability in other
389 tissues and susceptibility to non-haematological cancers. 2019;514026.

390 24. Forsberg LA, Rasi C, Razzaghian HR, Pakalapati G, Waite L, Thilbeault KS, et al. Age-
391 related somatic structural changes in the nuclear genome of human blood cells. *Am J Hum Genet.*
392 2012;90(2):217-28.

393 25. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-
394 FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data.
395 *Bioinformatics (Oxford, England).* 2012;28(3):423-5.

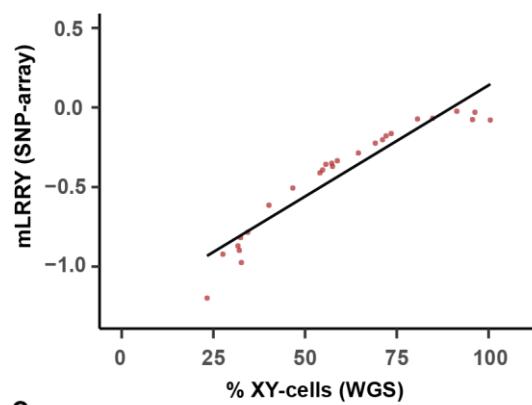
396

397

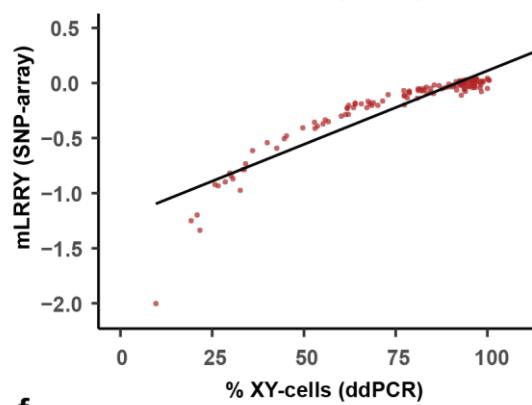
398 **Figures**

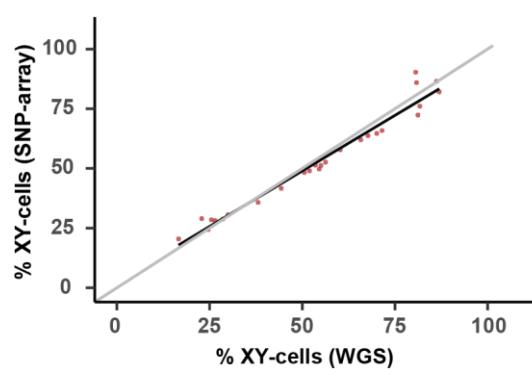
399

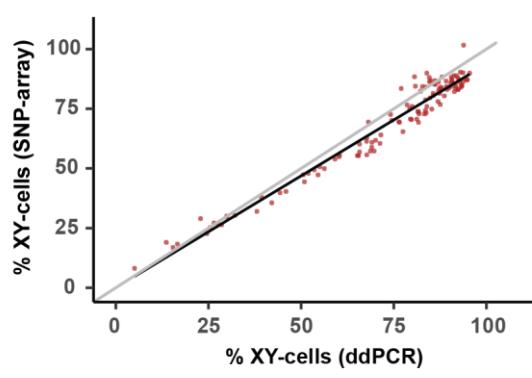
400


a

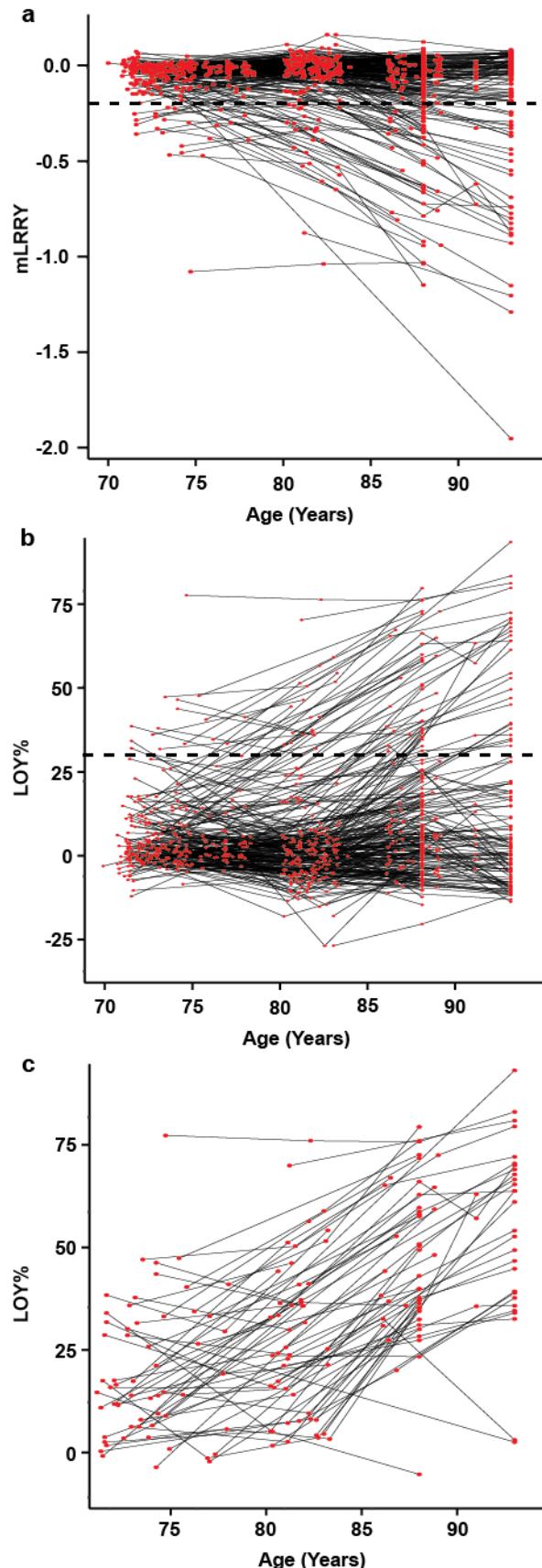
	SNP-Array (mLRRY)	SNP-Array (%)	WGS (%)	ddPCR (%)
SNP-Array (mLRRY)		Suppl. Fig. 2	Panel c	Panel d
SNP-Array (%)	R2 = 0.915		Panel e	Panel f
WGS (%)	R2 = 0.896	R2 = 0.965		Panel b
ddPCR (%)	R2 = 0.849	R2 = 0.959	R2 = 0.998	


b


c


d

e


f

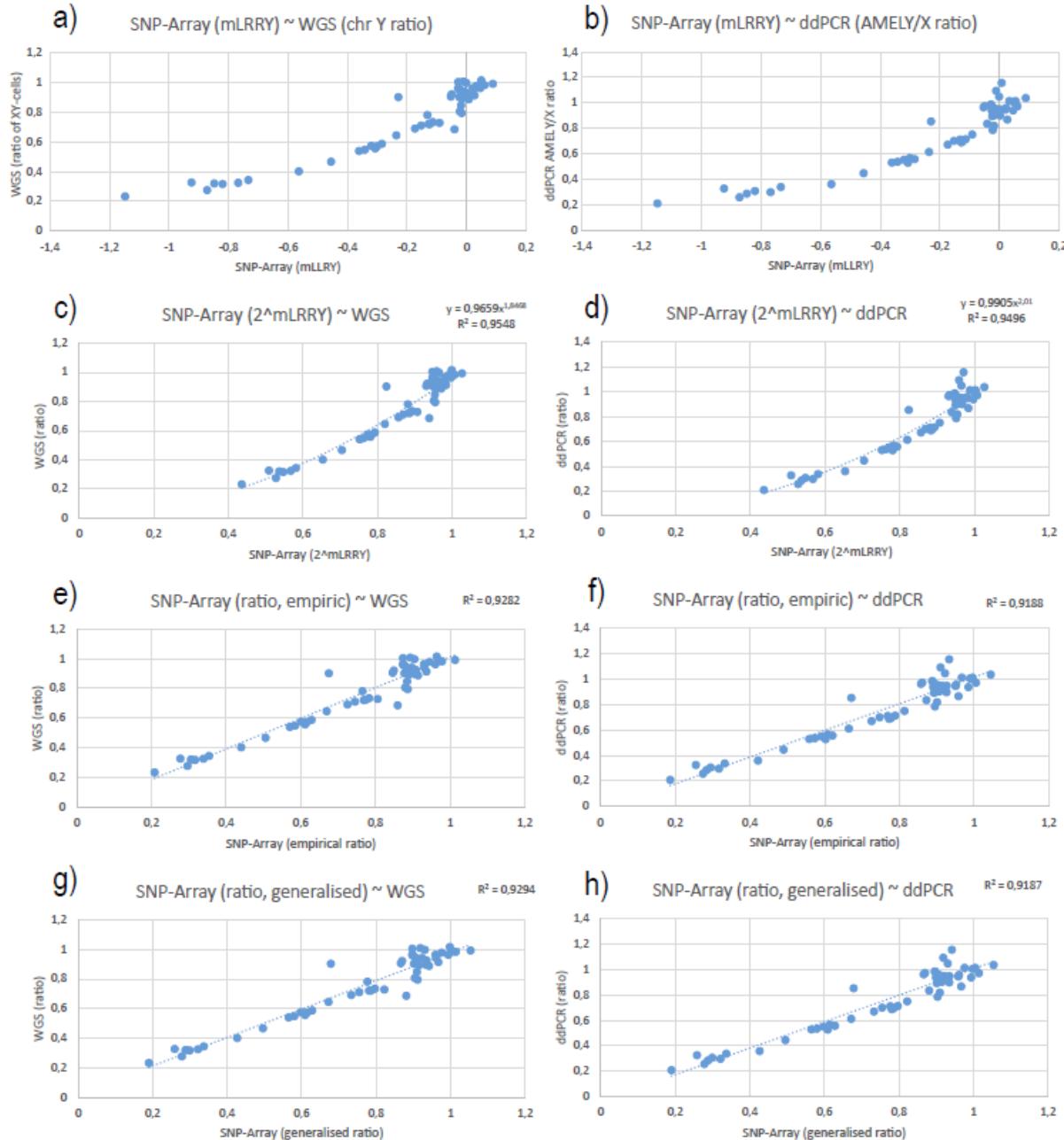
401

402

403 **Figure 1.** Comparisons between LOY measurements using three different methods, from the
404 same set of DNA samples. The level of LOY was analysed using SNP-array, WGS and
405 ddPCR in 121, 26 and 121 samples, respectively. By comparing the LOY measurements
406 generated from the same sample using different technologies, we could estimate the accuracy
407 for each method and the Pearson's coefficient of determination for each correlation is
408 presented in panel **a**. The Y-axes show the level of LOY estimated by different methods,
409 represented as percentage of XY-cells (panels **b**, **e** and **f**) or as mLRRY (panels **c** and **d**). The
410 X-axes in panels **b-f** show the percetange of XY-cells estimated with different technologies.
411 In panels **b**, **e** and **f**, the grey lines represent the best theoretical fit and black lines show linear
412 regressions. A linear correlation was observed between WGS and ddPCR (panels **a** and **b**).
413 Non-linear relationships were observed between SNP-array and WGS (panel **a** and **c**) as well
414 as between SNP-array and ddPCR (panels **a** and **d**). Transformation of SNP-array data
415 increased the linearity of the relationship (panels **a**, **e** and **f**).

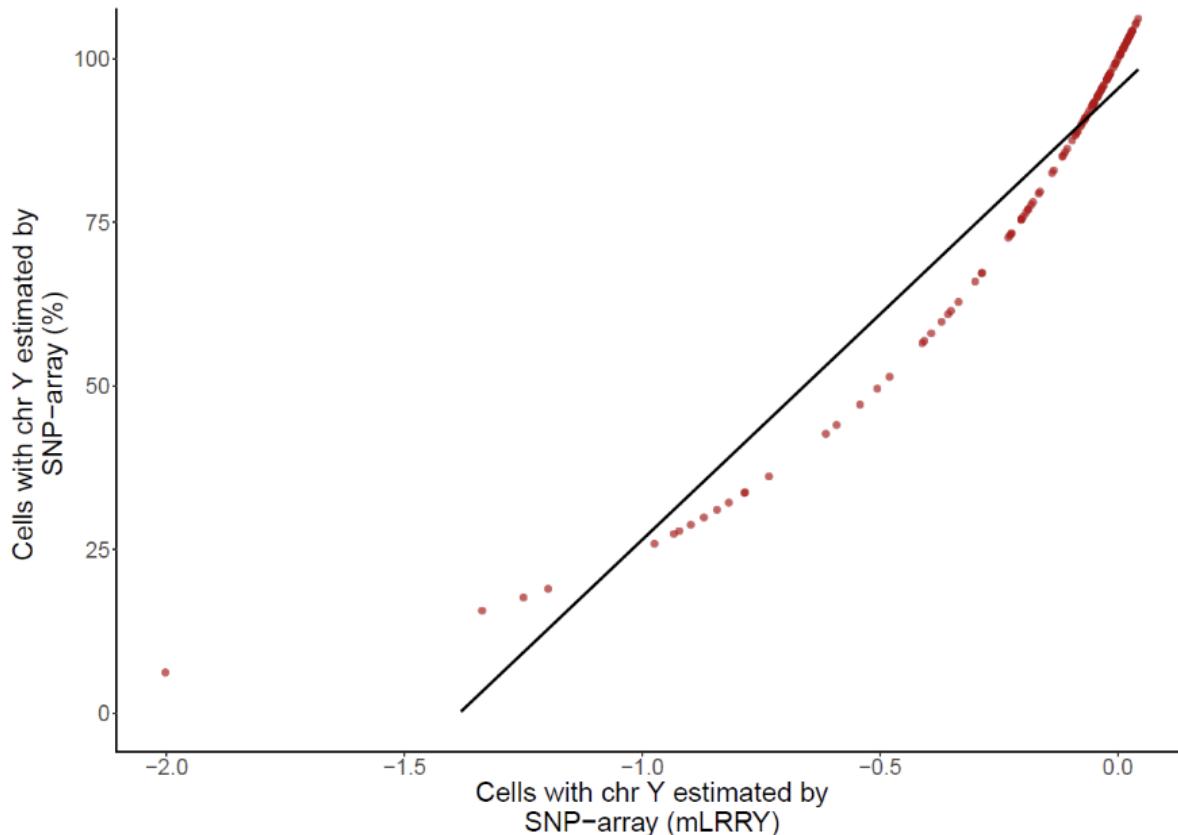
416

417

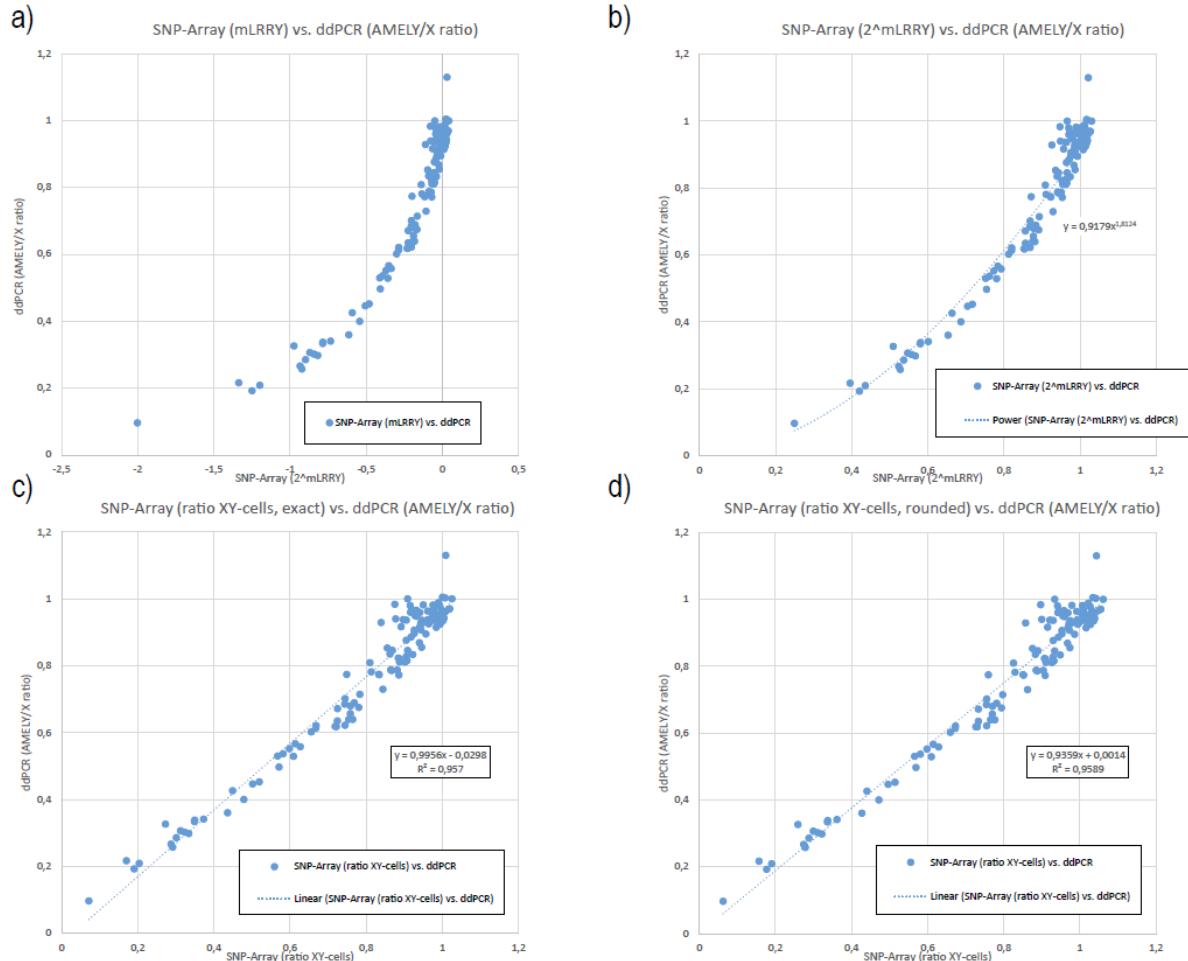

418 **Figure 2.** Results from serial analyses of LOY in whole blood DNA from 276 aging
419 individuals sampled 2-5 times over a period of up to 22.2 years. X-axes show the age of
420 sampling in years and Y-axes display the level of LOY estimated by SNP-array. In panel **a** the
421 unit for LOY is the mLRRY and in panels **b** and **c** the unit is LOY%. Each red point
422 represents a measurement of LOY in a single man and time point and black lines connects
423 measurements from the same individual. Panels **a** and **b** visualise the changes in frequencies
424 over time and dynamics of LOY clone evolution in blood within individually studied men.
425 The dotted lines in panels **a** and **b** indicate a threshold at 30% LOY representing a high level
426 of LOY and men with at least one measurement above the threshold are plotted in panel **c**.

Supplemental material

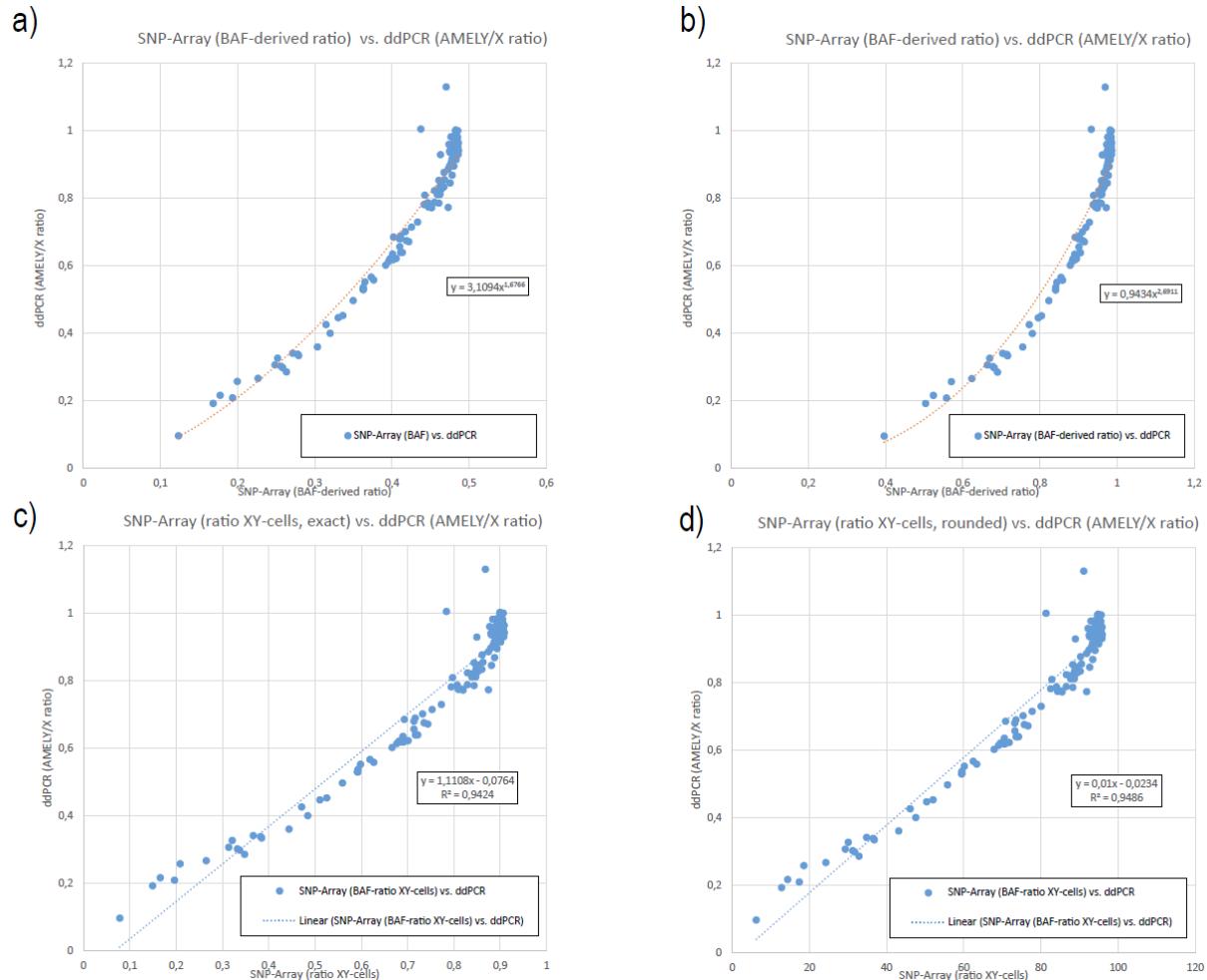
Title: *Intra-individual changes in the frequency of mosaic loss of chromosome Y over time estimated with a new method*


Danielsson et al.

Supplementary figure 1. Measurement of LOY using three different methods


Supplementary figure 1. Measurements for mosaic loss of chromosome Y (LOY) using SNP-array, whole genome sequencing (WGS) and droplet digital PCR (ddPCR) with the *AMELY/AMELX*-assay from paired individuals (N=26). The plotting of SNP-array data (mLRRY) on the x-axis and either WGS median ratio of chromosome Y reads on the y-axis (**a**) or *AMELY/AMELX*-ratio from ddPCR on the y-axis (**b**) results in a problematic comparison due to non-linearity and difference in the scale. Antilog of SNP-Array mLRRY-data on the x-axis makes it possible to apply a power trendline with either *AMELY/AMELX*-ratio from ddPCR (**c**) or WGS median ratio of chromosome Y reads on the y-axis (**d**). The SNP-array antilog mLRRY-data was adjusted according to the formula from the power trendline into an empirically determined ratio and plotted on the x-axis with the corresponding WGS ratio (**e**) or ddPCR data (**f**) on the y-axis. The formula for adjusting SNP-Array mLRRY to ratio of XY-cells was finally rounded to the closest integer and applied on the mLRRY data on the y-axis while comparing with LOY estimates generated by WGS (**g**) or ddPCR (**h**) plotted on the y-axis.

Supplementary figure 2. Correlation between two units of LOY measurements using SNP-Array (N=121)


Supplementary figure 2. SNP-array data visualised on the x-axis by median Log R Ratio of the male specific chromosome Y (mLRRY) and on the y-axis as percent of normal cells generated using the transformation described in Methods.

Supplementary figure 3. Correlation between *AMELY/AMELX* ratio generated from ddPCR to stepwise transformed SNP-Array data generated from the male specific chromosome Y (N=121)

Supplementary figure 3. Ratio between *AMELY* and *AMELX* generated from ddPCR is plotted on the y-axis in all four plots and compared with data generated from SNP-Array from paired individuals (N=121) on the x-axis. Comparison using mLRRY (**a**) is again problematic with a non-linear correlation and both negative and positive values. Antilog of mLRRY (2^{mLRRY}) results in only positive values and makes it possible to apply a power trendline (**b**). The generated power trendline formula was used to adjust the mLRRY (**c**), resulting in a linear correlation between ddPCR and SNP-Array data. Adjusting mLRRY with a formula rounded to the closest integer in the power trendline formula (**d**) also resulted in a linear correlation but with an even higher correlation coefficient than the linear model using the exact values of the power trendline in panel **b**.

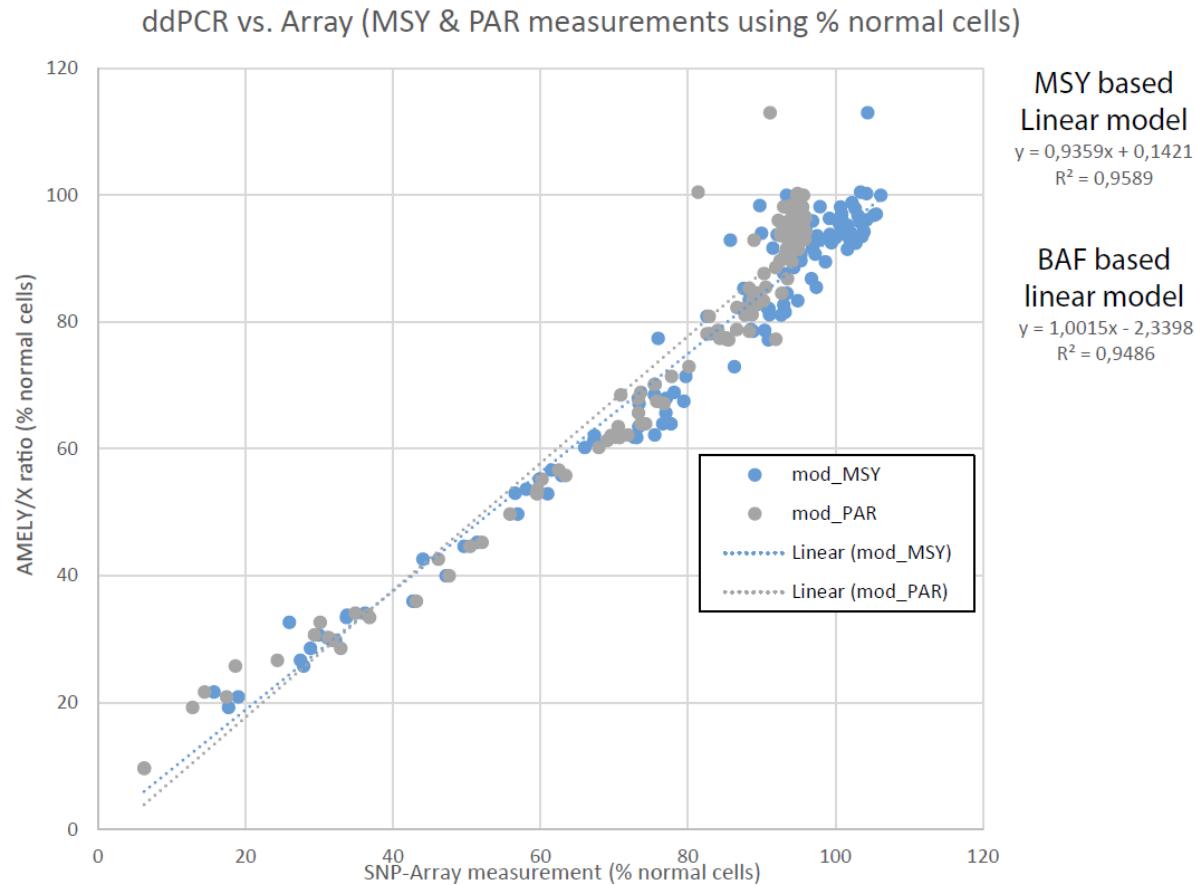
Supplementary figure 4. Correlation between AMELY/X ratio generated from ddPCR to stepwise transformed SNP-Array data generated from the pseudoautosomal region 1 of chromosome X and Y (N=121)

Supplementary figure 4. The SNP-Arrays also generates data for the b-allele frequency (BAF) of the pseudoautosomal region 1 (PAR1). This can be used to study LOY as PAR1 is present on both the X and the Y chromosome. Ratio between AMELY and AMELX generated from ddPCR is plotted on the y-axis in all four plots and compared with data generated from SNP-Array from paired individuals (N=121) on the x-axis. Comparison using BAF (a) is again problematic due to non-linear correlation and spans only the region between 0 and 0.5. Using a previously published algorithm, the spanned region is increased to reach close to 1, but the non-linearity is unaffected (b). The generated formula from the power trendline in (b) was used to adjust the BAF-derived data (c), resulting in a linear correlation between ddPCR and SNP-Array data. Adjusting the BAF-derived data with the same formula but rounded to the closest integer (d) also resulted in a linear correlation but with an even higher correlation coefficient.

Supplementary figure 5. Schematics of the ddPCR assay *AMELX/AMELY*.

a)

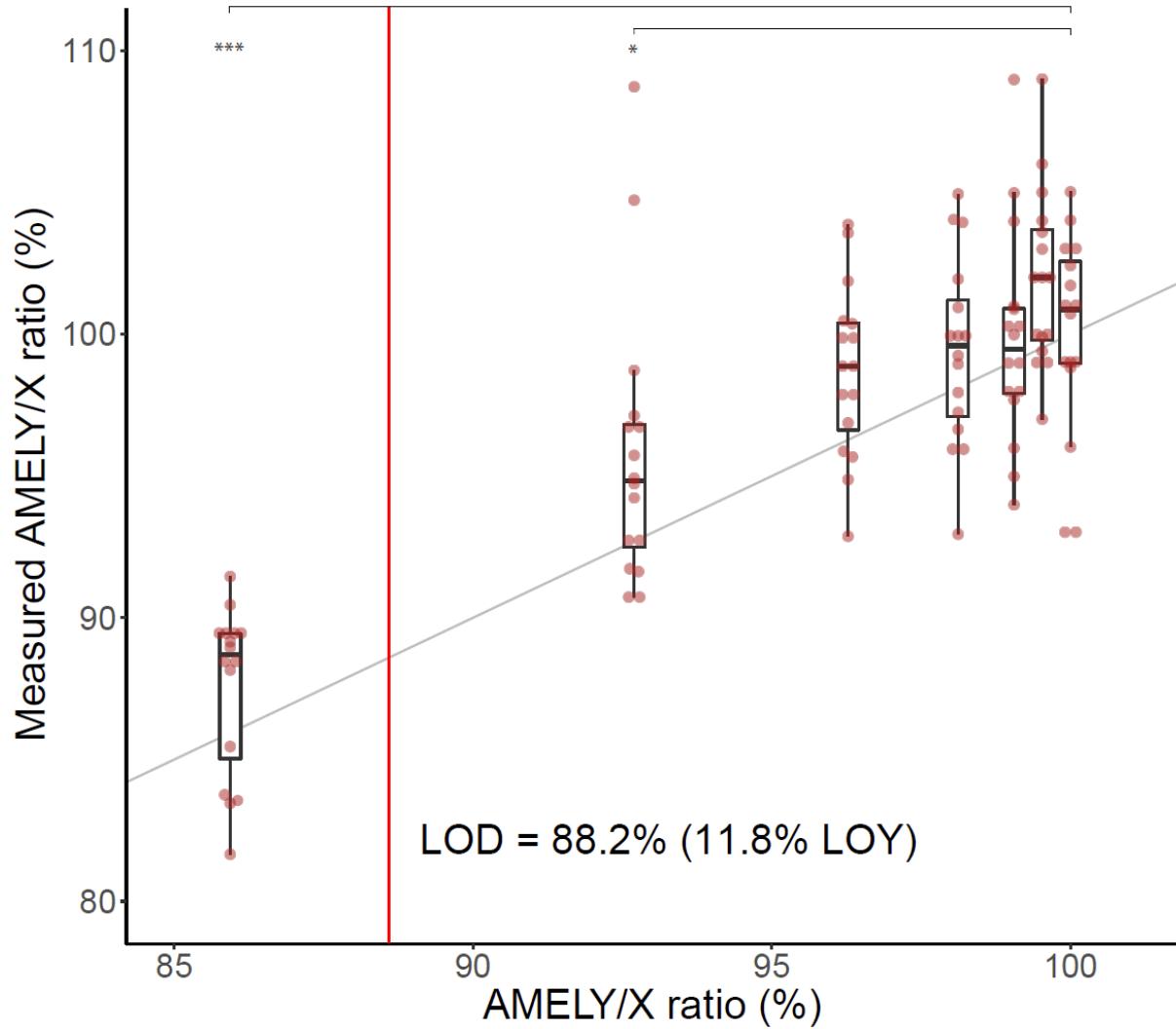
b)


c)

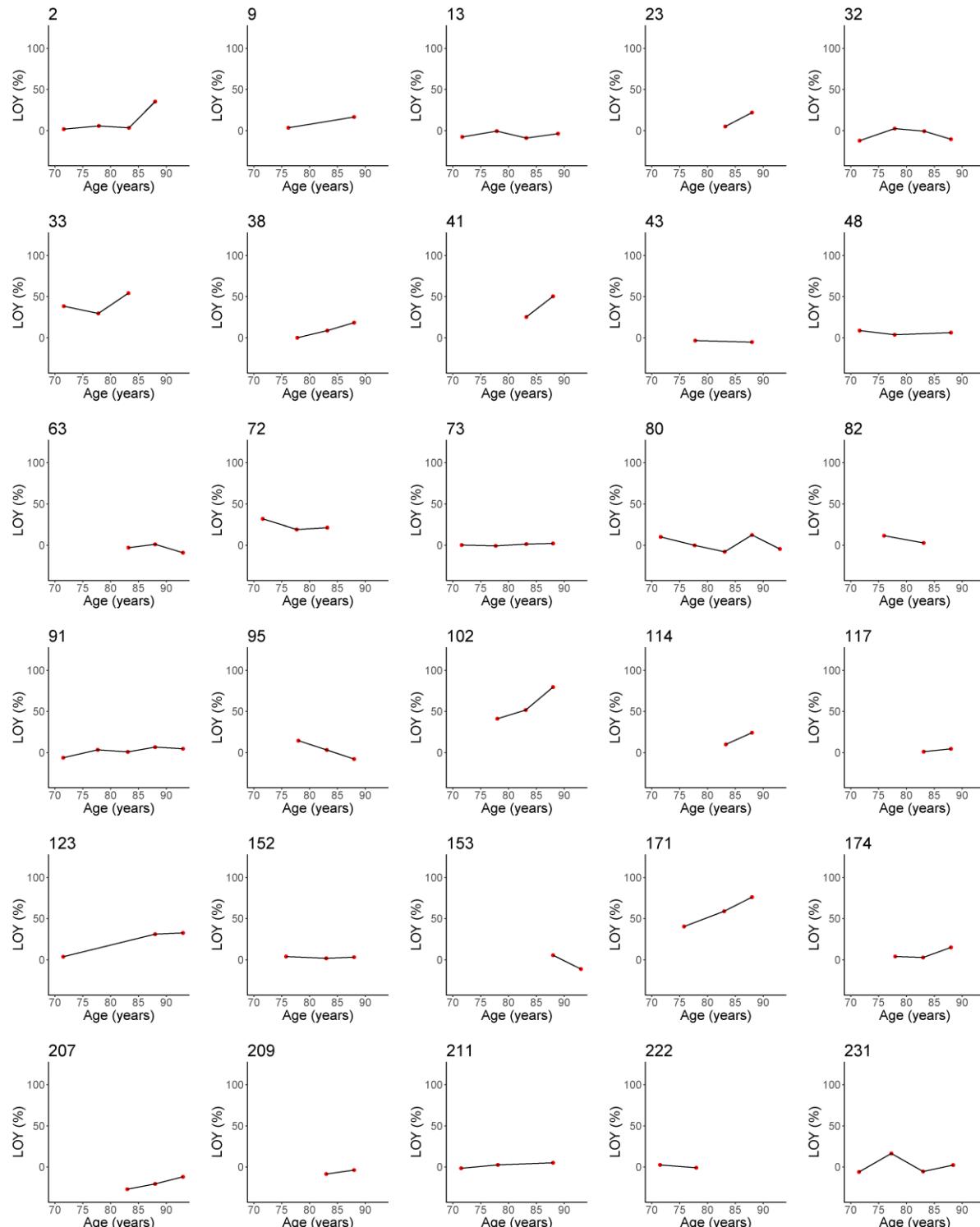
	PCR primer		Quenched fluorophore
	Polymerisation		Excited fluorophore
	PCR product		Quencher
	Alignment		Degraded probe

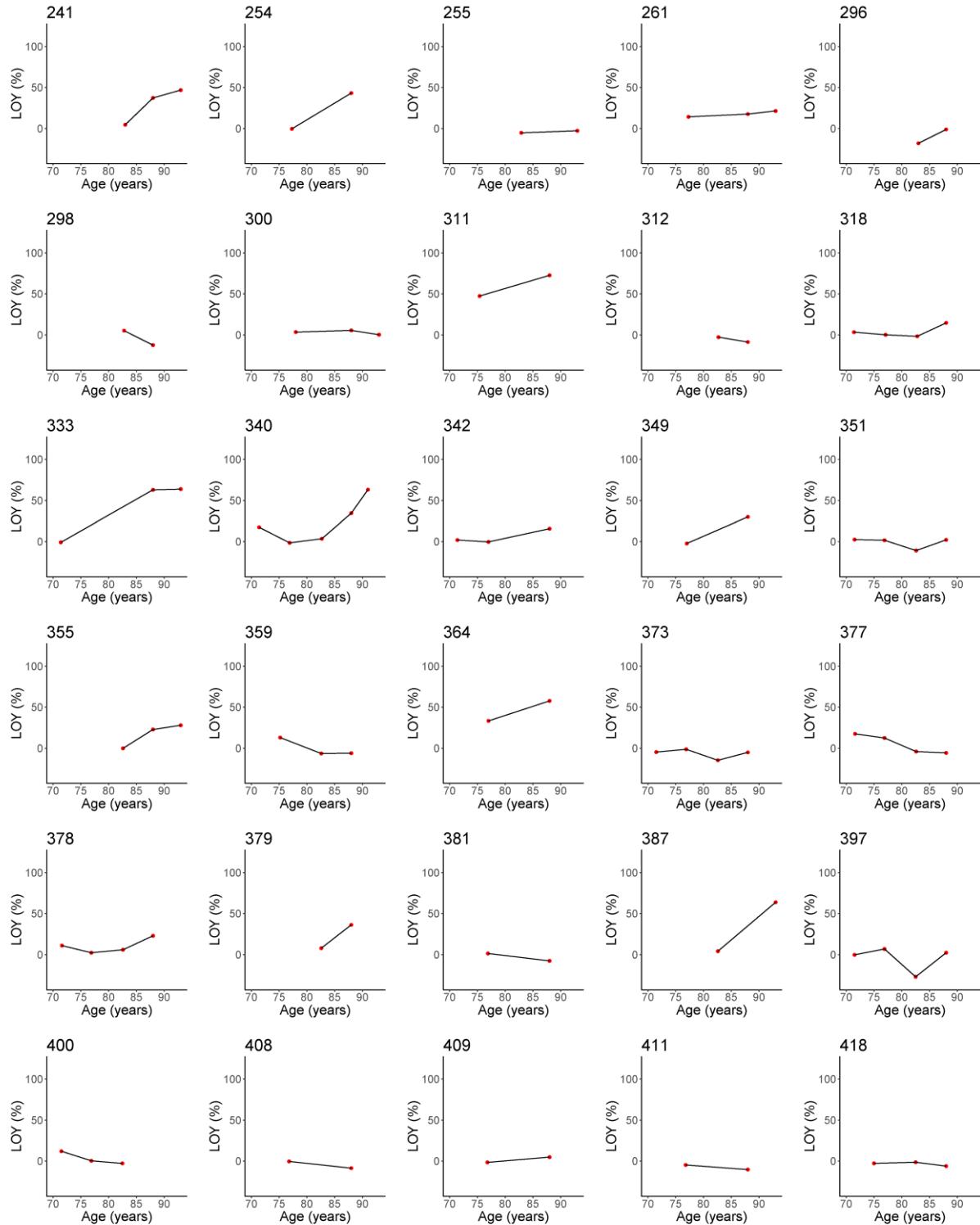

Supplementary figure 5. Schematics of the *AMELX/AMELY* ddPCR taqman assay. The genetic target for this assay is the homologous genes *AMELX* and *AMELY* on chromosome X and Y respectively, that carries a 6-bp deletion in *AMELX*. **a)** Alignment of the region containing this 6-bp deletion that is targeted for PCR-amplification using identical forward and reverse primers for *AMELX* and *AMELY*. **b)** During the PCR-amplification, fluorescently labelled (and quenched) TaqMan probes specifically hybridise to either the deleted site on *AMELX* or the inserted site on *AMELY*. **c)** The fluorophores are cleaved of by the polymerase, allowing excitation of the fluorophore (FAM for *AMELY* and VIC for *AMELX*).

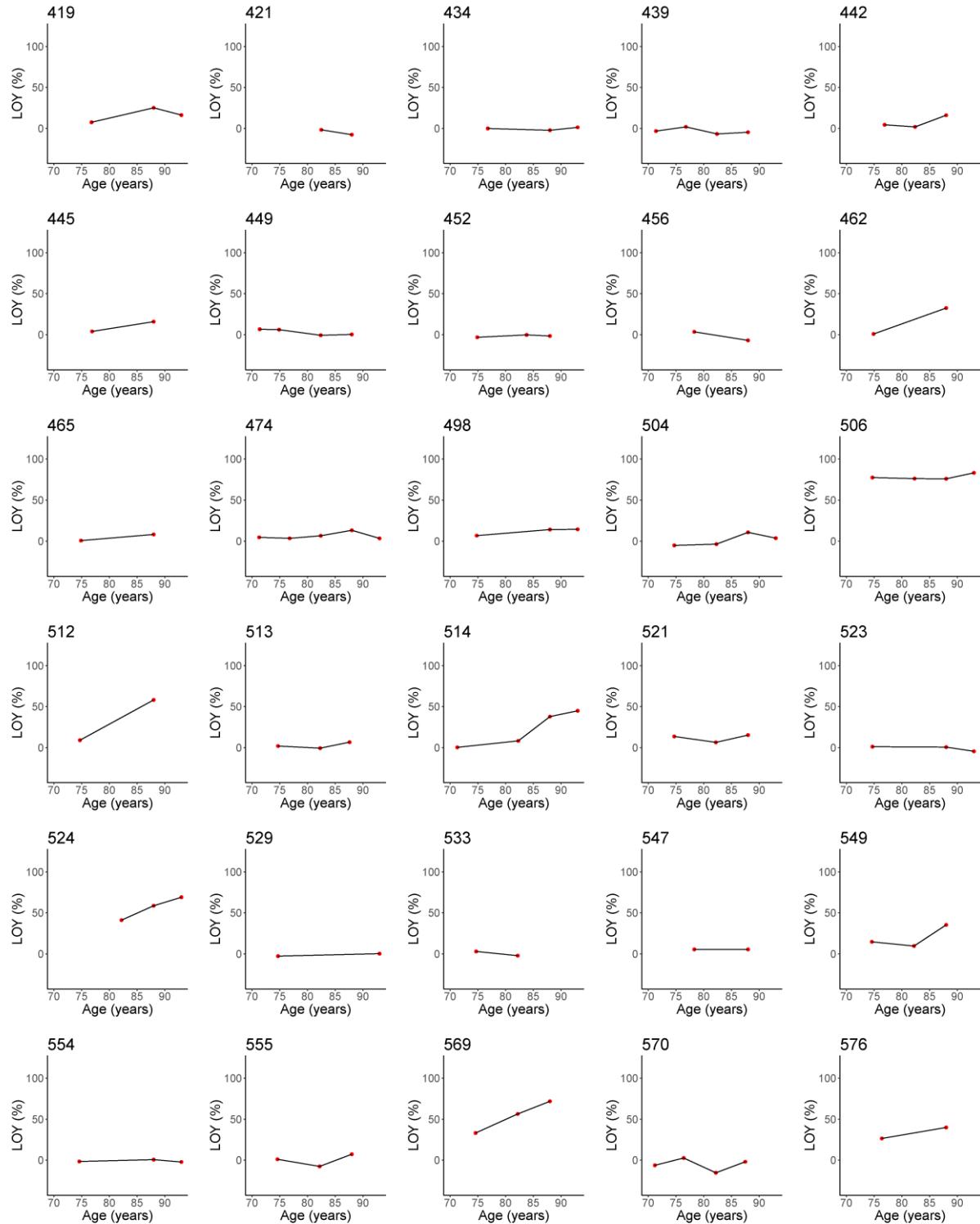
Supplementary figure 6. Correlation plot with ddPCR (percent *AMELY/AMELX*) and transformed SNP-Array data (MSY and BAF derived into percent XY-cells)

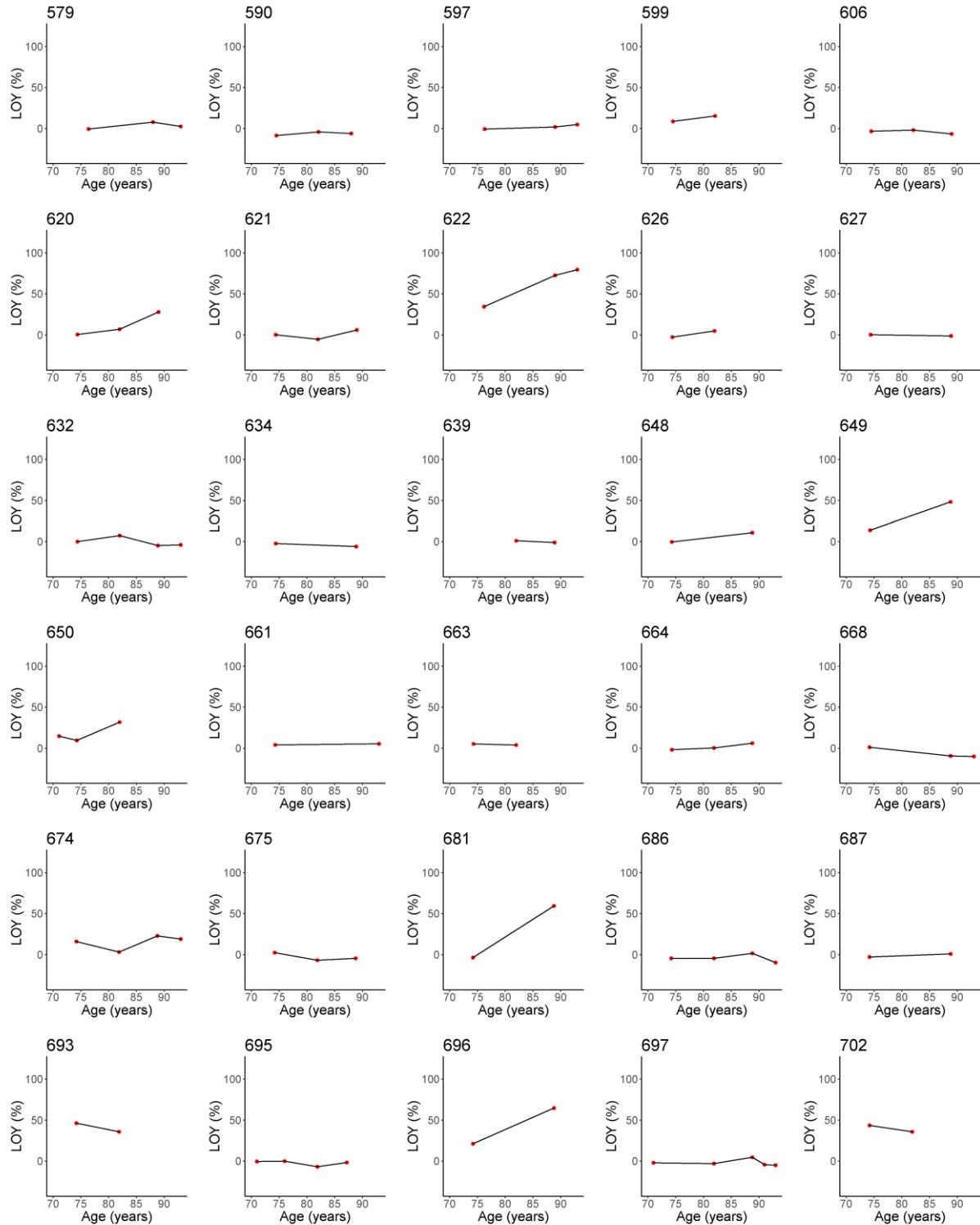

Supplementary figure 6. Ratio between *AMELY* and *AMELX* expressed as percent normal-cells generated from ddPCR is plotted on the y-axis and compared with data generated from SNP-Array from paired individuals (N=121) on the x-axis. Data generated from MSY (transformed mLRY) is plotted in blue and data generated from PAR1 (transformed BAF-derived data described in detail in Methods) is plotted in grey. The PAR-derived data highly correlates to the MSY-data except for the region over 90% XY-cells, which is reflected in a lower Pearson's R^2 of the linear model for PAR-derived compared to MSY-based data.

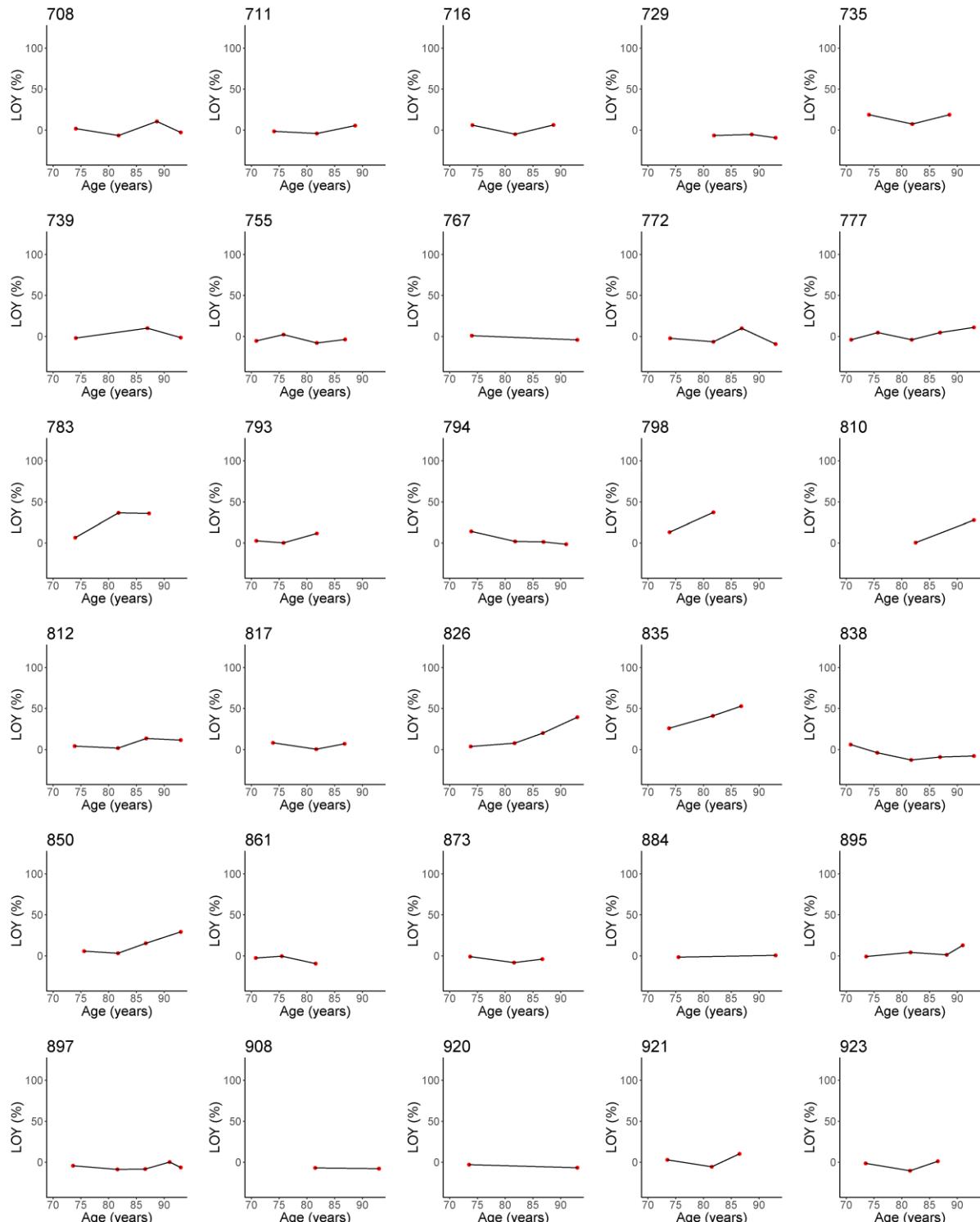
Supplementary figure 7. Linear model of dilution series measured with the AMELY/AMELX ddPCR-assay

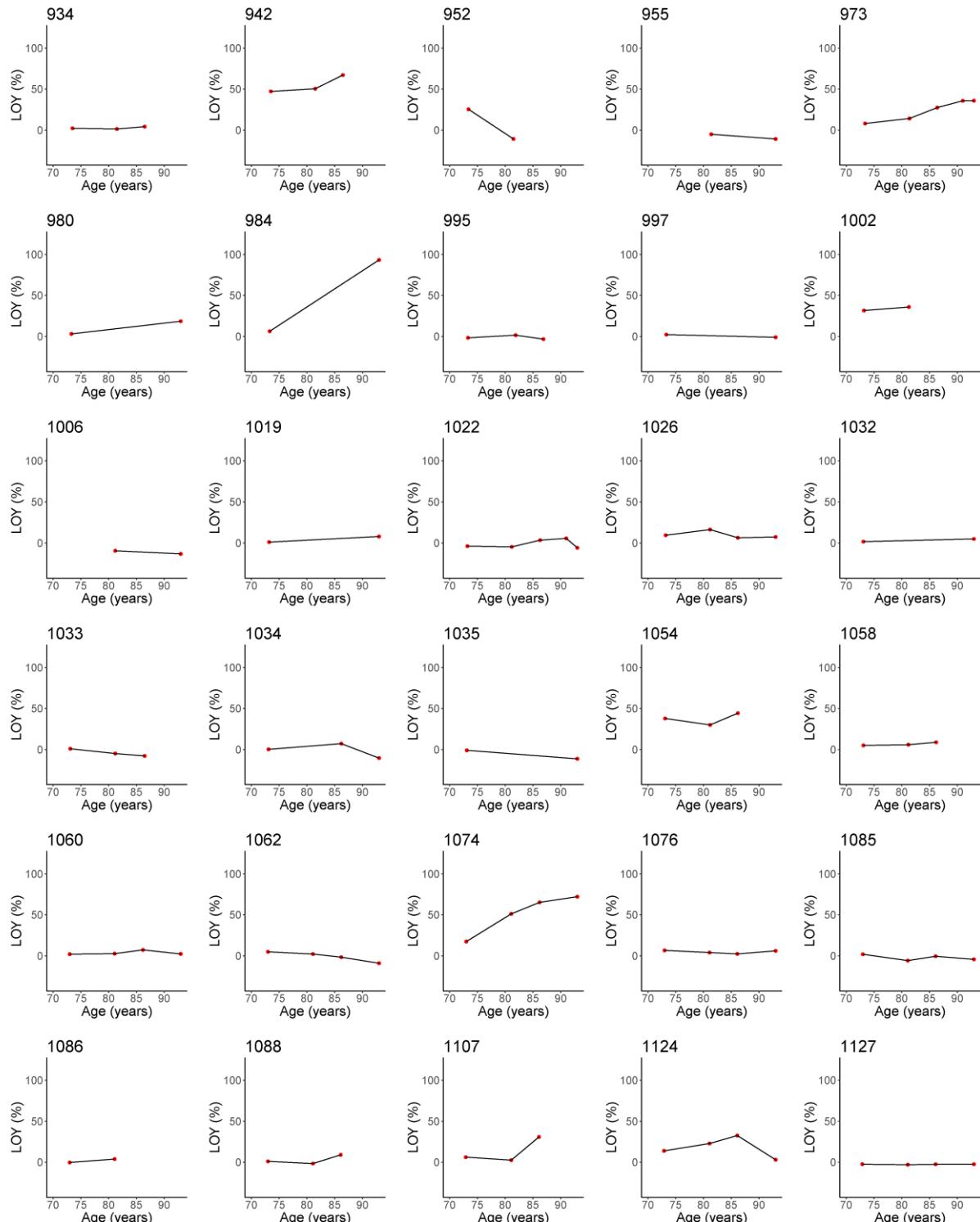

Supplementary figure 7. The ddPCR-generated AMELY/X-ratio is plotted on the y-axis and the expected AMELY/X-ratio from the dilution of male and female control DNA is plotted on the x-axis. Blue dots represent the average from 4 replicates of each dilution step (Average dilution series 1). Orange dots represent the average from 12 separate replicates from the same dilution series (Average dilution series 2). The average from both dilution series is plotted in grey (Average dilution series 1+2). Linear regressions follow the same colour coding as the three series.

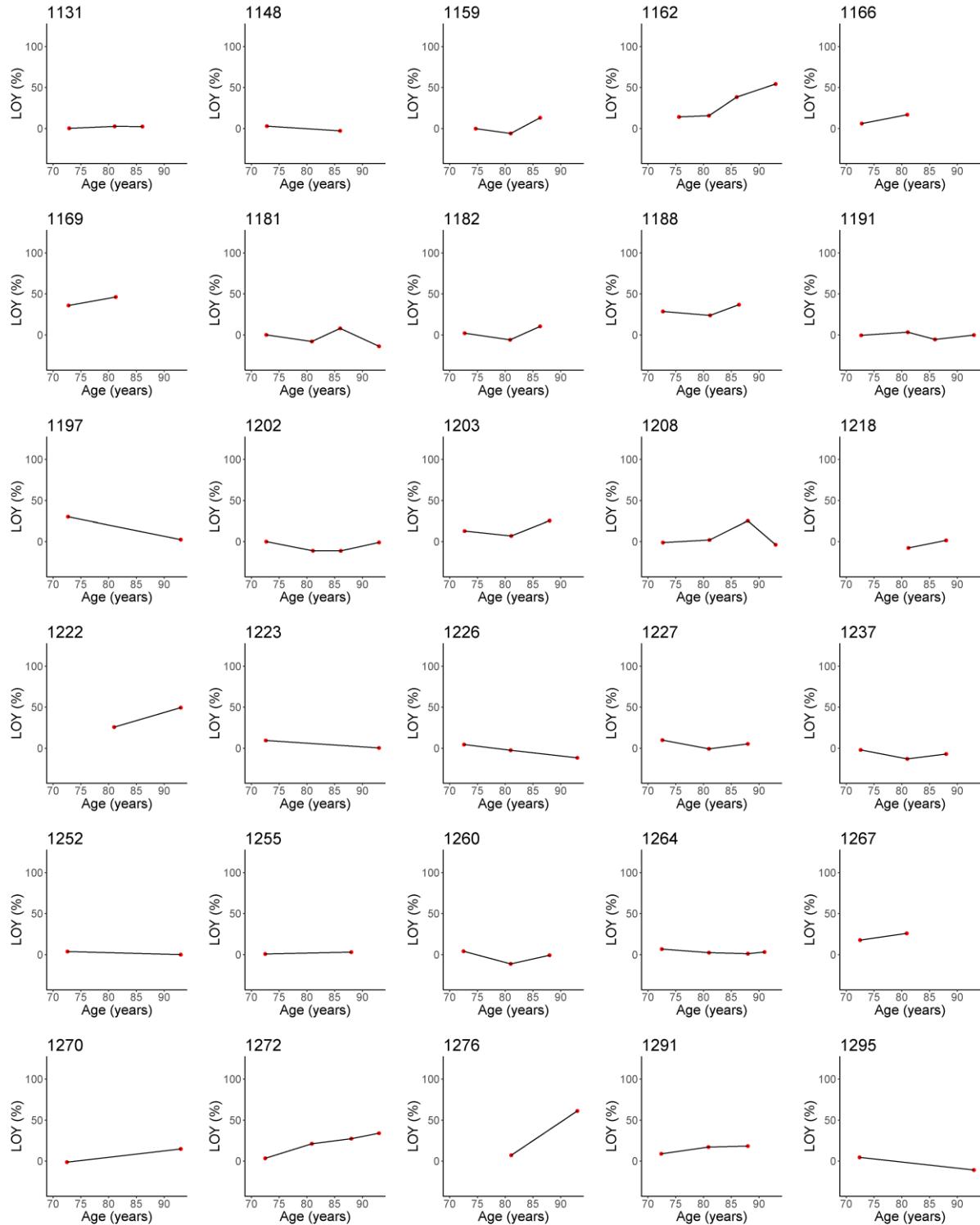

Supplementary figure 8. Analysis of limit of detection of LOY using the *AMELY/AMELX* polymorphism and ddPCR

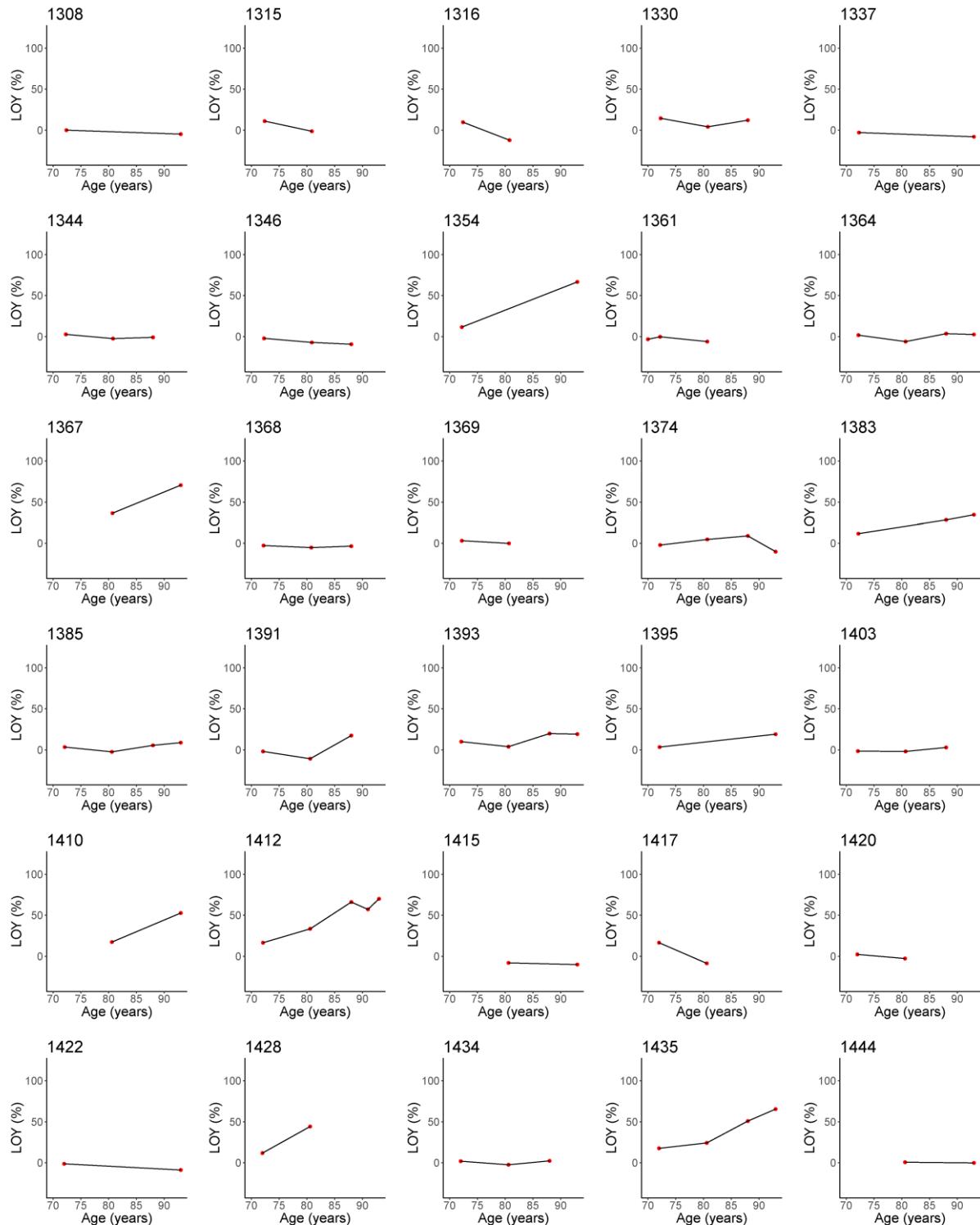


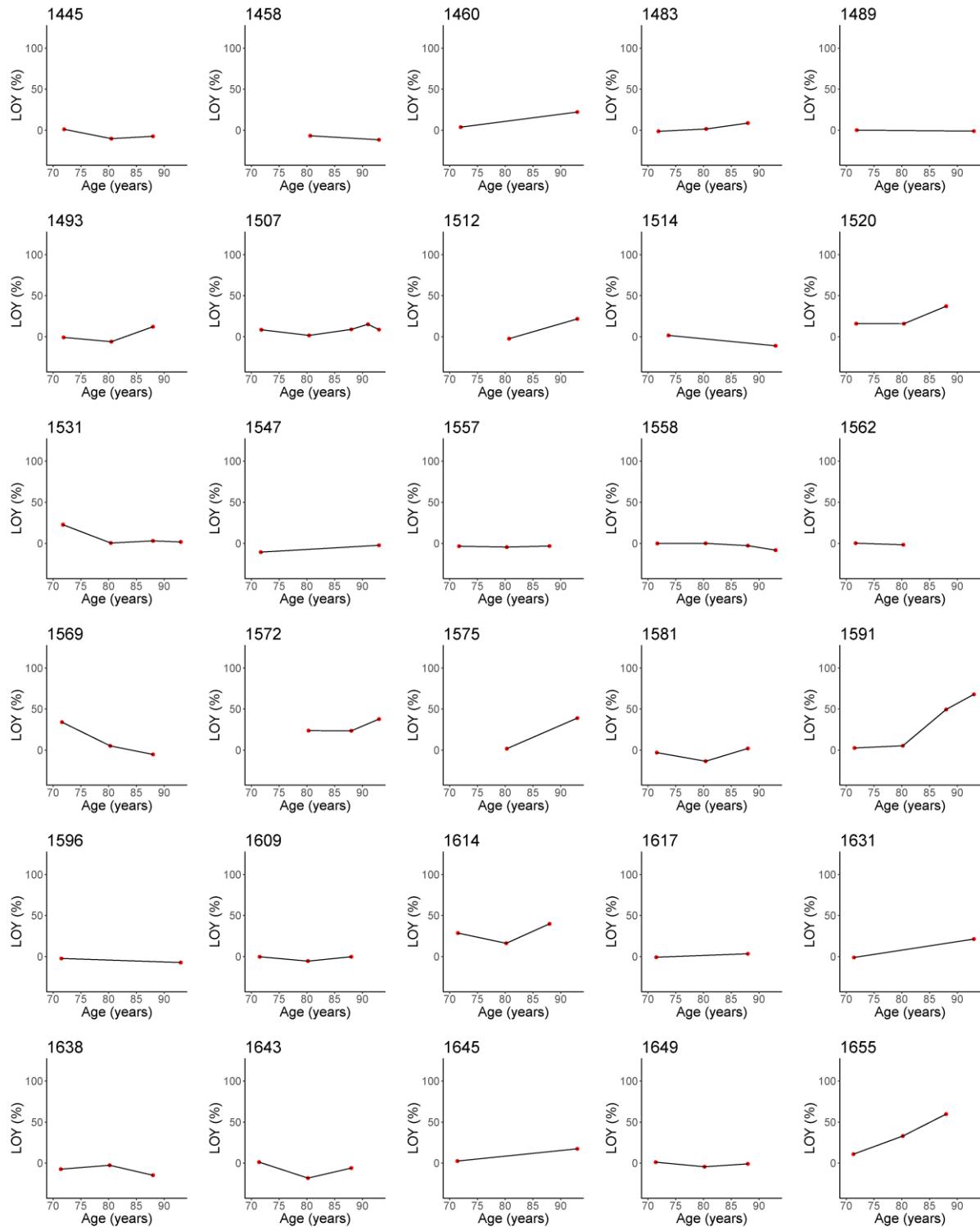

Supplementary figure 8. Dilution series of chromosome Y, measured with the *AMELY/AMELX* ddPCR-assay. On X-axis are six different known levels of LOY made from mixing male & female DNA and on Y-axis are the measured *AMELY/AMELX* ratio. Limit of detection (LOD) was determined by linear regression by the formula $3 \times \text{SD}/b$, also explained in methods. The data required for this calculation is disclosed in Supplementary Table 5. The lower hindge corresponds to the 25th percentile and the upper hindge corresponds to the 75th percentile. The minimum value of the lower whisker is $1.5 \times \text{IQR}$ (inter quartile range) of the lower hindge and the maximum of the upper whisker is $1.5 \times \text{IQR}$ of the upper hindge. Additionally, significance level * indicates $P < 0.05$ and *** indicates $P < 0.0001$, from a pairwise student t-test (two-sided) where every dilution step was compared to the same male control DNA (*AMELY/X* ratio = 100%).

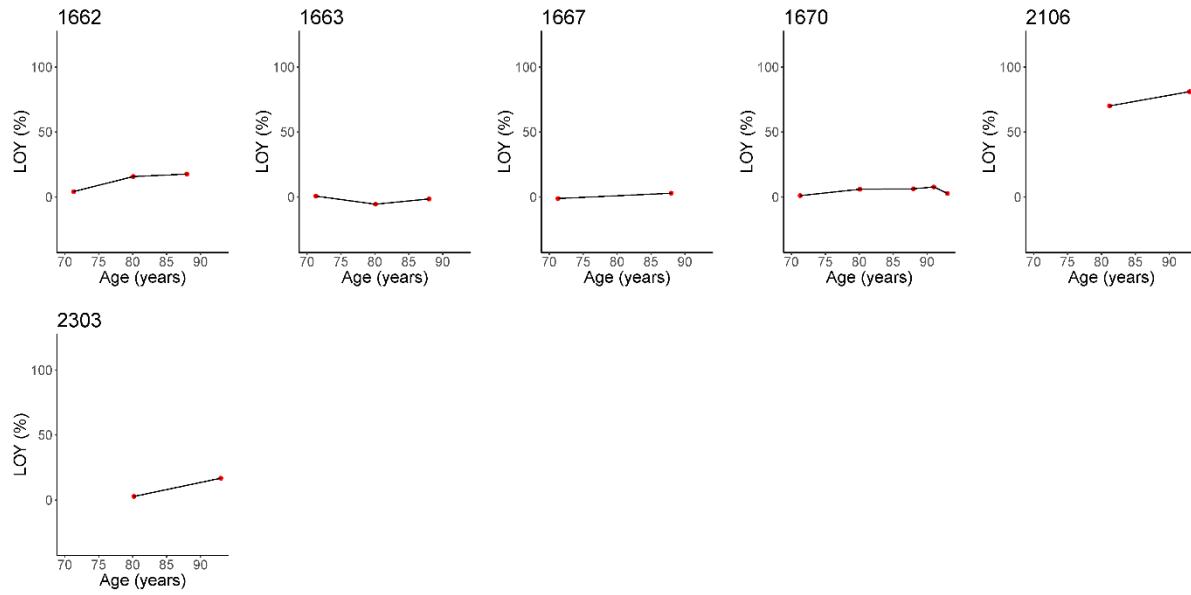

Supplementary figure 9. Intra-individual LOY dynamics in 276 individuals











Supplementary figure 9. Intra-individual LOY dynamics measured in 276 men visualized in LOY% from SNP-array genotyping data using a range of two to five LOY measurements for every individual. Plot numbering is according to the ID of individuals in the ULSAM cohort.

Supplementary Table 1.

Method	Reference
FISH	Ganster, C. et al. New data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. <i>Genes Chromosomes Cancer</i> 54, 717-724 (2015).
FISH	Persani, L. et al. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. <i>Journal of autoimmunity</i> 38, J193-196 (2012).
FISH	Lleo, A. et al. Y chromosome loss in male patients with primary biliary cirrhosis. <i>Journal of autoimmunity</i> 41, 87-91 (2013).
Karyotyping	Jacobs, P.A., Brunton, M., Court Brown, W.M., Doll, R. & Goldstein, H. Change of human chromosome count distribution with age: evidence for a sex differences. <i>Nature</i> 197, 1080-1081 (1963).
Karyotyping	UKCCG Loss of the Y chromosome from normal and neoplastic bone marrows. United Kingdom Cancer Cytogenetics Group (UKCCG). <i>Genes Chromosom Cancer</i> 5, 83-88 (1992).
qPCR	Noveski, P. et al. Loss of Y Chromosome in Peripheral Blood of Colorectal and Prostate Cancer Patients. <i>PLoS One</i> 11, e0146264 (2016).
qPCR	Kimura, A. et al. Loss of chromosome Y in blood, but not in brain, of suicide completers. <i>PLoS One</i> 13, e0190667 (2018).
qPCR	Hirata, T. et al. Investigation of chromosome Y loss in men with schizophrenia. <i>Neuropsychiatr Dis Treat</i> 14, 2115-2122 (2018).
SNP-array	Forsberg, L.A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. <i>Nat Genet</i> 46, 624-628 (2014).
SNP-array	Loftfield, E. et al. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. <i>Sci Rep</i> 8, 12316 (2018).
SNP-array	Grassmann, F. et al. Y chromosome mosaicism is associated with age-1 related macular degeneration. <i>Eur J Hum Genet</i> this issue (2018).
SNP-array	Forsberg, L.A. et al. Mosaic loss of chromosome Y (LOY) in leukocytes matters. <i>Nature Genetics</i> In press (2018).
SNP-array	Dumanski, J.P. et al. Smoking is associated with mosaic loss of chromosome Y. <i>Science</i> 347, 81-83 (2015).
SNP-array	Wong, J.Y.Y. et al. Outdoor air pollution and mosaic loss of chromosome Y in older men from the Cardiovascular Health Study. <i>Environ Int</i> 116, 239-247 (2018).
SNP-array & qPCR	Haitjema, S. et al. Loss of Y Chromosome in Blood Is Associated with Major Cardiovascular Events during Follow-up in Men after Carotid Endarterectomy. <i>Circ Cardiovasc Genet</i> 10:e001544 (2017).
SNP-array & WGS	Dumanski, J.P. et al. Mosaic Loss of Chromosome Y in Blood Is Associated with Alzheimer Disease. <i>Am J Hum Genet</i> 98, 1208-1219 (2016).
SNP-array & WGS	Wright, D.J. et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. <i>Nat Genet</i> 49, 674-679 (2017).
WGS	Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. <i>Blood</i> 130, 742-752 (2017).

Supplementary Table 2.

ID	LOY estimated by SNP-	LOY estimated by SNP-	LOY estimated by WGS	LOY estimated by ddPCR	ID	LOY estimated by SNP-	LOY estimated by SNP-	LOY estimated by WGS	LOY estimated by ddPCR
63	0,01	-1,64		4,75	1035	0,03	-3,86		5,80
80	-0,02	2,62		14,50	1060	-0,07	8,96		18,85
91	-0,08	11,03		15,40	1062	0,01	-1,60		8,55
123	-0,34	37,15	41,23	44,20	1074	-0,97	74,09	67,35	67,35
153	0,03	-3,75		5,65	1076	-0,10	12,47		14,70
207	0,03	-4,35		-13,00	1085	-0,02	2,76		9,30
241	-0,51	50,40	53,34	55,35	1099	0,04	-5,19		3,15
255	-0,03	4,16		3,40	1103	-0,19	23,46		36,05
261	-0,22	26,66	30,86	32,85	1124	-0,07	9,61	19,37	21,30
278	-0,04	5,15		16,65	1127	-0,03	4,50		5,00
300	-0,05	7,02		12,35	1149	0,00	-0,68		1,85
333	-0,78	66,26	65,61	66,20	1162	-0,61	57,30	59,84	64,00
355	-0,29	32,77	35,49	38,65	1181	0,04	-6,14		0,00
387	-0,79	66,33		66,60	1191	-0,05	6,63		0,00
419	-0,18	21,90	27,93	31,10	1202	-0,04	5,89		2,00
434	-0,06	7,91		6,25	1208	-0,02	3,26	8,64	13,15
474	-0,08	10,04	4,39	6,00	1222	-0,54	52,83		60,00
498	-0,16	20,31	26,54	28,55	1223	-0,05	7,05		17,30
504	-0,08	10,30	-0,47	1,65	1226	0,03	-4,20		3,90
506	-1,34	84,32		78,35	1252	-0,05	6,82		18,45
514	-0,48	48,60		54,75	1270	-0,17	20,60		32,50
523	-0,02	2,50		6,40	1272	-0,35	38,53	42,73	43,35
524	-0,90	71,20	67,92	71,45	1276	-0,73	63,82		65,90
529	-0,05	7,01		6,35	1295	0,02	-3,27		4,20
554	-0,03	4,71		10,35	1308	-0,02	2,23		7,10
579	-0,07	9,05	15,27	17,90	1337	0,01	-0,81		3,60
597	-0,09	11,20		21,45	1354	-0,84	68,92		69,80
622	-1,20	80,99	76,71	79,10	1364	-0,07	9,13		22,80
632	-0,02	3,11		8,35	1367	-0,93	72,58		73,35
661	-0,09	11,71		16,50	1374	0,02	-2,71		7,55
668	0,02	-2,67		7,55	1383	-0,36	39,04	44,35	47,10
674	-0,20	24,50	28,90	29,85	1385	-0,12	14,93		22,55
686	0,02	-2,22		1,20	1393	-0,20	24,58		31,50
697	-0,02	2,10		1,80	1395	-0,20	24,52		37,80
708	-0,03	4,05	3,72	5,25	1410	-0,59	55,95		57,40
729	0,01	-2,02		5,90	1412	-0,92	72,15	72,40	74,25
739	-0,04	5,43		3,40	1415	0,02	-2,63		2,10
767	-0,02	2,88		7,25	1422	0,01	-1,43		1,15
772	0,01	-1,91		6,95	1435	-0,82	67,82	67,58	70,20
777	-0,13	17,05		21,85	1444	-0,05	6,62		15,45
810	-0,29	32,69		37,90	1458	0,03	-4,18		-0,25
812	-0,14	17,43		19,10	1460	-0,23	27,34		38,15
826	-0,41	43,46	45,97	47,00	1489	-0,04	5,66		11,40
838	0,00	-0,60		6,15	1507	-0,12	14,78		22,70
850	-0,30	34,03		39,80	1512	-0,23	26,98		38,20
884	-0,06	7,36		18,90	1514	0,03	-3,58		6,50
896	-0,19	22,97		32,05	1531	-0,06	8,50		8,35
897	-0,01	0,85		3,65	1547	-0,03	4,72		9,35
908	0,00	-0,50		4,50	1558	0,01	-0,84		2,95
920	0,00	0,57		7,50	1572	-0,39	41,95	45,21	46,35
955	0,02	-3,39		-0,50	1575	-0,41	43,10		50,30
973	-0,37	40,18	42,51	44,80	1591	-0,87	70,08	68,30	69,35
980	-0,20	24,05		22,60	1596	0,00	0,03		6,75
984	-2,00	93,77		90,35	1628	-0,01	0,78		6,20
997	-0,04	5,79		4,00	1631	-0,22	26,68		36,50
1006	0,04	-5,51		3,00	1645	-0,19	23,03		34,35
1019	-0,11	14,26		7,10	1670	-0,07	9,32		17,70
1022	-0,01	1,38		10,50	1834	-0,02	3,13		4,05
1026	-0,11	13,74		27,05	2106	-1,25	82,31		80,75
1032	-0,09	11,48		21,20	2303	-0,18	22,34		36,05
1034	0,02	-3,01		3,20					

Supplementary Table 3.

Longitudinal Change	Individuals	frequency
Unaffected	185	67%
Increasing LOY (>1%LOY/year)*	73	26%
Decreasing LOY (<1%LOY/year)*	18	7%

*determined by the slope on a linear trendline

Supplementary Table 4.

SNP-array platform	MSY probes	PAR probes
1MDuo	4224	832
2.5M Omni	2494	550
Infinium QC Array 24 (XY chip)	1401	545
Omni Express Exome	1387	809

Supplementary Table 5.

	Dilution series 1 (N=4)	Dilution series 2 (N=12)	Combined series 1 and 2 (N=4+12=16)
Standard deviation	0,027164	0,039043	0,036507
Slope (b)*	0,9466	0,9177	0,925
LOD (ratio of cells with the Y chromosome)	0,086089	0,127633	0,118401
LOD (percent of cells with the Y chromosome)	91,4	87,2	88,2
LOD (LOY%)	8,6	12,8	11,8

*estimated by linear regression (supplementary figure 7)