

1 Title

2 Strategies for building computing skills to support microbiome analysis: a five-year perspective
3 from the EDAMAME workshop

4

5 Authors

6 Ashley Shade*^{a,b}, Taylor K. Dunivin^a, Jinlyung Choi^c, Tracy K. Teal^d, and Adina C. Howe^c

7

8 ^aDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing,
9 MI 48824

10 ^b Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
11 48824 USA

12 ^c Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011
13 USA

14 ^d Data Carpentry, Davis, CA USA
15

16 *Correspondence, shadeash@msu.edu

17

18 Abstract

19 Here, we report our educational approach and learner evaluations of the first five years of the
20 Explorations in Data Analysis for Metagenomic Advances in Microbial Ecology (EDAMAME)
21 workshop, held annually at Michigan State University's Kellogg Biological Station from 2014-
22 2018. We hope this information will be useful for others who want to organize computing-
23 intensive workshops and encourage quantitative skill development among microbiologists.

24

25 Importance

26 High-throughput sequencing and related statistical and bioinformatic analyses have become
27 routine in microbiology in the past decade, but there are few formal training opportunities to
28 develop these skills. A week-long workshop can offer sufficient time for novices to become
29 introduced to best computing practices and common workflows in sequence analysis. We
30 report our experiences in executing such a workshop targeted to professional learners
31 (graduate students, post-doctoral scientists, faculty, and research staff).

32

33 Introduction

34 Over the last decade, two important advances have fostered a new era in biomedical
35 and environmental research. First, it is now recognized that microbial communities
36 ("microbiomes") play essential roles for the health of the environments and the hosts that they
37 inhabit. Second, advances in high-throughput sequencing technologies allow observations of
38 the diversity and functional potential of microbiomes in their habitats (1), captured with
39 spatially and temporally ambitious study designs (2). Together, these advances in knowledge
40 and methodology deepen and broaden our understanding of the centrality of microbiomes for
41 host and environmental health. Because of the economy and accessibility of high-throughput
42 sequencing, researchers can now investigate the diversity of interesting microbiomes and can
43 begin to untangle how this diversity contributes to host or ecosystem health. Efforts to
44 capitalize on the promise of microbiome sequencing data have resulted in information-rich
45 genomic datasets that must be analyzed to gain knowledge of their intricate relationships.

46 We realized that there was a need for broad computational training in microbiome
47 analysis. In 2014, we were encouraged by Dr. C. Titus Brown (now at University of California-
48 Davis) to offer a microbiome analysis workshop. At the time, he led the Analyzing Next-Gen
49 Sequencing (ANGUS, <https://angus.readthedocs.io/en/2018/index.html>) Workshop at
50 Michigan State University's Kellogg Biological Station (KBS). He noted that some ANGUS
51 learners were particularly interested in microbiome analysis and that there were limited
52 offerings for this training. At the time, there were several short-duration workshops focused on
53 specific tools, such as QIIME(4) and mothur(5), as well as a broader, multi-week course,
54 STAMPS (<https://www.mbl.edu/education/courses/stamps/>), at the Marine Biological
55 Laboratory in Woods Hole, MA USA. There were few workshops that addressed the needs of
56 learners who wanted more information than what could be covered in a day but also could not
57 commit to spending several weeks away. Thus, we suspected that there was a need for broad
58 and economical training in microbiome analysis, especially in the U.S. Midwest.

59 In response, we created a one-week intensive course to train biologists (from graduate
60 students to faculty) in microbiome-associated sequencing analysis, from raw sequence handling
61 and quality control to statistical analyses and experimental design. We named the course
62 EDAMAME: Explorations in Data Analysis for Metagenomic Advances in Microbial Ecology.
63 Ashley Shade, at the time a new assistant professor in microbial ecology at the Department of
64 Microbiology and Molecular Genetics at Michigan State University, initiated the workshop and
65 started its content development from her materials from a short workshop she offered while
66 training in her post-doctoral advisor's lab. Tracy Teal was recruited and brought her array of
67 experience and perspective as a leader in the Software and Data Carpentries workshops, which

68 provide general computing training. In the first year, J. Herr, a post-doc in Shannon Manning's
69 lab at Michigan State who had Data Carpentry training, contributed to developing and
70 implementing the original content. The instruction team expanded in 2016 to include Adina
71 Howe, who was a new faculty at Iowa State and brought important expertise in untargeted
72 metagenome analysis.

73 Here, we report a five-year perspective on the EDAMAME workshop. We present
74 EDAMAME's learning objectives, target audience and admissions, instructional team, learning
75 environment, educational strategy and assessment, and community resources. We discuss
76 results from assessment, lessons learned and an outlook for future microbiome training.

77

78 Results

79 *EDAMAME learning objectives*

80 EDAMAME's learning objectives were tailored annually to incorporate learners'
81 changing interests and changes in tools and technology (**Box 1**). As a consequence, we created
82 and retired tutorials as demands changed. However, each year featured foundational tutorials
83 in computing literacy, state-of-the-science tools for microbiome analyses, ecological statistics,
84 and computing best practices.

85 *Target learners and admissions*

86 We targeted our applicant pool towards learners who would benefit most from the
87 training and who we expected would share their developed expertise with others to maximize

88 the reach of the workshop's training. We accepted applicants who were novice in their analysis
89 skillset and did not have apparent access to other resources to support their skill development.
90 We also aimed to promote diversity in scientific discipline (e.g., human, agricultural,
91 environmental), learner gender and background, research institution (e.g., undergraduate-
92 serving, research university, agencies), geography (with special advertising to learners from the
93 Midwest), and academic level (**Figure 1, Figure 2**). We also strove to provide opportunity to
94 international learners and learners from underrepresented backgrounds. To advertise the
95 course, we used social media (Twitter), our website, and professional networks. We also
96 attempted to reach broader audiences by advertising with international scientific networks,
97 especially Ciencia Puerto Rico in 2014 - 2016.

98 In each workshop, we could accommodate 23 - 26 learners in the classroom, and
99 applications were oversubscribed every year (**Table 1**). As admissions became increasingly
100 competitive, we began to require (rather than to encourage) that applicants had generated a
101 microbiome dataset prior to the workshop. We found that students who had struggled in an
102 analysis attempt were highly incentivized to maximize their time at the workshop. Also, they
103 could work on their data during office hours and ask specific questions to the instructors and
104 TAs.

105 *Instructional team*

106 A large instructional team was necessary to support EDAMAME's learning goals. There
107 were one to three lead instructors per year (**Table 1**). The instructors led the course, oversaw
108 admissions, provided lectures and course content, determined guest lectures, and mentored

109 TAs in tutorial development. In the final two years of the workshop, there was also a course
110 coordinator who oversaw conference logistics, fielded learner and applicant questions, and
111 coordinated transportation for learners, guest lecturers, and instructors.

112 The hands-on nature of the workshop necessitated several dedicated TAs. Multiple
113 instructors and supportive TAs in the classroom allowed us to be immediately responsive to the
114 needs of the learners. TAs led tutorials based on interest and expertise. Having multiple TAs
115 broadened instructional expertise and allowed unscheduled time for each TA to rest when they
116 were not supporting instruction. Most often, new learners struggled with basic syntax and
117 interpreting error messages. Novice TAs (e.g., early graduate students) helped learners trouble
118 shoot common errors, while the more senior TAs and instructors assisted with more
119 complicated hurdles (e.g., software and operating system incompatibilities, experimental
120 design power for data analysis). In addition to instruction, TAs supported the logistical aspects
121 of the course, such as local transportation for learners, purchasing supplies, and assisting
122 learners with unexpected personal needs (e.g., trip to the medical center, forgotten
123 toothbrush). TAs included volunteers (graduate students and post-docs) and graduate
124 assistants partially supported by EDAMAME external funding. Participation in the workshop
125 also offered TAs benefits to engage in teaching opportunities that served diverse audiences.

126 There were also several invited guest instructors who offered tutorials, technical
127 lectures, and research talks (**Table 2**). Guest instructors varied according to guest availability,
128 learner interests, and workshop duration, but some guest instructors generously provided
129 content every year. Stuart Jones (University of Notre Dame) taught statistical analysis in R;

130 Patrick Schloss and members of his lab (University of Michigan) taught amplicon analysis with
131 mothur; Jim Tiedje (Michigan State University) provided a lecture and discussion on the future
132 of microbial ecology. Instructors interacted with the learners during dinner and social time, and
133 this provided an opportunity for learner networking and discussions.

134

135 *Learning environment and daily schedule*

136 EDAMAME was held at the Kellogg Biological Station (KBS), which offered a remote
137 location, offering an immersive experience for learners and instructors. KBS was also chosen for
138 economy – the room and board rates at KBS were affordable to many (e.g., ~\$370 per week in
139 2018). Teaching assistants and volunteers provided transportation from the Kalamazoo and
140 Lansing airports to KBS. KBS also provided conference services, dining, wifi, and bonfires.
141 Finally, the natural setting and outdoor activities at KBS provided a respite to time spent in
142 front of the computer.

143 The length of the workshop varied from 7 - 11 days (**Table 1**), including travel days. The
144 morning schedule included an overview lecture followed by hands-on tutorials and group
145 learning activities. After lunch, we had an afternoon lecture and additional tutorials. We held
146 optional office hours with “choose your own adventure” tutorials and/or lectures on learner-
147 chosen topics during the afternoon break. For example, in 2018 we discussed exact sequence
148 variant analysis. Learners could also ask specific questions about their own data during office
149 hours. After dinner, we held an evening guest lecture in microbiome research. Evenings
150 provided free time for networking and relaxation.

151

152 *EDAMAME educational strategy and assessment*

153 EDAMAME's educational strategy addressed two training needs. First, we offered
154 general training in the fundamentals of introductory computing (*e.g.*, command line, scripting,
155 cloud computing, bioinformatic workflows). This equipped participants with the basic skills
156 needed to independently execute their analyses. We also offered specific training to overcome
157 hurdles particular to microbial metagenomic data analysis and advised on best practices for
158 microbiome analysis. To iteratively assess these strategies, we used a combination of
159 summative and formative assessments to determine participant learning gains.

160 For the summative assessments, we worked with educational consultants to develop
161 online, anonymous surveys and perform pre- and post-workshop assessments. These
162 assessments evaluated student-reported learning gains and confidence in areas aligned with
163 our learning objectives. The learners created a password to preserve their anonymity while
164 allowing for linking the pre- and post-survey responses. To maximize response rate, we
165 provided dedicated time in the classroom to complete the surveys. The pre-assessment survey
166 was completed on the first full day, and the post-assessment survey was completed on the final
167 day of the workshop. We updated the survey annually to reflect any new or changed learning
168 objectives but maintained the structure to facilitate interannual comparisons. Results of the
169 annual surveys guided the continued development of course materials and topics covered. In
170 the early years of the workshop, we had consultants perform in-classroom observations and

171 provide feedback to the instructors. Ultimately, we compiled the five years of pre- and post-
172 survey data and performed a longitudinal analysis.

173 In the pre- and post- surveys, learners were asked to indicate the extent to which they
174 understood specific learning outcomes or skills covered in the course, with ratings (e.g. Strongly
175 Disagree, Disagree, Agree, and Strongly Agree (**Table 3**)).

176 We also used “real-time” assessment during the workshop by replicating formative
177 assessment strategies found to be effective in Software Carpentry workshops (8–10). Each
178 participant was given a green (“I’m doing okay”) and a red (“I have a question”) sticky note to
179 stick onto their open laptop during tutorials. This visual cue allowed instructors to quickly
180 survey the classroom and determine learners’ comfort level, and to attend to any student who
181 was struggling during tutorials. Furthermore, it allowed students to continue working through
182 tutorials or troubleshooting without the need of raising their hand. We also employed “minute
183 cards”. After each tutorial, students wrote what went well on the green sticky note and what
184 could be improved on the red sticky note. Instructors and TAs read through notes during breaks
185 to quickly identify gaps in understanding. This allowed us to identify gaps and make
186 adjustments (e.g., in speed) in the subsequent instruction period.

187

188 *Building community resources and peer networks*

189 We were dedicated to promote a welcoming and supportive learning environment. We
190 presented a code of conduct in the welcome lecture so that it was clear that any questionable

191 conduct was grounds for dismissal. We used the online “etherpad” for shared note taking to
192 maximize engagement and inclusivity. We did our best to accommodate learners with families,
193 providing private housing to families and learners with special requirements.

194 We aimed to build a peer learning community and to provide resources to support
195 learners beyond the workshop. We offered an informal meet-and-greet on the arrival travel day
196 and get-to-know-you lighting presentations after the first full day. These interactions allowed
197 learners to identify peers with common research interests early in the workshop. We created a
198 workshop website and public repository on GitHub so that learners (and outside parties) could
199 access EDAMAME learning materials. Linked content included lectures, hands-on tutorials, and
200 reference lists. These materials have been shared openly, with most content licensed CC-BY, so
201 all course registrants and anyone else could have access. We also shared group email lists and
202 encouraged social media outreach via Twitter and blogging. An EDAMAME meet-up was also
203 held at the International Society for Microbial Ecology 2016 meeting in Montreal, CA.

204 *Pre- and post-survey comparisons and qualitative interviews*

205 Ninety-seven percent of EDAMAME learners from 2014 to 2018 rated the workshop overall
206 in the top evaluative categories, “good” to “very good.” (**Figure 3**). A comparison of pre- and
207 post-assessment learner-reported learning gains and/or confidence with the major learning
208 objectives of EDAMAME show gains in all sub-categories of learning reported (**Figure 4**). There
209 were largest gains between the pre- and post-assessments with Computational Understanding
210 (**Figure 4B**) and Perception in Ability (**Figure 4C**).

211 We also asked short-answer questions at the end of the survey, in which learners were
212 asked to design an experiment and report how they would process and analyze microbial
213 community high-throughput sequencing data. We observed increased sophistication in the
214 responses to the short-answer questions from the pre- to post-survey, with some learners
215 leaving the questions blank in the pre- survey and then providing thorough answers in the post-
216 survey. This suggests large gains especially for learners who were new to high-throughput
217 sequence analysis.

218 Qualitative interviews from 9 learners who attended EDAMAME from 2014-2016 (each
219 spending 25-40 minutes with the interviewer, **Table 4**) suggested that this group of learners
220 were largely satisfied with the workshop and appreciated the attentiveness of the TAs and
221 instructors as well as the red/green sticky note mechanism for soliciting help in real time.
222 However, some of these learners also felt that there was too much material covered in the
223 workshop and reported that they struggled to keep up with the pace of the course (“Content
224 overwhelm”). Finally, we had many interviewed learners state that the workshop and materials
225 covered made a positive impact on their career and research.

226 Discussion and Lessons Learned

227 We offer suggestions from our experiences for running an effective microbiome analysis
228 workshop (**Box 2**). EDAMAME’s content changed from 2014 to 2018 to meet changing learner
229 needs. These changes were guided in part by the applicants’ responses to questions about
230 their dataset and their expectations for the workshop. For example, amplicon analysis (e.g., 16S
231 rRNA gene sequencing) was favored in early years while untargeted metagenome analysis was

232 favored in later years. Similarly, proportionally fewer students in 2018 were novice to the
233 command line or R, but the majority of the class appreciated the refresher. Some of the
234 learners with self-taught experience embraced the opportunity to re-learn the “correct”
235 approaches and to gain missing foundational knowledge. Several tutorials were popular every
236 year. For example, there was a consistent demand for ecological statistics and “supporting”
237 skills like GitHub/version control, and cloud computing.

238 High instructor to learner ratio was essential for the success of the hands-on EDAMAME
239 workshop. In the years that we had the lowest instructor to learner ratios (e.g., in 2014 and
240 2015, **Table 2**), the TAs and instructors anecdotally reported exhaustion while the learners
241 craved more attention. In addition to formal instructors, learners could assist one another. To
242 facilitate peer learning, we arranged the classroom in tables with groups of two or four. We
243 also encouraged learners to support one another with troubleshooting in the time that it would
244 take for a free instructor to come to assist

245 Regardless of the length of the course, several learners indicated in their post-assessments
246 that more time at the workshop was needed each year. However, learners who were faculty or
247 staff researchers shared (in informal conversations) that they would have been unable to
248 commit to a longer workshop due to other professional responsibilities. We noted that there
249 were other offerings for multi-week workshops e.g., STAMPS), as well as several one- or two-
250 day workshops at professional society meetings and pipeline-specific training (e.g., mothur and
251 QIIME).

252 Timing the workshop had several challenges. EDAMAME was held in the summer, and we
253 tried to avoid scheduling it for the same week as major microbiology conferences, like the
254 American Society for Microbiology Microbe meeting, the International Symposium on Microbial
255 Ecology (ISME) and Ecological Society of America meetings. Because microbiome analysis spans
256 multiple disciplines, it was hard to avoid all of the large conferences that microbiome
257 researchers may attend. We also had to change the timing workshop every year to
258 accommodate the KBS event schedule. As EDAMAME grew in popularity, some learners applied
259 for fellowships or travel awards to support their training, but the annual change in timing made
260 it difficult for students to plan. Moving the workshop to a dedicated conference site (e.g., a
261 hotel) may help with consistent timing, but it would also increase the cost to learners.

262 We found that using cloud computing streamlined course content and democratized access.
263 We used the Amazon Elastic Compute Cloud (EC2), which was cost effective and available to
264 students who do not have access to high performance computers at their home institutions. In
265 early years, we guided learners through software installation on the EC2, but in later years, we
266 installed software in advance to focus on moving data to and from the EC2. Using the EC2
267 presented a challenge for learners who were affiliated with government agencies or research
268 laboratories (e.g., US Environmental Protection Agency, US Geological Survey) because of their
269 need for additional security and management approval prior to installing new software or
270 moving data. While we did not have a perfect solution for these learners, we began to
271 anticipate their needs and prompted them in advance to receive required permissions.
272 Another hurdle with using the EC2 was the changing way that Amazon provided student or
273 educational computing resources over the years. In some years, Amazon provided individual

274 credits to learners and in others required the instructors to apply for an educational grant.
275 Cloud computing logistics needed to be anticipated about nine months in advance, but in years
276 where individual email addresses were needed, it was impossible to prepare until after
277 admissions were finalized, which typically occurred 4 - 6 months in advance of the workshop.
278 We also note an issue for some international learners who did not have credit cards compatible
279 with Amazon requirements to enroll for an EC2 account, and for these learners we had to share
280 our own accounts or create accounts for them.

281 While our applicant pool and learner demographics reflected balance in gender, discipline,
282 and academic level, EDAMAME fell short of its racial diversity goals. We could have benefitted
283 from improvement in advertising the course to reach a broader pool to attract more applicants
284 of color. We largely advertised on social media and through word of mouth. We recommended
285 to specifically advertise to key target learner groups, like those underrepresented in the
286 sciences who may be expected to have less access to the training. On a positive note, we have
287 evidence that EDAMAME was reaching socioeconomic diversity goals, as two interview
288 respondents were clear that they would not have had the same opportunity for training and
289 advancement given their lower income backgrounds if it had not been for EDAMAME.

290 A final lesson to share is the balance between course value and learner costs. In its first
291 years, EDAMAME was funded piece-meal by generous sponsors. We experimented with a
292 mixed enrollment model of offering EDAMAME for university credit to local students and for
293 fee to outside students, but many of the local students could not afford the summer tuition
294 required for the credit hours. Then, EDAMAME was funded by external federal grants. We

295 began to charge modest workshop fees (\$325) to support items that could not be covered by
296 the grant (e.g., coffee, snacks). As soon as we began to charge workshop fees, the majority of
297 applicants began to request financial aid. We realized that many of the learners, mostly
298 graduate students and post-doc, were paying for the workshop personally, so we then worked
299 to waive fees for eligible students in need and offer scholarships for students with international
300 travel. By contrast, the instructional team did not have enough funds to fully pay the TAs and
301 instructors, who largely volunteered their time because they believed in the mission of the
302 training. Guest instructors and lecturers generously volunteered their time as part of their
303 broader impacts, and the workshop covered their travel expenses along with room and board
304 at KBS. Thus, there is inevitable tension balancing instructor compensation and course
305 affordability.

306 How much does it actually cost to run a workshop like EDAMAME? The first year, we ran
307 the workshop for less than \$14,000; students paid their own expenses of room and board; and
308 no workshop fees were charged. This face amount did not include substantial additional
309 support that was provided via shared logistics with the ANGUS workshop, which was occurring
310 at the same time at Kellogg Biological Station. It also did not include any support for personnel,
311 which was the largest true expense. Ideally, there would have been an annual budget for
312 instructor and TA summer salaries, a logistics coordinator salary, and hourly salary for
313 undergraduate labor during the course. We also realized that unless we could procure funds to
314 support personnel, the training may not be valued as highly by institutions and peers, and may
315 instead be perceived as a cost to other scholarly activities. We were grateful for the support of
316 the NIH 2015-2018 and the USDA 2017-2018. The second biggest expense was be financial aid

317 to offset costs of room and board and workshop fees to learners who needed it, which we
318 provided in 2017 and 2018 to qualified learners, with USDA support. The third biggest expense
319 was the educational consultant to evaluate the course as a neutral third-party, which was
320 \$5,500 to \$6,000 per evaluation. The remaining expenses were conference services at Kellogg
321 Biological Station, and lodging and travel expenses for the instructional team and guest
322 speakers. In summary, there is a trade-off between the course cost, inclusive of the real value
323 of instructor/TA time, and workshop affordability for the learners.

324

325 Future directions

326 While the data indicate that EDAMAME workshop was effective, a limited number of
327 learners can be accommodated per year, and there is high effort from the instructional team to
328 support them. This is a low-throughput model of skill development. We are eager to reach a
329 larger learner pool than what we could accommodate in the classroom. In 2016, we
330 experimented with live engagement of three to five remote learners (varied by tutorial) using
331 free conference calling and screen sharing resources. The remote learners participated as a
332 group at the same location. They engaged with the lectures and tutorials as fully as possible
333 (but missed out on the guest lectures and other events). This added a mild distraction for the
334 on-site learners, but the workshop proceeded relatively smoothly. The biggest hurdle was
335 engaging with the remote learners during tutorials, as they had no classroom support. It is
336 possible that a remote learning workshop could be successful, given an appropriate investment

337 into conference technology, an on-site coordinated dedicated to its logistics, and an enhanced
338 instructional team with traveling TAs dedicated to the remote classrooms.

339 The content of EDAMAME remains freely available online, but parts of the content are also
340 being transitioned to local offerings. Many universities desire more offerings of online or
341 digitized curriculum, and there is a question of how to balance the university's need to provide
342 quality instruction for tuition with the open-science philosophy of providing free, democratic
343 access to information. At Michigan State University, we are developing a graduate-level
344 learning module on microbial metagenomics that includes amplicon and untargeted
345 metagenome analysis pipelines. The 1-credit metagenomics module includes hands-on
346 tutorials, is offered twice a week for one month and is accompanied by pre-recorded lectures.
347 Post-doctoral trainees or faculty can enroll for a modest fee. Those based on EDAMAME
348 materials, the modular content at Michigan State covers less content because there are
349 prerequisite modules required for enrollment. Learners already have familiarity with the
350 command line, with submitting jobs to the high-performance computing cluster, and with
351 fundamentals of microbial genome analysis. EDAMAME materials have also been expanded to
352 teach international workshops including, a metagenomics one-day crash course in Rio, Brazil
353 and a one-week microbiome analysis workshop at Centro de Investigaciones Biológicas del
354 Noroeste in La Paz, Mexico. In addition, more general tutorials (e.g., shell, GitHub, etc) remain
355 available from other efforts, including Software and Data Carpentry, and short format 2-day
356 workshops are available at scale through The Carpentries (<http://carpentries.org>) on these
357 skills.

358 Finally, we seek to maximize the impact of EDAMAME by offering this kind of training to
359 those who need it most. We hope that the impact of our trainees training others is a lasting
360 legacy of EDAMAME. We have found that our international learners have benefited immensely
361 from this course, as they are challenged by access to compute resources or training. Going
362 forward, we hope to continue to identify target audiences who could both benefit from our
363 training and extend its impact broadly. Additionally, sequence analysis will continue to evolve
364 with technologies, impacting the depth and breadth of scientific questions and experiments
365 that are imaginable. We hope that our course content can continue to remove obstacles for
366 scientists who wish to engage in these technologies.

367

368 Materials and Methods

369 This research was exempt under IRB ID# i052533 (standard educational practices), as
370 reviewed by the Michigan State University Biomedical, Health Sciences Institutional Review
371 Board (BIRB) and Social Science, Behavioral, Education Institutional Review Board (SIRB).

372 Data analysis for the pre- and post-survey assessment and associated reports were
373 generated by an outside research consultants. Final reports for the years 2016, 2017 and 2018,
374 were written by Beth M. Duckles, PhD of Insightful, LLC and for years 2014 and 2015, reports
375 were written by Julie Libarkin of STEM ED. LLC. Code is available at
376 [<https://github.com/ShadeLab/EDAMAMESurveys>]. Beth M. Duckles of Insightful also
377 conducted qualitative interviews and provided final demographic summaries.

378

379 Acknowledgements

380 We thank C. Titus Brown for encouraging us to get EDAMAME started and for sharing ANGUS
381 resources to support our launch. We are indebted to our EDAMAME guest speakers and
382 instructors. We express immense gratitude to every single one of our TAs for their time,
383 enthusiasm, and commitment to EDAMAME training. We thank the EDAMAME learners for
384 their eager participation, humor, and patience. We also thank the Ribosomal Database Project
385 and Institute for Cyber-Enabled Research at Michigan State for sharing their talents and
386 resources.

387

388 Funding

389 This material is based upon work supported by the National Institute Of General Medical
390 Sciences of the National Institutes of Health under Award Number R25GM115335; the National
391 Science Foundation under Grant No DEB#1749544; AFRI food safety grant no. 2016-68003-
392 24604 from the USDA National Institute of Food and Agriculture; the National Science
393 Foundation under Cooperative Agreement No. DBI-0939454; Michigan State University through
394 computational resources provided by the Institute for Cyber-Enabled Research; and the
395 Amazon Web Services (AWS) Programs for Research and Education. Any opinions, findings, and
396 conclusions or recommendations expressed in this material are those of the authors and do not
397 necessarily reflect the views of these funding agencies.

398

399 Conflict of Interest

400 Amazon EC2 provided compute resources to EDAMAME students. In 2014, Illumina provided
401 pizza dinner and in 2014-2017 MO BIO provided t-shirts and blogging opportunities on their
402 company's blog.

403

404 References

405 1. **Quince C, Walker AW, Simpson JT, Loman NJ, Segata N.** 2017. Shotgun metagenomics,
406 from sampling to analysis. *Nat Biotechnol.*

407 2. **Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie
408 D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk G a, Gilbert J a.** 2012. Unlocking
409 the potential of metagenomics through replicated experimental design. *Nat Biotechnol*
410 **30**:513–520.

411 3. **Shade A, Teal TKT**. 2015. Computing Workflows for Biologists: A Roadmap. *PLoS Biol*
412 **13**.

413 4. **Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,
414 Peña AG, Goodrich JK, Gordon JI, Huttley G a, Kelley ST, Knights D, Koenig JE, Ley RE,
415 Lozupone C a, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh
416 PJ, Walters W a, Widmann J, Yatsunenko T, Zaneveld J, Knight R.** 2010. QIIME allows
417 analysis of high- throughput community sequencing data Intensity. *Nat Publ Gr* **7**:335–
418 336.

419 5. **Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
420 Oakley BB, Parks DH, Robinson CJ.** 2009. Introducing mothur: open-source, platform-
421 independent, community-supported software for describing and comparing microbial

422 communities. *Appl Environ Microbiol* **75**:7537–7541.

423 6. **McDonald D, Clemente JC, Kuczynski J, Rideout J, Stombaugh J, Wendel D, Wilke A,**
424 **Huse S, Hufnagle J, Meyer F, Knight R, Caporaso J.** 2012. The Biological Observation
425 Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome.
426 Gigascience.

427 7. **Team RDC, R Core Team.** 2013. R: A language and environment for statistical computing.
428 R Foundation for Statistical Computing, Vienna, Austria, Austria.

429 8. **Teal TK, Cranston K a., Lapp H, White E, Wilson G, Ram K, Pawlik A.** 2015. Data
430 Carpentry: Workshops to Increase Data Literacy for Researchers. *Int J Digit Curation*
431 **10**:135–143.

432 9. **Wilson G.** 2006. Software carpentry: Getting scientists to write better code by making
433 them more productive. *Comput Sci Eng*.

434 10. **Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK.** 2017. Good enough
435 practices in scientific computing. *PLoS Comput Biol* **13**:e1005510.

436

437

438 **Figure legends**

439 Figure 1. Distributions of EDAMAME learner gender and age, 2014-2018.

440 Figure 2. Distributions of EDAMAME learner ethnicity and academic status, 2014-2018.

441 Figure 3. Overall EDAMAME assessment 2014-2018.

442

443 Figure 4. Summarized comparison of self-reported learning gains between pre- and post-
444 workshop assessments, aggregated over 2014-2018. (A) Comfort with computational tasks; (B)
445 Computational Understanding;(C) Perception in Computing Ability; and (D) Coding Ability.

446

447

448 Tables

449 **Table 1. Summary of EDAMAME dates, instructional staff, applicants, and learners from**
450 **2014-2018.**

Year	Dates	No. Days	No. TAs	No. Instructors	No. applicants	No. workshop learners ¹
2014	22 June to 29 June	8	1	3	50	23
2015	21 June to 01 July	11	6 ²	1	93	32 ³
2016	10 July to 20 July	11	6	3	62	25
2017	06 August to 12 August	7	7	3	63	26
2018	24 June to 30 June	7	10	2	103	26

451 ¹No. workshop learners are from pre- and post- survey responses. Additional local learners
452 participated *ad hoc* and may not have completed surveys.² There were two guest TAs in 2015
453 who participated only in one tutorial each, with the remaining 4 TAs available throughout the
454 workshop. ³2016 participant data included 3 remote learners who participated in select
455 tutorials.

456

457 **Table 2. Guest lecturers and instructors for EDAMAME.**

Year	Guests
2014	C. Titus Brown (then at Michigan State University; now University of California–Davis) Jack Gilbert (University of Chicago) Pat Schloss (University of Michigan) Jim Tiedje (Michigan State) Sebastian Boisvert (Argonne National Laboratory) Stuart Jones (University of Notre Dame) Jay Lennon (Indiana University) Adina Howe (Michigan State University) Kathryn Docherty (Western Michigan University) Ariane Peralta (East Carolina University)
2015	Vince Young (University of Michigan) Pat Schloss lab members (University of Michigan) Ariane Peralta (East Carolina University) Jay Lennon (Indiana University) Stuart Jones (University of Notre Dame) Jim Tiedje (Michigan State) Jim Cole (Michigan State) Qiong Wang (Michigan State) Matt Scholz (Michigan State) Sarah Evans (Kellogg Biological Station)

	Vincent Denef (University of Michigan)
2016	Sarah Evans (Kellogg Biological Station) Pat Schloss (University of Michigan) Stuart Jones (University of Notre Dame) Jim Tiedje (Michigan State) Jim Cole (Michigan State) Rich Lenski (Michigan State University) Pat Bills (Michigan State University)
2017	Stuart Jones (University of Notre Dame) Pat Schloss (University of Michigan) Jim Tiedje (Michigan State University) Heather Allen (USDA, Ames Iowa)
2018	Patrick Schloss (University of Michigan) Stuart Jones (University of Notre Dame) Tomas Vetrovsky (Czech Academy of Sciences) Thea Whitman (University of Wisconsin) Jim Tiedje (Michigan State University)

458

459

460 **Table 3. Representative survey questions for the “Computational Understanding” scale.**

I know how to process Illumina data
I understand what per_library_stats.py does
I know how to run R
I know the main differences in analyses offered by QIIME(4) and mothur(5)
I am familiar with .biom(6) formatted files
I can name at least two different microbial metagenomic databases
I know what an R package(7) is
I understand the structure of an OTU table
I know what a kmer is
I know the difference between alpha and beta diversity
I know how to visualize microbial metagenomic data
I know how to use metadata to guide community analyses
I know how to assemble shotgun metagenomic data

461

462

463 **Table 4. Representative comments from interviews.** The sample is small at nine attendees, but each interviewee spent somewhere
464 between 25 and 40 minutes discussing their experience at the workshop, its impact on their professional life and walking through
465 the agenda for their year's workshop to give detailed feedback. While it is a small sample, each person contributed a lot of
466 information. There were two respondents for 2014, four for 2015 and three for 2016. Each quote is labeled with the year the
467 respondent participated in the workshop
468

Positive overall comments	<p>“EDAMAME was an inspiring introduction into microbiology. I thought the kind of analyses you could do with microbiology was really interesting. I really got pulled in on the data science part.” (2014)</p> <p>“It was definitely one of the most effective workshops I’ve been to.” (2016)</p> <p>“Very comprehensive, reached a lot of people from different backgrounds who were interested in analyzing microbial communities. I thought it provided a good survey of the tools that were available and it brought in some experts.” (2014)</p>
Content overwhelm comments	<p>“I loved it, I had a blast. It was exhausting. It was a lot of fun, I learned a lot. I kind of felt overwhelmed.” (2016)</p> <p>“I appreciated the workshop for its usefulness, it’s a lot to take in. We need time to process. It’s nice to have a bit of a breather. For someone who was new to the field like me. I needed a bit of time to digest.” (2014)</p> <p>“It was pretty intense for me. I had never done any kind of code work before. This was really my first introduction...” (2015)</p>
Career Impact Comments	<p>“I can say that the course inspired me and put me on my path and inspired me to think about different ways to do analysis. They talked a lot about the different tools that were available.” (2014)</p>

	<p>“It was a great workshop. It really helped me in my career path. It’s opened a door for me to get into bioinformatics.” (2015)</p> <p>“It really propelled my graduate school career and has pushed me... I took away the basic tools and I’ve been able to grow from that... I know how to make a pipeline. I know the basic structure and they gave that to me.” (2015)</p> <p>“I’m one of the few people at [my workplace] who can analyze sequence data.” (2016)</p>
--	---

469

470

471 **Box 1. Overview of learning objectives for the EDAMAME workshop.**

472 ● Develop working proficiency at the command line and with shell.

473 ● Explain the process of high-throughput sequencing, provide an overview of data-
474 handling (quality control, pre-treatment), and discuss their biases.

475 ● Access computing resources: Transfer data and run analyses on Amazon EC2 and/or a
476 high-performance computing cluster.

477 ● Access and/or create version-controlled code and resources on GitHub.

478 ● Discuss steps in the ecological analyses of microbiomes, including alpha and beta-
479 diversity, ordinations, and resemblance metrics.

480 ● Explore datasets and statistically test hypotheses in R.

481 ● Visualize patterns in microbial communities using R.

482 ● Develop a working proficiency with amplicon sequencing workflows and tools (e.g.,
483 QIIME, or mothur, or usearch; (3)).

484 ● Develop a working proficiency with shotgun metagenomics workflows.

485 ● Become familiar with publicly accessible microbial sequence databases/repositories
486 (e.g., NCBI, MG-RAST, FunGene) and the tools that they offer for deposition and
487 analyses.

488 ● Identify resources for troubleshooting. This includes: how to ask for and where to find
489 general help online, through peer networks, and from workflow-specific resources (e.g.,
490 public tutorials and wikis).

491

492

493 **Box 2: Lessons Learned**

494 1. Regularly evaluate and change content to meet changing learner needs.

495 2. Maintain a high instructor to learner ratio.

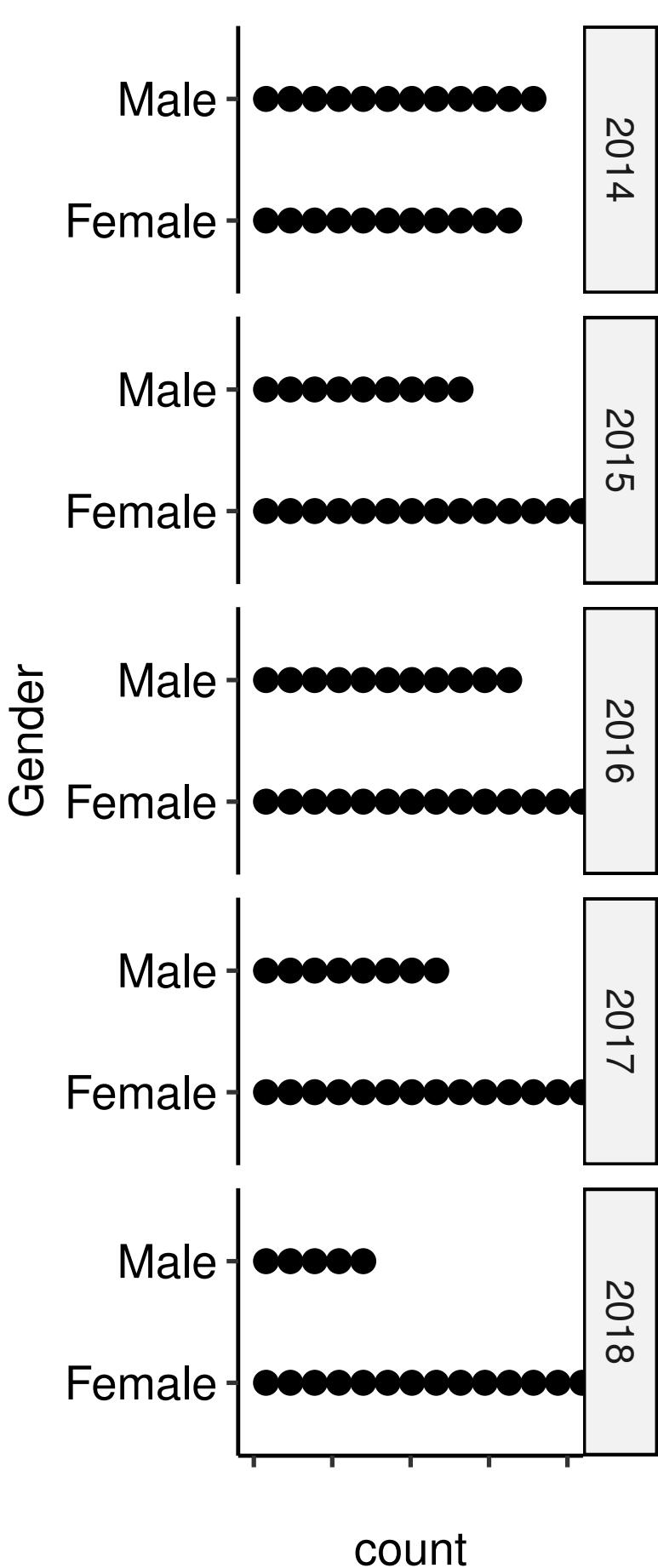
496 3. Provide consistent workshop timing and fill the “middle-ground” duration needs of
497 learners.

498 4. Understand the pros and cons of cloud computing for a workshop, and plan use of these
499 resources well in advance.

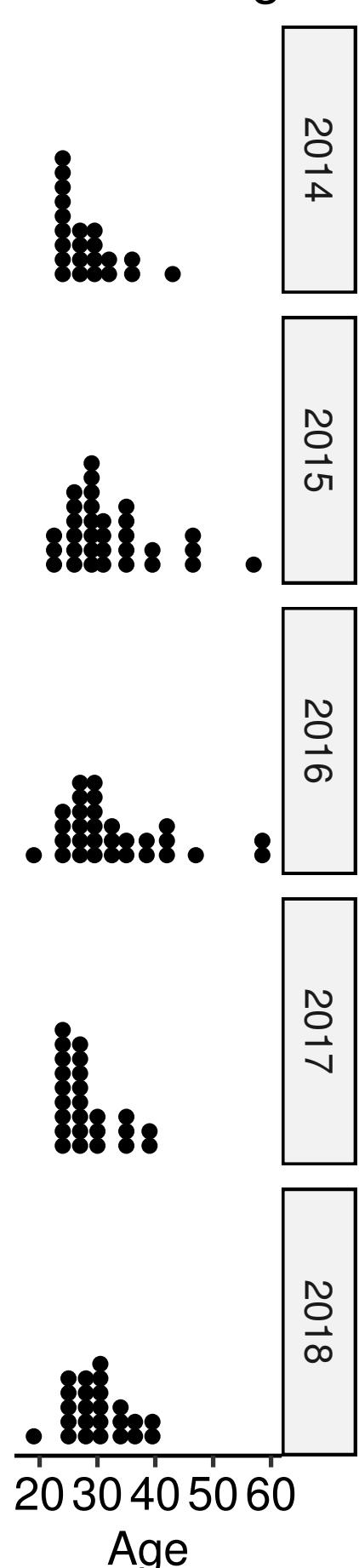
500 5. Reach the broadest applicant pool of learners who have the potential to have the most
501 gains from the training.

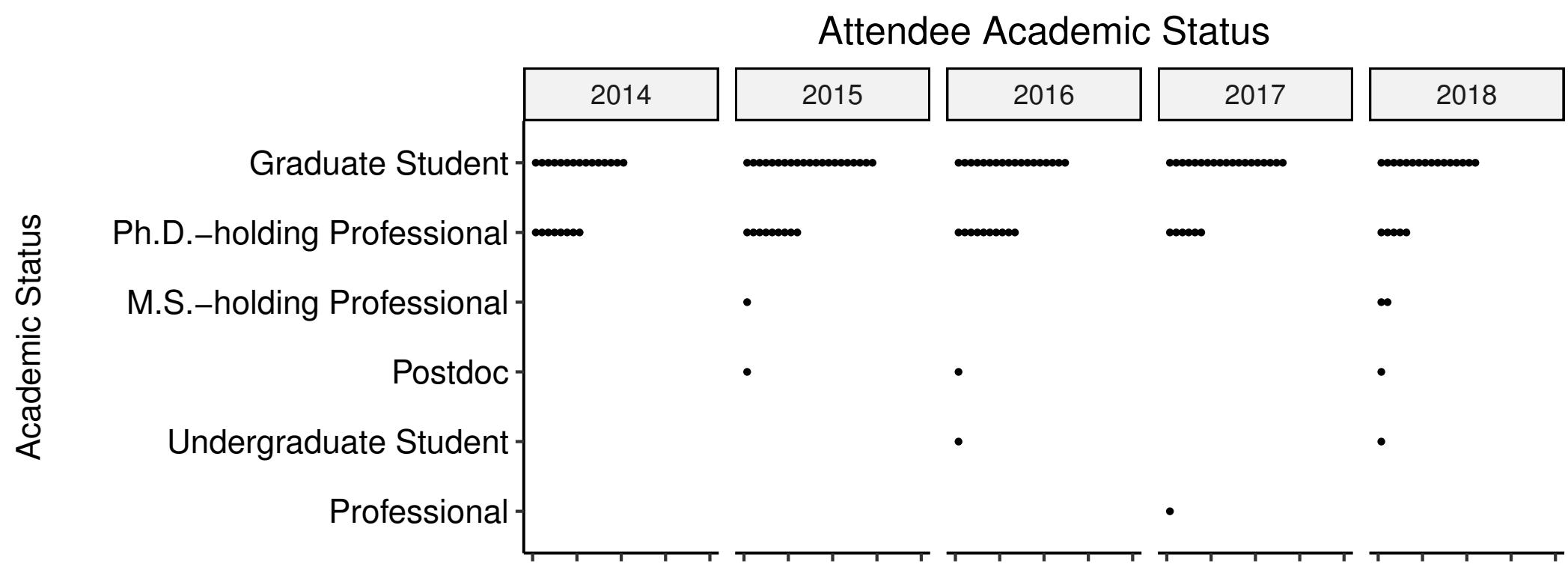
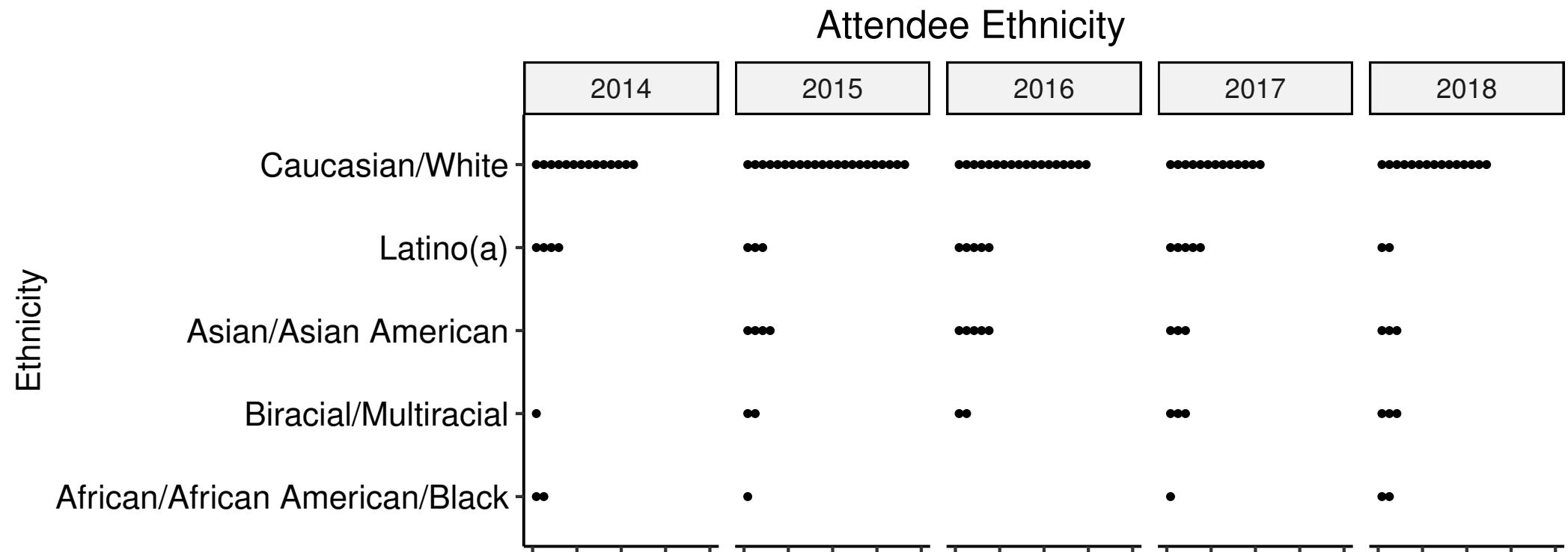
502 6. Consider the trade-off in workshop value (including instructor time) and maintaining
503 economical costs to learners.

504 7. Plan well in advance to achieve best outcomes for applicants who require a US VISA and
505 international travel plans to attend the workshop.

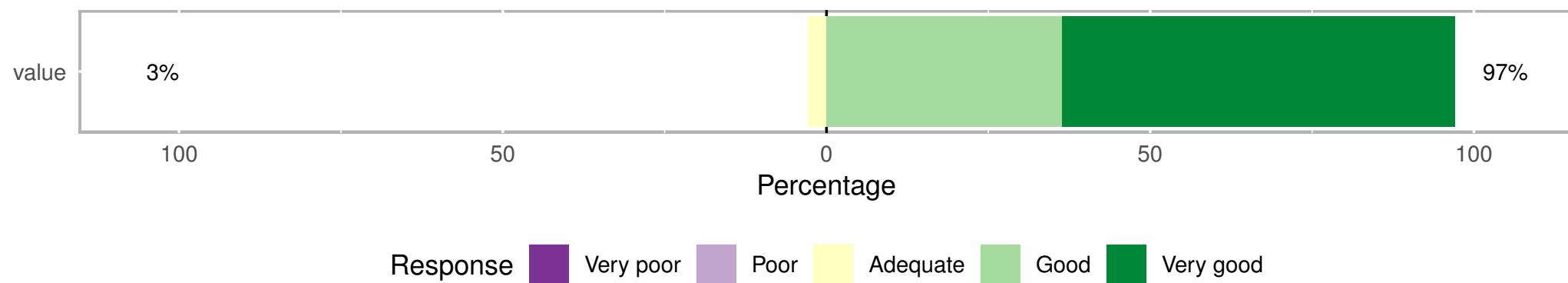

506 8. Almost all learning engagement needs to happen on-site; efforts to engage learners pre-
507 workshop were ineffective.

508 9. Scheduled classes should teach to the majority of learners to accomplish all our learning
509 objectives. Office hours can help struggling learners catch up.

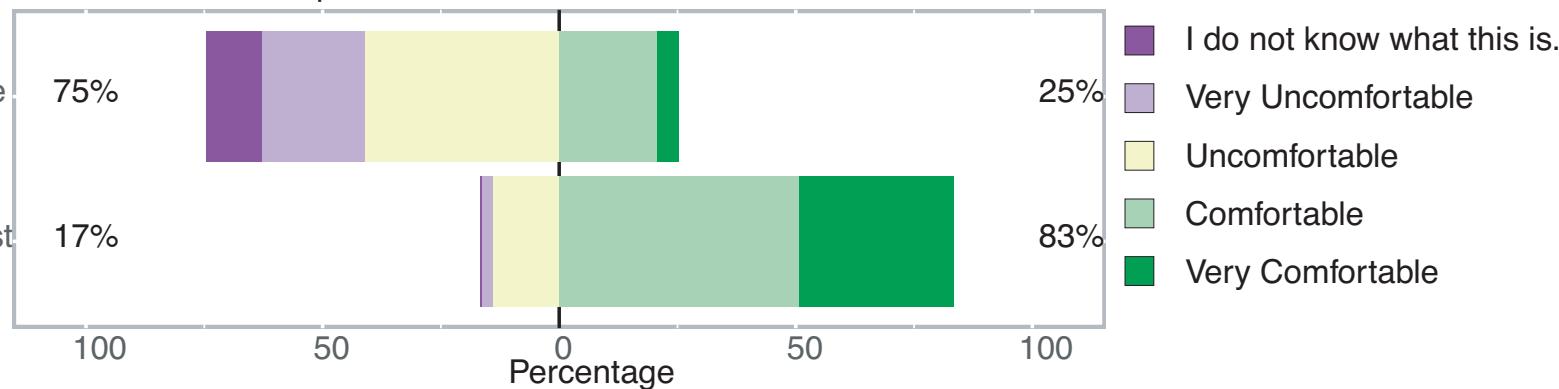

510 10. A welcoming and inclusive environment creates a positive workshop experience and is
511 essential for effective learning.

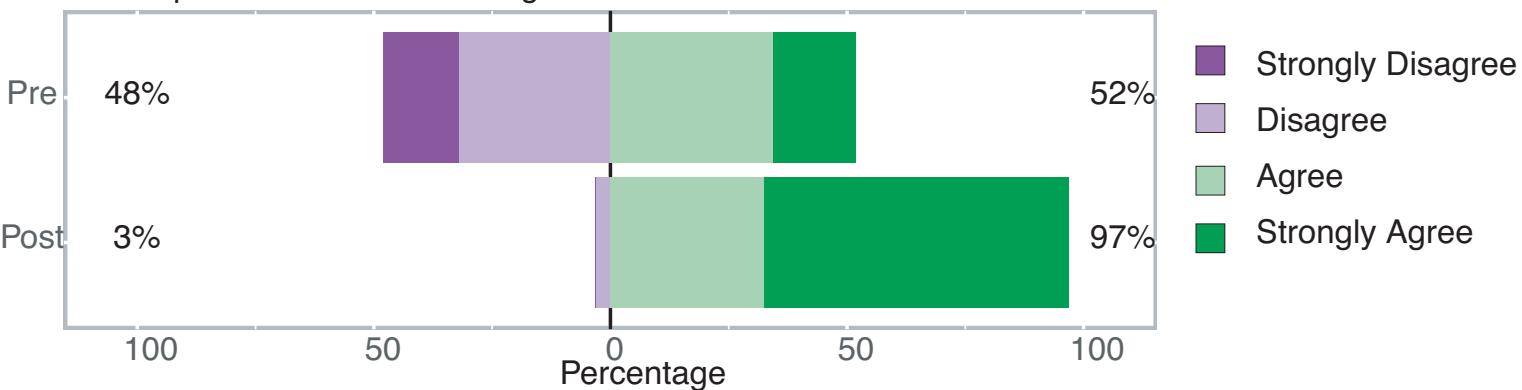


.....

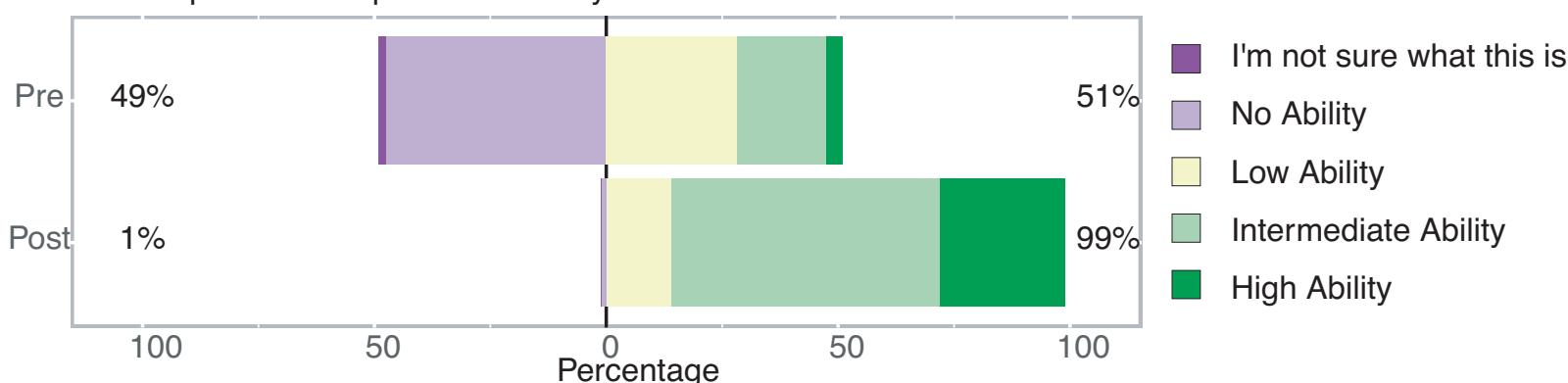
Attendee Gender

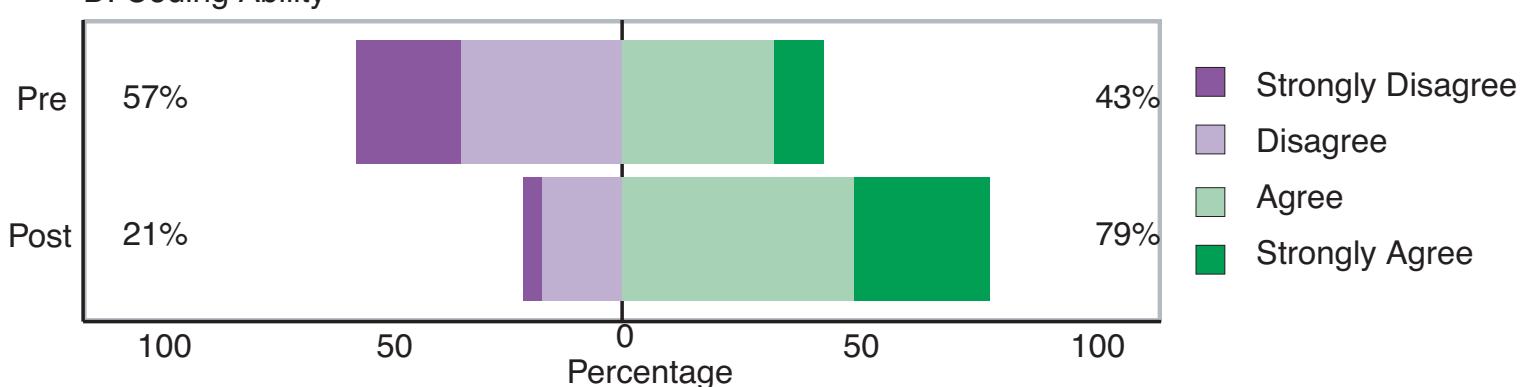


Attendee Age




Overall Rating Post EDAMAME Workshop, 2014 – 2018


A. Comfort with Computational Tasks


B. Computational Understanding

C. Perception of Computational Ability

D. Coding Ability

