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Abstract 

Prostate is the most frequent cancer in men. Prostate cancer progression is driven by 

androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). 

Androgens control transcription by stimulating androgen receptor (AR) activity, yet also 

control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate 

splicing through AR-mediated transcriptional control of the epithelial-specific splicing 

regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary 

prostate cancer. Androgen stimulation induces splicing switches in many endogenous 

ESRP2-controlled mRNA isoforms, including a key splicing switch in the metastatic regulator 

FLNB which is associated with disease relapse. ESRP2 expression in clinical prostate 

cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice 

programmes. Supporting this, FLNB splicing was reciprocally switched by the AR antagonist 

bicalutamide (Casodex®).  Our data reveal a new mechanism of splicing control in prostate 

cancer with important implications for metastatic disease progression. 

 

 

Key points: 

 Transcriptional regulation of ESRP2 by the androgen receptor controls splice isoform 

patterns in prostate cancer cells. 

 Splicing switches regulated by the androgen-ESRP2 axis include a splice isoform in 

the FLNB gene that is a known metastatic driver. 

 Both ESRP1 and ESRP2 are highly expressed in prostate cancer tissue. 

 Ectopic expression of ESRP1 and 2 inhibits prostate cancer cell growth. 

 By repressing ESRP2 expression androgen deprivation therapy (ADT) may dampen 

epithelial splicing programmes to inadvertently prime disease progression towards 

metastasis. 
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Introduction  

Prostate is the most common male gender-specific cancer (1). Prostate cancer progression 

is controlled by androgen steroid hormones including testosterone and its active metabolite 

5-α dihydroxytestosterone. Androgens stimulate androgen receptor (AR) signalling in 

prostate cancer cells to control transcription, including of genes that regulate the cell cycle, 

central metabolism and biosynthesis, as well as housekeeping functions (2-5). The roles of 

both androgens and the AR in transcription have been intensively investigated. However, 

androgens and the AR also regulate alternative pre-mRNA splicing through still largely 

unknown mechanisms (6-11).  This represents a very important knowledge gap: alternative 

splicing patterns in cancer cells can generate protein isoforms with different biological 

functions (12), and is a key process in the generation of biological heterogeneity in prostate 

cancer (13, 14).  

Androgens are also closely linked to prostate cancer treatment, with androgen deprivation 

therapy (ADT) being the principal pharmacological strategy for locally advanced and 

metastatic disease. ADT utilises drugs to inhibit gonadal and extragonadal androgen 

biosynthesis and additionally competitive AR antagonists block androgen binding and 

abrogate AR function (4). ADT delays disease progression, but after 2-3 years tumours often 

grow again developing castration resistance with a median survival time of 16 months (15). 

The central role of androgens and the AR in prostate cancer, and the poor clinical outlook of 

castration-resistance prostate cancer (CRPCa), have made it crucially important to identify 

androgen-regulated target genes and mechanisms of function –particularly those that relate 

to metastasis. The process of epithelial-mesenchymal transition (EMT) plays a pivotal role in 

prostate cancer metastasis (16-20). While the mechanisms driving EMT in prostate cancer 

are poorly understood, ADT has recently been shown to directly induce EMT in both mouse 

and human prostate tissue (21, 22). Importantly, changes in alternative splicing patterns can 

have dramatic effects on EMT and on metastatic disease progression (23).  
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While the mechanisms through which androgens regulate splicing control are not well 

understood, splicing itself takes place in the spliceosome, which is a multi-component 

structure containing a core of essential proteins and small nuclear RNAs (24). Splicing 

inclusion of alternative exons is often controlled by splicing regulator proteins that bind either 

to regulated exons or within their adjacent flanking intron sequences (25). The estrogen and 

progesterone steroid nuclear hormone receptors control splicing via recruitment of 

alternative splicing regulators (including the RNA helicases Ddx5 and Ddx17) (7, 8, 26), and 

by changing RNA polymerase II extension rates and chromatin structure to affect splice site 

selection (27, 28). Steroid hormones can also drive selection of alternative promoters to 

include different upstream exons in mRNAs (9, 10). However, to what extent the above 

mechanisms may contribute to androgen-mediated splicing is largely unknown.  

We reasoned that a potential model to unify the role of androgens and the AR in 

transcription and splicing control could be via transcriptional regulation of genes that encode 

splicing regulatory proteins. Using a recently described set of genes that reciprocally change 

expression in response to androgen stimulation in culture and ADT in patients (29), here we 

identify AR-mediated transcriptional control of the key splicing regulator protein Epithelial 

Splicing Regulator Protein 2 (ESRP2). Importantly, many ESRP2-regulated exons switch 

splicing in response to androgen stimulation. ESRP2 and its close relative ESRP1 (60% 

identical to ESRP2 protein) are important regulators of epithelial alternative splicing patterns 

(12, 30-35), reduced expression of which can drive critical aspects of EMT (23, 30, 36). Our 

data identify an AR-ESRP2 axis controlling splicing patterns in prostate cancer cells, and 

further suggest that reduced ESRP2 levels in response to ADT may inadvertently prime 

prostate cancer cells to facilitate longer term disease progression. 

 

 

 

 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/629618doi: bioRxiv preprint 

https://doi.org/10.1101/629618
http://creativecommons.org/licenses/by/4.0/


5 

 

Results 

ESRP2 is a direct target for AR regulation in prostate cancer cells 

To first gain insight into how androgens may mediate patterns of splicing control we 

analysed a recently generated dataset of genes that have reciprocal expression patterns on 

acute androgen stimulation in vitro versus clinical ADT (29). While a number of genes 

encoding splicing factors changed expression in response to acute androgen stimulation in 

vitro, only one such gene ESRP2 also showed a reciprocal expression switch between acute 

androgen stimulation in culture and ADT in patients (29). ESRP2 expression decreased 

following ADT in 7/7 prostate cancer patients (37) (Figure 1A). Furthermore, RNAseq data 

from LTL331 patient-derived xenografts (38) also showed reduced ESRP2 mRNA levels 

following castration (Figure 1B). These data support in vivo androgen-regulation of ESRP2 

transcription. 

Further analysis of ESRP2 expression patterns in prostate cancer cell lines revealed that 

ESRP2 is controlled by androgens, but not its close paralog ESRP1. ESRP1 gene 

expression did not significantly change following castration in the LTL331 patient-derived 

xenografts (38). Western blots detected high endogenous levels of both ESRP1 and ESRP2 

levels within the AR positive LNCaP and CWR22 RV1 prostate cancer cell lines, as 

compared to the AR negative PC3 and DU145 prostate cancer cell lines (Figure 1C and 1D). 

qPCR analysis showed that ESRP2 gene expression in the AR-positive LNCaP cell line was 

activated in response to androgens, but no androgen effect was observed for ESRP1 gene 

expression (Figure 1E). Androgen mediated-control of ESRP2 expression was also detected 

in two additional AR-expressing prostate cell lines VCaP and RWPE-1 (Figure 1F). Induced 

ESRP2 protein expression was detected 48 hours after androgen exposure, with ESRP1 

protein levels not changing over this same time period (Figure 1G). The specificity of the 

ESRP1 and ESRP2 antibodies used in these experiments was confirmed by detection of 

over-expressed protein and detection of siRNA mediated protein depletion by western blot 

(Figure 1-Figure supplement 1A and 1B).  
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Further experimental analysis also support ESRP2 as an early and so likely direct target for 

transcriptional control by the AR: (i) ESRP2 gene expression in LNCaP cells was rapidly 

induced in response to 10nM of the synthetic androgen analogue R1881 (methytrienolone) 

(Figure 1H). (ii) Chromatin immunoprecipitation (ChIP) from LNCaP cells confirmed direct 

AR binding to a site within 20Kb of the ESRP2 gene promoter that had been previously 

predicted from a genome-wide study (at position chr16: 68210834-68211293 on human 

genome assembly HG38) (2) (Figure 1I). The AR ChIP signal adjacent to ESRP2 was similar 

to that detected in parallel for KLK3 (PSA), which is a known AR-regulated gene. (iii) 

Consistent with ESRP2 regulation at physiological androgen concentrations, ESRP2 

transcription in LNCaP cells was induced over a wide range of R1881 concentrations 

ranging from 1 nM to 100 nM (Figure 1J). Each of these above data are consistent with AR -

mediated regulation of ESRP2 expression levels.   

 

 

ESRP2 and its paralog ESRP1 are highly expressed in primary prostate tumours and 

inhibit tumour growth in vivo 

We next monitored ESRP1 and ESRP2 expression profiles from prostate cancer patients. 

Meta-analysis of 719 clinical prostate cancer tumours from 11 previously published studies 

detected significant up-regulation of both ESRP1 and ESRP2  in 9/11 datasets (Figure 2-

source data 1) (39-50). We experimentally validated this meta-analysis using two 

independent panels of clinical samples. Real-time PCR showed significant up-regulation of 

both ESRP1 and ESRP2 mRNA in (1) prostate carcinoma relative to benign prostate 

hyperplasia (BPH) (Figure 2A); and (2) in 9 prostate tumour samples relative to matched 

normal tissue from the same patient (Figure 2B). A recent study by Walker et al (2017) 

identified a molecular subgroup of prostate cancers with metastatic potential at presentation 

(51). Within this dataset ESRP1 was 2.76 fold up-regulated in the ‘metastatic-subgroup’ 
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compared to the ‘non-metastatic subgroup’. Using RNA from a subset of samples from the 

Walker et al. study, we confirmed significant (p < 0.05) upregulation of the ESRP1 gene in 

primary prostate cancer patients presenting with a metastatic biology (Figure 2C). ESRP2 

gene expression did not significantly increase in the 20 samples studied.  

Each of the above data showed that ESRP1 and ESRP2 expression levels are relatively 

high in primary prostate cancer compared to normal prostate tissue. High ESRP2 expression 

was not prognostic of disease progression in the TCGA (PRostate ADenocarcinoma) PRAD 

cohort using KM-express (52), but high expression of ESRP1 associated with a significantly 

reduced time to first biochemical recurrence (p=0.022) (Figure 2D). Previous data have 

reported up-regulated ESRP1 and ESRP2 proteins in squamous cell carcinoma tumours but 

their down-regulation at invasive fronts (53). We tested these same antibodies against 

ESRP1 and ESRP2 proteins on prostate cancer FFPE tissue and cell blocks, but they did 

not pass our stringent quality control tests (Figure 1-Figure supplement 1C). While this 

manuscript was in preparation, another group used an alternative ESRP1 antibody to show 

upregulation of ESRP1 in 12,000 prostate cancer tissue microarray tumours (54). 

We next investigated the effects of ESRP1/2 expression on the biology of prostate cancer 

cells in vivo. Because of their normal endogenous expression profiles (Figures 1C and 1D), 

we selected PC3 and DU145 cells to study the effects of ESRP1/ESRP2 protein up-

regulation on prostate cancer cells. Ectopic expression of ESRP1 and ESRP2 protein 

expression in AR negative PC3 and DU145 cell line models reduced prostate cancer cell 

growth in vitro (Figure 2-Figure supplement 1).  Over-expression of both ESRP1 and ESRP2 

(either alone or together) in PC3 cells also significantly slowed growth of prostate cancer 

xenografts in vivo (Figures 2E-G). Taken together, the above data show that ectopic 

expression of ESRP1 and ESRP2 proteins slow the growth of PC3 and DU145 prostate 

cancer cell lines and are strongly suggestive that high levels of ESRP2 protein inhibit growth 

of prostate cancer cells. 
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Identification of endogenous ESRP1/ESRP2-regulated targets in prostate cancer cells 

To enable us to test whether androgens may control splicing indirectly via transcriptional 

regulation of ESRP2, we next set out to identify a panel of endogenous ESRP2-responsive 

exons within prostate cancer cells. We first used siRNAs to jointly deplete both ESRP1 and 

ESRP2 proteins from LNCaP cells (since ESRP1 and ESRP2 can regulate overlapping 

targets); and in parallel treated LNCaP cells with a control siRNA. We then used RNAseq to 

monitor the effects of these treatments on the LNCaP transcriptome. Bioinformatic (55) 

analysis of these RNAseq data (GSE129540) predicted 446 ESRP1/ESRP2 regulated 

alternative splicing events across 319 genes (ΔPSI>10%, p<0.05) (Figure 3-source data 1). 

We experimentally validated splicing switches for 44 predicted ESRP1/ESRP2-controlled 

exons by RT-PCR analysis, after LNCaP cells were treated with either of two independent 

sets of siRNA directed against ESRP1 and ESRP2 or control siRNAs (Figure 3 and Figure 3 

source data 2). We also detected similar splicing switches for 37/44 of these skipped exons 

after jointly depleting ESRP1 and 2 from the AR-positive CWR22 RV1 prostate cancer cell 

line; and 28/44 of these splicing switches were observed after jointly depleting ESRP1 and 2 

from the AR positive PNT2 cells that model the normal prostate epithelium (Figure 3 and 

Figure 3- source data 2). 

Given this set of endogenous target exons, we carried out further analyses to next identify 

target exons that respond to increasing levels of either ESRP2 or ESRP1 expression in PC3 

cells (which normally express low levels of endogenous ESRP1/ESRP2) (Figure 1C). 

Ectopic expression of either ESRP1 or ESRP2 in PC3 cells induced splicing switches for 

35/44 exons analysed. Importantly, the splicing switches induced by ectopic expression of 

either ESRP2 or ESRP1 were reciprocal to the splicing switches detected after siRNA 

depletion of ESRP1/ESRP2 (Figure 3). Experimentally validated ESRP-regulated exons fell 

into two groups: splicing of one group was repressed by ectopic expression of ESRP1 or 

ESRP2 in PC3 cells, and reciprocally activated by endogenous ESRP1/ESRP2 depletion in 

LNCaP cells (these exons are in the top of the heatmap in Figure 3, from OSBL3 to 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/629618doi: bioRxiv preprint 

https://doi.org/10.1101/629618
http://creativecommons.org/licenses/by/4.0/


9 

 

DOCK7); and a second group whose splicing was activated by ectopic expression of ESRP1 

or ESRP2, and reciprocally repressed by ESRP1/ESRP2 depletion (from SLC37A2 to 

ARFGAP2 in Figure 3).  

 

An androgen steroid hormone-ESRP2 axis controls alternative splicing in AR-positive 

prostate cancer cells 

The above data thus identified a robust panel of alternative exons within prostate cancer 

cells that responded to ESRP1/ESRP2 expression levels. We next tested if this panel of 

ESRP2-regulated exons are also regulated by ambient androgen concentrations. LNCaP 

cells were harvested after growth in steroid deplete media and after 48 hours of androgen 

stimulation (this timing was designed to enable full levels of androgen-mediated ESRP2 

protein induction, Figure 1G). Our prediction was that androgen stimulation of LNCaP cells 

would activate ESRP2 expression to regulate our panel of endogenous test exons. If this 

was the case, splicing switches in response to androgen stimulation should occur in a 

reciprocal direction to splicing changes induced by ESRP1/ESRP2 protein depletion in 

LNCaP cells. Consistent with these expectations, more than 70% (32/42) exons in our test 

panel demonstrated androgen regulated splicing (Figure 3-source data 2). Importantly, 

plotting the percent spliced-in (PSI) for each exon after 48 hours androgen stimulation (Y 

axis) versus the PSI after ESRP1/ESRP2 depletion (X axis) showed a significant negative 

correlation (slope= -0.66, R2 = 0.64, p<0.0001) (Figure 4A).  

These results experimentally support an androgen-ESRP2 axis controlling splicing patterns 

in prostate cancer cells. Amongst the genes containing ESRP2-repressed exons that were 

also skipped in response to androgen stimulation were DOCK7 (exon 23), which encodes a 

guanine nucleotide exchange factor involved in cell migration (Figure 4B) (56); and RPS24 

(exon 5), a gene that is highly expressed in prostate cancer (Figure 4C) (57). Amongst the 

genes containing ESRP-activated exons that were also activated by androgen exposure 
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were MINK1 (exon 18) which encodes a pro-migratory serine/threonine kinase (Figure 4D); 

MAP3K7 (exon 12) which encodes a serine/threonine kinase that regulates signalling and 

apoptosis, activates NFKappaB, and is lost in aggressive prostate cancer (58, 59) (Figure 

4E); GRLH1 (exon 5) that encodes a transcription factor involved in epithelial cell functions 

(60) (Figure 4F); and FLNB (exon 30), alternative splicing of which has been identified as a 

key switch contributing to breast cancer metastasis (61, 62) (Figure 4G).  

 

 

The AR-ESRP2 axis controls splicing of mRNA isoforms that are important for 

prostate cancer disease progression 

Information about most of our panel (38/44) of ESRP-regulated exons was also found within 

the TCGA PRAD cohort (containing 497 prostate tumour samples and 52 samples from 

normal prostate tissue). Analysis of the PRAD cohort revealed that 18/38 ESRP-regulated 

exons have different patterns of splicing inclusion between tumour and normal tissue (Figure 

5A and Figure 3 source data 2). These differentially spliced exons include the AR-ESRP2-

controlled alternative exons in the DOCK7 and RPS24 genes (both of which were excluded 

in prostate tumours compared to normal prostate tissue); and the alternative exons in the 

MINK1 and MAP3K7 genes (each of which had increased levels of splicing inclusion in 

prostate tumours compared to normal tissue). Further RT-PCR analysis of an independent 

cohort confirmed more frequent skipping of DOCK7 (exon 23) and RPS24 (exon 5) in 

prostate tumour tissue compared to normal prostate (Figure 5B and 5C). 

To visualise the amplitude of splicing switches in these exons in response to ESRP2, we 

plotted PSIs measured in vitro after ectopic expression of ESRP1/ESRP2, versus PSI values 

after siRNA mediated depletion of ESRP1/ESRP2 (Figure 5D, using data from Figure 3 and 

Figure 3 - source data 2, slope= -0.74, R2 = 0.6221, p<0.0001). We then monitored the data 

in TCGA PRAD cohort for time taken to first biochemical tumour recurrence associated with 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/629618doi: bioRxiv preprint 

https://doi.org/10.1101/629618
http://creativecommons.org/licenses/by/4.0/


11 

 

splicing inclusion for each of these exons. This revealed 3 groups of ESRP-regulated exons, 

that either correlated with an increased or decreased time to recurrence, or alternatively 

showed no correlation (individual plots are shown in Figure 5 –figure supplement 1). Splicing 

inclusion ESRP1/ESRP2-controlled exons associated with an increased time to biochemical 

recurrence are shown in blue in Figure 5D. This group included FLNB exon 30, which also 

had the highest amplitude splicing inclusion level observed in response to ESRP2 

expression in PC3 cells. FLNB exon 30 was also strongly skipped after siRNA depletion of 

ESRP1/ESRP2 in LNCaP cells (Figures 3 and 5D) and strongly activated in response to 

androgen stimulation (Figure 4G). In the PRAD dataset, levels of FLNB exon 30 splicing 

inclusion above 0.78 correlated with an increased time to biochemical recurrence, so a more 

favourable clinical outcome in prostate cancer (Figure 5F). Splicing inclusion of the second 

set of ESRP1/ESRP2-regulated exons that correlated with decreased time to biochemical 

recurrence are shown in red in Figure 5D. These included exons both activated (GRHL1 

exon 5 and MAP3K7 exon 12) and repressed by the AR-ESRP2 axis (DOCK7 exon 23, and 

RPS24 exon 5D and 5E). Splicing inclusion of the third and smallest set of exons that did not 

correlate with time to biochemical recurrence are identified with black dots in Figure 5D.  

 

 

Splicing of a key exon in the FLNB gene is switched by a drug that antagonises AR 

activity 

The above data identified a subset of ESRP2-regulated splicing switches that associated 

with biochemical recurrence of prostate cancer after treatment. Since ESRP2 expression 

was repressed in patient prostate cancer tissue by ADT, we next investigated whether AR 

inactivation may inadvertently modulate splice isoforms in genes important for cancer 

progression. We focussed this analysis on skipping of FLNB exon 30, which has recently 

reported to be a key driver of EMT in breast cancer development (62).  Androgen induction 
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of ESRP2 mRNA expression was blocked by the androgen antagonist bicalutamide 

(Casodex®) (Figure 6A). Consistent with our prediction, treatment of LNCaP cells with 

Casodex® also reduced splicing inclusion levels of FLNB gene exon 30 by almost 20% 

(Figure 6B). ESRP2 protein expression was also reduced by siRNA depletion of the AR 

(Figure 6C). Furthermore, siRNA-mediated depletion of AR also significantly reduced levels 

of FLNB splicing inclusion from 84% to 69% (Figure 6D). Both these data support a scenario 

where splicing inclusion of FLNB gene exon 30 is modulated in response to ADT as well as 

androgen stimulation.  

 

 

Discussion   

In this study we report a novel molecular mechanism to explain how androgen steroid 

hormones control splicing patterns in prostate cancer cells, and that unifies the functions of 

the AR both as a transcription factor and being able to control splicing. In this model, the AR 

controls expression of the master splicing regulator protein ESRP2, which then regulates the 

splicing patterns of key genes important for prostate cancer biology (Figure 6E). Amongst 

the key data supporting this proposed model, we find that ESRP2 is a direct and early target 

for transcriptional activation by the AR in prostate cancer cells. Furthermore endogenous 

splice isoform patterns controlled by ESRP1 and ESRP2 target also respond to androgen 

stimulation, siRNA-mediated depletion of the AR and/or the AR inhibitor bicalutamide 

(Casodex®). While intuitively straightforward, this model is conceptually different from the 

mechanisms through which estrogen and progesterone have been shown to regulate 

splicing (via recruitment of splicing regulators as transcriptional cofactors, and by modulation 

of transcription speeds and chromatin structure).  

Androgens are already known to substantially modify the prostate cancer transcriptome at 

the transcriptional level, with important implications for cell behaviour and cancer 

progression (29).  The data presented here imply that androgens also have an important role 
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in controlling splicing patterns, particularly those that relate to epithelial functions. Previous 

studies identified just a small number of alternative exons that are controlled by androgens in 

prostate cancer cells, none of which overlapped with the current study (9, 11). We suggest 

that an important reason for this discrepancy is because previously splicing patterns were 

monitored after 24 hours of androgen exposure. Since we now show that splicing regulation 

by androgens operates indirectly through transcriptional control of ESRP2, 24 hours 

androgen exposure would not be sufficient to upregulate ESRP2 levels. For the panel of 

exons we have investigated in the current study, we analysed androgen-dependent splicing 

switches after 48 hours, to allow sufficient time for ESRP2 induction at the protein level and 

re-equilibration of downstream splice isoform ratios.  

The expression of ESRPs appears to be plastic during cancer progression (36, 53, 63) and 

ESRPs have previously been shown to have a dual role in carcinogenesis with both gain and 

loss associated with poor patient prognosis (36). ESRP1 has recently been shown to be 

amplified in an aggressive subgroup of early onset prostate cancer (54). ESRP1 expression 

is linked to poor survival and metastasis in lung cancer (64), and both ESRP1 and ESRP2 

are upregulated in oral squamous cell carcinoma relative to normal epithelium (53). 

However, analyses of clinical datasets imply that the expression levels of ESRP2 in patients 

may not be prognostic in themselves for prostate cancer progression. Instead, because 

ESRP2 is a critical component of epithelial-specific splicing programmes, we suggest that 

down-regulation of ESRP2 levels in response to ADT could be of importance in prostate 

cancer patients, since this will dampen epithelial splicing patterns, helping to prime prostate 

cancer cells for future mesenchymal development and possible metastasis.   

FLNB exon 30 was amongst the highest amplitude splicing switches detected in response to 

ESRP2 expression in PC3 cells and androgen stimulation in LNCaP cells. Supporting the 

possibility that clinically important splice isoforms may switch in response to ADT, FLNB 

exon 30 skipping was also significantly increased by both bicalutamide (Casodex®)  

treatment and siRNA depletion of the AR. FLNB encodes an actin binding protein which is 
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linked to cancer cell motility and invasion (65, 66). Importantly, this same splicing switch in 

FLNB exon 30 is sufficient to initiate metastatic progression in breast cancer (62). The 

clinical prognosis of metastatic prostate cancer is poor (4). This makes the mechanisms that 

control metastasis of prostate cancer cells, and any links with ADT of prime importance. In 

prostate cancer EMT has been linked to a common mechanism underlying therapeutic 

resistance and is associated with poor prognosis (16).  Sun et al. showed that although ADT 

can effectively control prostate tumour size initially, it simultaneously promotes EMT, an 

unintended consequence that could ultimately lead to CRPCa (21). Such direct links 

between ADT and EMT uncover an important yet overlooked consequence of the standard 

care treatment for prostate cancer (67). Although the causes of EMT in prostate cancer 

progression to CRPCa are likely to be complex, the down-regulation of ESRP proteins has 

been shown to be essential for EMT progression (68). Thus loss of ESRP expression may 

provide a molecular explanation why AR positive prostate cancer cells show increased 

susceptibility to EMT in response to ADT, and so is relevant to consider with regard to 

therapy. Our findings have important implications for second line treatment strategies in a 

clinical setting, and suggest an alternative approach may be to inhibit EMT in combination 

with ADT to prevent disease progression. 
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Materials and Methods 

 

Cell Culture 

Cell culture and androgen treatment of cells was as described previously (11, 69-73). All 

cells were grown at 37°C in 5% CO2. LNCaP cells (CRL-1740, ATCC) were maintained in 

RPMI-1640 with L-Glutamine (PAA Laboratories, R15-802) supplemented with 10% Fetal 

Bovine Serum (FBS) (PAA Laboratories, A15-101). For androgen treatment of LNCaP cells, 

medium was supplemented with 10% dextran charcoal stripped FBS (PAA Laboratories, 

A15-119) to produce a steroid-deplete medium. Following culture for 72 hours, 10nM 

synthetic androgen analogue methyltrienolone (R1881) (Perkin–Elmer, NLP005005MG) was 

added (Androgen +) or absent (Steroid deplete) for the times indicated.  

 

Antibodies 

The following antibodies were used for western blotting: Anti-ESRP2 rabbit antibody 

(Genetex, GTX123665), anti-rabbit ESRP1 (Sigma, HPA023719), anti-AR mouse antibody 

(BD Bioscience, 554226), anti-actin rabbit antibody (Sigma, A2668), anti-FLAG mouse 

monoclonal antibody (Sigma, F3165), normal rabbit IgG (711-035-152 Jackson labs) and 

normal mouse IgG (715-036-150 Jackson labs). For immunohistochemistry the following 

ESRP antibodies were tested: anti-rabbit ESRP1 (Sigma, HPA023719) and anti-rabbit 

ESRP2 (Abcam ab113486) but were found not to be specific for FFPE cell pellets. 

 

RT-qPCR 

Cells were harvested and total RNA extracted using TRI-reagent (Invitrogen, 15596-026), 

according to the manufacturer’s instructions. RNA was treated with DNase 1 (Ambion) and 
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cDNA was generated by reverse transcription of 500ng of total RNA using the Superscript 

VILO cDNA synthesis kit (Invitrogen, 11754-050). Quantitative PCR (qPCR) was performed 

in triplicate on cDNA using SYBR® Green PCR Master Mix (Invitrogen, 4309155) using the 

QuantStudio™ 7 Flex Real-Time PCR System (Life Technologies). ESRP1 was detected 

using (ESRP1 for AGCACTACAGAGGCACAAACA; ESRP1 Rev 

TGGAGAGAAACTGGGCTACC). ESRP2 was detected using the primer combination 

(ESRP2 For CCT GAA CTA CAC AGC CTA CTA CCC; ESRP2 Rev TCC TGA CTG GGA 

CAA CAC TG). Samples were normalised using the average of three reference genes: 

GAPDH (GAPDH For AAC AGC GAC ACC CAT CCT C; GAPDH Rev 

TAGCACAGCCTGGATAGCAAC);  β –tubulin (TUBB For CTTCGGCCAGATCTTCAGAC; 

TUBB Rev AGAGAGTGGGTCAGCTGGAA); and actin (ACTIN For 

CATCGAGCACGGCATCGTCA; ACTIN Rev TAGCACAGCCTGGATAGCAAC).  

 

siRNA 

siRNA mediated protein depletion of ESRP1/2 was carried out using Lipofectamine 

RNAiMAX Transfection Reagent (Thermo Fisher, 13778075) as per the manufacturer’s 

instructions and for the times indicated. The siRNA sequences used were ESRP1 siRNA1 

(hs.Ri.ESRP1.13.1); ESRP1 siRNA2 (hs.Ri.ESRP1.13.2); ESRP2 siRNA 1 

(hs.Ri.ESRP2.13.1); ESRP2 siRNA 2 (hs.Ri.ESRP2.13.2); and a negative control siRNA 

(IDT (51-01-14-04)). AR esiRNA was as described previously (29). 

 

Immunohistochemistry 

Freshly cut tissue sections were analysed for immunoexpression using Ventana Discovery 

Ultra autostainer (Ventana Medical Systems, Tucson, Arizona). In brief, tissue sections were 

incubated in Cell conditioning solution 1 (CC1, Ventana) at 95°C to retrieve antigenicity, 
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followed by incubation with respective primary antibodies described above. Bound primary 

antibodies were visualized using UltraMap DAB anti-Rb Detection Kit. 

 

AR-ChIP 

LNCaP cells were stimulated with 10 nM R1881 overnight. The ChIP assay was performed 

using the one step ChIP kit (Abcam ab117138) as per manufacturer’s instruction. Briefly, 

cells were fixed and crosslinked in 1% formaldehyde for 10 minutes at 37 °C and incubated 

with protease inhibitors. Chromatin was isolated from cell lysates and enzymatically 

fragmented using an EZ-Zyme Chromatin Prep Kit (Merck 17 375). 10 ug of anti - AR 

antibody (Abcam ab74272) or IgG control antibody was used to precipitate DNA crosslinked 

with the androgen receptor. Enriched DNA was then probed by qPCR using primers 

targeting the ESRP2 regulatory region to assess AR binding intensity. Primer sequences 

used to detect PSA were (PSA ChIP for GCC TGG ATC TGA GAG AGA TAT CAT C; PSA 

Chip rev ACA CCT TTT TTT TTC TGG ATT GTT G). Primers used to detect AR binding 

near to ESRP2 were (ESRP2 Chip for TCCCGAGTAGCTGGGACTAC; ESRP2 Chip rev 

CAGTGGCTTACACCTGGGAG). 

 

 

Creation of PC3 stable cell lines 

The ESRP1 plasmid (PIBX-C-FF-B-ESRP1) was a gift from Prof Russ Carstens (University of 

Philadelphia. USA) and the ESRP2 plasmid (pBIGi hESRP2-FLAG) from Dr Keith Brown 

(University of Bristol, UK). PC3 cells were transfected using FuGene® HD Transfection 

Reagent as per manufacturer’s instructions. Stable transfectants with ESRP1 was selected 

using 10µg/ml Blasticidin and ESRP2 plasmid was selected using 150ug/ml Hygromycin. 

ESRP2 Plasmid was inducible by 2.5ug/ml doxycycline for 48 hours. PC3 ESRP1 
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overexpressed cells were transfected with pBIGi hESRP2-FLAG plasmid using the same 

protocol.  

 

In vitro cell proliferation analysis 

For cell growth curves (carried out for in vitro analysis of PC3 stable cell lines), PC3 cells 

were seeded 100,000 cells per well in 12-well plate in 8 plates. Cells were counted every 24 

hours after seeding in the plate. All the treatments had 12 repeats. WST assays were carried 

out over 7 days as per manufacturer’s instructions (Cayman, CAY10008883). For DU145 

cells 10,000 cells were seeded per well in a 96 well plate. All data was tested by two-way 

ANOVA. 

 

RNAseq analysis 

LNCaP cells (passage 19) were treated with either control siRNAs or siRNAs targeting 

ESRP1 and ESRP2 for 72 hours (samples prepared in triplicate). RNA was extracted 72 

hours after siRNA treatment using the Qiagen RNAeasy kit (Cat No. 74104) as per the 

manufacturer's instructions. RNAseq was carried out using TruSeq Stranded mRNA 

Sequencing NextSeq High-Output to obtain 2 x 75 bp reads. Quality control of reads was 

performed using FastQC. Reads were mapped to the hg38 transcriptome using Salmon. 

Differential gene expression analysis was performed using DESeq2. Percent spliced-in (PSI) 

estimates for splicing events were calculated using SUPPA2 (55) based on isoform 

transcripts per million (TPM) estimates from Salmon (74). Quantification utilised Gencode 

gene models (release 28). Differential PSI was calculated using DiffSplice using the 

empirical method (75). Events with a delta PSI > 10% and FDR < 0.05 were considered as 

significant. 
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PSIchomics and Bioinformatic analysis of PRAD cohort 

Clinical expression patterns of ESRP2-regulated exons were monitored using PSIchomics 

(76). Differential splicing analysis between primary solid tumour and solid tissue normal 

samples were subsequently performed to evaluate relative higher inclusion levels in either 

tumour or normal tissue samples using  median and t-test p-value (Benjamini-Hochberg 

adjusted) values. Survival analysis based on TCGA clinical data derived from prostate 

cancer patient samples was performed, with time to first PSA biochemical recurrence being 

the event of interest.  

 

 

Tumour xenografts 

Stable overexpression of ESRP1 and stable doxycycline-inducible overexpression of either 

ESRP2 alone or ESRP1 and 2 were obtained using PC3 cells (that have the low endogenous 

levels of both proteins). One million PC3 overexpressing ESRP1 or control cells were injected 

subcutaneously in the flank of male nude mice and tumour volumes were monitored. Two 

million PC3 cells overexpressing ESRP2, overexpressing ESRP1 and 2, or control cells were 

injected subcutaneously in the flank of male nude mice and tumour volumes were monitored. 

PC3 ESRP2 and PC3 ESRP1/2 cells were cultured in medium supplemented with 2.5ug/ml 

doxycycline for 48 hours prior to injecting into nude mice to induce ESRP2 expression and 

mice were administered Doxycycline repeatedly. Tumour diameters were measured by 

calipers.  

 

Clinical samples 

Our study made use of RNA from 32 benign samples from patients with benign prostatic 

hyperplasia (BPH) and 17 malignant samples from transurethral resection of the prostate 

(TURP) samples. Malignant status and Gleason score were obtained for these patients by 
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histological analysis. We also analysed normal and matched PCa tissue from 9 patients 

obtained by radical prostectomy. The samples were obtained with ethical approval through 

the Exeter NIHR Clinical Research Facility tissue bank (Ref: STB20).  Written informed 

consent for the use of surgically obtained tissue was provided by all patients. The RNA 

samples analysed in Figure 2C were previously published (51).   

 

Statistical Analyses 

All statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, Inc.). 

Statistical analyses were conducted using the GraphPad Prism software (version 5.04/d). 

PCR quantification of mRNA isoforms was assessed using the unpaired student’s t-test. Data 

are presented as the mean of three independent samples ± standard error of the mean (SEM). 

Statistical significance is denoted as * p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001. 
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Figure Legends 

Figure 1. ESRP2 is a direct target for AR regulation in prostate cancer cells. (A) 

Analysis of RNAseq data from human prostate cancer pre- and post- androgen deprivation 

therapy (ADT) (37, 52) shows that there is a significant downregulation of ESRP2 mRNA 

following ADT in all 7 patients tested (p=6e-04, Mann Whitney U test).  (B) RNAseq data 

from LTL331 patient-derived xenografts grown in mice (38) show reduced ESRP2 mRNA 

levels following castration. (C) Western blot analysis of ESRP2 levels in a range of prostate 

cancer cell lines (actin was used as a loading control). (D) Western blot analysis of ESRP1 

levels in prostate cancer cell lines. (E) Real-time PCR analysis of ESRP2 and ESRP1 

mRNAs in LNCaP cells grown in steroid deplete (SD) or androgen (A+) treated conditions for 

24 hours (statistical significance calculated by t test). (F) Real-time PCR analysis of ESRP2 

mRNA in RWPE-1 cells grown in steroid deplete (SD) or androgen (A+) treated conditions 

for 24 hours.  (G) Western blots analysis of ESRP1 and 2 protein in LNCaP cells treated with 

10nm R1881 (androgens) for 24 and 48 hours. (H) Quantitative analysis (real-time PCR) of 

ESRP2 mRNA expression over a 24 hour time course following androgen exposure.  (I) 

Real-time PCR analysis of AR-ChIP performed in LNCaP cells treated with 10nM R1881 for 

24 hours revealed AR binding proximal to the ESRP2 gene. (J) Induction of ESRP2 is 

evident in LNCaP cells treated with R1881 concentrations between 1 to 100 nM. Statistical 

significances were calculated by t tests, apart from (A) which used a Mann Whitney U test, 

and H which used Two-way ANOVA. Real time PCR analyses used at least 3 independent 

biological replicates (RNA prepared from separate samples), apart from the AR ChIP (panel 

I) for which each value shown is a mean of 3 technical replicates. 

 

Figure 2. ESRP2 and its paralog ESRP1 are highly expressed in primary prostate 

tumours. (A) Real-time PCR analysis of ESRP1 and ESRP2 mRNA from patients with 

benign prostate hyperplasia (BPH) and 17 malignant samples from transurothelial resection 
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of the prostate (TURP) samples. (B) Real-time PCR analysis of ESRP1 and ESRP2 mRNA 

from normal and matched prostate cancer tissue from 9 patients obtained from radical 

prostatectomy. (C) Analysis of ESRP 1 and ESRP2 mRNA levels in samples from the 

Walker et al (51) cohort. Statistical analysis in parts (A)-(C) were performed using t tests. (D) 

Interrogation of the TCGA PRAD (PRostate ADenocarcinoma) cohort using KM-express 

(52). ESRP1 expression levels linked to a reduced time to PSA biochemical recurrence 

(bifurcate gene expression at average, log-rank test p=0.022). Over-expression of (E) 

ESRP1, (F) ESRP2, or (G) both ESRP1 and ESRP2 in PC3 cells significantly slowed the 

growth of prostate cancer xenografts in vivo. Data were analysed by Two-way ANOVA, and 

the p value is for the overall difference between two groups. 

 

Figure 3. Identification of endogenous ESRP1/ESRP2 regulated target exons in 

prostate cancer. Heat map showing mean PSI levels for a panel of ESRP-regulated exons 

in prostate cancer cell lines (CWR22RV1, PNT2, LNCaP and PC3). Mean PSIs were 

calculated for ESRP-regulated isoforms between cells treated with siRNAs specific to 

ESRP1 and ESRP2, or control siRNAs (CWR22RV1, PNT2, LNCaP), between PC3 cells 

with and without ectopic expression of ESRP1 or ESRP2, and between LNCaP cells grown 

in steroid deplete versus androgen stimulated conditions (10nM R1881 for 48 hours). 

Biological triplicate samples were used for CWR22RV1, PNT2 and LNCaP cells, and 

technical replicate samples were used for RNAs prepared from PC3 cells. PSI levels were 

measured using RT-PCR analysis averaged from 3 replicates (mean data given in Figure 3- 

source data 2), and clustered in the heat map according to splicing patterns across the 

different conditions. The heatmap was generated using heatmap 2 function using R’s ‘gplots’ 

package. The black shading in the heatmap denotes non-detection of the mRNA isoform 

after RT-PCR, and white denotes no change detected.  
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Figure 4. An androgen steroid hormone-ESRP2 axis controls alternative splicing in 

prostate cancer cells. (A) ESRP2-regulated exons are also frequently controlled by 

androgens in prostate cancer cells. 31/48 of the ESRP target exons (identified by RNAseq 

analysis of LNCaP cells depleted of ESRP1 and ESRP2) were regulated in the opposite 

direction in LNCaP cells treated by androgens (10nM R1881) for 48 hours (which would 

induce ESRP2 protein expression). Plotting the splicing responses to androgen stimulation 

with those after ESRP1/ESRP2 depletion revealed a negative correlation (slope= -0.66+/-

0.09, Rsquare=0.64, p<0.0001, calculated using Graphpad). Individual values for this graph 

are given in Figure 3 – source data 2, and are averages from 3 biological replicates. (B-C) 

Capillary gel electrophoretograms showing splicing patterns of 3 biological replicates grown 

in steroid deplete media, or steroid deplete media supplemented with R1881, for alternative 

exons in the (B) DOCK7 and (C) RPS24 genes that were repressed by 48 hours androgen 

treatment. (D-G) Capillary gel electrophoretograms showing splicing patterns in 3 biological 

replicates grown in steroid deplete media, or steroid deplete media supplemented with 

R1881, for alternative exons in the (D) MINK1, (E) MAP3K1, (F) GRHL1 and (G) FLNB 

genes that were activated by 48 hours of androgen treatment. For parts (B)-(G) the p values 

were calculated using unpaired t tests. 

 

Figure 5. Alternative splicing patterns controlled by the androgen steroid hormone-

ESRP2 splicing axis are clinically relevant for disease progression. (A) Volcano plot 

showing PSIchomics (76) alternative splicing analysis of RNAseq data performed between 

normal prostate tissue and prostate tumour tissue from the TCGA PRAD cohort (consisting 

of 497 prostate tumour samples and 52 normal tissue). The t-test p-value (Benjamini-

Hochberg adjusted for multiple testing) was used as metric of statistical significance. (B) 

Percentage splicing inclusion, quantified by RT-PCR, of DOCK7 exon 23 within samples of 

prostate tumour and adjacent normal tissue (statistical significance calculated using t test). 

(C) Percentage splicing inclusion, quantified by RT-PCR, of RPS24 exon 2 within 9 matched 
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samples of prostate tumour and adjacent normal tissue (statistical significance calculated 

using t test). (D) Graphical representation of levels of average PSI levels in response to 

ectopic ESRP2 expression in PC3 cells (Y axis) versus after ESRP1/ESRP2 depletion in 

LNCaP cells. Individual PSI values to make this graph are averaged from 3 biological 

replicates, and are given in Figure 3 – source data 2.  Note that the PSI values for ESRP 

over-expression refer to ESRP2 over-expression, with the exception of FNIP1 and SLC37A2 

that are for ESRP1 over-expression (see Figure 3 – source data 2). Linear regression 

analysis of this data was analysed using Graphpad. Individual splice forms were correlated 

with clinical data for time to PSA biochemical recurrence within the PRAD cohort (76). Points 

on this graph corresponding to individual ESRP-regulated splice isoforms are coloured 

differently according to whether they correlated with an increased time to PSA biochemical 

recurrence (blue dots), a decreased time to biochemical recurrence (red dots) or had no 

significant correlation (black dots) is shown. (E-F) Kaplan-Meier plots showing data from 

TCGA PRAD cohort of percentage of tumours that are free of biochemical recurrence versus 

time in years, associated with expressing the alternative splice isoforms of (E) RPS24 exon 

5 (PSI cut off 0.44), and (F) FLNB exon 30 (PSI cut off 0.78) (76).  

Figure 6. Inhibition of AR function switches ESRP2-dependent splicing patterns. (A) 

ESRP2 mRNA expression in cells grown in steroid deplete (SD) conditions, and after 

addition of androgens (A+)(quantified by real-time PCR from three biological replicates). 

Androgen-mediated activation was inhibited in the presence of 10 μM of the anti-androgen 

bicalutamide (Casodex®). Cells were cultured for 24 hours. Statistical significance was 

calculated using a t test between the A + vehicle and the A + casodex samples. (B) Capillary 

gel electrophoretogram showing RT-PCR analysis measuring splicing inclusion levels for 

FLNB exon 30 +/- 24 hours Casodex® treatment (three biological samples shown, statistical 

significance calculated using a t test).  (C) Western blot showing levels of the AR, ESRP2 

and actin in samples of LNCaP cells following growth in steroid deplete media (SD), or plus 

androgens for 48 hours (A+). Cells were transfected with esiRNAs designed to deplete the 
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AR, or a control siRNA (NTesiRNA). Statistical significance was calculated using a t test. (D) 

Capillary gel electrophoretogram showing RT-PCR analysis of 3 biological replicate RNA 

samples, measuring splicing inclusion levels for FLNB exon 30 after siRNA depletion of the 

AR or treatment with a control siRNA. (E) Model describing how exposure to androgens 

regulates splicing patterns in prostate cancer cells. Androgen exposure leads to transcription 

of the gene encoding the splicing regulator protein to promote epithelial splicing patterns, 

including splicing inclusion of FLNB exon 30. ADT leads to transcriptional repression of 

ESRP2, leading to a dampening of epithelial splicing patterns, including inclusion of FLNB 

exon 30. Image created using BioRender. 

 

Figure 1-Figure Supplement 1. Confirmation of the specificity of antibodies against ESRP1 

and ESRP2. (A) Detection of proteins in PC3 cells by Western blot. (B) Detection of proteins 

in LNCaP cells by Western blot. (C) Detection of proteins in PC3 cells by 

immunohistochemistry. 

Figure 2 – Figure Supplement 1. Ectopic expression of ESRP1 and ESRP2 protein 

expression in AR negative (A)  PC3 and (B) DU145 cell line models reduced prostate cancer 

cell growth in vitro. Data were analysed by Two-way ANOVA, and the p value is for the 

overall difference between two groups. 

Figure 5 – Figure Supplement 1. Kaplan-Meier plot showing data from TCGA PRAD cohort 

of percentage of tumours that are free of biochemical recurrence versus time in years 

associated with expressing ESRP2-regulated alternative splice isoforms. 

Figure 2- source data 1. Meta-analysis of 719 clinical prostate cancer tumours from 11 

previously published studies detected significant up-regulation of both ESRP1 and ESRP2 in 

9/11 datasets  

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/629618doi: bioRxiv preprint 

https://doi.org/10.1101/629618
http://creativecommons.org/licenses/by/4.0/


31 

 

Figure 3 – source data 1. Alternative splicing events identified by Suppa2 (55). 446 ESRP 

regulated alternative splicing events were identified across 319 genes (ΔPSI>10%, p<0.05).  

Figure 3 – source data 2. Details of 44 experimentally validated ESRP1/ESRP2 target 

exons identified within prostate cancer cell lines. Gene names (column A) are shown next to 

PSI levels detected under different experimental conditions (columns B-J); what the pattern 

of splicing in the PRAD dataset (76) between tumour as compared to normal tissue (Tumour 

versus normal, column K); the p value associated with the pattern of splicing shown in 

column K (T-test p-value (BH adjusted), column L); and the difference from the median 

pattern of inclusion (Δ median PSI, column M) or expression in normal versus prostate 

tumour tissue in the PRAD cohort (76); whether there was any correlation in the PRAD 

dataset (76) between splicing inclusion or exclusion of the exon with time to biochemical 

recurrence of the tumour (column N); the coordinates of the alternative event on hg38 

(Alternative event 1 (HG38), column O) and hg19 (Alternative event 1 (HG19), column N); 

and the forward (column Q) and reverse (column R) primers used to detect the alternative 

event using RT-PCR. 
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Figure 5
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Figure 6
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Figure 1-Figure supplement 1  Antibody validation by western blot and IHC
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Figure 2 -figure supplement 1 In vitro  cell proliferation of PC3 and DU145 cells overexpressing 

ESRP1 or ESRP2

A. Cell growth assay in PC3 cells overexpressing ESRP proteins  

B. Cell growth assay in DU145 cells overexpressing ESRP proteins  
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Figure 5 – Figure Supplement 1
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