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Abstract

Prostate is the most frequent cancer in men. Prostate cancer progression is driven by

androgen steroid hormones, and delayed by androgen deprivation therapy (ADT).

Androgens control transcription by stimulating androgen receptor (AR) activity, yet also

control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate

splicing through AR-mediated transcriptional control of the epithelial-specific splicing

regulator ESRPZ2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary

prostate cancer. Androgen stimulation induces splicing switches in many endogenous

ESRP2-controlled mRNA isoforms, including a key splicing switch in the metastatic regulator

FLNB which is associated with disease relapse. ESRP2 expression in clinical prostate

cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice

programmes. Supporting this, FLNB splicing was reciprocally switched by the AR antagonist

bicalutamide (Casodex®). Our data reveal a new mechanism of splicing control in prostate

cancer with important implications for metastatic disease progression.

Key points:

Transcriptional regulation of ESRP2 by the androgen receptor controls splice isoform
patterns in prostate cancer cells.

Splicing switches regulated by the androgen-ESRP2 axis include a splice isoform in
the FLNB gene that is a known metastatic driver.

Both ESRP1 and ESRP2 are highly expressed in prostate cancer tissue.

Ectopic expression of ESRP1 and 2 inhibits prostate cancer cell growth.

By repressing ESRP2 expression androgen deprivation therapy (ADT) may dampen
epithelial splicing programmes to inadvertently prime disease progression towards
metastasis.
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Introduction

Prostate is the most common male gender-specific cancer (1). Prostate cancer progression
is controlled by androgen steroid hormones including testosterone and its active metabolite
5-a dihydroxytestosterone. Androgens stimulate androgen receptor (AR) signalling in
prostate cancer cells to control transcription, including of genes that regulate the cell cycle,
central metabolism and biosynthesis, as well as housekeeping functions (2-5). The roles of
both androgens and the AR in transcription have been intensively investigated. However,
androgens and the AR also regulate alternative pre-mRNA splicing through still largely
unknown mechanisms (6-11). This represents a very important knowledge gap: alternative
splicing patterns in cancer cells can generate protein isoforms with different biological
functions (12), and is a key process in the generation of biological heterogeneity in prostate

cancer (13, 14).

Androgens are also closely linked to prostate cancer treatment, with androgen deprivation
therapy (ADT) being the principal pharmacological strategy for locally advanced and
metastatic disease. ADT utilises drugs to inhibit gonadal and extragonadal androgen
biosynthesis and additionally competitive AR antagonists block androgen binding and
abrogate AR function (4). ADT delays disease progression, but after 2-3 years tumours often
grow again developing castration resistance with a median survival time of 16 months (15).
The central role of androgens and the AR in prostate cancer, and the poor clinical outlook of
castration-resistance prostate cancer (CRPCa), have made it crucially important to identify
androgen-regulated target genes and mechanisms of function —particularly those that relate
to metastasis. The process of epithelial-mesenchymal transition (EMT) plays a pivotal role in
prostate cancer metastasis (16-20). While the mechanisms driving EMT in prostate cancer
are poorly understood, ADT has recently been shown to directly induce EMT in both mouse
and human prostate tissue (21, 22). Importantly, changes in alternative splicing patterns can

have dramatic effects on EMT and on metastatic disease progression (23).
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While the mechanisms through which androgens regulate splicing control are not well
understood, splicing itself takes place in the spliceosome, which is a multi-component
structure containing a core of essential proteins and small nuclear RNAs (24). Splicing
inclusion of alternative exons is often controlled by splicing regulator proteins that bind either
to regulated exons or within their adjacent flanking intron sequences (25). The estrogen and
progesterone steroid nuclear hormone receptors control splicing via recruitment of
alternative splicing regulators (including the RNA helicases Ddx5 and Ddx17) (7, 8, 26), and
by changing RNA polymerase Il extension rates and chromatin structure to affect splice site
selection (27, 28). Steroid hormones can also drive selection of alternative promoters to
include different upstream exons in mRNAs (9, 10). However, to what extent the above

mechanisms may contribute to androgen-mediated splicing is largely unknown.

We reasoned that a potential model to unify the role of androgens and the AR in
transcription and splicing control could be via transcriptional regulation of genes that encode
splicing regulatory proteins. Using a recently described set of genes that reciprocally change
expression in response to androgen stimulation in culture and ADT in patients (29), here we
identify AR-mediated transcriptional control of the key splicing regulator protein Epithelial
Splicing Regulator Protein 2 (ESRP2). Importantly, many ESRP2-regulated exons switch
splicing in response to androgen stimulation. ESRP2 and its close relative ESRP1 (60%
identical to ESRP2 protein) are important regulators of epithelial alternative splicing patterns
(12, 30-35), reduced expression of which can drive critical aspects of EMT (23, 30, 36). Our
data identify an AR-ESRP2 axis controlling splicing patterns in prostate cancer cells, and
further suggest that reduced ESRP2 levels in response to ADT may inadvertently prime

prostate cancer cells to facilitate longer term disease progression.
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Results

ESRP2 is a direct target for AR regulation in prostate cancer cells

To first gain insight into how androgens may mediate patterns of splicing control we
analysed a recently generated dataset of genes that have reciprocal expression patterns on
acute androgen stimulation in vitro versus clinical ADT (29). While a number of genes
encoding splicing factors changed expression in response to acute androgen stimulation in
vitro, only one such gene ESRP2 also showed a reciprocal expression switch between acute
androgen stimulation in culture and ADT in patients (29). ESRP2 expression decreased
following ADT in 7/7 prostate cancer patients (37) (Figure 1A). Furthermore, RNAseq data
from LTL331 patient-derived xenografts (38) also showed reduced ESRP2 mRNA levels
following castration (Figure 1B). These data support in vivo androgen-regulation of ESRP2

transcription.

Further analysis of ESRP2 expression patterns in prostate cancer cell lines revealed that
ESRPZ2 is controlled by androgens, but not its close paralog ESRP1. ESRP1 gene
expression did not significantly change following castration in the LTL331 patient-derived
xenografts (38). Western blots detected high endogenous levels of both ESRP1 and ESRP2
levels within the AR positive LNCaP and CWR22 RV1 prostate cancer cell lines, as
compared to the AR negative PC3 and DU145 prostate cancer cell lines (Figure 1C and 1D).
gPCR analysis showed that ESRPZ2 gene expression in the AR-positive LNCaP cell line was
activated in response to androgens, but no androgen effect was observed for ESRP1 gene
expression (Figure 1E). Androgen mediated-control of ESRP2 expression was also detected
in two additional AR-expressing prostate cell lines VCaP and RWPE-1 (Figure 1F). Induced
ESRP2 protein expression was detected 48 hours after androgen exposure, with ESRP1
protein levels not changing over this same time period (Figure 1G). The specificity of the
ESRP1 and ESRP2 antibodies used in these experiments was confirmed by detection of
over-expressed protein and detection of siRNA mediated protein depletion by western blot

(Figure 1-Figure supplement 1A and 1B).
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Further experimental analysis also support ESRP2 as an early and so likely direct target for
transcriptional control by the AR: (i) ESRPZ2 gene expression in LNCaP cells was rapidly
induced in response to 10nM of the synthetic androgen analogue R1881 (methytrienolone)
(Figure 1H). (ii) Chromatin immunoprecipitation (ChlP) from LNCaP cells confirmed direct
AR binding to a site within 20Kb of the ESRPZ2 gene promoter that had been previously
predicted from a genome-wide study (at position chr16: 68210834-68211293 on human
genome assembly HG38) (2) (Figure 11). The AR ChIP signal adjacent to ESRP2 was similar
to that detected in parallel for KLK3 (PSA), which is a known AR-regulated gene. (iii)
Consistent with ESRPZ2 regulation at physiological androgen concentrations, ESRP2
transcription in LNCaP cells was induced over a wide range of R1881 concentrations
ranging from 1 nM to 100 nM (Figure 1J). Each of these above data are consistent with AR -

mediated regulation of ESRP2 expression levels.

ESRP2 and its paralog ESRP1 are highly expressed in primary prostate tumours and

inhibit tumour growth in vivo

We next monitored ESRP1 and ESRP2 expression profiles from prostate cancer patients.
Meta-analysis of 719 clinical prostate cancer tumours from 11 previously published studies
detected significant up-regulation of both ESRP1 and ESRP2 in 9/11 datasets (Figure 2-
source data 1) (39-50). We experimentally validated this meta-analysis using two
independent panels of clinical samples. Real-time PCR showed significant up-regulation of
both ESRP1 and ESRP2 mRNA in (1) prostate carcinoma relative to benign prostate
hyperplasia (BPH) (Figure 2A); and (2) in 9 prostate tumour samples relative to matched
normal tissue from the same patient (Figure 2B). A recent study by Walker et al (2017)
identified a molecular subgroup of prostate cancers with metastatic potential at presentation

(51). Within this dataset ESRP1 was 2.76 fold up-regulated in the ‘metastatic-subgroup’
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compared to the ‘non-metastatic subgroup’. Using RNA from a subset of samples from the
Walker et al. study, we confirmed significant (p < 0.05) upregulation of the ESRP1 gene in
primary prostate cancer patients presenting with a metastatic biology (Figure 2C). ESRP2

gene expression did not significantly increase in the 20 samples studied.

Each of the above data showed that ESRP1 and ESRPZ2 expression levels are relatively
high in primary prostate cancer compared to normal prostate tissue. High ESRPZ2 expression
was not prognostic of disease progression in the TCGA (PRostate ADenocarcinoma) PRAD
cohort using KM-express (52), but high expression of ESRP1 associated with a significantly
reduced time to first biochemical recurrence (p=0.022) (Figure 2D). Previous data have
reported up-regulated ESRP1 and ESRP2 proteins in squamous cell carcinoma tumours but
their down-regulation at invasive fronts (53). We tested these same antibodies against
ESRP1 and ESRP2 proteins on prostate cancer FFPE tissue and cell blocks, but they did
not pass our stringent quality control tests (Figure 1-Figure supplement 1C). While this
manuscript was in preparation, another group used an alternative ESRP1 antibody to show

upregulation of ESRP1 in 12,000 prostate cancer tissue microarray tumours (54).

We next investigated the effects of ESRP1/2 expression on the biology of prostate cancer
cells in vivo. Because of their normal endogenous expression profiles (Figures 1C and 1D),
we selected PC3 and DU145 cells to study the effects of ESRP1/ESRP2 protein up-
regulation on prostate cancer cells. Ectopic expression of ESRP1 and ESRP2 protein
expression in AR negative PC3 and DU145 cell line models reduced prostate cancer cell
growth in vitro (Figure 2-Figure supplement 1). Over-expression of both ESRP1 and ESRP2
(either alone or together) in PC3 cells also significantly slowed growth of prostate cancer
xenografts in vivo (Figures 2E-G). Taken together, the above data show that ectopic
expression of ESRP1 and ESRP2 proteins slow the growth of PC3 and DU145 prostate
cancer cell lines and are strongly suggestive that high levels of ESRP2 protein inhibit growth

of prostate cancer cells.
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Identification of endogenous ESRP1/ESRP2-regulated targets in prostate cancer cells

To enable us to test whether androgens may control splicing indirectly via transcriptional
regulation of ESRP2, we next set out to identify a panel of endogenous ESRP2-responsive
exons within prostate cancer cells. We first used siRNAs to jointly deplete both ESRP1 and
ESRP2 proteins from LNCaP cells (since ESRP1 and ESRP2 can regulate overlapping
targets); and in parallel treated LNCaP cells with a control siRNA. We then used RNAseq to
monitor the effects of these treatments on the LNCaP transcriptome. Bioinformatic (55)
analysis of these RNAseq data (GSE129540) predicted 446 ESRP1/ESRP2 regulated
alternative splicing events across 319 genes (APSI>10%, p<0.05) (Figure 3-source data 1).
We experimentally validated splicing switches for 44 predicted ESRP1/ESRP2-controlled
exons by RT-PCR analysis, after LNCaP cells were treated with either of two independent
sets of siRNA directed against ESRP1 and ESRP2 or control siRNAs (Figure 3 and Figure 3
source data 2). We also detected similar splicing switches for 37/44 of these skipped exons
after jointly depleting ESRP1 and 2 from the AR-positive CWR22 RV1 prostate cancer cell
line; and 28/44 of these splicing switches were observed after jointly depleting ESRP1 and 2
from the AR positive PNT2 cells that model the normal prostate epithelium (Figure 3 and

Figure 3- source data 2).

Given this set of endogenous target exons, we carried out further analyses to next identify
target exons that respond to increasing levels of either ESRP2 or ESRP1 expression in PC3
cells (which normally express low levels of endogenous ESRP1/ESRP2) (Figure 1C).
Ectopic expression of either ESRP1 or ESRP2 in PC3 cells induced splicing switches for
35/44 exons analysed. Importantly, the splicing switches induced by ectopic expression of
either ESRP2 or ESRP1 were reciprocal to the splicing switches detected after sSiRNA
depletion of ESRP1/ESRP2 (Figure 3). Experimentally validated ESRP-regulated exons fell
into two groups: splicing of one group was repressed by ectopic expression of ESRP1 or
ESRP2 in PC3 cells, and reciprocally activated by endogenous ESRP1/ESRP2 depletion in

LNCaP cells (these exons are in the top of the heatmap in Figure 3, from OSBL3 to
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DOCK?7); and a second group whose splicing was activated by ectopic expression of ESRP1
or ESRP2, and reciprocally repressed by ESRP1/ESRP2 depletion (from SLC37A2 to

ARFGAPZ2 in Figure 3).

An androgen steroid hormone-ESRP2 axis controls alternative splicing in AR-positive

prostate cancer cells

The above data thus identified a robust panel of alternative exons within prostate cancer
cells that responded to ESRP1/ESRP2 expression levels. We next tested if this panel of
ESRP2-regulated exons are also regulated by ambient androgen concentrations. LNCaP
cells were harvested after growth in steroid deplete media and after 48 hours of androgen
stimulation (this timing was designed to enable full levels of androgen-mediated ESRP2
protein induction, Figure 1G). Our prediction was that androgen stimulation of LNCaP cells
would activate ESRP2 expression to regulate our panel of endogenous test exons. If this
was the case, splicing switches in response to androgen stimulation should occur in a
reciprocal direction to splicing changes induced by ESRP1/ESRP2 protein depletion in
LNCaP cells. Consistent with these expectations, more than 70% (32/42) exons in our test
panel demonstrated androgen regulated splicing (Figure 3-source data 2). Importantly,
plotting the percent spliced-in (PSI) for each exon after 48 hours androgen stimulation (Y
axis) versus the PSI after ESRP1/ESRP2 depletion (X axis) showed a significant negative

correlation (slope=-0.66, R? = 0.64, p<0.0001) (Figure 4A).

These results experimentally support an androgen-ESRP2 axis controlling splicing patterns
in prostate cancer cells. Amongst the genes containing ESRP2-repressed exons that were
also skipped in response to androgen stimulation were DOCK?7 (exon 23), which encodes a
guanine nucleotide exchange factor involved in cell migration (Figure 4B) (56); and RPS24
(exon 5), a gene that is highly expressed in prostate cancer (Figure 4C) (57). Amongst the

genes containing ESRP-activated exons that were also activated by androgen exposure
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were MINK1 (exon 18) which encodes a pro-migratory serine/threonine kinase (Figure 4D);
MAP3K?7 (exon 12) which encodes a serine/threonine kinase that regulates signalling and
apoptosis, activates NFKappaB, and is lost in aggressive prostate cancer (58, 59) (Figure
4E); GRLH1 (exon 5) that encodes a transcription factor involved in epithelial cell functions
(60) (Figure 4F); and FLNB (exon 30), alternative splicing of which has been identified as a

key switch contributing to breast cancer metastasis (61, 62) (Figure 4G).

The AR-ESRP2 axis controls splicing of mRNA isoforms that are important for

prostate cancer disease progression

Information about most of our panel (38/44) of ESRP-regulated exons was also found within
the TCGA PRAD cohort (containing 497 prostate tumour samples and 52 samples from
normal prostate tissue). Analysis of the PRAD cohort revealed that 18/38 ESRP-regulated
exons have different patterns of splicing inclusion between tumour and normal tissue (Figure
5A and Figure 3 source data 2). These differentially spliced exons include the AR-ESRP2-
controlled alternative exons in the DOCK7 and RPS24 genes (both of which were excluded
in prostate tumours compared to normal prostate tissue); and the alternative exons in the
MINK1 and MAP3K7 genes (each of which had increased levels of splicing inclusion in
prostate tumours compared to normal tissue). Further RT-PCR analysis of an independent
cohort confirmed more frequent skipping of DOCK?7 (exon 23) and RPS24 (exon 5) in

prostate tumour tissue compared to normal prostate (Figure 5B and 5C).

To visualise the amplitude of splicing switches in these exons in response to ESRP2, we
plotted PSIs measured in vitro after ectopic expression of ESRP1/ESRP2, versus PSI values
after siRNA mediated depletion of ESRP1/ESRP2 (Figure 5D, using data from Figure 3 and
Figure 3 - source data 2, slope=-0.74, R? = 0.6221, p<0.0001). We then monitored the data
in TCGA PRAD cohort for time taken to first biochemical tumour recurrence associated with

10
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splicing inclusion for each of these exons. This revealed 3 groups of ESRP-regulated exons,
that either correlated with an increased or decreased time to recurrence, or alternatively
showed no correlation (individual plots are shown in Figure 5 —figure supplement 1). Splicing
inclusion ESRP1/ESRP2-controlled exons associated with an increased time to biochemical
recurrence are shown in blue in Figure 5D. This group included FLNB exon 30, which also
had the highest amplitude splicing inclusion level observed in response to ESRP2
expression in PC3 cells. FLNB exon 30 was also strongly skipped after siRNA depletion of
ESRP1/ESRP2 in LNCaP cells (Figures 3 and 5D) and strongly activated in response to
androgen stimulation (Figure 4G). In the PRAD dataset, levels of FLNB exon 30 splicing
inclusion above 0.78 correlated with an increased time to biochemical recurrence, so a more
favourable clinical outcome in prostate cancer (Figure 5F). Splicing inclusion of the second
set of ESRP1/ESRP2-regulated exons that correlated with decreased time to biochemical
recurrence are shown in red in Figure 5D. These included exons both activated (GRHL1
exon 5 and MAP3K7 exon 12) and repressed by the AR-ESRP2 axis (DOCK7 exon 23, and
RPS24 exon 5D and 5E). Splicing inclusion of the third and smallest set of exons that did not

correlate with time to biochemical recurrence are identified with black dots in Figure 5D.

Splicing of a key exon in the FLNB gene is switched by a drug that antagonises AR

activity

The above data identified a subset of ESRP2-regulated splicing switches that associated
with biochemical recurrence of prostate cancer after treatment. Since ESRP2 expression
was repressed in patient prostate cancer tissue by ADT, we next investigated whether AR
inactivation may inadvertently modulate splice isoforms in genes important for cancer
progression. We focussed this analysis on skipping of FLNB exon 30, which has recently

reported to be a key driver of EMT in breast cancer development (62). Androgen induction

11
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of ESRP2 mRNA expression was blocked by the androgen antagonist bicalutamide
(Casodex®) (Figure 6A). Consistent with our prediction, treatment of LNCaP cells with
Casodex® also reduced splicing inclusion levels of FLNB gene exon 30 by almost 20%
(Figure 6B). ESRP2 protein expression was also reduced by siRNA depletion of the AR
(Figure 6C). Furthermore, siRNA-mediated depletion of AR also significantly reduced levels
of FLNB splicing inclusion from 84% to 69% (Figure 6D). Both these data support a scenario
where splicing inclusion of FLNB gene exon 30 is modulated in response to ADT as well as

androgen stimulation.

Discussion

In this study we report a novel molecular mechanism to explain how androgen steroid
hormones control splicing patterns in prostate cancer cells, and that unifies the functions of
the AR both as a transcription factor and being able to control splicing. In this model, the AR
controls expression of the master splicing regulator protein ESRP2, which then regulates the
splicing patterns of key genes important for prostate cancer biology (Figure 6E). Amongst
the key data supporting this proposed model, we find that ESRPZ2 is a direct and early target
for transcriptional activation by the AR in prostate cancer cells. Furthermore endogenous
splice isoform patterns controlled by ESRP1 and ESRP2 target also respond to androgen
stimulation, siRNA-mediated depletion of the AR and/or the AR inhibitor bicalutamide
(Casodex®). While intuitively straightforward, this model is conceptually different from the
mechanisms through which estrogen and progesterone have been shown to regulate
splicing (via recruitment of splicing regulators as transcriptional cofactors, and by modulation

of transcription speeds and chromatin structure).

Androgens are already known to substantially modify the prostate cancer transcriptome at
the transcriptional level, with important implications for cell behaviour and cancer

progression (29). The data presented here imply that androgens also have an important role

12
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in controlling splicing patterns, particularly those that relate to epithelial functions. Previous
studies identified just a small number of alternative exons that are controlled by androgens in
prostate cancer cells, none of which overlapped with the current study (9, 11). We suggest
that an important reason for this discrepancy is because previously splicing patterns were
monitored after 24 hours of androgen exposure. Since we now show that splicing regulation
by androgens operates indirectly through transcriptional control of ESRP2, 24 hours
androgen exposure would not be sufficient to upregulate ESRP2 levels. For the panel of
exons we have investigated in the current study, we analysed androgen-dependent splicing
switches after 48 hours, to allow sufficient time for ESRP2 induction at the protein level and

re-equilibration of downstream splice isoform ratios.

The expression of ESRPs appears to be plastic during cancer progression (36, 53, 63) and
ESRPs have previously been shown to have a dual role in carcinogenesis with both gain and
loss associated with poor patient prognosis (36). ESRP1 has recently been shown to be
amplified in an aggressive subgroup of early onset prostate cancer (54). ESRP1 expression
is linked to poor survival and metastasis in lung cancer (64), and both ESRP1 and ESRP2
are upregulated in oral squamous cell carcinoma relative to normal epithelium (53).
However, analyses of clinical datasets imply that the expression levels of ESRP2 in patients
may not be prognostic in themselves for prostate cancer progression. Instead, because
ESRP2 is a critical component of epithelial-specific splicing programmes, we suggest that
down-regulation of ESRP2 levels in response to ADT could be of importance in prostate
cancer patients, since this will dampen epithelial splicing patterns, helping to prime prostate

cancer cells for future mesenchymal development and possible metastasis.

FLNB exon 30 was amongst the highest amplitude splicing switches detected in response to
ESRP2 expression in PC3 cells and androgen stimulation in LNCaP cells. Supporting the
possibility that clinically important splice isoforms may switch in response to ADT, FLNB
exon 30 skipping was also significantly increased by both bicalutamide (Casodex®)

treatment and siRNA depletion of the AR. FLNB encodes an actin binding protein which is
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linked to cancer cell motility and invasion (65, 66). Importantly, this same splicing switch in
FLNB exon 30 is sufficient to initiate metastatic progression in breast cancer (62). The
clinical prognosis of metastatic prostate cancer is poor (4). This makes the mechanisms that
control metastasis of prostate cancer cells, and any links with ADT of prime importance. In
prostate cancer EMT has been linked to a common mechanism underlying therapeutic
resistance and is associated with poor prognosis (16). Sun et al. showed that although ADT
can effectively control prostate tumour size initially, it simultaneously promotes EMT, an
unintended consequence that could ultimately lead to CRPCa (21). Such direct links
between ADT and EMT uncover an important yet overlooked consequence of the standard
care treatment for prostate cancer (67). Although the causes of EMT in prostate cancer
progression to CRPCa are likely to be complex, the down-regulation of ESRP proteins has
been shown to be essential for EMT progression (68). Thus loss of ESRP expression may
provide a molecular explanation why AR positive prostate cancer cells show increased
susceptibility to EMT in response to ADT, and so is relevant to consider with regard to
therapy. Our findings have important implications for second line treatment strategies in a
clinical setting, and suggest an alternative approach may be to inhibit EMT in combination

with ADT to prevent disease progression.
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Materials and Methods

Cell Culture

Cell culture and androgen treatment of cells was as described previously (11, 69-73). All
cells were grown at 37°C in 5% CO2. LNCaP cells (CRL-1740, ATCC) were maintained in
RPMI-1640 with L-Glutamine (PAA Laboratories, R15-802) supplemented with 10% Fetal
Bovine Serum (FBS) (PAA Laboratories, A15-101). For androgen treatment of LNCaP cells,
medium was supplemented with 10% dextran charcoal stripped FBS (PAA Laboratories,
A15-119) to produce a steroid-deplete medium. Following culture for 72 hours, 10nM
synthetic androgen analogue methyltrienolone (R1881) (Perkin—Elmer, NLPO05005MG) was

added (Androgen +) or absent (Steroid deplete) for the times indicated.

Antibodies

The following antibodies were used for western blotting: Anti-ESRP2 rabbit antibody
(Genetex, GTX123665), anti-rabbit ESRP1 (Sigma, HPA023719), anti-AR mouse antibody
(BD Bioscience, 554226), anti-actin rabbit antibody (Sigma, A2668), anti-FLAG mouse
monoclonal antibody (Sigma, F3165), normal rabbit IgG (711-035-152 Jackson labs) and
normal mouse IgG (715-036-150 Jackson labs). For immunohistochemistry the following
ESRP antibodies were tested: anti-rabbit ESRP1 (Sigma, HPA023719) and anti-rabbit

ESRP2 (Abcam ab113486) but were found not to be specific for FFPE cell pellets.

RT-qPCR

Cells were harvested and total RNA extracted using TRI-reagent (Invitrogen, 15596-026),

according to the manufacturer’s instructions. RNA was treated with DNase 1 (Ambion) and
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cDNA was generated by reverse transcription of 500ng of total RNA using the Superscript
VILO cDNA synthesis kit (Invitrogen, 11754-050). Quantitative PCR (QPCR) was performed
in triplicate on cDNA using SYBR® Green PCR Master Mix (Invitrogen, 4309155) using the
QuantStudio™ 7 Flex Real-Time PCR System (Life Technologies). ESRP1 was detected
using (ESRP1 for AGCACTACAGAGGCACAAACA; ESRP1 Rev
TGGAGAGAAACTGGGCTACC). ESRP2 was detected using the primer combination
(ESRP2 For CCT GAA CTA CAC AGC CTA CTA CCC; ESRP2 Rev TCC TGA CTG GGA
CAA CAC TG). Samples were normalised using the average of three reference genes:
GAPDH (GAPDH For AAC AGC GAC ACC CAT CCT C; GAPDH Rev
TAGCACAGCCTGGATAGCAAC); B —tubulin (TUBB For CTTCGGCCAGATCTTCAGAC;
TUBB Rev AGAGAGTGGGTCAGCTGGAA); and actin (ACTIN For

CATCGAGCACGGCATCGTCA; ACTIN Rev TAGCACAGCCTGGATAGCAAC).

siRNA

siRNA mediated protein depletion of ESRP1/2 was carried out using Lipofectamine
RNAIMAX Transfection Reagent (Thermo Fisher, 13778075) as per the manufacturer’s
instructions and for the times indicated. The siRNA sequences used were ESRP1 siRNA1
(hs.Ri.ESRP1.13.1); ESRP1 siRNA2 (hs.Ri.ESRP1.13.2); ESRP2 siRNA 1
(hs.Ri.ESRP2.13.1); ESRP2 siRNA 2 (hs.Ri.ESRP2.13.2); and a negative control siRNA

(IDT (51-01-14-04)). AR esiRNA was as described previously (29).

Immunohistochemistry

Freshly cut tissue sections were analysed for immunoexpression using Ventana Discovery
Ultra autostainer (Ventana Medical Systems, Tucson, Arizona). In brief, tissue sections were

incubated in Cell conditioning solution 1 (CC1, Ventana) at 95°C to retrieve antigenicity,
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followed by incubation with respective primary antibodies described above. Bound primary

antibodies were visualized using UltraMap DAB anti-Rb Detection Kit.

AR-ChIP

LNCaP cells were stimulated with 10 nM R1881 overnight. The ChIP assay was performed
using the one step ChIP kit (Abcam ab117138) as per manufacturer’s instruction. Briefly,
cells were fixed and crosslinked in 1% formaldehyde for 10 minutes at 37 °C and incubated
with protease inhibitors. Chromatin was isolated from cell lysates and enzymatically
fragmented using an EZ-Zyme Chromatin Prep Kit (Merck 17 375). 10 ug of anti - AR
antibody (Abcam ab74272) or IgG control antibody was used to precipitate DNA crosslinked
with the androgen receptor. Enriched DNA was then probed by gPCR using primers
targeting the ESRP2 regulatory region to assess AR binding intensity. Primer sequences
used to detect PSA were (PSA ChIP for GCC TGG ATC TGA GAG AGA TAT CAT C; PSA
Chiprev ACACCT TTT TTT TTC TGG ATT GTT G). Primers used to detect AR binding
near to ESRP2 were (ESRP2 Chip for TCCCGAGTAGCTGGGACTAC; ESRP2 Chip rev

CAGTGGCTTACACCTGGGAG).

Creation of PC3 stable cell lines

The ESRP1 plasmid (PIBX-C-FF-B-ESRP1) was a gift from Prof Russ Carstens (University of
Philadelphia. USA) and the ESRP2 plasmid (pBIGi hESRP2-FLAG) from Dr Keith Brown
(University of Bristol, UK). PC3 cells were transfected using FuGene® HD Transfection
Reagent as per manufacturer’s instructions. Stable transfectants with ESRP1 was selected
using 10pg/ml Blasticidin and ESRP2 plasmid was selected using 150ug/ml Hygromycin.

ESRP2 Plasmid was inducible by 2.5ug/ml doxycycline for 48 hours. PC3 ESRP1
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overexpressed cells were transfected with pBIGi hESRP2-FLAG plasmid using the same

protocol.

In vitro cell proliferation analysis

For cell growth curves (carried out for in vitro analysis of PC3 stable cell lines), PC3 cells
were seeded 100,000 cells per well in 12-well plate in 8 plates. Cells were counted every 24
hours after seeding in the plate. All the treatments had 12 repeats. WST assays were carried
out over 7 days as per manufacturer’s instructions (Cayman, CAY10008883). For DU145
cells 10,000 cells were seeded per well in a 96 well plate. All data was tested by two-way

ANOVA.

RNAseq analysis

LNCaP cells (passage 19) were treated with either control siRNAs or siRNAs targeting
ESRP1 and ESRP2 for 72 hours (samples prepared in triplicate). RNA was extracted 72
hours after siRNA treatment using the Qiagen RNAeasy kit (Cat No. 74104) as per the
manufacturer's instructions. RNAseq was carried out using TruSeq Stranded mRNA
Sequencing NextSeq High-Output to obtain 2 x 75 bp reads. Quality control of reads was
performed using FastQC. Reads were mapped to the hg38 transcriptome using Salmon.
Differential gene expression analysis was performed using DESeq2. Percent spliced-in (PSI)
estimates for splicing events were calculated using SUPPA2 (55) based on isoform
transcripts per million (TPM) estimates from Salmon (74). Quantification utilised Gencode
gene models (release 28). Differential PSI was calculated using DiffSplice using the
empirical method (75). Events with a delta PSI>10% and FDR < 0.05 were considered as

significant.
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PSichomics and Bioinformatic analysis of PRAD cohort

Clinical expression patterns of ESRP2-regulated exons were monitored using PSlchomics
(76). Differential splicing analysis between primary solid tumour and solid tissue normal
samples were subsequently performed to evaluate relative higher inclusion levels in either
tumour or normal tissue samples using A median and t-test p-value (Benjamini-Hochberg
adjusted) values. Survival analysis based on TCGA clinical data derived from prostate
cancer patient samples was performed, with time to first PSA biochemical recurrence being

the event of interest.

Tumour xenografts

Stable overexpression of ESRP1 and stable doxycycline-inducible overexpression of either
ESRP2 alone or ESRP1 and 2 were obtained using PC3 cells (that have the low endogenous
levels of both proteins). One million PC3 overexpressing ESRP1 or control cells were injected
subcutaneously in the flank of male nude mice and tumour volumes were monitored. Two
million PC3 cells overexpressing ESRP2, overexpressing ESRP1 and 2, or control cells were
injected subcutaneously in the flank of male nude mice and tumour volumes were monitored.
PC3 ESRP2 and PC3 ESRP1/2 cells were cultured in medium supplemented with 2.5ug/ml
doxycycline for 48 hours prior to injecting into nude mice to induce ESRP2 expression and
mice were administered Doxycycline repeatedly. Tumour diameters were measured by

calipers.

Clinical samples

Our study made use of RNA from 32 benign samples from patients with benign prostatic
hyperplasia (BPH) and 17 malignant samples from transurethral resection of the prostate

(TURP) samples. Malignant status and Gleason score were obtained for these patients by
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histological analysis. We also analysed normal and matched PCa tissue from 9 patients
obtained by radical prostectomy. The samples were obtained with ethical approval through
the Exeter NIHR Clinical Research Facility tissue bank (Ref: STB20). Written informed
consent for the use of surgically obtained tissue was provided by all patients. The RNA

samples analysed in Figure 2C were previously published (51).

Statistical Analyses

All statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, Inc.).
Statistical analyses were conducted using the GraphPad Prism software (version 5.04/d).
PCR quantification of mMRNA isoforms was assessed using the unpaired student’s t-test. Data

are presented as the mean of three independent samples + standard error of the mean (SEM).

Statistical significance is denoted as * p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001.
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Figure Legends

Figure 1. ESRP2 is a direct target for AR regulation in prostate cancer cells. (A)
Analysis of RNAseq data from human prostate cancer pre- and post- androgen deprivation
therapy (ADT) (37, 52) shows that there is a significant downregulation of ESRP2 mRNA
following ADT in all 7 patients tested (p=6e-04, Mann Whitney U test). (B) RNAseq data
from LTL331 patient-derived xenografts grown in mice (38) show reduced ESRP2 mRNA
levels following castration. (C) Western blot analysis of ESRP2 levels in a range of prostate
cancer cell lines (actin was used as a loading control). (D) Western blot analysis of ESRP1
levels in prostate cancer cell lines. (E) Real-time PCR analysis of ESRP2 and ESRP1
MRNAs in LNCaP cells grown in steroid deplete (SD) or androgen (A+) treated conditions for
24 hours (statistical significance calculated by t test). (F) Real-time PCR analysis of ESRP2
mRNA in RWPE-1 cells grown in steroid deplete (SD) or androgen (A+) treated conditions
for 24 hours. (G) Western blots analysis of ESRP1 and 2 protein in LNCaP cells treated with
10nm R1881 (androgens) for 24 and 48 hours. (H) Quantitative analysis (real-time PCR) of
ESRP2 mRNA expression over a 24 hour time course following androgen exposure. (l)
Real-time PCR analysis of AR-ChIP performed in LNCaP cells treated with 10nM R1881 for
24 hours revealed AR binding proximal to the ESRPZ2 gene. (J) Induction of ESRP2 is
evident in LNCaP cells treated with R1881 concentrations between 1 to 100 nM. Statistical
significances were calculated by t tests, apart from (A) which used a Mann Whitney U test,
and H which used Two-way ANOVA. Real time PCR analyses used at least 3 independent
biological replicates (RNA prepared from separate samples), apart from the AR ChIP (panel

I) for which each value shown is a mean of 3 technical replicates.

Figure 2. ESRP2 and its paralog ESRP1 are highly expressed in primary prostate
tumours. (A) Real-time PCR analysis of ESRP1 and ESRP2 mRNA from patients with

benign prostate hyperplasia (BPH) and 17 malignant samples from transurothelial resection
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of the prostate (TURP) samples. (B) Real-time PCR analysis of ESRP1 and ESRP2 mRNA
from normal and matched prostate cancer tissue from 9 patients obtained from radical
prostatectomy. (C) Analysis of ESRP 1 and ESRP2 mRNA levels in samples from the
Walker et al (51) cohort. Statistical analysis in parts (A)-(C) were performed using t tests. (D)
Interrogation of the TCGA PRAD (PRostate ADenocarcinoma) cohort using KM-express
(52). ESRP1 expression levels linked to a reduced time to PSA biochemical recurrence
(bifurcate gene expression at average, log-rank test p=0.022). Over-expression of (E)
ESRP1, (F) ESRP2, or (G) both ESRP1 and ESRP2 in PC3 cells significantly slowed the
growth of prostate cancer xenografts in vivo. Data were analysed by Two-way ANOVA, and

the p value is for the overall difference between two groups.

Figure 3. Identification of endogenous ESRP1/ESRP2 regulated target exons in
prostate cancer. Heat map showing mean PSI levels for a panel of ESRP-regulated exons
in prostate cancer cell lines (CWR22RV1, PNT2, LNCaP and PC3). Mean PSIs were
calculated for ESRP-regulated isoforms between cells treated with siRNAs specific to
ESRP1 and ESRP2, or control siRNAs (CWR22RV1, PNT2, LNCaP), between PC3 cells
with and without ectopic expression of ESRP1 or ESRP2, and between LNCaP cells grown
in steroid deplete versus androgen stimulated conditions (10nM R1881 for 48 hours).
Biological triplicate samples were used for CWR22RV1, PNT2 and LNCaP cells, and
technical replicate samples were used for RNAs prepared from PC3 cells. PSI levels were
measured using RT-PCR analysis averaged from 3 replicates (mean data given in Figure 3-
source data 2), and clustered in the heat map according to splicing patterns across the
different conditions. The heatmap was generated using heatmap 2 function using R’s ‘gplots’
package. The black shading in the heatmap denotes non-detection of the mRNA isoform

after RT-PCR, and white denotes no change detected.
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Figure 4. An androgen steroid hormone-ESRP2 axis controls alternative splicing in
prostate cancer cells. (A) ESRP2-regulated exons are also frequently controlled by
androgens in prostate cancer cells. 31/48 of the ESRP target exons (identified by RNAseq
analysis of LNCaP cells depleted of ESRP1 and ESRP2) were regulated in the opposite
direction in LNCaP cells treated by androgens (10nM R1881) for 48 hours (which would
induce ESRP2 protein expression). Plotting the splicing responses to androgen stimulation
with those after ESRP1/ESRP2 depletion revealed a negative correlation (slope= -0.66+/-
0.09, Rsquare=0.64, p<0.0001, calculated using Graphpad). Individual values for this graph
are given in Figure 3 — source data 2, and are averages from 3 biological replicates. (B-C)
Capillary gel electrophoretograms showing splicing patterns of 3 biological replicates grown
in steroid deplete media, or steroid deplete media supplemented with R1881, for alternative
exons in the (B) DOCKY7 and (C) RPS24 genes that were repressed by 48 hours androgen
treatment. (D-G) Capillary gel electrophoretograms showing splicing patterns in 3 biological
replicates grown in steroid deplete media, or steroid deplete media supplemented with
R1881, for alternative exons in the (D) MINK1, (E) MAP3K1, (F) GRHL1 and (G) FLNB
genes that were activated by 48 hours of androgen treatment. For parts (B)-(G) the p values

were calculated using unpaired t tests.

Figure 5. Alternative splicing patterns controlled by the androgen steroid hormone-
ESRP2 splicing axis are clinically relevant for disease progression. (A) Volcano plot
showing PSlchomics (76) alternative splicing analysis of RNAseq data performed between
normal prostate tissue and prostate tumour tissue from the TCGA PRAD cohort (consisting
of 497 prostate tumour samples and 52 normal tissue). The t-test p-value (Benjamini-
Hochberg adjusted for multiple testing) was used as metric of statistical significance. (B)
Percentage splicing inclusion, quantified by RT-PCR, of DOCK7 exon 23 within samples of
prostate tumour and adjacent normal tissue (statistical significance calculated using t test).

(C) Percentage splicing inclusion, quantified by RT-PCR, of RPS24 exon 2 within 9 matched
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samples of prostate tumour and adjacent normal tissue (statistical significance calculated
using t test). (D) Graphical representation of levels of average PSI levels in response to
ectopic ESRP2 expression in PC3 cells (Y axis) versus after ESRP1/ESRP2 depletion in
LNCaP cells. Individual PSI values to make this graph are averaged from 3 biological
replicates, and are given in Figure 3 — source data 2. Note that the PSI values for ESRP
over-expression refer to ESRP2 over-expression, with the exception of FNIP1 and SLC37A2
that are for ESRP1 over-expression (see Figure 3 — source data 2). Linear regression
analysis of this data was analysed using Graphpad. Individual splice forms were correlated
with clinical data for time to PSA biochemical recurrence within the PRAD cohort (76). Points
on this graph corresponding to individual ESRP-regulated splice isoforms are coloured
differently according to whether they correlated with an increased time to PSA biochemical
recurrence (blue dots), a decreased time to biochemical recurrence (red dots) or had no
significant correlation (black dots) is shown. (E-F) Kaplan-Meier plots showing data from
TCGA PRAD cohort of percentage of tumours that are free of biochemical recurrence versus
time in years, associated with expressing the alternative splice isoforms of (E) RPS24 exon

5 (PSI cut off 0.44), and (F) FLNB exon 30 (PSI cut off 0.78) (76).

Figure 6. Inhibition of AR function switches ESRP2-dependent splicing patterns. (A)
ESRP2 mRNA expression in cells grown in steroid deplete (SD) conditions, and after
addition of androgens (A+)(quantified by real-time PCR from three biological replicates).
Androgen-mediated activation was inhibited in the presence of 10 uM of the anti-androgen
bicalutamide (Casodex®). Cells were cultured for 24 hours. Statistical significance was
calculated using a t test between the A + vehicle and the A + casodex samples. (B) Capillary
gel electrophoretogram showing RT-PCR analysis measuring splicing inclusion levels for
FLNB exon 30 +/- 24 hours Casodex® treatment (three biological samples shown, statistical
significance calculated using a t test). (C) Western blot showing levels of the AR, ESRP2
and actin in samples of LNCaP cells following growth in steroid deplete media (SD), or plus

androgens for 48 hours (A+). Cells were transfected with esiRNAs designed to deplete the
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AR, or a control siRNA (NTesiRNA). Statistical significance was calculated using a t test. (D)
Capillary gel electrophoretogram showing RT-PCR analysis of 3 biological replicate RNA
samples, measuring splicing inclusion levels for FLNB exon 30 after siRNA depletion of the
AR or treatment with a control siRNA. (E) Model describing how exposure to androgens
regulates splicing patterns in prostate cancer cells. Androgen exposure leads to transcription
of the gene encoding the splicing regulator protein to promote epithelial splicing patterns,
including splicing inclusion of FLNB exon 30. ADT leads to transcriptional repression of
ESRP2, leading to a dampening of epithelial splicing patterns, including inclusion of FLNB

exon 30. Image created using BioRender.

Figure 1-Figure Supplement 1. Confirmation of the specificity of antibodies against ESRP1
and ESRP2. (A) Detection of proteins in PC3 cells by Western blot. (B) Detection of proteins
in LNCaP cells by Western blot. (C) Detection of proteins in PC3 cells by

immunohistochemistry.

Figure 2 — Figure Supplement 1. Ectopic expression of ESRP1 and ESRP2 protein
expression in AR negative (A) PC3 and (B) DU145 cell line models reduced prostate cancer
cell growth in vitro. Data were analysed by Two-way ANOVA, and the p value is for the

overall difference between two groups.

Figure 5 — Figure Supplement 1. Kaplan-Meier plot showing data from TCGA PRAD cohort
of percentage of tumours that are free of biochemical recurrence versus time in years

associated with expressing ESRP2-regulated alternative splice isoforms.

Figure 2- source data 1. Meta-analysis of 719 clinical prostate cancer tumours from 11
previously published studies detected significant up-regulation of both ESRP1 and ESRP2 in

9/11 datasets
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Figure 3 — source data 1. Alternative splicing events identified by Suppa2 (55). 446 ESRP

regulated alternative splicing events were identified across 319 genes (APSI>10%, p<0.05).

Figure 3 — source data 2. Details of 44 experimentally validated ESRP1/ESRP2 target
exons identified within prostate cancer cell lines. Gene names (column A) are shown next to
PSI levels detected under different experimental conditions (columns B-J); what the pattern
of splicing in the PRAD dataset (76) between tumour as compared to normal tissue (Tumour
versus normal, column K); the p value associated with the pattern of splicing shown in
column K (T-test p-value (BH adjusted), column L); and the difference from the median
pattern of inclusion (A median PSI, column M) or expression in normal versus prostate
tumour tissue in the PRAD cohort (76); whether there was any correlation in the PRAD
dataset (76) between splicing inclusion or exclusion of the exon with time to biochemical
recurrence of the tumour (column N); the coordinates of the alternative event on hg38
(Alternative event 1 (HG38), column O) and hg19 (Alternative event 1 (HG19), column N);
and the forward (column Q) and reverse (column R) primers used to detect the alternative

event using RT-PCR.
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Figure 1-Figure supplement 1 Antibody validation by western blot and IHC
A. Detection of overexpressed protein by western blot
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C. Detection of overexpressed protein in FFPE cell pellets by IHC
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Figure 2 -figure supplement 1 /n vitro cell proliferation of PC3 and DU145 cells overexpressing
ESRP1 or ESRP2

A. Cell growth assay in PC3 cells overexpressing ESRP proteins
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B. Cell growth assay in DU145 cells overexpressing ESRP proteins

90 -+
80 -

70 +

*kk

60 -

*kk

50 - === Control

Relative cell number

30 | —#—ESRP1

20 A

10 ~

Day 1 Day 3 Day 5 Day 7

Days


https://doi.org/10.1101/629618
http://creativecommons.org/licenses/by/4.0/

Survival proportion

Survival proportion

Survival proportion

ACSF2 skipped exon (chrl7: 48538233-48538994, positive
strand, hg19)

PSI cutoff: 0.89; Log-rank p-value: 0.0488

0.75

0.5

0 2.5 5 7.5 10
Time in years

— Inclusion levels >= 0.89 — Inclusion levels < 0.89

ARHGEF12 skipped exon (chrll: 120278532-120291462,
positive strand, hg19)
PSI cutoff: 0.53; Log-rank p-value: 0.0749

N
0.75
0.5 ———
0.25
0
0 2,5 5 7.5 10 12.5

Time in years

- Inclusion levels >= 0.53 — Inclusion levels < 0.53

DOCK7 skipped exon (chrl: 63018403-63009416, negative
strand, hg19)

PSI cutoff: 0.38; Log-rank p-value: 0.0277

0.75

0.5

0 2.5 5 7.5 10 12.5
Time in years

—— Inclusion levels >= 0.38 — Inclusion levels < 0.38

EXOC7 mutually exclusive exon (chrl7: 74090495-
74085401, negative strand, hg19)

bioRxiv preprint doi: https://doi.org/10.1101/629618 thisWisrsiorDpdsted-May 19,2019 Thki€opyrigRtholder for this preprint (which was not
certified by peer reviewl is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

Survival proportion

Survival proportion

under aCC-BY 4.0 International license.

0.75
0.5
0.25
0
0 2.5 5 7.5 10 12.5
Time in years
- Inclusion levels >= 0.22 — Inclusion levels < 0.22
GRHL1 skipped exon (chr2: 10101565-10104015, positive
strand, hg19)
PSI cutoff: 0.73; Log-rank p-value: 0.00127
1
\_\_
\h_\a\ﬁﬂ
0.75 a‘—‘\—‘__lL
I__|
0.5
0.25
0
0 2.5 5 7.5 10 12.5

Time in years

- Inclusion levels >= 0.73 — Inclusion levels < 0.73

Figure 5 - Figure Supplement 1
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