

1 **Genome rearrangements and megaplasmid loss in the filamentous bacterium**
2 *Kitasatospora viridifaciens* are associated with protoplast formation and
3 regeneration

4

5 Karina Ramijan, Zheren Zhang, Gilles P. van Wezel & D. Claessen

6

7 **Affiliation:**

8 Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA
9 Leiden, The Netherlands

10

11 **Corresponding author:**

12 Dennis Claessen, D.Claessen@biology.leidenuniv.nl

13

14 **Keywords:**

15 Genetic instability, actinobacteria, protoplast, insertion sequence, heterogeneity

16

17 **Repositories:**

18 Genomic sequence data for strain B3.1 has been deposited in the NCBI SRA database
19 under accession code SAMN11514356.

20 **Abstract**

21 Filamentous Actinobacteria are multicellular bacteria with linear replicons. *Kitasatospora*
22 *viridifaciens* DSM 40239 contains a linear 7.8 Mb chromosome and an autonomously
23 replicating plasmid KVP1 of 1.7 Mb. Here we show that lysozyme-induced protoplast
24 formation of the multinucleated mycelium of *K. viridifaciens* drives morphological diversity.
25 Characterization and sequencing of an individual revertant colony that had lost the ability to
26 differentiate revealed that the strain had not only lost most of KVP1 but also carried lesions
27 in the right arm of the chromosome. Strikingly, the lesion sites were preceded by insertion
28 sequence elements, suggesting that the rearrangements may have been caused by
29 replicative transposition and homologous recombination between both replicons. These
30 data indicate that protoplast formation is a stressful process that can lead to profound
31 genetic changes.

32

33 **Introduction**

34 Filamentous Actinobacteria are prolific producers of bioactive compounds. These
35 metabolites are mostly used as weapons that provide protection against other
36 microorganisms and phages in the environment [1-3]. This is particularly useful for
37 filamentous organisms, given that they generally lack the ability to make flagella for escaping
38 dangerous situations. In addition, these bacteria are able to generate resistant spores that
39 can invade new environments after their dispersal. Germination of spores leads to the
40 formation of 1-2 germ tubes, which grow by tip extension, thereby establishing filamentous
41 cells called hyphae. Branching of hyphae leads to the formation of a multinucleated
42 vegetative mycelium, which forages and acquires nutrients by decomposing polymeric
43 substances. Stressful conditions (such as nutrient depletion) induce program cell death
44 (PCD) of the mycelium, which in turn triggers morphological and chemical differentiation [4].
45 This developmental transition leads to the formation of specialized hyphae that grow into the
46 air, and the onset of production of a suite of bioactive compounds [5]. Eventually, the aerial
47 hyphae metamorphose into chains of grey-pigmented spores. Mutants that are unable to
48 establish an aerial mycelium are called bald (*bld*), while those that are not capable to form
49 spores are called white (*whi*) after their whitish color [6, 7].

50 Genome mining has been instrumental for the revival of drug discovery [8, 9]. Many
51 of the biosynthetic gene clusters that specify bioactive natural products are contained on
52 giant linear plasmids [10-13]. Although linear replicons are rare in many bacterial taxa, they
53 are common in Actinobacteria [14, 15]. In fact, *Streptomyces* chromosomes (between 8 and
54 10 Mb in size) are also linear and typically comprise a “core region” containing the essential
55 genes, and two variable “arms” with lengths ranging from 1.5 Mb to 2.3 Mb [16]. Like linear
56 plasmids, the linear chromosomes are capped by terminal proteins bound to the 5’ end of
57 the DNA [17]. The chromosomal ends are genetically unstable, and readily undergo large
58 (up to 2 Mb) DNA rearrangements. Such rearrangements can lead to circularization of the
59 chromosome, exchange of chromosomal arms or the formation of hybrid chromosomes due
60 to recombination between the linear plasmids and the chromosome [18]. This wide range of
61 genomic rearrangements is believed to be caused by transposition or homologous
62 recombination, occurring actively within the chromosome or between the chromosome and
63 linear plasmids [19]. Not surprisingly, these changes have profound effects on differentiation
64 and specialized metabolite production [20, 21].

65 Here we characterized genetic instability in *Kitasatospora viridifaciens*. This
66 tetracycline producer was originally classified within the genus *Streptomyces*, it was recently

67 shown to belong to the genus *Kitasatospora* [22]. Protoplast formation and regeneration
68 leads to the emergence of colonies that are no longer able to differentiate, which we attribute
69 to the deletion of a 1.5 Mb segment of the right chromosomal arm and concomitant loss of
70 most of the sequences contained on the large megaplasmid KVP1.

71

72 **Methods**

73 **Strains and media**

74 The strains used in this study (Table 1) are derivatives of *K. viridifaciens* DSM40239
75 (DSMZ). For protoplast preparation a spore suspension (10^6 spores·ml $^{-1}$) was grown for 48
76 hours in a mixture of TSBS-YEME (1:1 v/v) supplemented with 5 mM MgCl $_2$ and 0.5%
77 glycine. Protoplasts were prepared as described [23], with the difference that the lysozyme
78 concentration was increased to 10 mg·ml $^{-1}$. Serial dilutions of protoplasts were plated on R5
79 [23] or MYM medium [24] at 30°C. Regenerated protoplasts were streaked twice to single
80 colonies on MYM before selecting the three independent bald colonies (B3.1, B3.2, and
81 B3.3) that were further analyzed. Bald colonies were used as inoculum on liquid cultures of
82 TSBS. Genomic DNA was isolated after two days of growth at 30°C.

83

84 **Whole genome sequencing and analysis**

85 For genomic DNA isolation strains were grown in Tryptic Soy Broth medium containing 10%
86 sucrose until mid-exponential phase. Next, chromosomal DNA was isolated as described
87 previously [23] and sequenced by BaseClear (Leiden, The Netherlands). Alignments of
88 Illumina reads were performed using CLC Genomics Workbench 8.5.1. Raw Illumina
89 (Hiseq2500 system) sequences of the bald strain B3.1 were imported and mapped to the
90 reference genome of *K. viridifaciens* DSM40239 (NCBI reference sequence:
91 NZ_MPLE00000000.1) through the “Map reads to reference” function in the NGS core tools.
92 Mismatch cost was set to 2 and non-specific matches were handled by mapping them
93 randomly.

94

95 **Pulsed-Field Gel Electrophoresis**

96 For Pulsed-Field Gel Electrophoresis (PFGE), 10^6 spores·ml $^{-1}$ of *K. viridifaciens* were
97 inoculated in 25 ml of TSBS with 0.5% glycine or LPB [25]. Cultures were grown at 30°C
98 agitating at 200 rpm for 16 and 40 hours, respectively. Mycelial pellets were harvested by
99 centrifugation at 4000 rpm for 15min. The preparation of plugs for PFGE was performed as
100 previously described [21]. Plugs were made with SeaKem Gold agarose (Lonza,

101 Switzerland), and the genomic DNA in the plugs was cut with Asel. Plugs were run using a
102 CHEF-DR II PFGE system (Biorad, USA). For efficient separation of fragments, samples
103 were run in two conditions: a switching time of 60-125 seconds for 20 hours, or a switching
104 time of 2.2-75 seconds for 19 hours, both at 200 V.

105

106 **Quantitative real time PCR**

107 Aliquots of 5 ng of DNA were used as a template in quantitative real time PCR. We used
108 primers for both chromosomal (*atpD* and *infB*) and KVP1 (*allC*, *tetR*, *parA* and *orf1*) genes
109 (Table 2). The PCR reactions were performed with the iTaq Universal SYBR Green
110 Supermix Mix (Bio-Rad) using 5% DMSO, according to the manufacturer's instructions.
111 Reactions was performed in duplicate using a CFX96 Touch Real-Time PCR Detection
112 System (Bio-Rad). To normalize the relative amount of DNA, the wild-type strain was used
113 as a control, using the *atpD* gene as a reference.

114

115 **Results**

116 **Genomic characterization of *Kitasatospora viridifaciens***

117 We previously sequenced *K. viridifaciens* and identified KVP1 as a novel megaplasmid [26].
118 Analysis of the biosynthetic gene clusters (BGCs) using antiSMASH 5.0 [27] located 11
119 BGCs on KVP1 and 33 clusters on the chromosome (Fig. S1). One of the BGCs showed
120 high homology to the BGC for chlortetracycline (Fig. S2). To test experimentally whether
121 KVP1 is indeed a plasmid, we analysed genomic DNA of the wild-type strain with Pulsed-
122 Field Gel Electrophoresis (PFGE). In the lane containing uncut DNA, a fragment with an
123 estimated size between 1,600,000 and 2,200,000 bp (Fig. 1A, boxed region) was evident.
124 This fragment is consistent with a genetic element that migrates independently of the
125 chromosomal DNA. Digestion of the DNA with Asel revealed multiple DNA fragments,
126 including two large fragments at 1,541,168 and 1,695,864 bp (see arrowheads in Fig. 1B).
127 By further adjusting the switching time to 2.2-75 seconds, well-separated fragments with
128 sizes ranging from 565,000 and 945,000 bp were identified (arrowheads Fig. 1C).
129 Combining these different PFGE runs allowed us to map the Asel fragment spectrum to the
130 *in silico* genome assembly of *K. viridifaciens* (Fig. 1D-F). Altogether, these results confirmed
131 that KVP1 is a megaplasmid and verified the predicted Asel sites in the chromosome.

132 **Protoplast formation and regeneration leads to morphological diversity due to lesions
133 and rearrangements in the chromosome and KVP1**

134 The identification of KVP1 as a megaplasmid prompted us to analyse if it was distributed
135 homogenously throughout the mycelium. For this, protoplasts were generated using a
136 standard lysozyme-based protocol. Surprisingly, when protoplasts were allowed to
137 regenerate on MYM agar plates, many colonies had developmental defects. Although the
138 majority of colonies formed grey-pigmented spores (yellow circles Fig. 2A), a significant
139 number of colonies was brown and failed to develop (red circles Fig. 2A). Sub-culturing of
140 these so-called bald colonies (referred to as “B” in Fig. 2C) resulted in three morphological
141 phenotypes, namely grey-pigmented colonies (B1), bald colonies (B2) or colonies with a
142 variety of phenotypes (B3).

143 To rule out that the MYM medium, which lacks osmoprotectant agents, was the main
144 cause of the morphological differences, protoplasts were also allowed to regenerate on the
145 more commonly used R5 medium [23]. None of the colonies that arose after regeneration
146 of protoplasts were able to differentiate on R5 medium, which is typical of *K. viridifaciens*
147 (Fig. S3A). To analyse this further, 149 colonies were randomly selected from R5 agar plates
148 and subsequently streaked onto MYM agar (Fig. S3B). After 7 days of growth, 77% of the
149 colonies had a (near) wild-type morphology and produced grey-pigmented spores, while
150 23% of the colonies were defective in development. This demonstrates that the observed
151 morphologically heterogeneity detected after protoplast formation and regeneration is
152 medium-independent.

153 The (partial) loss of megaplasmids is known to cause morphological defects similar
154 to those observed here [28]. To test if loss of KVP1 explains the change in phenotype, three
155 B3-type bald colonies (encircled in Fig. 2C) were streaked onto MYM agar plates (Fig. 3A).
156 All three colonies showed severe morphological defects and failed to produce spores even
157 after 14 days of cultivation (Fig. 3A). Total DNA was then extracted from the three lineages
158 (B3.1, B3.2, B3.3), and analysed for genes that served as markers for either the
159 chromosome or for KVP1. Quantitative real-time PCR detected the chromosomal gene *infB*
160 in the wild-type strain and the three tested lineages before the 20th cycle of amplification
161 (Fig. 3B). Conversely, the *allC* gene located on the KVP1 plasmid was only detected in the
162 wild-type strain (Fig. 3C). Similarly, we were unable to detect other KVP1-specific genes,
163 namely *orf1*, *parA* or *tetR* (Fig. 3D). These results strongly suggested the loss of KVP1 in
164 these colonies.

165 To corroborate the loss of KVP1, next-generation sequencing of the total DNA of

166 strain B3.1 was performed. While the wild-type strain showed the expected distribution of
167 reads over genome and plasmid (3,882,545 and 1,112,768 respectively), the number of
168 reads mapping to KVP1 was dramatically underrepresented in B3.1 (Fig. 4A, B, right panels
169 with 5,005,998 and 143,387 reads for the chromosome and KVP1, respectively). These
170 KVP1-mapped reads corresponded to 164,769 bp of the plasmid, mostly located on its 3'
171 terminal end (black box in Fig. 4A, right column). Interestingly, the number of reads mapping
172 to the right arm of the chromosome was also dramatically decreased in B3.1 (Fig. 4B,
173 rectangle). A more detailed analysis indicated that most chromosomal sequences between
174 6,261,000 bp and 7,725,700 bp (Fig. 4C, arrow) were absent in B3.1. Apparently, strain B3.1
175 had not only lost the majority of sequences contained on KVP1, but also a major part of its
176 right chromosomal arm. Further investigation of the lesion sites revealed an insertion
177 sequence (IS) immediately adjacent to the chromosomal deletion start (around 6,261,000
178 bp) in B3.1 (Table 3). This IS contains the BOQ63_RS37135 gene encoding the transposase
179 likely involved in moving this element. Furthermore, close inspection of KVP1 sequences
180 still present in strain B3.1 also identified a flanking IS element containing the
181 BOQ63_RS06880 transposase (Table 4). Altogether, these results demonstrate that major
182 chromosomal and megaplasmid rearrangements and DNA loss occur during protoplast
183 formation and regeneration, which is likely mediated via transposition events.

184

185 **Discussion**

186 Actinobacterial genomes readily undergo rearrangements, whereby more than 1 Mb of
187 genomic DNA can be lost [18, 21, 29]. Here, we provide evidence that protoplast formation
188 and regeneration in *K. viridifaciens* can lead to profound genomic rearrangements in the
189 chromosome as well as loss of (large parts of) the megaplasmid KVP1. Given that these
190 genomic rearrangements translate into major phenotypic variations, caution should be taken
191 when using protoplasts for creating mutants, in particular when using strains that carry
192 natural plasmids.

193 Filamentous Actinobacteria grow by tip extension and develop multinucleated
194 mycelia. Little is known on how these bacteria regulate the abundance and spatial
195 distribution of chromosomes and extrachromosomal plasmids within the mycelium.
196 Maintaining large plasmids such as KVP1 is costly, given that such elements can comprise
197 about a fifth of the entire genome. Megaplasmids are often reservoirs for biosynthetic gene
198 clusters, and their interactions with the chromosome have been suggested to be a driving
199 force for horizontal gene transfer [13]. Loss of such plasmids not only affects morphological

200 development but may also influence the production of specialized metabolites whose gene
201 clusters are contained on the chromosome. In *Streptomyces hygroscopicus* elimination of
202 pSHJG1 increased the production of validamycin A [30], while holomycin yield was boosted
203 when pSCL4 was lost in *Streptomyces clavuligerus* [28, 31]. Whether the loss of KVP1 has
204 a similar effect on production of specialized metabolites in *K. viridifaciens* remains to be
205 elucidated.

206 We observed that close to one fourth (23%) of the colonies derived from regenerated
207 protoplasts of *K. viridifaciens* were defective in aerial growth and sporulation. Similar
208 morphological defects have been described for *S. clavuligerus*, *Streptomyces lividans* and
209 *Streptomyces coelicolor* upon loss of their plasmids [28, 32]. While the loss of KVP1 in *K.*
210 *viridifaciens* may explain the arrest in morphological development, we here show that such
211 plasmid-lacking derivatives can also carry other profound lesions in the chromosome, which
212 could equally well contribute to this phenotype. By sequencing one revertant that had lost
213 KVP1 we found that this strain had also lost approximately 1.5 Mb of the right arm of the
214 chromosome. Such genetic instability is typical of streptomycetes, and can affect
215 morphological differentiation, but also phenotypic traits associated with natural products,
216 such as pigmentation, antibiotic biosynthesis and antibiotic resistance [20, 21].
217 Transposable elements were suggested as the principal cause of genetic instability [33].
218 The loss of KVP1 and the chromosomal lesions in the right arm could be the consequence
219 of replicative transposition between the chromosome and the megaplasmid (Fig. 5). Notably,
220 while most KVP1-located sequences were absent in the sequenced strain, including those
221 required for autonomous replication of this megaplasmid, we identified a high coverage of
222 sequences originally located at the 3' end of KVP1. This could be explained by an exchange
223 of the 3' end of KVP1 with the right chromosomal arm. A replicative transposition event
224 between two linear replicons often results in the loss of chromosomal terminal regions and
225 recombination of transposable elements [19]. The presence of IS elements located at the
226 chromosomal and plasmid termini could provide the basis for homologous recombination
227 between these DNA molecules. It has been previously shown that homologous copies of IS
228 elements could serve as substrates for the recombination machinery, creating chromosomal
229 rearrangements in the genomes of *Lactococcus lactis* and *Escherichia coli* [34, 35]. In the
230 case of colony B3.1 that had arisen from protoplast regeneration, our results suggest that a
231 possible cause of the genomic rearrangement was the replicative transposition of an IS,
232 exerted by the BOQ63_RS37135 transposase (black arrow in Fig. 5B). Following replicative
233 transposition, a double-stranded break occurs at the site of transposon excision. This break

234 is repaired by recombination with homologous genes located on IS elements present in the
235 right arm of KVP1 (shown as a grey arrow in the KVP1 right arm), which are abundantly
236 present. This recombination might force the interchange of terminal arms. This hypothetical
237 model would explain the genome size reduction of B3.1 (6,787,546 bp).

238 The frequency of aberrant phenotypes after protoplast regeneration is higher than
239 the phenotypic heterogeneity obtained after outgrowth of spores, which typically is in the
240 order of 1% [18, 21, 29, 33, 36, 37]. An explanation for the high frequency of aberrant
241 mutants in colonies arising after protoplasting may relate to the activation of transposable
242 elements contained in the terminal regions of the chromosome and/or the KVP1 plasmid.
243 The activation of transposases are typically stimulated by stressful conditions, such as
244 radiation, oxidative stress, temperature or inhibitory concentrations of metals and antibiotics
245 [38]. It was recently demonstrated that elevated levels of osmolytes induces hyperosmotic
246 stress [25, 39], which are conditions that are also used during preparation of protoplasts.
247 This stress could also stimulate transposition events and consequent chromosomal
248 rearrangements. Consistent with this idea is that other cell wall-deficient cells, called L-
249 forms, which have likewise been exposed to osmotic stress conditions, carry chromosomal
250 lesions. In this context it is interesting to note that in three independent L-form lineages of
251 *K. viridifaciens* lesions in the right chromosomal arms were found in addition to loss of KVP1
252 [25]. These three strains retained a similar region of KVP1 in their genomes, with a size of
253 164,773 bp for *alpha* and M1, and 164,642 bp for M2. These are very similar to the KVP1-
254 sequences remaining (164,769 bp) in the bald protoplast regenerant B3.1 in terms of length
255 and content.

256 Chromosomal rearrangements are often detrimental for the fitness of a unicellular
257 organism. However, it was recently shown that in *Streptomyces* chromosomal
258 rearrangements may increase the diversity and production of specialized metabolites,
259 including antibiotics [21]. A division of labour strategy would allow a colony to have a mixture
260 of mutant and wild-type chromosomes, where the mutant cells are virtually sterile and
261 become specialized in the production of antibiotics, while the cells containing wild-type
262 chromosomes are efficient spore producers [21]. Thus, while some genetic variation may
263 naturally exist within the mycelium, we expect that exposure to high levels of osmolytes,
264 associated with growth and subsequent protoplast formation, generates stress and
265 dramatically increases chromosomal changes. This study provides a starting point to further
266 characterize these changes and to investigate their consequences, which may lead to
267 exciting new insights into the biology of these prolific antibiotic producers.

268 **Author statements**

269 K.R. and Z.Z. collected the data and aided in data analysis. K.R. and D.C. designed the
270 experiments. D.E.R., G.P.W. and D.C. supervised the research. K.R. and D.C. wrote the
271 paper with input from all co-authors.

272

273 **Funding information**

274 This work was supported by a Vidi grant from the Dutch Research Council to D.C. (grant
275 number 12957). Z.Z. is supported by a grant from the China Scholarship Council (CSC).

276

277 **Conflicts of interest**

278 The authors declare that there are no conflicts of interest.

279

280 **References**

- 281 1. **Kronheim S, Daniel-Ivad M, Duan Z, Hwang S, Wong AI, Mantel I, et al.** A chemical
282 defence against phage infection. *Nature*. 2018;564:283-286.
- 283 2. **van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP.** Regulation of
284 antibiotic production in Actinobacteria: new perspectives from the post-genomic
285 era. *Nat Prod Rep*. 2018;35:575-604.
- 286 3. **Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, et
287 al.** Socially mediated induction and suppression of antibiosis during bacterial
288 coexistence. *Proc Natl Acad Sci U S A*. 2015;112:11054-11059.
- 289 4. **Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP.** Bacterial
290 solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. *Nat Rev
291 Microbiol*. 2014;12:115-124.
- 292 5. **Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, et al.**
293 Taxonomy, physiology, and natural products of *Actinobacteria*. *Microbiol Mol Biol
294 Rev*. 2016;80:1-43.
- 295 6. **Chater KF.** Regulation of sporulation in *Streptomyces coelicolor* A3(2): a checkpoint
296 multiplex? *Curr Opin Microbiol*. 2001;4:667-673.
- 297 7. **Claessen D, de Jong W, Dijkhuizen L, Wösten HAB.** Regulation of *Streptomyces*
298 development: reach for the sky! *Trends Microbiol*. 2006;14:313-319.
- 299 8. **Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et
300 al.** Complete genome sequence of the model actinomycete *Streptomyces coelicolor*
301 A3(2). *Nature*. 2002;417:141-147.
- 302 9. **Ichikawa N, Oguchi A, Ikeda H, Ishikawa J, Kitani S, Watanabe Y, et al.** Genome
303 sequence of *Kitasatospora setae* NBRC 14216T: an evolutionary snapshot of the
304 family *Streptomycetaceae*. *DNA Res*. 2010;17:393-406.

305 10. **Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, et al.** The large linear
306 plasmid pSLA2-L of *Streptomyces rochei* has an unusually condensed gene
307 organization for secondary metabolism. *Mol Microbiol*. 2003;48:1501-1510.

308 11. **Chater KF, Kinashi H.** *Streptomyces* linear plasmids: their discovery, functions,
309 interactions with other replicons, and evolutionary significance. In: Meinhardt F,
310 Klassen R, editors. *Microbial Linear Plasmids*. Berlin, Heidelberg: Springer Berlin
311 Heidelberg; 2007. p. 1-31.

312 12. **Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, et al.**
313 The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary
314 reservoir of secondary metabolic pathways. *Genome Biol Evol*. 2010;2:212-224.

315 13. **Kinashi H.** Giant linear plasmids in *Streptomyces*: a treasure trove of antibiotic
316 biosynthetic clusters. *J Antibiot (Tokyo)*. 2011;64:19-25.

317 14. **Chen CW.** Complications and implications of linear bacterial chromosomes. *Trends
318 Genet*. 1996;12:192-196.

319 15. **Kirby R, Chen CW.** Genome architecture. In: Dyson P, editor. *Streptomyces:*
320 Molecular Biology & Biotechnology. Norfolk: Caister Academic Press; 2011. p. 5-26.

321 16. **Hopwood DA.** Soil to genomics: the *Streptomyces* chromosome. *Annu Rev Genet*.
322 2006;40:1-23.

323 17. **Nindita Y, Cao Z, Yang Y, Arakawa K, Shiwa Y, Yoshikawa H, et al.** The *tap-tpg* gene
324 pair on the linear plasmid functions to maintain a linear topology of the
325 chromosome in *Streptomyces rochei*. *Mol Microbiol*. 2015;95:846-858.

326 18. **Hoff G, Bertrand C, Piotrowski E, Thibessard A, Leblond P.** Genome plasticity is
327 governed by double strand break DNA repair in *Streptomyces*. *Sci Rep*. 2018;8:5272.

328 19. **Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R.** Once the circle has been broken:
329 dynamics and evolution of *Streptomyces* chromosomes. *Trends Genet*. 2002;18:522-
330 529.

331 20. **Leblond P, Decaris B.** New insights into the genetic instability of *Streptomyces*. *FEMS
332 Microbiol Lett*. 1994;123:225-232.

333 21. **Zhang Z, de Bary F, Liem M, Liakopoulos A, Choi YH, Claessen D, et al.** Antibiotic
334 production is organized by a division of labour in *Streptomyces*. *bioRxiv*.
335 2019:560136.

336 22. **Girard G, Willemse J, Zhu H, Claessen D, Bukarasam K, Goodfellow M, et al.** Analysis
337 of novel *kitasatosporae* reveals significant evolutionary changes in conserved
338 developmental genes between *Kitasatospora* and *Streptomyces*. *Antonie Van
339 Leeuwenhoek*. 2014;106:365-380.

340 23. **Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA.** Practical *Streptomyces*
341 genetics. Norwich: The John Innes Foundation; 2000.

342 24. **Stuttard C.** Temperate phages of *Streptomyces venezuelae*: lysogeny and host
343 specificity shown by phages SV1 and SV2. *J Gen Microbiol*. 1982;128:115-121.

344 25. **Ramijan K, Ultee E, Willemse J, Zhang Z, Wondergem JA, van der Meij A, et al.**
345 Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes.
346 *Nat Commun*. 2018;9:5164.

347 26. **Ramijan K, van Wezel GP, Claessen D.** Genome sequence of the filamentous
348 actinomycete *Kitasatospora viridifaciens*. *Genome Announc*. 2017;5.

349 27. **Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al.** antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. *Nucleic Acids Res.* 2019.

350 28. **Álvarez-Álvarez R, Rodríguez-García A, Martínez-Burgo Y, Robles-Reglero V, Santamaría I, Pérez-Redondo R, et al.** A 1.8-Mb-reduced *Streptomyces clavuligerus* genome: relevance for secondary metabolism and differentiation. *Appl Microbiol Biotechnol.* 2014;98:2183-2195.

351 29. **Redenbach M, Flett F, Piendl W, Glocker I, Rauland U, Wafzig O, et al.** The *Streptomyces lividans* 66 chromosome contains a 1 MB deletogenic region flanked by two amplifiable regions. *Mol Gen Genet.* 1993;241:255-262.

352 30. **Lu C, Wu H, Su X, Bai L.** Elimination of indigenous linear plasmids in *Streptomyces hygroscopicus* var. *jinggangensis* and *Streptomyces* sp. FR008 to increase validamycin A and candididin productivities. *Appl Microbiol Biotechnol.* 2017;101:4247-4257.

353 31. **Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ, Abate EA, et al.** Exploiting adaptive laboratory evolution of *Streptomyces clavuligerus* for antibiotic discovery and overproduction. *PLoS One.* 2012;7:e33727.

354 32. **Hsu CC, Chen CW.** Linear plasmid SLP2 is maintained by partitioning, intrahyphal spread, and conjugal transfer in *Streptomyces*. *J Bacteriol.* 2010;192:307-315.

355 33. **Lin YS, Chen CW.** Instability of artificially circularized chromosomes of *Streptomyces lividans*. *Mol Microbiol.* 1997;26:709-719.

356 34. **Daveran-Mingot ML, Campo N, Ritzenthaler P, Le Bourgeois P.** A natural large chromosomal inversion in *Lactococcus lactis* is mediated by homologous recombination between two insertion sequences. *J Bacteriol.* 1998;180:4834-4842.

357 35. **Gaffé J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D.** Insertion sequence-driven evolution of *Escherichia coli* in chemostats. *J Mol Evol.* 2011;72:398-412.

358 36. **Leblond P, Demuyter P, Moutier L, Laakel M, Decaris B, Simonet JM.** Hypervariability, a new phenomenon of genetic instability, related to DNA amplification in *Streptomyces ambofaciens*. *J Bacteriol.* 1989;171:419-423.

359 37. **Gravius B, Bezmalinović T, Hranueli D, Cullum J.** Genetic instability and strain degeneration in *Streptomyces rimosus*. *Appl Environ Microbiol.* 1993;59:2220-2228.

360 38. **Vandecraen J, Chandler M, Aertsen A, Van Houdt R.** The impact of insertion sequences on bacterial genome plasticity and adaptability. *Crit Rev Microbiol.* 2017;43:709-730.

361 39. **Fuchino K, Flärdh K, Dyson P, Ausmees N.** Cell-biological studies of osmotic shock response in *Streptomyces* spp. *J Bacteriol.* 2017;199:e00465-16.

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

388 **Legends**

389

390 **Figure 1. KVP1 of *K. viridifaciens* is a megaplasmid.** Pulsed-Field Gel Electrophoresis of
391 genomic DNA of *K. viridifaciens* grown in TSBS (A, C) or LPB (B) medium. DNA was
392 separated using switching times of 60-125 seconds for 20 hours (A, B) or 2,2-75 seconds
393 for 19 hours (C). (D) The composite gel shows fragments larger than 1,125,000 bp (derived
394 from the gel shown in panel B), and fragments smaller than 1,020,000 bp (derived from
395 panel C). The solid rectangles indicate fragments derived from the chromosome, while the
396 dashed rectangles indicate fragments derived from KVP1. Predicted *in silico* maps of the
397 KVP1 megaplasmid and chromosome of *K. viridifaciens* are shown in panels (E) and (F),
398 respectively.

399

400 **Figure 2. Protoplast formation and regeneration yield colonies with developmental**
401 **defects** (A) Protoplasts of *K. viridifaciens* regenerated on MYM medium yields grey-
402 pigmented colonies (yellow dotted circles) and brown colonies (red dotted circles). The grey
403 colonies retain their morphology in subsequent subcultures (B). (C) Subculturing of the
404 brown colonies reveals morphological heterogeneity: some colonies appear grey-pigmented
405 (B1), while others are bald (B2) or display a variety of phenotypes (B3). Bald colonies in B3
406 are indicated with black dashed circles.

407

408 **Figure 3. Bald colonies have lost the KVP1 megaplasmid.** (A) Three independently
409 isolated bald strains (B3.1, B3.2 and B3.3) are unable to sporulate on MYM medium, unlike
410 the wild-type strain. Quantitative real-time PCR showed the presence of chromosomal gene
411 *infB* in both the wild-type and bald strains (B). In contrast, the *alIC* gene located on KVP1 is
412 only present in the wild-type strain (C). (D) The relative abundance of four megaplasmid
413 genes (*orf1*, *parA*, *tetR*, *alIC*) in comparison to the abundance of the chromosomal gene *infB*
414 suggest that KVP1 is lost in strains B3.1, B3.2 and B3.3.

415

416 **Figure 4. Whole genome sequencing reveals major chromosomal and megaplasmid**
417 **lesions in strain B3.1.** Alignment of Illumina reads of the wild type (left) and B3.1 strain
418 (right) against KVP1 (A) and the chromosome (B). Please note the high coverage of KVP1
419 sequences (panel A) detected in the wild type (1,112,768 reads) compared to those of strain
420 B3.1 (143,387 reads). Similarly, a high coverage in the right arm of the chromosome (dashed
421 red rectangle) is observed for the wild-type (B, left panel) in comparison to strain B3.1 (B,

422 right panel). (C-E) A more detailed characterization reveals that all reads between 6,261,000
423 and 7,725,700 are absent in the right arm of the chromosome of strain B3.1

424

425 **Figure 5. Proposed model for the genomic rearrangements and lesions identified in**
426 **strain B3.1.** Replicative transposition of a transposable element (black arrow) located on
427 the chromosome creates a double-stranded break (DSB). Subsequent repair of the DSB by
428 homologous recombination between the chromosome and KVP1 plasmid (carrying
429 numerous transposable elements), leads to an exchange of the right arms of both replicons
430 and changes in their size. Please note that the larger KVP1 megaplasmid variant is lost in
431 strain B3.1.

432

433 **Figure S1. AntiSMASH 5.0 output revealing the biosynthetic gene clusters contained**
434 **on the megaplasmid (top) and chromosome (bottom) of *K. viridifaciens*.** The
435 biosynthetic gene clusters are numbered according to their localization on the replicon.

436

437 **Figure S2. AntiSMASH 5.0 homology search of the *K. viridifaciens* tetracycline**
438 **biosynthetic gene cluster.** (A) Localization of the putative chlorotetracycline BGC in the
439 chromosome of *K. viridifaciens*. (B) Comparison of the *K. viridifaciens* tetracyclin
440 biosynthetic gene cluster with known tetracycline gene clusters from *Streptomyces*
441 *aureofaciens* (BGC0000209), *Dactylosporangium* sp. SC14051 (BGC0000216),
442 *Streptomyces rimosus* (BGC0000254), *Streptomyces* sp. SF2575 (BGC0000269),
443 *Amycolatopsis sulphurea* (BGC0000208), *Streptomyces diastatochromogenes*
444 (BGC0001061), *Micromonospora* sp. TP-A0468 (BGC0001073), *Streptomyces argillaceus*
445 (BGC0000247), *Streptomyces echinatus* (BGC0000197) and *Streptomyces galilaeus*
446 (BGC0000191).

447

448 **Figure S3. Protoplast regeneration generates morphological diversity in osmotically**
449 **balanced medium.** (A) Protoplasts regenerated on R5 medium yielded colonies that are
450 unable to sporulate due to the high sucrose levels. (B) Subculturing of 149 randomly-picked
451 colonies on MYM medium revealed dramatic developmental defects in 23% of the colonies.
452 Whereas 77% of the colonies were able to form grey-pigmented sporulating colonies (similar
453 to the wild-type), 5% of the colonies were white, 6% were bald, while 12% had a mixed
454 appearance.

455

Table 1. Strains used in this study

Strains	Characteristics	Genotype	Reference
DSM 40239	Sporulating parent strain	Wild-type <i>K. viridifaciens</i>	DSMZ
G1-G3	Sporulating revertant	N.D.	This work
B1	Revertant that recovered the ability to sporulate in the second subculture	N.D.	This work
B2	Revertant with a bald colony morphology	N.D.	This work
B3	Revertant with a mixed colony morphology	N.D.	This work
B3.1	Revertant with a bald colony morphology	KVP1 minus, 1 Mb deletion in right arm of the chromosome	This work
B3.2	Revertant with a bald colony morphology	KVP1 minus	This work
B3.3	Revertant with a bald colony morphology	KVP1 minus	This work

N.D.: Not determined

Table 2. Primers used for quantitative real time PCR

Primer	Sequence (5' – 3')
qPCR_ <i>infB</i> -Fw	GTCACGTCGACCACGGTAAG
qPCR_ <i>infB</i> -Rv	CACCGATGTGCTGGGTGATG
qPCR_ <i>atpD</i> -Fw	TTCGGACAGCTCGTCCATAC
qPCR_ <i>atpD</i> -Rv	ACATCGCGCAGAACCACTAC
qPCR_ <i>parA</i> -Fw	CGGTCGTCACCCAGTACAAG
qPCR_ <i>parA</i> -Rv	TAACCGAGTTCGAGGGACAG
qPCR- <i>orf1</i> -Fw	GAGGGAGCCAATCCCGTATC
qPCR- <i>orf1</i> -Rv	GGCTGTTGGACAGGACCATC
qPCR- <i>alIC</i> -Fw	CGGCGATAGCGGAGACTAAG
qPCR- <i>alIC</i> -Rv	CCACTGGTGGGACCAGAAAG
qPCR- <i>tetR</i> -Fw	TGCTCGACCAGCTGTTGAAG
qPCR- <i>tetR</i> -Rv	TGGCGAGCATGAAGTCGTAG

Table 3. Transposition elements in the *K. viridifaciens* chromosome

Locus	Product	Location	
		Start	End
BOQ63_RS09605	IS5/IS1182 family transposase	408,874	409,442
BOQ63_RS10710	transposase	656,353	657,240
BOQ63_RS10725	IS256 family transposase	659,679	660,950
BOQ63_RS45020	IS5/IS1182 family transposase	1,013,156	1,014,156
BOQ63_RS12740	IS110 family transposase	1,086,937	1,088,178
BOQ63_RS12750	IS5/IS1182 family transposase	1,088,200	1,088,903
BOQ63_RS15035	IS200/IS605 family transposase	1,569,116	1,569,363
BOQ63_RS15720	transposase	1,761,237	1,761,554
BOQ63_RS15725	transposase	1,761,551	1,762,465
BOQ63_RS17065	transposase	2,044,875	2,046,032
BOQ63_RS20605	transposase	2,847,519	2,848,817
BOQ63_RS25160	transposase	3,812,365	3,813,189
BOQ63_RS25165	IS21 family transposase	3,813,189	3,814,457
BOQ63_RS25685	transposase	3,933,744	3,934,664
BOQ63_RS25690	transposase	3,934,661	3,934,972
BOQ63_RS26595	IS21 family transposase	4,116,603	4,117,871
BOQ63_RS26600	transposase	4,117,871	4,118,695
BOQ63_RS26675	IS5/IS1182 family transposase	4,131,168	4,132,061
BOQ63_RS29050	transposase	4,605,449	4,606,369
BOQ63_RS32225	IS630 family transposase	5,238,044	5,284,135
BOQ63_RS34385	transposase	5,704,658	5,705,617
BOQ63_RS37135*	IS5/IS1182 family transposase	6,260,623	6,260,976
BOQ63_RS37400	IS110 family transposase	6,329,086	6,330,300
BOQ63_RS40925	transposase	7,097,036	7,097,923
BOQ63_RS40980	IS5/IS1182 family transposase	7,106,937	7,107,098
BOQ63_RS41025	IS481 family transposase	7,118,421	7,118,739
BOQ63_RS41195	IS21 family transposase	7,174,951	7,176,219
BOQ63_RS41200	transposase	7,176,219	7,177,037
BOQ63_RS41470	IS110 family transposase	7,239,487	7,240,701
BOQ63_RS42020	transposase	7,367,798	7,369,021

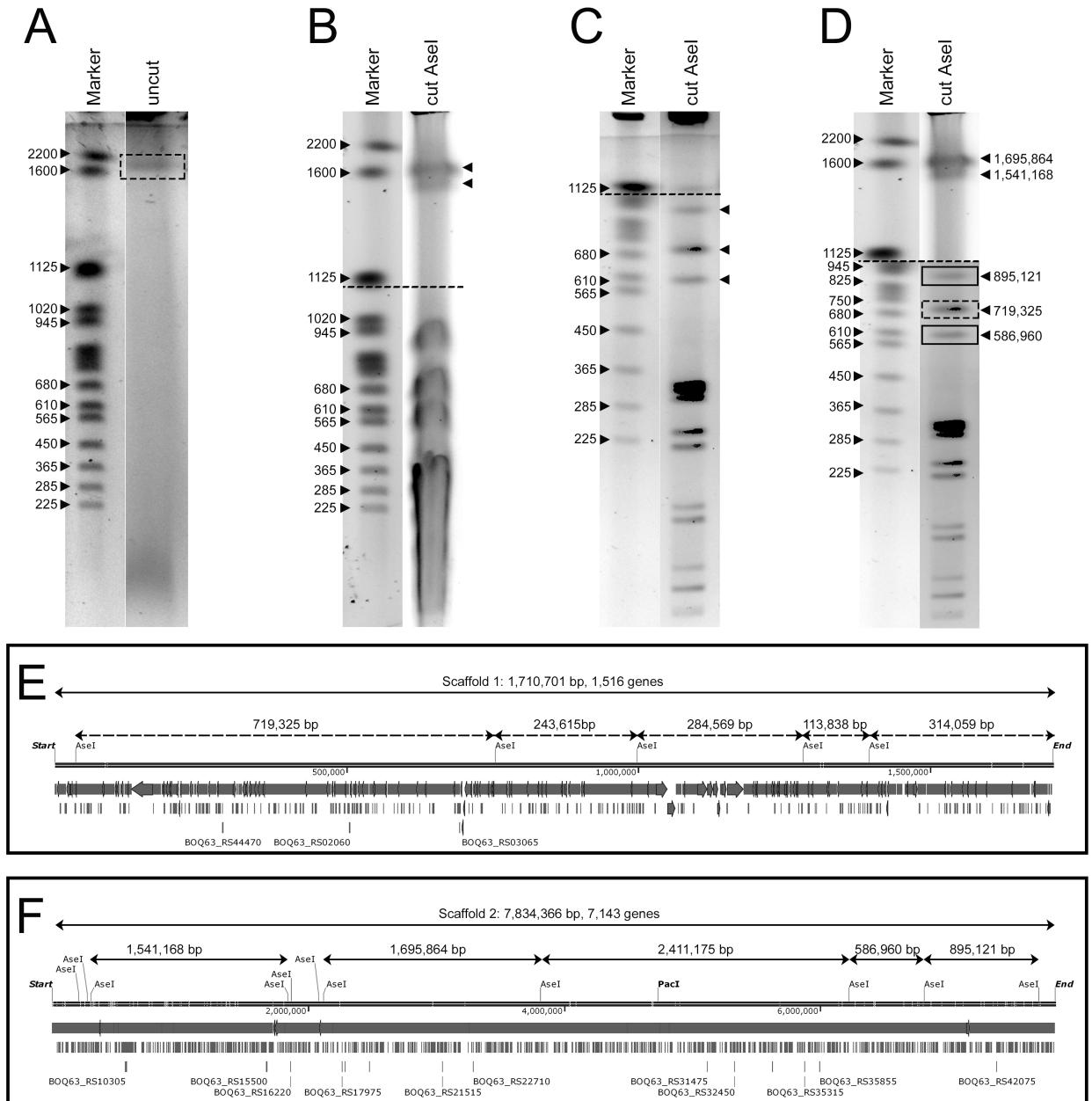

*Transposase found upstream chromosomal right arm deletion in bald strain B3.1

Table 4. Transposition elements in the right terminal region of KVP1

Locus	Product	Location	
		Start	End
BOQ63_RS06800*	IS5/IS1182 family transposase	1,545,936	1,546,388
BOQ63_RS06805	IS5/IS1182 family transposase	1,546,385	1,546,738
BOQ63_RS06815	transposase	1,547,179	1,548,066
BOQ63_RS06880	IS5/IS1182 family transposase	1,558,369	1,558,722
BOQ63_RS06915	transposase	1,564,436	1,564,969
BOQ63_RS06940	IS5/IS1182 family transposase	1,598,415	1,569,308
BOQ63_RS07050	IS5/IS1182 family transposase	1,586,628	1,586,981
BOQ63_RS07055	IS5/IS1182 family transposase	1,586,978	1,587,430
BOQ63_RS07060	IS5/IS1182 family transposase	1,587,553	1,588,391
BOQ63_RS07125	IS110 family transposase	1,600,675	1,600,800
BOQ63_RS07220	IS5/IS1182 family transposase	1,621,157	1,622,011
BOQ63_RS07225	IS5/IS1182 family transposase	1,622,341	1,623,179
BOQ63_RS07245	IS5/IS1182 family transposase	1,624,729	1,625,079
BOQ63_RS07255	IS110 family transposase	1,625,394	1,626,635
BOQ63_RS07260	IS5/IS1182 family transposase	1,627,012	1,627,365
BOQ63_RS07280	IS5/IS1182 family transposase	1,630,283	1,630,534
BOQ63_RS07290	transposase	1,631,323	1,632,114
BOQ63_RS07295	transposase	1,632,285	1,633,493
BOQ63_RS07305	site-specific integrase	1,634,154	1,635,464
BOQ63_RS07320	DNA invertase	1,636,936	1,637,601
BOQ63_RS07335	DDE transposase	1,640,507	1,643,533
BOQ63_RS07345	integrase	1,645,074	1,646,333
BOQ63_RS07380	integrase	1,652,931	1,654,022
BOQ63_RS07400	resolvase	1,656,203	1,656,996
BOQ63_RS07425	transposase	1,658,975	1,659,889
BOQ63_RS07430	DDE transposase	1,660,210	1,661,212
BOQ63_RS07440	transposase	1,661,565	1,662,452
BOQ63_RS07445	IS30 family transposase	1,662,486	1,662,824
BOQ63_RS07475	IS21 family transposase	1,665,953	1,667,221
BOQ63_RS07480	IS21 family transposase	1,667,436	1,668,701
BOQ63_RS07485	transposase	1,668,701	1,669,546
BOQ63_RS07550	transposase	1,689,112	1,689,999
BOQ63_RS07585	transposase	1,695,301	1,695,435
BOQ63_RS07615	IS5/IS1182 family transposase	1,699,532	1,699,984
BOQ63_RS07620	IS5/IS1182 family transposase	1,699,981	1,700,334
BOQ63_RS07635	transposase	1,704,820	1,706,307
BOQ63_RS07640	TnsA-like heteromeric transposase	1,706,304	1,706,978


*Transposase found upstream KVP1 right terminus present in bald strain B3.1

Figure 1

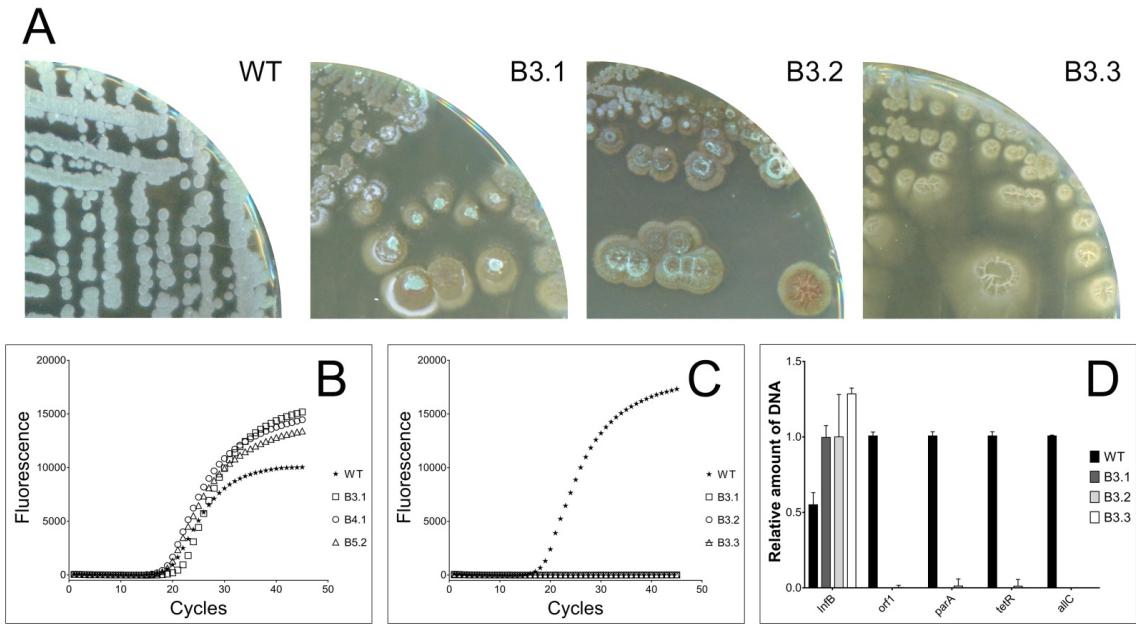

Figure 1. KVP1 of *K. viridifaciens* is a megaplasmid. Pulsed-Field Gel Electrophoresis of genomic DNA of *K. viridifaciens* grown in TSBS (A, C) or LPB (B) medium. DNA was separated using switching times of 60-125 seconds for 20 hours (A, B) or 2,2-75 seconds for 19 hours (C). (D) The composite gel shows fragments larger than 1,125,000 bp (derived from the gel shown in panel B), and fragments smaller than 1,020,000 bp (derived from panel C). The solid rectangles indicate fragments derived from the chromosome, while the dashed rectangles indicate fragments derived from KVP1. Predicted *in silico* maps of the KVP1 megaplasmid and chromosome of *K. viridifaciens* are shown in panels (E) and (F), respectively.

Figure 2

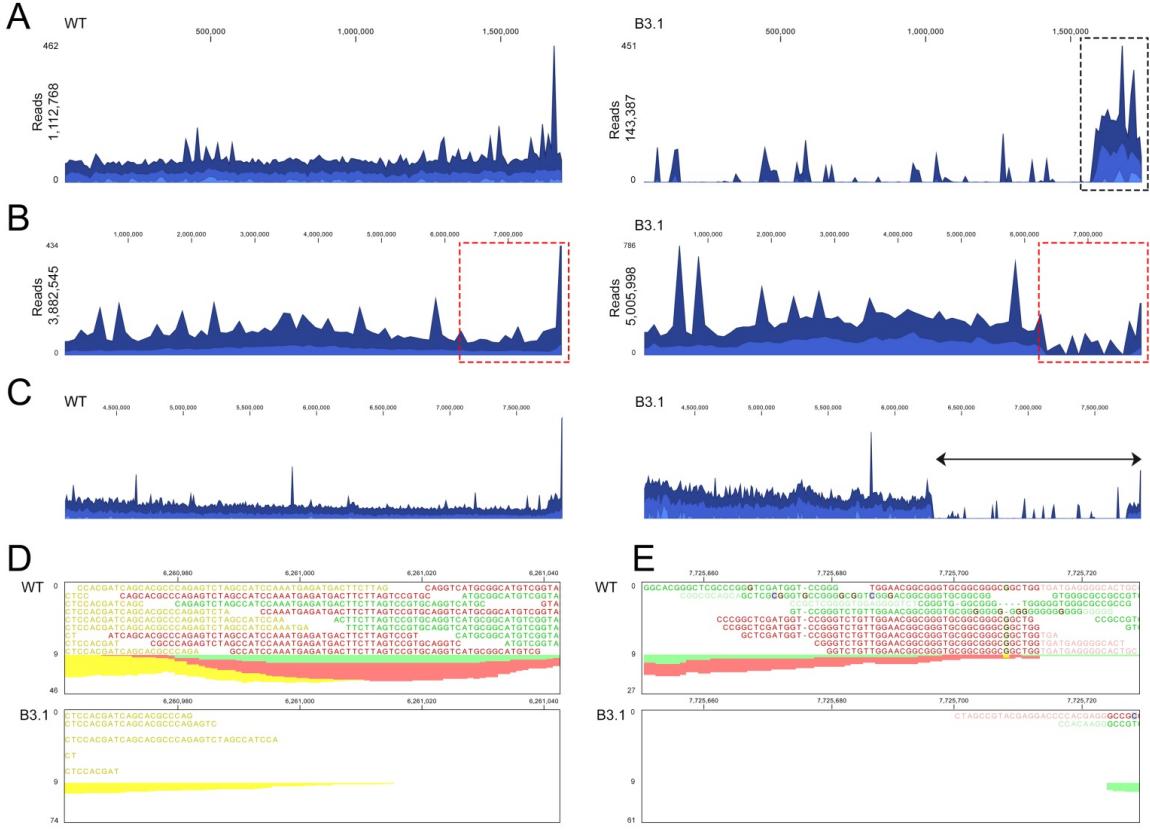

Figure 2. Protoplast formation and regeneration yield colonies with developmental defects (A) Protoplasts of *K. viridifaciens* regenerated on MYM medium yields grey-pigmented colonies (yellow dotted circles) and brown colonies (red dotted circles). The grey colonies retain their morphology in subsequent subcultures (B). (C) Subculturing of the brown colonies reveals morphological heterogeneity: some colonies appear grey-pigmented (B1), while others are bald (B2) or display a variety of phenotypes (B3). Bald colonies in B3 are indicated with black dashed circles.

Figure 3

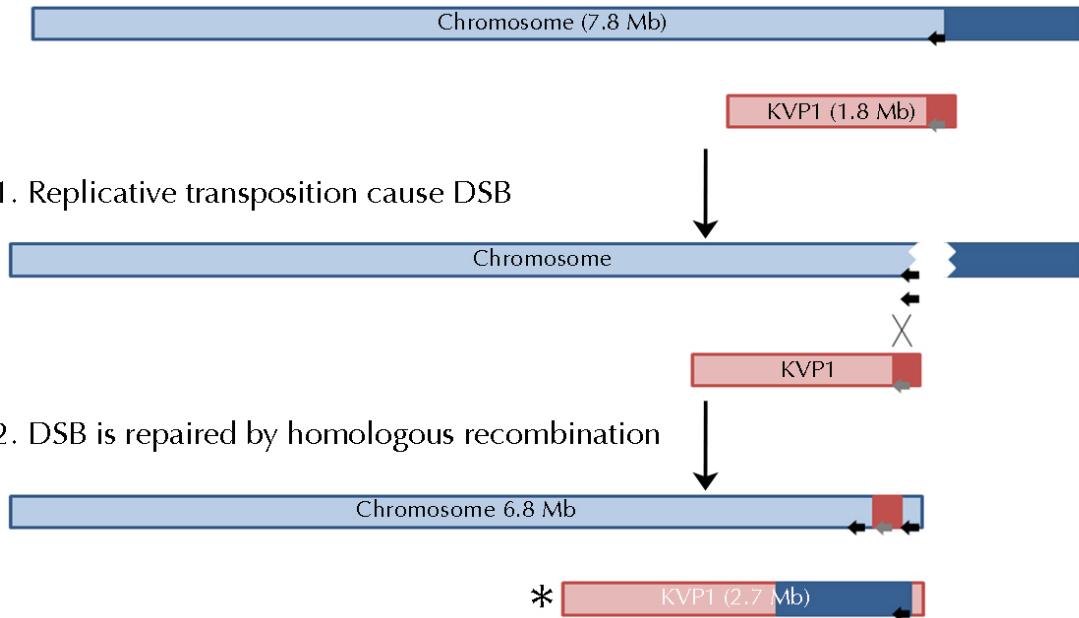

Figure 3. Bald colonies have lost the KVP1 megaplasmid. (A) Three independently isolated bald strains (B3.1, B3.2 and B3.3) are unable to sporulate on MYM medium, unlike the wild-type strain. Quantitative real-time PCR showed the presence of chromosomal gene *infB* in both the wild-type and bald strains (B). In contrast, the *alIC* gene located on KVP1 is only present in the wild-type strain (C). (D) The relative abundance of four megaplasmid genes (*orf1*, *parA*, *tetR*, *alIC*) in comparison to the abundance of the chromosomal gene *infB* suggest that KVP1 is lost in strains B3.1, B3.2 and B3.3.

Figure 4

Figure 4. Whole genome sequencing reveals major chromosomal and megaplasmid lesions in strain B3.1. Alignment of Illumina reads of the wild type (left) and B3.1 strain (right) against KVP1 (A) and the chromosome (B). Please note the high coverage of KVP1 sequences (panel A) detected in the wild type (1,112,768 reads) compared to those of strain B3.1 (143,387 reads). Similarly, a high coverage in the right arm of the chromosome (dashed red rectangle) is observed for the wild-type (B, left panel) in comparison to strain B3.1 (B, right panel). (C-E) A more detailed characterization reveals that all reads between 6,261,000 and 7,725,700 are absent in the right arm of the chromosome of strain B3.1.

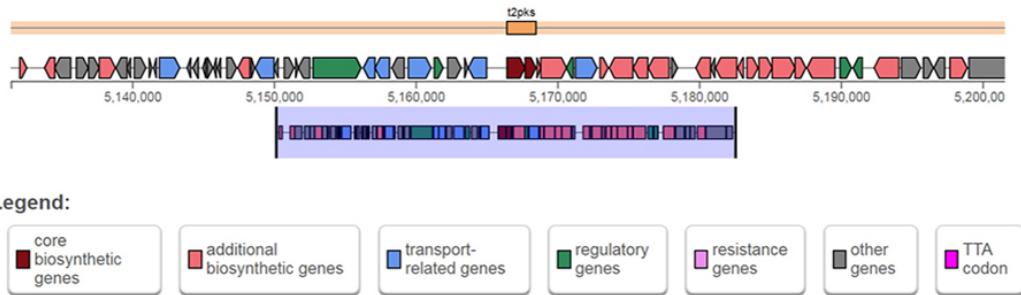
Figure 5

Figure 5. Proposed model for the genomic rearrangements and lesions identified in strain B3.1. Replicative transposition of a transposable element (black arrow) located on the chromosome creates a double-stranded break (DSB). Subsequent repair of the DSB by homologous recombination between the chromosome and KVP1 plasmid (carrying numerous transposable elements), leads to an exchange of the right arms of both replicons and changes in their size. Please note that the larger KVP1 megaplasmid variant is lost in strain B3.1.

Figure S1

A

Region	Type	From	To	Most similar known cluster	Similarity	MIBiG BGC-ID
The following regions are from record MPLE0100001.1 (Streptomyces viridifaciens):						
Region 1	T3pks	55019	96101	Actinomycin	NRPS	10% BGC0000296
Region 2	Lanthipeptide - Nrpsfragment	186747	228158	Viomycin	NRPS	9% BGC0000458
Region 3	Arylpolyene	241651	282784	WS9326	NRPS	5% BGC0001297
Region 4	Nrps	302617	356025			
Region 5	Nrps - Nucleoside	481446	536185	Tunicamycin	other	42% BGC0000880
Region 6	T1pks - Nrps	675210	727626	Oxazolomycin	hybrid	15% BGC0001106
Region 7	Lanthipeptide	740507	763068			
Region 8	Terpene	823523	849476	Carotenoid	terpene	45% BGC0000633
Region 9	Nrps - T1pks	1011856	1201449	Candidicin	polyketide	76% BGC0000034
Region 10	T1pks	1452695	1499210			
Region 11	Blactam	1524280	1547868	Clavams	other	64% BGC0001151


B

Region	Type	From	To	Most similar known cluster	Similarity	MIBiG BGC-ID
The following regions are from record MPLE0100004.1 (Streptomyces viridifaciens):						
Region 1	Nrps	43540	90359	Capreomycin	NRPS	9% BGC0000316
Region 2	Terpene	211185	230997			
Region 3	Nrps	340765	421797	Lipopeptide 8D1-1 / lipopeptide 8D1-2	NRPS	15% BGC0001370
Region 4	Nrpsfragment	596569	638812	Meilingmycin	polyketide	4% BGC0000093
Region 5	T2pks	683975	754674	Spore pigment	polyketide	83% BGC0000271
Region 6	Terpene	966842	986462	Acarviostatin	saccharide	11% BGC0000804
Region 7	Terpene	996986	1021419	Hopene	terpene	61% BGC0000663
Region 8	Siderophore	1241877	1255028			
Region 9	Nrpsfragment	1418560	1460286			
Region 10	Others	1515975	1556086	Kijanimicin	polyketide	4% BGC0000082
Region 11	Nrpsfragment - T1pks	1626509	1677101	Vancomycin	NRPS	17% BGC0000455
Region 12	Nrps	1684526	1779221	Friulimicin	NRPS	24% BGC0000354
Region 13	Bacteriocin	2007281	2017303			
Region 14	Nrps - Beta lactone	2064569	2142082	Lomaiviticin	polyketide	6% BGC0000240
Region 15	Siderophore	2274617	2287884			
Region 16	Nrps	2453955	2507665	Teleocidin B	hybrid	50% BGC0001085
Region 17	Lep	3307340	3330204			
Region 18	Nrps	3378027	3430494	Skyllamycin	NRPS	20% BGC0000429
Region 19	Terpene	3760799	3781772	Geosmin	other	100% BGC0001181
Region 20	Butyrolactone	4138981	4149459	Pristinamycin	hybrid	3% BGC0000952
Region 21	Thiopeptide - Lep	5051227	5080751			
Region 22	T2pks	5131444	5203500	Chlortetracycline	polyketide	88% BGC0000209
Region 23	T3pks	5550533	5589534	Herboxidiene	polyketide	2% BGC0001065
Region 24	Bacteriocin - Butyrolactone	5660652	5680142	Methylenomycin	other	28% BGC0000914
Region 25	Lanthipeptide	6078936	6101773	A54145	NRPS	5% BGC0000291
Region 26	T3pks	6112996	6154051	Naringenin	terpene	100% BGC0001310
Region 27	Nrps - T1pks	6284704	6457666	Gobichelin	NRPS	27% BGC0000366
Region 28	Nrps - Others	6461811	6548854			
Region 29	Nrpsfragment	6790211	6831191			
Region 30	Nrps	7128111	7192080	Cyclomarin	NRPS	8% BGC0000333
Region 31	Terpene	7457995	7479215	2-methylisoborneol	terpene	100% BGC0000658
Region 32	Siderophore	7480413	7493514			
Region 33	Nrpsfragment	7706433	7750347	Herboxidiene	polyketide	3% BGC0001065

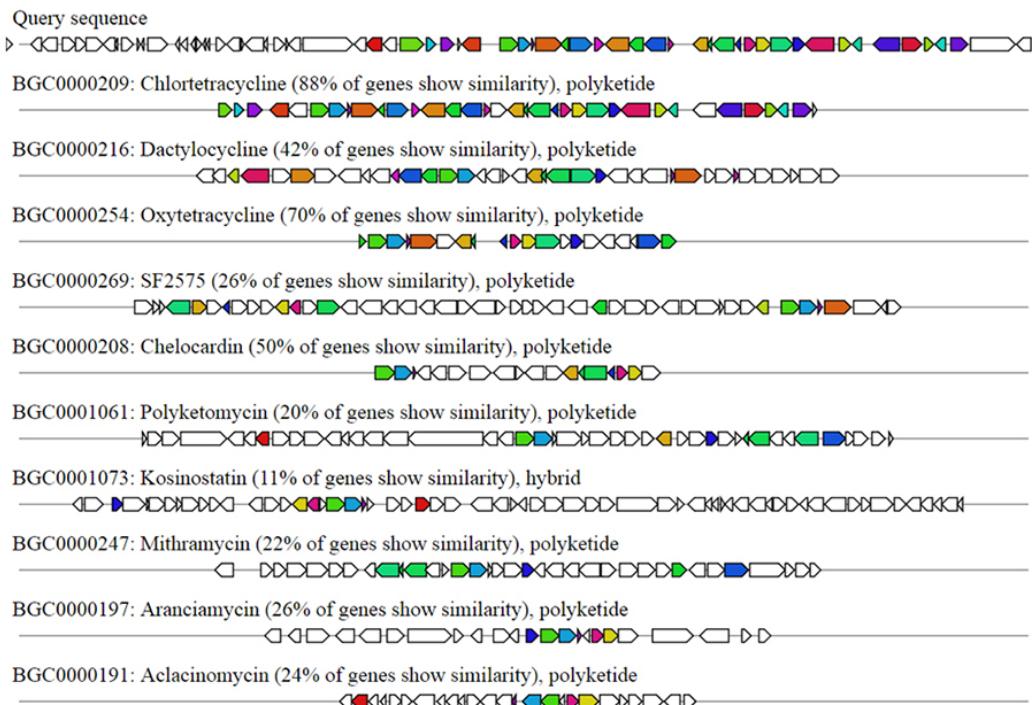
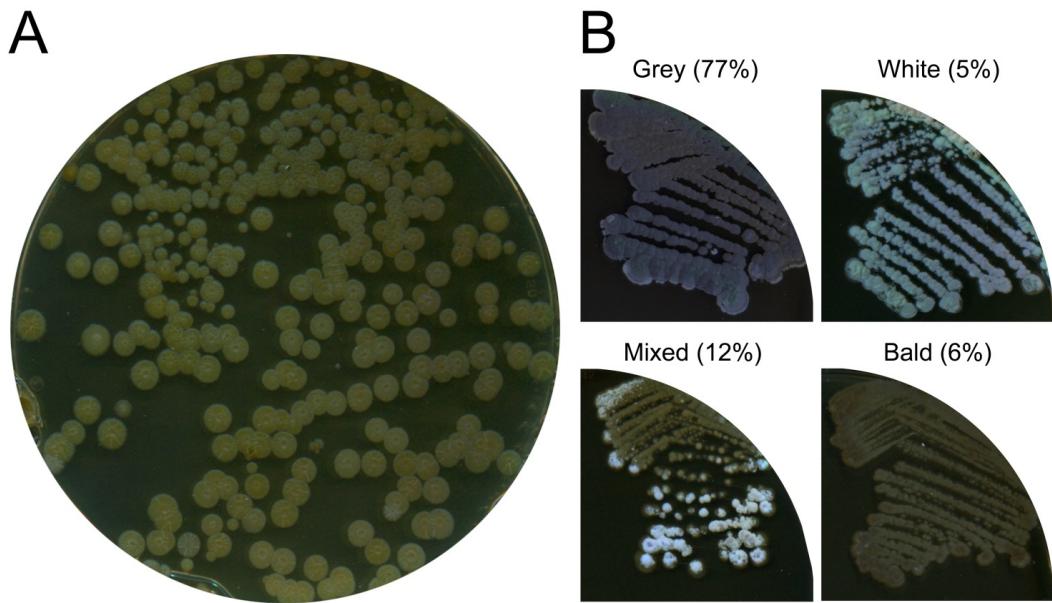

Figure S1. AntiSMASH 5.0 output revealing the biosynthetic gene clusters contained on the megaplasmid (top) and chromosome (bottom) of *K. viridifaciens*. The biosynthetic gene clusters are numbered according to their localization on the replicon.

Figure S2

A



B

Figure S2. AntiSMASH 5.0 homology search of the *K. viridifaciens* tetracycline biosynthetic gene cluster. (A) Localization of the putative chlorotetracycline BGC in the chromosome of *K. viridifaciens*. (B) Comparison of the *K. viridifaciens* tetracycline biosynthetic gene cluster with known tetracycline gene clusters from *Streptomyces aureofaciens* (BGC0000209), *Dactylosporangium* sp. SC14051 (BGC0000216), *Streptomyces rimosus* (BGC0000254), *Streptomyces* sp. SF2575 (BGC0000269), *Amycolatopsis sulphurea* (BGC0000208), *Streptomyces diastatochromogenes* (BGC0001061), *Micromonospora* sp. TP-A0468 (BGC0001073), *Streptomyces argillaceus* (BGC0000247), *Streptomyces echinatus* (BGC0000197) and *Streptomyces galilaeus* (BGC0000191).

Figure S3

Figure S3. Protoplast regeneration generates morphological diversity in osmotically balanced medium. (A) Protoplasts regenerated on R5 medium yielded colonies that are unable to sporulate due to the high sucrose levels. (B) Subculturing of 149 randomly-picked colonies on MYM medium revealed dramatic developmental defects in 23% of the colonies. Whereas 77% of the colonies were able to form grey-pigmented sporulating colonies (similar to the wild-type), 5% of the colonies were white, 6% were bald, while 12% had a mixed appearance.