

1 ***Identification of the pathway of Rhodoquinone biosynthesis in C.elegans***
2

3 Samantha Del Borrello^{1*}, Margot Lautens^{1*}, Kathleen Dolan¹, June H. Tan¹, Mark A.
4 Spensley^{1,2}, Amy A. Caudy^{1†} and Andrew G. Fraser^{1†}
5
6
7

8 *= these authors contributed equally
9

10 Affiliation:

11 ¹The Donnelly Centre, University of Toronto, 160 College Street, Toronto M5S3E1.

12 ²Phenalysys Inc. 50 Cambridge Avenue, Toronto, Ontario. M4K 2L3
13

14 † corresponding authors:

15 amy.caudy@utoronto.ca

16 andy.fraser@utoronto.ca
17
18
19

20 **Abstract**

21 **Parasitic helminths infect over a billion humans. To survive in the low oxygen environment**
22 **of their hosts, these parasites use unusual anaerobic metabolism. This requires**
23 **Rhodoquinone (RQ), an electron carrier that is made by very few animal species —**
24 **crucially it is not present in any parasitic hosts. RQ synthesis is thus an ideal target for**
25 **anthelmintics but little is known about how RQ is made and no drugs are known to block**
26 **RQ synthesis. *C.elegans* makes RQ and can use RQ-dependent metabolic pathways — here,**
27 **we use *C.elegans* genetics to identify the pathway for RQ synthesis and show that *C.elegans***
28 **requires RQ for survival in hypoxic conditions. Finally, we establish a robust assay for**
29 **drugs that block RQ-dependent metabolism. This study identifies for the first time how RQ**
30 **is made in any animal and establishes a novel assay that can drive the development of a**
31 **new class of anthelmintic drugs.**

32

33 **Introduction**

34 Soil-transmitted Helminths (STHs) are major human pathogens (World Health Organization,
35 2002). Over a billion humans are infected with an STH — the roundworm *Ascaris lumbricoides*,
36 the whipworm *Trichuris trichuria*, and the hookworm *Necator americanus* account for most of
37 these infections (World Health Organization, 2002). STHs are transmitted from human to human
38 via the soil where eggs from human faeces develop into infective stages which then enter new
39 hosts (reviewed in Brooker et al., 2006). On infection, STHs encounter a very different
40 environment and require multiple strategies to be able to survive. One of the major changes is the
41 availability of oxygen — while there is abundant oxygen outside their hosts, in many host tissues
42 there is little available oxygen and the parasites must switch from aerobic respiration to
43 anaerobic respiration. Crucially, the anaerobic metabolic pathways that STHs depend on while in
44 their hosts are unusual and are not used in any host (Klockiewicz et al., 2002). Inhibiting these
45 anaerobic pathways thus provides a way to attack the parasites while leaving the host unaffected.

46 During aerobic respiration in helminths, the great majority of ATP is made in the mitochondrion
47 (Tielens, 1994; Tielens et al., 1984). Electrons enter the Electron Transport Chain (ETC) either at
48 Complex I or via several quinone-coupled dehydrogenases (QDHs from here on). These QDHs
49 include Succinate Dehydrogenase (Complex II) and Electron-Transferring Flavoprotein
50 Dehydrogenase (ETFDH) (Komuniecki et al., 1989; Ma et al., 1993; Rioux and Komuniecki,
51 1984). The electrons entering the ETC are first transferred to the lipid soluble electron carrier
52 Ubiquinone (UQ) (Crane et al., 1957; Mitchell, 1975). From UQ, they are ultimately carried to
53 Complex III then IV where they are finally transferred onto oxygen as the terminal electron
54 acceptor (see Fig 1a). Electron transport is coupled to proton pumping into the inner membrane
55 space of the mitochondrion — this establishes a proton gradient which is used to power the
56 F0F1-ATP synthase (Mitchell, 1961). When there is insufficient oxygen to accept electrons at
57 Complex IV, or when inhibitors of Complex IV such as cyanide (Antonini et al., 1971; Nicholls
58 et al., 1972) are present, almost all animals stop using the ETC and rely on anaerobic glycolysis
59 to make ATP, generating lactate (Isom et al., 1975; Meyerhof, 1927). STHs, however, have
60 evolved a different solution that allow them to survive months in the hypoxic host environment.

61 Electrons still enter the ETC at Complex I, Complex I still pumps protons to generate the proton
62 motive force (PMF), and ATP is still made by the F0F1ATPase, powered by the PMF. However,
63 rather than the electrons passing through the ETC to oxygen as the terminal electron acceptor,
64 they exit the ETC immediately downstream of Complex I onto a number of alternative terminal
65 electron acceptors (Fig 1b) (reviewed in Hochachka and Mustafa, 1972; Müller et al., 2012).
66 This transfer of the electrons out of the ETC and onto alternative electron acceptors requires the
67 quinone-coupled dehydrogenases (Kita, 1992; Ma et al., 1993). Under aerobic conditions these
68 QDHs act as entry points to the ETC, transferring electrons from their substrates to UQ.
69 Crucially, the reactions catalysed by these QDHs are reversed in anaerobic conditions — they
70 now act as reductases transferring electrons out of the ETC and onto their products. For example,
71 Complex II acts as a succinate dehydrogenase in aerobic conditions, generating fumarate; in
72 anaerobic conditions, it reduces fumarate generating succinate as a terminal electron sink (Fig
73 1c) (Klockiewicz et al., 2002; Kmetec and Bueding, 1961; Sato et al., 1972; Saz and Vidrine,
74 1959; Takamiya et al., 2002). In this way an entry of electrons into the ETC from a variety of
75 electron donors in aerobic conditions is reversed to provide an exit from the ETC onto a variety
76 of electron acceptors in anaerobic conditions.

77 The unusual ETC wiring used by STHs to survive anaerobic conditions requires an unusual
78 electron carrier, Rhodoquinone (RQ) (Moore and Folkers, 1965). RQ and UQ are highly related
79 molecules — the sole difference is the presence of an amine group on the quinone ring of RQ
80 (Fig 1d). This changes the biophysical properties of the quinone ring: while UQ can accept
81 electrons from the QDHs as they flow into the ETC under aerobic conditions, UQ cannot carry
82 electrons of the correct electropotential to drive the reverse reactions in anaerobic conditions
83 (Fioravanti and Kim, 1988; Sato et al., 1972). RQ can carry such electrons (Fioravanti and Kim,
84 1988; Sato et al., 1972), however, and the ability of STHs to survive in their hosts is absolutely
85 dependent on RQ. The single amine group that differs between UQ and RQ thus affects the
86 health of over a billion humans. RQ is found in very few animal species — only nematodes,
87 molluscs and annelids are known to make RQ (Allen, 1973; Fioravanti and Kim, 1988;
88 Klockiewicz et al., 2002; Sato and Ozawa, 1969; Takamiya et al., 2002; Van Hellemond et al.,
89 1995). Since no host animals make RQ, inhibiting RQ synthesis or RQ use is a potentially
90 powerful way to target parasites inside their host. Currently however little is known about RQ
91 synthesis. The most mature studies have focused on the purple Proteobacterium *R. rubrum*, where
92 RQ appears to derives from UQ (Brajcich et al., 2010). RQ synthesis in *R. rubrum* requires the
93 gene *rquA* (Lonjers et al., 2012) which is the first and thus far only gene known to be required
94 for RQ synthesis in any organism. It is still unclear what role it plays in RQ synthesis (Lonjers et
95 al., 2012), nor what the rest of the genes required for RQ synthesis may be. In animals, the
96 situation is even more blank: nothing is known about which genes are required for RQ synthesis
97 and there are no drugs that are known to prevent RQ synthesis. This is partly because no
98 tractable animal model has been established in which to study RQ synthesis and use.

99 Previous studies have shown that *C. elegans*, a free-living helminth, can make RQ (Takamiya et
100 al., 2002) and that when *C. elegans* is exposed to hypoxic conditions it undergoes major

101 metabolic changes that resemble those that occur in STHs when they are in the hypoxic
102 environment of their hosts (Butler et al., 2012; Föll et al., 1999). This suggested to us that we
103 could establish *C.elegans* as a model for dissecting the pathway of RQ synthesis and for
104 screening for drugs that block RQ synthesis or use. We confirm that *C.elegans* makes RQ and
105 also that it uses RQ-dependent metabolism when unable to use oxygen as a terminal electron
106 acceptor. Crucially, we identify the pathway of RQ synthesis in *C.elegans* and show that
107 *C.elegans* requires RQ to survive under conditions where oxygen cannot be used as an electron
108 acceptor for the ETC. This allowed us to establish a robust high throughput screening assay to
109 identify compounds that block RQ synthesis or RQ use. This is the first study to show how RQ,
110 an electron carrier that affects the life of over a billion humans, is made in helminths. This will
111 help towards the development of a new class of drugs to treat these major human pathogens.

112
113

114 **Results**

115 ***C.elegans* makes RQ and switches to anaerobic metabolism when exposed to Potassium 116 Cyanide**

117 *C.elegans* is a non-parasitic helminth that is easily genetically tractable (Brenner, 1974; reviewed
118 in Jones et al., 2005) and can be used for efficient drug screens (Burns et al., 2015). We wanted
119 to establish *C.elegans* as a model to dissect the pathway for RQ synthesis in helminths and as a
120 system in which we could efficiently screen for drugs that block the synthesis of RQ or use of
121 RQ. We note that there are no other standard model organisms where this is possible: yeasts,
122 insects, fish, and vertebrates do not make or use RQ so *C.elegans* is the sole genetically tractable
123 animal model for this work.

124 Like other helminths, *C.elegans* has previously been shown to make RQ (Takamiya et al., 2002).
125 We wanted to confirm this and determine whether we could define a simple experimental
126 method to drive *C.elegans* to carry out similar anaerobic metabolism as that used by parasitic
127 helminths to survive in their hosts. We extracted quinones as described in Methods and as shown
128 in Fig 2a and Supp Fig 1, *C.elegans* makes both UQ and RQ when maintained in normoxic
129 conditions. We can therefore use *C.elegans* to genetically dissect the pathway for RQ synthesis.

130 Our next step was to establish a simple method to drive *C.elegans* to use RQ-dependent
131 metabolism that would allow high throughput drug screens. Parasitic helminths use RQ-
132 dependent metabolism under low oxygen conditions (Rioux and Komuniecki, 1984; Saz and
133 Lescure, 1969; Tielens et al., 1992) and previous studies showed that *C.elegans* shows similar
134 metabolic shifts when exposed to hypoxic conditions (Butler et al., 2012; Föll et al., 1999). If
135 possible, however, we wanted to avoid the use of hypoxic chambers. While hypoxia chambers
136 are highly accurate ways of controlling oxygen levels, they are also very expensive and
137 cumbersome for large-scale drug screens. We therefore turned to chemical methods of inducing a
138 hypoxic state. Potassium Cyanide (KCN) is a potent inhibitor of Complex IV (Antonini et al.,

139 1971; Nicholls et al., 1972) — KCN inhibits oxygen binding to Complex IV and KCN treatment
140 thus mimics hypoxia. We tested whether treatment with KCN could drive *C.elegans* to use
141 anaerobic metabolism that is similar to the RQ-dependent metabolism used by STHs in their
142 hosts. The classic hallmark of RQ-dependent anaerobic metabolism in helminths is the
143 generation of high levels of succinate through the reversal of Complex II (Fig 1c) (Butler et al.,
144 2012; Saz and Lescure, 1969; Tielens et al., 1992). If *C.elegans* can indeed use the same
145 anaerobic metabolism as parasitic helminths, there should be a build-up of succinate following
146 KCN treatment. Furthermore, this should be dependent on Complex I activity, since Complex I
147 is the sole source of electrons that are carried by RQ to drive the fumarate reductase activity of
148 Complex II (Fig 1b). We found that when *C.elegans* are exposed to KCN, they build up high
149 levels of succinate as expected and that inhibiting Complex I with rotenone prevents succinate
150 build-up (Fig 2b). We thus find that *C.elegans* makes RQ and that treatment of *C.elegans* with
151 KCN causes them to switch to a metabolic state that resembles that of STHs in their host.
152 *C.elegans* is thus an excellent model in which to dissect RQ synthesis and to screen for
153 compounds that alter RQ-dependent metabolism.

154

155 **In *C.elegans*, RQ is synthesised from products of the kynurenine pathway and not from**
156 **Ubiquinone**

157 RQ and UQ are highly related molecules — the sole difference is the presence of an amine group
158 on the quinone ring of RQ (Fig 1d). The critical question for RQ synthesis is where this amine
159 group comes from and how it is generated. The best-defined current model for RQ synthesis
160 comes from experiments in the proteobacterium *R.rubrum*. At least in this prokaryote, RQ is
161 thought to be made by a late addition of the critical amine group to an existing molecule of UQ
162 (Brajcich et al., 2010). UQ is thus an obligate precursor of RQ and RQ synthesis requires initial
163 synthesis of UQ (Fig 3a). While this may be the case for *R.rubrum*, this is not the case in
164 *F.hepatica* (Van Hellemond et al., 1996) or *C.elegans*. The *clk-1(qm30)* strain has a loss-of-
165 function mutation in the *C.elegans* COQ7 orthologue that is required for hydroxylation of 5-
166 demethoxyubiquinone to 5-hydroxyubiquinone, a late step in UQ synthesis — there is no
167 detectable UQ in *clk-1(qm30)* homozygous animals. However, a previous study showed that
168 there does appear to be RQ in this strain (Jonassen et al., 2001). If there is no UQ, but there is
169 RQ, then RQ is not derived from UQ, at least in helminths. The two models for RQ synthesis
170 thus differ fundamentally — in one UQ is an obligate precursor (Brajcich et al., 2010), in the
171 other it is not (Jonassen et al., 2001). Since this is a fundamental result, we wanted to confirm
172 this before trying to dissect the pathway of RQ synthesis. We thus extracted and analysed
173 quinones from either wild-type worms or *clk-1(qm30)* homozygous animals. We find that while
174 there is no detectable UQ in *clk-1(qm30)* mutants, there is abundant RQ and indeed we find that
175 RQ levels are essentially unchanged (Fig 3b). We thus confirm that UQ is not an obligate
176 precursor for RQ in *C.elegans*.

177 If RQ is not generated by addition of the key amine group to an existing UQ molecule where
178 does the amine group on RQ come from? One possibility is it is added not to UQ but to a UQ

179 precursor such as demethoxyquinone (DMQ) — such UQ precursors would still be present in the
180 *clk-1(qm30)* mutant strain (Fig 3a for schematic). While this could in principle be the case, it is
181 unlikely because amination of an aromatic ring is highly thermodynamically unfavorable
182 (reviewed in Downing et al., 1997). We therefore investigated an alternative possibility — that
183 the critical amine group of RQ is not added in a late step of RQ synthesis but instead is present
184 from the outset.

185 A key initial step in UQ synthesis is the addition by COQ-2 of a polyprenyl tail to a *p*-
186 hydroxybenzoate ring (PHB — also often called 4-hydroxybenzoate (4-HB)) (Momose and
187 Rudney, 1972; Trumppower et al., 1974). PHB has no amine group — however, *S.cerevisiae*
188 COQ2 is known to be able to use a variety of similar compounds as substrates for prenylation
189 such as para-aminobenzoic acid and vanillic acid (reviewed in Pierrel, 2017). Given the potential
190 substrate flexibility of COQ-2, we hypothesized that RQ synthesis might start not with PHB but
191 with a related molecule that contains an amine group already on the ring (Fig 3 for schematic). In
192 particular, we noted that yeast COQ2 is tolerant of substituents at positions 5 and 6 of the PHB
193 structure (reviewed in Pierrel, 2017) suggesting that this might be feasible enzymatically. We
194 considered different candidate molecules as amine-containing ring structures that might act as
195 precursors for RQ and focussed on anthranilate and 3-hydroxyanthranilate (3HA) as likely
196 sources of the amine-containing ring in RQ. Anthranilate and 3HA are made from the amino acid
197 tryptophan via the kynurenine pathway (Heidelberger and Gullberg, 1948; Kotake, 1936) and
198 *kynu-1* encodes the *C.elegans* kynureninase that is required for the generation of anthranilate and
199 3HA (Babu, 1974; Bhat and Babu, 1980; van der Goot et al., 2012). We examined the quinones
200 present in *kynu-1(e1003)* mutants that lack kynureninase and while UQ levels are normal in the
201 *kynu-1(e1003)* mutant animals, there is no detectable RQ (Fig 3c). This suggests that the amine
202 group on RQ derives from anthranilate or 3HA, or some closely related product of kynureninase.

203 To further confirm that the amine group on RQ ultimately derives from tryptophan we tested
204 whether a tryptophan-derived aromatic amino group is being incorporated into RQ. We fed
205 *C.elegans* 15N-labelled bacteria for 3 generations either in the presence or absence of 14N
206 tryptophan. As shown in Fig 4a, the sole source of any 14N incorporated into RQ is the 14N
207 tryptophan. As expected, the RQ detected in animals fed with 15N bacteria alone is
208 approximately all 15N labelled (Fig 4b). However, if 14N tryptophan was added, ~50% of the
209 RQ observed was 14N RQ — the sole source for this 14N was the added tryptophan. Taken
210 together, our data show that RQ does not derive from UQ, and that anthranilate, 3HA, or a
211 related molecule deriving from tryptophan via the kynurenine pathway is the source of the amine
212 group on the quinone ring of RQ. We propose that the pathway of RQ and UQ synthesis are
213 largely the same — the key difference is the presence or absence of the amine group on the
214 initial aromatic ring substrate for COQ-2.

215

216 **RQ is required for long-term survival of *C.elegans* in anaerobic conditions**

217 As shown in Fig 2, *C.elegans* shows similar changes in metabolism when it is treated with KCN
218 as STHs undergo when they adapt to the hypoxic environment of their host. For example, the
219 classic hallmark of this RQ-dependent anaerobic metabolism is the generation of succinate by
220 the action of Complex II as a fumarate reductase and *C.elegans* shows high levels of succinate
221 when treated with KCN (Fig 3b). To confirm that this generation of succinate is indeed RQ-
222 dependent in *C.elegans*, we examined whether RQ-deficient *kynu-1(e1003)* mutant animals
223 could generate succinate when exposed to KCN. While wild-type worms generate high levels of
224 succinate when Complex IV is inhibited with KCN, RQ-deficient *kynu-1(e1003)* mutant animals
225 do not (Fig 5), confirming that the metabolic shift we see when we expose *C.elegans* to KCN is
226 not simply similar to that of parasitic helminths in their hosts, it also requires RQ.

227 We have thus established that treating *C.elegans* with KCN drives them into an alternative
228 metabolic state where they use RQ to drive the same anaerobic metabolism used by STHs in
229 their hosts. To be able to screen efficiently for drugs that affect RQ synthesis or RQ-dependent
230 metabolism, however, we need a direct phenotypic readout for RQ-utilization rather than a
231 molecular readout (such as succinate generation). When do *C.elegans* require RQ-dependent
232 metabolism and what are the consequences if they have no RQ? Since RQ-dependent
233 metabolism is being used in the presence of KCN we compared the sensitivity of wild-type
234 worms and *kynu-1(e1003)* mutants to KCN and the ability of wild-type worms and *kynu-*
235 *1(e1003)* mutants to survive in KCN for long periods. We found no significant differences in
236 acute KCN sensitivity of wild-type worms and *kynu-1(e1003)* mutants — both slow their
237 movement in the presence of KCN, stop moving completely by ~90 minutes (Fig 6a), and remain
238 immobile from there on when maintained in KCN. However, there was a dramatic difference in
239 their ability to survive extended periods in KCN. We exposed worms to KCN for different
240 lengths of time and then removed animals from KCN and assayed their movement over the next
241 3hrs as they recover from KCN treatment. When wild-type worms are removed from KCN, they
242 rapidly recover movement (Fig 6b) — they can do this even after 24 hours of KCN treatment
243 (Fig 6c). However, *kynu-1(e1003)* mutants show greatly reduced ability to survive extended
244 KCN treatment — they do not survive exposure to KCN for 12 hours or more (Fig 6c). RQ-
245 dependent anaerobic metabolism thus allows *C.elegans* to survive extended periods where it
246 cannot use oxygen as the terminal electron acceptor of the ETC.

247 This provides a simple assay for drugs that specifically affect RQ-dependent metabolism: drugs
248 that block RQ synthesis or the activity of RQ-dependent pathways should abolish the ability of
249 worms to survive >12hours in KCN. To test this, we used the compound *wact-11* — this is a
250 Complex II inhibitor that binds to the quinone-binding pocket of Complex II (Burns et al., 2015).
251 *wact-11* is highly related to the anthelmintic *flutolanil* (Burns et al., 2015) and is highly selective
252 for helminth Complex II (Burns et al., 2015). Complex II is critical for RQ-dependent anaerobic
253 metabolism where it acts as a fumarate reductase — inhibitors of Complex II might thus alter
254 survival in KCN. That is what we observe: treatment with *wact-11* prevents worms from
255 surviving long-term KCN exposure (Figure 6d). Our assay will thus allow efficient screens for

256 drugs that inhibit RQ synthesis or RQ utilization *in vivo* in a helminth under conditions where
257 they require RQ, the first time this has been possible.

258 Finally, we took advantage of a set of mutant worm strains that are resistant to wact-11
259 treatment. Mutations that result in resistance to wact-11 treatment cluster in the quinone binding
260 pocket of Complex II (Burns et al., 2015) and we reasoned that some of these might specifically
261 disrupt the binding of RQ and thus affect the ability of worms to survive extended exposure to
262 KCN. We tested a number of point mutants that affect wact-11 sensitivity (Fig 7a; data not
263 shown) and found that most mutants appear similar to wild-type worms in their ability to survive
264 long term KCN exposure. However, we found that the G71E mutation results in worms that are
265 unable to survive extended KCN exposure — the G71E animals thus resemble *kynu-1(e1003)*
266 mutants. We note that this mutation sits right above the modelled binding site for the
267 rhodoquinone ring, whereas a neighbouring mutation that sits two turns of an alpha-helix further
268 away (C78Y) has no effect. We thus suggest that the G71E mutation affects the ability of
269 *C.elegans* to bind RQ into the quinone binding pocket of Complex II and thus to drive RQ
270 dependent fumarate reduction as part of its RQ-dependent anaerobic metabolism.

271

272 **Discussion**

273 RQ was first identified over 50 years ago (Moore and Folkers, 1965). It is absolutely required for
274 the survival of parasitic helminths in the hypoxic environment of the host gut where they can
275 thrive for many months. The single amine group that differs between RQ and UQ is crucial for
276 this — it allows RQ to carry electrons of the right electropotential to drive quinone-coupled
277 dehydrogenases (QDHs) in reverse, acting as reductases (Fioravanti and Kim, 1988; Sato et al.,
278 1972). In aerobic conditions, QDHs carry electrons from a diverse set of electron donors and
279 transfer them onto UQ and hence into the ETC; under anaerobic conditions, RQ carries electrons
280 to the QDHs which then reduce a diverse set of electron sinks, providing an exit point for
281 electrons from the ETC. The single amine group on the quinone ring of RQ allows parasites to
282 carry out this unusual anaerobic metabolism and thus it affects the lives of over a billion humans.
283 Despite the importance of RQ for human health, its synthesis has been elusive and no
284 anthelmintics have been identified that affect RQ synthesis. Here, we used *C.elegans* genetics to
285 identify the RQ synthesis pathway and to establish a pipeline for screening for new compounds
286 that alter the ability of worms to make and use RQ.

287 The critical question in RQ synthesis is where the critical amine group on the quinone ring
288 comes from and how it is added. Previous studies suggested that RQ is synthesised using UQ as
289 a precursor (Brajcich et al., 2010) and that the amine group is added at a late stage in RQ
290 synthesis. Here, we show that this is not true, at least in *C.elegans*. We show that RQ synthesis
291 does not require UQ as a precursor and, crucially, that the critical amine group on the quinone
292 ring of RQ is not added at a late stage in the synthesis of RQ as has been previously proposed
293 (Brajcich et al., 2010) but that it is present from the initial steps of RQ synthesis. For the first
294 time since its discovery in the early 1960s, we now have a key insight into how RQ is made in

295 helminths and this has several implications for the search for novel anthelmintics that might
296 affect RQ synthesis.

297 First, we do not believe that there are separate dedicated pathways for UQ and for RQ synthesis
298 in helminths. Instead, we suggest that UQ and RQ have a largely shared synthesis pathway. The
299 key difference in RQ and UQ synthesis is the use of different initial substrates for COQ-2: if
300 PHB is used, the product will be UQ, if anthranilate, 3HA, or a related product of tryptophan
301 metabolism is used, the product will be RQ. This stands in clear contrast to the pathways used by
302 a different set of organisms to make two different quinones, one for aerobic and one for
303 anaerobic metabolism: facultative anaerobic bacteria including non-pathogenic *E.coli* as well as
304 major human pathogens like *M.tuberculosis*. These bacteria make two quinones: UQ which is
305 used as an electron carrier under aerobic conditions, and menaquinone (MK) (reviewed in Kwon
306 and Meganathan, 2009), which acts as a carrier under anaerobic conditions and is in some sense
307 analogous to RQ as it can carry electrons that can drive fumarate reduction (Cecchini et al.,
308 1986). The synthesis pathways of UQ and MK are completely distinct and the genes involved are
309 distinct (reviewed in Kwon and Meganathan, 2009). This separation of MK and UQ synthesis
310 pathways has allowed the development of a number of promising compounds that act as
311 inhibitors of the MK synthesis pathway (reviewed in Boersch et al., 2018). We suggest that there
312 may be no analogous inhibitors for ‘the RQ synthesis pathway’ in helminths since there does not
313 appear to be a dedicated RQ pathway analogous to the dedicated MK synthesis pathway.

314 Second, the pathway we identify for RQ synthesis suggests novel targets for anthelmintics. The
315 finding that the kynurenine pathway is the source of the key precursors for RQ synthesis
316 suggests naively that helminth-specific inhibitors of the kynureinase pathway might act as
317 potent anthelmintics. However, the human gut is likely to be a source of anthranilate and 3HA
318 from host metabolism or from the microbiome and inhibiting production of these molecules in
319 the helminth itself might thus prove ineffective. A more likely target is COQ-2, the enzyme that
320 prenylates the anthranilate or 3HA ring as the first step in RQ synthesis. Again, it is worth
321 drawing an analogy between the synthesis pathways of UQ and MK in bacteria. The enzymes
322 responsible for the prenylation steps of UQ and MK synthesis are entirely distinct and act at very
323 different steps — UQ prenylation by *ubiA* (the *E.coli* *coq-2* orthologue) is a very early step, the
324 MK prenylation by *menA* is a late step in MK synthesis (reviewed in Kwon and Meganathan,
325 2009). Inhibitors of *menA* (reviewed in Debnath et al., 2012; Kurosu et al., 2007) have no impact
326 on *ubiA* or human COQ2 activity since menA and UbiA/COQ2 are completely different
327 enzymes. Inhibitors that specifically block RQ synthesis in helminths while leaving host UQ
328 synthesis intact will need to be more selective since they target orthologous enzymes, the human
329 and helminth COQ2. However, since they have different substrate specificity, this may be
330 possible and opens up a potential avenue for new anthelmintics.

331 Our study also raises key new questions. One of the most intriguing to us is why RQ synthesis is
332 so rare amongst animals. To date, only three groups of animals are known to make RQ:
333 molluscs, annelids, and helminths (Allen, 1973; Fioravanti and Kim, 1988; Klockiewicz et al.,
334 2002; Sato and Ozawa, 1969; Takamiya et al., 2002; Van Hellemond et al., 1995). If RQ

335 synthesis and UQ synthesis largely share a common pathway, why doesn't every animal that
336 makes UQ also make RQ? One possibility is that while much of the pathway for UQ and RQ
337 synthesis is shared, RQ synthesis requires additional components that might only be present in
338 RQ-synthesising species. We find some evidence that this may be the case.

339 The sole gene known to be required specifically for RQ synthesis and not for UQ synthesis is the
340 *R.rubrum* gene *rquA* (Lonjers et al., 2012). This is a methyltransferase that is related to the
341 quinone methyltransferases UbiG/COQ3 and UbiE/COQ5 that act in UQ synthesis (Lonjers et
342 al., 2012; Stairs et al., 2018). Although RquA is predicted by homology to act as a quinone
343 methylase (Lonjers et al., 2012), its exact role in RQ synthesis is still obscure and no clear
344 orthologues in helminths or other RQ-producing animals have been identified to date. Whatever
345 the function of RquA, it is clear that *R.rubrum* has three distinct quinone methyltransferases —
346 two that are required for UQ synthesis and the third required specifically for RQ synthesis
347 (Lonjers et al., 2012; Stairs et al., 2018). All animal genomes encode orthologues of UbiG/COQ3
348 and UbiE/COQ5 — these are the sole genes predicted to encode quinone methyltransferases in
349 almost all animal genomes and there is no third related set like in *R.rubrum*. Helminths,
350 molluscs, and annelids, the animal species known to make RQ, are different however — in
351 addition to COQ3 and COQ5, they encode an additional set of related quinone
352 methyltransferases (Fig 8a). In *C.elegans* this comprises four paralogues, *R08F11.4*, *R08E5.1*,
353 *R08E5.3* and *K12D9.1*, and we find orthologues of these additional quinone methyltransferases
354 in all parasitic helminths examined so far (examples in Fig 8a). Three of these additional quinone
355 methyltransferase paralogues (*R08F11.4*, *R08E5.1* and *R08E5.3*) are highly upregulated in
356 *C.elegans* mutants that are homozygous for a loss of function mutation in *gas-1* which encodes a
357 subunit of Complex I in the ETC — *R08E5.3* is in the top 50 most upregulated genes, and all
358 three are in the top 4% of upregulated genes (Falk et al., 2008). This suggests that their function
359 may be required when aerobic respiration is compromised, as would be expected if they play a
360 role in RQ synthesis. This correlation between expression of these additional quinone
361 methyltransferases and RQ-dependent metabolism also appears to hold in parasites. For example,
362 in *Ascaris*, RQ-dependent metabolism is essential for the survival of the adult worm and this is
363 largely occurring in the muscle cells (Saz and Lescure, 1969). We identified an *Ascaris*
364 orthologue of this additional class of quinone methyltransferases, *AgB01_g209*, that shows low
365 expression in most developmental stages, but is strongly upregulated specifically in adult muscle
366 cells (Fig 8b) (Jex et al., 2011). Thus while most animals only encode COQ3 and COQ5, RQ-
367 synthesizing animal species encode an additional set of quinone methyltransferases whose
368 expression is strongly upregulated under conditions requiring anaerobic respiration. This
369 suggests that there may be similarity in RQ synthesis in *R.rubrum* and animals and that there
370 may be at least some genes with functions specific to RQ synthesis. It will be interesting to
371 examine whether these additional quinone methyltransferases participate in RQ synthesis in
372 helminths and thus whether they are functionally analogous to *rquA* despite having only weak
373 sequence similarity.

374 Finally, we note that several steps in the kynurenine pathway and in the ubiquinone synthesis
375 pathway are catalysed by either monooxygenases or dioxygenases that require oxygen. These
376 include TDO-2 (Hayaishi et al., 1957) and KMO-1 (Detmer and Massey, 1985; Entsch et al.,
377 1976) in the kynurenine pathway and COQ-6 (Ozeir et al., 2015) and CLK-1 (Marbois and
378 Clarke, 1996) in the UQ synthesis pathway. RQ synthesis thus appears to require the availability
379 of oxygen for these enzymes, an unexpected result since RQ is preferentially required in
380 anaerobic conditions and is the predominant quinone in helminths living under anaerobic
381 conditions. How might these oxygen-requiring steps be carried out for RQ synthesis? It is
382 possible that the helminth enzymes have evolved so that they can still operate under low oxygen
383 conditions. Other oxygen-using proteins have evolved extremely high oxygen affinity in
384 helminths — for example *Ascaris* haem is octameric and binds oxygen with ~25,000 times
385 greater affinity than human haem (Minning et al., 1999). Alternatively, these same enzymatic
386 steps might be carried out by other enzymes in lower oxygen conditions. In *E.coli*, for example,
387 UbiB and UbiF (reviewed in Kwon and Meganathan, 2009) carry out the same hydroxylation
388 modifications to the quinone ring as COQ-6 and CLK-1 in aerobic conditions and mutation of
389 either gene results in a lack of mature UQ in these bacteria. However, under anaerobic
390 conditions, *ubiB* and *ubiF* mutants make normal levels of UQ suggesting that other enzymes
391 carry out these reactions in low oxygen conditions (Alexander and Young, 1978). It is possible
392 that there is an analogous set of enzymes that are required for RQ synthesis in low oxygen
393 conditions — these would carry out similar reactions to COQ-6 and CLK-1 but without the
394 requirement for oxygen.

395 There is thus still much to be discovered about the regulation and the precise pathway of RQ
396 synthesis in helminths. The results presented here provide a firm starting point and the assay we
397 describe for drugs that affect RQ-dependent metabolism may lead to the discovery and
398 development of a new class of anthelmintic drugs. Since resistance to known classes of
399 anthelmintics is widespread among livestock parasites like *H. contortus*, *C. oncophora* and
400 *A. suum* and is rising in human populations (reviewed in Sangster et al., 2018), this will prove
401 critical in the control and treatment of these major pathogens.

402

403 **Materials and Methods**

404 **Worm Strains and Maintenance**

405 In addition to the traditional laboratory strain N2, here we include work using strains *clk-*
406 *1(qm30)*, *kynu-1(e1003)*, *sdhc-1(tr357)*, and *sdhc-1(tr423)*. The two *sdhc-1* strains were provided
407 by Dr. Peter Roy and all other strains were provided by the *Caenorhabditis* Genetics Centre. All
408 worms were maintained on NGM agar plates seeded with *E. coli* OP50 as described elsewhere
409 (Stiernagle, 2006) and maintained at 20°C.

410 **RQ Tryptophan Anti-Labeling Experiment**

411 *Escherichia coli* (MG1655) was grown overnight at 37°C in M9 media prepared using 1 g/L ¹⁵N
412 ammonium chloride (Cambridge Isotopes) as the nitrogen source. Bacteria were heat killed at
413 65°C for 15 minutes. The heated culture was used to seed NGM agar plates. 500 µL of 50 mg/ml
414 tryptophan in water was spread on each 10cm plate. Ten L4 nematodes were placed on each
415 plate to lay eggs overnight at 20°C. Adult worms were removed following the egg laying period.
416 After 5 days at 20°C the nematodes were collected and frozen at -80°C.

417 **Quinone Extraction**

418 Nematode samples were thawed and lysed via sonication. Quinone extraction solvent containing
419 a 2:1 ratio of chloroform and methanol (Thermo Fisher Optima LC-MS grade) respectively was
420 added to the samples. The organic phase of the sample was collected and then dried using
421 nitrogen gas. Samples were resuspended in a 60:40 acetonitrile and isopropanol solution prior to
422 analysis using APCI LC-MS.

423 **Quinone LC-MS analysis**

424 Quinones were analyzed by reverse phase chromatography on an Eclipse Plus C-18 RRHD
425 column, 2.1 mM x 50 mm with 1.8 um packing operated in a thermostatted column compartment
426 held at 70°C. Buffer A was 50% MeCN in water, Buffer B was 100% acetone with 0.01%
427 formic acid. Starting conditions were 0.25 mL/min at 50% B. Gradient was 1-minute hold,
428 followed by increase 100% B at 5 minutes, hold 100% B until 7 minutes, then return to 50% B at
429 7.1 minutes and hold until 10 minutes. Samples were introduced from a HTC pal by injection of
430 5 µL sample into a 2 µL loop. Wash 1 was acetonitrile and wash 2 was isopropanol. Samples
431 were ionized using a Multimode ionization source (Agilent) operated in APCI mode, gas temp
432 350°C, vaporizer temp 350°C, drying gas 5 L/min, nebulizer 60 PSI, capillary voltage 4000 V,
433 corona current 4 µA, skimmer voltage 70 V, octupole 1 RF 400 V. Samples were analyzed on a
434 6230 TOF, a 6545 Q-TOF, or a 6490 QQQ as indicated. Fragmentor voltage for TOF/QTOF
435 analysis was 200 V. For QQQ analysis, ubiquinone 9 was monitored by MRM of 795.6/197.3 at
436 CID of 52 V; rhodoquinone-9 was monitored at 780.6/192.1 at CID of 52 V.

437 **Image-based assays**

438 All image-based experiments were conducted on L1 animals which were collected from mixed-
439 stage plates and isolated using a 96 well 11 µM Multiscreen Nylon Mesh filter plate (Millipore:

440 S5EJ008M04) as described previously (Spensley et al., 2018) to a final concentration of ~100
441 animals per well. They were then incubated in a final concentration of 200 μ M potassium
442 cyanide for varying amounts of time. There are two key assays: the acute and the recovery. The
443 acute assay monitors worm movement immediately following exposure to KCN every 5 minutes
444 for a total of 3 hours. The recovery assays involve a KCN incubation of 3, 6, 9, 12, or 18 hours
445 after which the KCN is diluted 6-fold with M9 buffer. Immediately after dilution, worm
446 movement is monitored every 10 minutes for 3 hours. In both assays, worm movement is
447 quantified using an image-based system as previously described (Spensley et al., 2018). All data
448 were normalized by the fractional mobility score of the M9-only control wells per strain per time
449 point.

450 **Drug preparation and Assay assembly**

451 Solutions of potassium cyanide (Sigma 60178-25G) were made fresh prior to each experiment in
452 phosphate buffered saline (PBS) and then diluted to a 5 mM stock solution in M9 buffer. 2X
453 working concentrations were then prepared with M9 and the KCN stock solution. Wact-11
454 (Chembridge ID 6222549) was kept frozen as a 100 mM stock in DMSO. Diluted wact-11 stocks
455 were made in DMSO (BioShop DMS666) to a concentration of 3.75 mM and kept frozen until
456 day of use. 10X working concentrations were made with wact-11 stock, M9 buffer, and DMSO.
457 All experiments were prepared to contain 0.8% v/v DMSO to control for any confounding
458 effects of drug solvent.

459 Assays were assembled in flat-bottomed polystyrene 96-well plates (Corning 3997) to a total
460 volume of 100 μ L and 40 μ L for the acute and recovery assays, respectively. Apart from assays
461 including wact-11 which constituted half KCN solution, 10% wact-11 solution, and 40% worms
462 in buffer, all other assays were comprised of equal parts worms in buffer and KCN solution.

463 **Rotenone LC-MS**

464 Worms were collected and isolated as described above. A final concentration of 7.5 L1s/10 μ L
465 was treated with final concentrations of 12.5 μ L rotenone (Sigma R8875) in 0.8% DMSO and
466 with 0.8% DMSO alone and with 100 μ M KCN in M9 or with M9 alone, 20 mL altogether in 40
467 mL plastic containers (Blender Bottle 600271) and were on a shaker for 1hr at room temperature.

468 After 1hr, samples were poured over 0.2 μ M Nylaflo nylon filter membranes (PALL 66604)
469 over vacuum and once the supernatant had run through, the filter paper was placed in prepared
470 1.2 mL of 8:1:1 extraction solvent (MeOH, HPLC Grade (SA 34860); H₂O, HPLC Grade
471 (Caledon 8801-7-40); CHCl₃, HPLC Grade (SA 650498)) in a 1.5 mL microfuge tube on dry ice.
472 Tubes were inverted 5 times then vortexed.

473 Samples were switched between -80°C and -20°C three times. Filters were then removed, and
474 the tubes spun at 13,200 rpm at 4°C for 30 min. 1 mL of supernatant was transferred to a new
475 tube and dried under dry N₂ with <0.02% O₂ at 5 PSI for 8 hrs. Each sample was reconstituted
476 with 30 μ L HPLC grade water as was prepared labelled yeast reference. Samples and reference
477 were spun at 13,200 rpm at 4°C for 5 min. 10 μ L sample and reference were placed in an LC-MS

478 sample vial (Agilent 5190-2243, cap is Agilent 5185-5820) and were fast spun at 1,000 rpm at
479 4°C.

480 ***kynu-1* LC-MS**

481 N2 and *kynu-1*(*e1003*) worms were washed and filtered as previously described. They were then
482 placed in 1.5 mL microfuge tubes at 1.5 mL for a final concentration of 45 L1s, 300 µM KCN in
483 M9 or M9 alone and were placed on a rotator for 6 hours at room temperature. After 6 hours, the
484 samples were extracted and prepared as previously described.

485 **Succinate Analysis**

486 Succinate was extracted from an IPRP method LC-MS run at an mzCenter of 117.0193 and a
487 retention time of 690 s in the case of the *kynu-1* experiment and from an Acid method LC-MS
488 run at an mzCenter of 117.0193 and a retention time of 141 s in the case of the rotenone
489 experiment. Both sets of samples were normalized to a labelled yeast reference. In the case of the
490 *kynu-1* experiment, they were further normalized to the median of all the extracted peaks for
491 each sample. In both cases they were ultimately normalized to the mean unlabelled N2 sample
492 treated with buffer or 0.8% DMSO. Plots were generated using {plotPeak}.

493 **Structural Analysis**

494 Sequences of succinate dehydrogenase, subunit C from *R. rubrum* (UniProtKB: Q2RV42), *E. coli*
495 (UniProtKB: P0A8Q0 and P69054), *C. gigas* (UniProtKB: K1R921), *C. elegans* (Wormbase:
496 CE00598 and CE50785), *A. suum* (UniProtKB: F1LC27), *S. cerevisiae* (UniProtKB: P33421 and
497 Q04487), *H. sapiens* (UniProtKB: O14521), *M. musculus* (UniProtKB: Q9CZB0), *S. scrofa*
498 (UniProtKB: D0VWV4), *M. balamuthi* (UniProtKB: A0A0B5D2L2), *A. ceylanicum*
499 (UniProtKB: A0A0D6M6A9), *W. bancrofti* (UniProtKB: J9F801), *L. loa* (UniProtKB:
500 A0A1I7VAG2), *A. simplex* (UniProtKB: A0A0M3K8C7), *O. bimaculoides* (UniProtKB:
501 A0A0L8IER1), *A. vulgaris* (UniProtKB: A0A0B7BS14), *C. clemensi* (UniProtKB: C1C048), *M.*
502 *yessoensis* (UniProtKB: A0A210PU64) underwent ClustalOmega multiple alignment (Sievers et
503 al., 2011) using the default settings on EMBL-EBI.

504 Mitochondrial rhodoquinol-fumarate reductase from *A. suum* bound with rhodoquinone-2 (PDB:
505 3VR8) was displayed on Chimera (Pettersen et al., 2004) and the *C. elegans* sequence was
506 threaded by homology using Modeller (Sali and Blundell, 1993; Webb and Sali, 2016) and the
507 MSA with 15 iterations.

508 **Alignment of Quinone Methyltransferases**

509 Sequences of COQ3/UbiG, Coq5/UbiE and the RQS cluster were identified by BLAST (Altschul
510 et al., 1990) in *S. cerevisiae*, *H. sapiens*, *A. californica*, *M. yessoensis*, *C. telata*, *C. elegans*, *A.*
511 *ceylanicum* and *N. americanus*. The sequences were then aligned by ClustalOmega (Sievers et
512 al., 2011) and the phylogenetic relationships are taken from ClustalOmega (Sievers et al., 2011).

513

514 **Acknowledgements**

515 The research in this study was supported by CIHR grant 501584. We thank Prof. Peter Roy
516 and multiple members of Fraser and Roy labs for insightful discussions, Prof. Brent Derry for
517 intellectual stimulation, the *Caenorhabditis* Genetics Center for *C.elegans* strains, Olga Zaslaver
518 and Angela Wong for their time and help with mass spec analyses. Structural graphics and
519 analyses performed with UCSF Chimera, developed by the Resource for Biocomputing,
520 Visualization, and Informatics at the University of California, San Francisco, with support from
521 NIH P41-GM103311
522
523

524 **Figure 1: Anaerobic metabolism in helminths requires Rhodoquinone (RQ). a. Electron**
525 **flow in the Electron Transport Chain (ETC) under aerobic conditions.** Electrons enter the
526 ETC either via Complex I or via a number of Quinone-coupled Dehydrogenases (QDH; cyan).
527 These complexes transfer electrons to Ubiquinone (red circle ‘UQ’) which shuttles them to
528 Complex III. They exit the ETC at Complex IV where they are transferred to oxygen as the
529 terminal electron acceptor. Proton pumping is coupled to electron transport and is carried out by
530 Complexes I, III and IV. Electron flow is shown in red and proton pumping in green. **b. Electron**
531 **flow in the Electron Transport Chain (ETC) under anaerobic conditions.** Electrons still
532 enter the ETC at Complex I which transfers electrons to RQ (cyan circle ‘RQ’). RQ shuttles
533 electrons to the QDHs which now operate as reductases, allowing electrons to exit the ETC and
534 onto a diverse set of terminal electron acceptors. Complex I is the sole proton pump in this
535 truncated ETC. **c. Schematic of Complex II activity under aerobic and anaerobic conditions.**
536 Under aerobic conditions, Complex II acts as a succinate dehydrogenase, transferring electrons
537 from succinate onto UQ. Under anaerobic conditions, Complex II operates in the reverse
538 direction acting as a fumarate reductase, accepting electrons from RQ and transferring them to
539 succinate as the terminal electron sink. **d. Structure of UQ and RQ.** The critical amine group
540 differing between UQ and RQ is highlighted; the prenyl tail is shown schematically as a green
541 wavy line.

542 **Figure 2: *C.elegans* makes Rhodoquinone (RQ) and can carry out RQ-dependent anaerobic**
543 **metabolism. a. *C.elegans* makes both UQ and RQ.** *C.elegans* were grown under normoxic
544 conditions and quinones extracted and analysed by mass spectrometry (see Methods). Both UQ
545 and RQ can be detected. **b. *C.elegans* increases succinate production following treatment**
546 **with Potassium Cyanide (KCN).** *C.elegans* L1 larvae were treated either with 200 μ M KCN
547 alone, 12.5 μ M rotenone alone, or a combination of KCN and rotenone for 1 hr and metabolites
548 extracted and analysed by mass spectrometry (see Methods). The graph shows that succinate
549 levels increase over 5-fold following KCN treatment and that this increase is blocked by
550 rotenone indicating that it requires Complex I activity. Data are from 3 independent biological
551 repeats; box plots show median and the interquartile range as well as individual datapoints.

552 **Figure 3: RQ in *C.elegans* does not derive from UQ but from Tryptophan metabolites. a.**
553 **Schematic showing possible routes for RQ synthesis.** Current models for RQ synthesis are
554 shown schematically in the top pathway: PHB is prenylated by COQ-2 at the start of the UQ
555 synthesis pathway and RQ either derives from UQ or from a UQ precursor — the amine group is
556 thus added at a late step. The lower pathway shows our proposed pathway. Rather than use PHB
557 as the substrate for COQ-2, RQ synthesis starts with prenylation of anthranilate or 3-
558 hydroxyanthranilate by COQ-2 (the 3 hydroxy group is denoted by a red asterisk). The amine
559 group is thus present from the start of RQ synthesis rather than being added at a late step and RQ
560 synthesis proceeds via the same pathway as UQ synthesis. **b. UQ is not a required**
561 **intermediate for RQ synthesis.** *clk-1(qm30)* mutant worms and N2 wild-type worms were
562 grown under normoxic conditions and quinones extracted and analysed. N2 worms contain both
563 UQ and RQ whereas *clk-1(qm30)* mutants only contain detectable RQ. **c. RQ synthesis requires**

564 **metabolism of Tryptophan via the kynurenine pathway.** *kynu-1(e1003)* mutant worms were
565 grown under normoxic conditions and quinones extracted and analysed. While wild-type worms
566 contain both UQ and RQ, *kynu-1(e1003)* mutants only contain detectable UQ. RQ synthesis thus
567 requires the generation of 3HA or anthranilate from Tryptophan via the kynurenine pathway.

568 **Figure 4: The critical amine group on RQ derives from Tryptophan. a. Schematic of**
569 **kynurenine pathway.** Anthranilate and 3-hydroxyanthranilate (3HA) derive from Tryptophan
570 via the kynurenine pathway and this requires KYNU-1 activity. The nitrogen atom that becomes
571 part of the key amine group on RQ is highlighted. **b. Analysis of RQ in animals fed either only**
572 **15N substrates or 15N substrates along with 14N Tryptophan.** Wild-type worms were fed
573 with 15N-labelled bacteria for 3 generations either in the absence or in the presence of 14N
574 Tryptophan. Almost all RQ is 15N labelled when worms were only eating 15N bacteria.
575 However when 14N Tryptophan was also present, almost half the RQ is 14N RQ, indicating that
576 the amine group of RQ must derive from Tryptophan.

577 **Figure 5: Buildup of succinate following Complex IV inhibition requires RQ.** Wild-type
578 (N2) or *kynu-1(e1003)* mutant animals were exposed to 200 μ M KCN for 6 hrs and metabolites
579 extracted and analysed by mass spectrometry. Data are from 5 independent biological repeats;
580 box plots show median and the interquartile range as well as individual datapoints. Succinate
581 levels increase markedly in N2 worms (red 'N2') following KCN treatment; there is no
582 significant increase in *kynu-1(e1003)* mutant animals (cyan 'k-1') confirming that fumarate
583 reductase activity of Complex II requires RQ.

584 **Figure 6: RQ-dependent metabolism is required for long-term survival in anaerobic**
585 **conditions. a. Loss of RQ does not affect acute sensitivity to KCN.** Wild-type (N2, red curve)
586 and *kynu-1(e1003)* mutant L1 animals (*kynu-1*, blue curve) were exposed to 200 μ M KCN and
587 their movement measured over 3 hrs (see Methods). Both strains slow their movement and
588 become immobile after ~90 mins. Curves show means of 3 biological replicates with 3 technical
589 replicates in each; error bars are standard error. **b. RQ is required for survival following**
590 **extended treatment with KCN.** Wild-type (N2, red curve) and *kynu-1(e1003)* mutant L1
591 animals (*kynu-1*, blue curve) were exposed to 200 μ M KCN for 15 hrs. KCN was then diluted
592 (see Methods) and worm movement was measured over a 3 hr time course. Curves show means
593 of 3 biological replicates with 3 technical replicates in each; error bars are standard error. **c.**
594 **Effect of different lengths of exposure to KCN on worm survival.** Wild-type (N2, red) and
595 *kynu-1(e1003)* mutant L1 animals (*kynu-1*, blue) were exposed to 200 μ M KCN for different
596 lengths of time from 3 hr to 18 hr. KCN was then diluted (see Methods) and worm movement
597 was measured after 3 hrs. Box plots show levels of movement after a 3 hr recovery period. Data
598 are from 3 biological replicates with 3 technical replicates in each. **d. Ability to survive**
599 **extended KCN exposure requires Complex II activity.** Wild-type L1 animals were treated
600 with 200 μ M alone, 10 μ M of wact-11 (a helminth-specific Complex II inhibitor) alone, or a
601 combination of KCN and wact-11 for 15 hrs. Drugs were then diluted 6x and worm movement
602 was measured over a 3 hr timecourse. wact-11 treatment alone had no effect on survival over the
603 experiment (black curve) and worms recovered completely from KCN treatment alone. However

604 worms could not survive treatment with both KCN and wact-11. Curves show means of 3
605 biological replicates with 3 technical replicates in each; error bars are standard error.

606 **Figure 7: Mutations in quinone-binding pocket of Complex II affect ability to survive**
607 **extended KCN treatment. a. Positions of mutations that alter wact-11 sensitivity.** Structures
608 show either the wild-type residues or mutations that alter wact-11 binding. The structures shown
609 are *C.elegans* sequences (green) threaded onto the *Ascaris suum* crystal (pink). RQ is shown in
610 yellow with the critical amine group in blue — note that this is RQ2 and not RQ9, hence the
611 shortened prenyl tail. Note that G71E alters a residue that lies right over the quinone ring of RQ
612 whereas C78Y is further from the ring. **b. Effect of quinone-pocket mutations on ability to**
613 **survive extended KCN exposure.** L1 worms containing either wild-type, G71E or C78Y mutant
614 *mev-1* sequences were exposed to 200 μ M KCN for 15 hrs. KCN was then diluted 6x and the
615 movement of worms measured across a 3 hr time course. Curves show means of 3 biological
616 replicates with 3 technical replicates in each; error bars are standard error.

617 **Figure 8: RQ synthesising species contain an additional class of quinone**
618 **methyltransferases. a. Eukaryotic quinone methyltransferases form three distinct classes.**
619 We used BLAST to identify orthologues of UbiG/COQ3, UbiE/COQ5, and a novel additional
620 class of quinone methyltransferases in *S. cerevisiae* (Scer), *H. sapiens* (Hsap), the molluscs *A.*
621 *californica* (Acal) and *M. yessoensis* (Myes), the annelid *C. telata* (Ctel) and the helminths *C.*
622 *elegans*, *A. ceylanicum*, *N. americanus* (Cel, Acey, Name). Sequences were clustered using
623 ClustalOmega (Sievers et al., 2011) and form three distinct clades: UbiG/COQ3, UbiE/COQ5,
624 and the novel clade which we call RQS for RhodoQuinone Synthesis. **b. Developmental**
625 **expression of *AgB01_g209*, an *Ascaris suum* orthologue of the novel quinone**
626 **methyltransferases.** (Jex et al., 2011) Expression levels (in TPM) are shown for L3 stages
627 (grown from isolated eggs *in vitro* (egg) or isolated from pig lung or liver), L4 stage larvae
628 isolated from gut, and reproductive tissue or muscle tissue isolated from either male or female
629 adult worms. Two adults are shown for each sample.

630 **Supp Figure 1: Mass spectra for Rhodoquinone (RQ) and Ubiquinone (UQ). a.** Mass
631 spectrometry (MS) extracted-ion chromatogram (EIC) of Rhodoquinone (RQ) (RT = 360 sec)
632 shown by a solid black line. An MS/MS EIC of the RQ product ion is shown with a dashed blue
633 line. **b.** MS EIC of Ubiquinone (UQ) (RT = 365 sec) shown by a solid black line. The dashed red
634 line represents the MS/MS EIC of Q's product ion. **c.** Mass spectra of RQ (m/z = 780.6) shown
635 in blue. Mass spectra of UQ (m/z = 795.6) shown in red. **d.** Mass spectra of the RQ product ion
636 (m/z = 182.1) shown in blue. Mass spectra of the Q product ion (m/z = 197.1) shown in red.

637

638 **Bibliography**

639 Alexander K, Young IG. 1978. Alternative hydroxylases for the aerobic and anaerobic
640 biosynthesis of ubiquinone in *Escherichia coli*. *Biochemistry* **17**:4750–4755.

641 Allen PC. 1973. Helminths: Comparison of their rhodoquinone. *Exp Parasitol* **34**:211–219.
642 doi:10.1016/0014-4894(73)90080-5

643 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.
644 *J Mol Biol* **215**:403–410. doi:10.1016/S0022-2836(05)80360-2

645 Antonini E, Brunori M, Rotilio GC, Greenwood C, Malmström BG. 1971. The Interaction of
646 Cyanide with Cytochrome Oxidase. *Eur J Biochem* **23**:396–400. doi:10.1111/j.1432-
647 1033.1971.tb01633.x

648 Babu P. 1974. Biochemical genetics of *Caenorhabditis elegans*. *Mgg Mol Gen Genet* **135**:39–44.
649 doi:10.1007/BF00433899

650 Bhat SG, Babu P. 1980. Mutagen sensitivity of kynureinase mutants of the nematode
651 *Caenorhabditis elegans*. *MGG Mol Gen Genet* **180**:635–638. doi:10.1007/BF00268072

652 Boersch M, Rudrawar S, Grant G, Zunk M. 2018. Menaquinone biosynthesis inhibition: a review
653 of advancements toward a new antibiotic mechanism. *RSC Adv* **8**:5099–5105.
654 doi:10.1039/C7RA12950E

655 Brajchich BC, Iarocci AL, Johnstone LAG, Morgan RK, Lonjers ZT, Hotchko MJ, Muhs JD,
656 Kieffer A, Reynolds BJ, Mandel SM, Marbois BN, Clarke CF, Shepherd JN. 2010.
657 Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in
658 *Rhodospirillum rubrum*. *J Bacteriol* **192**:436–445. doi:10.1128/JB.01040-09

659 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* **77**:71–94.

660 Brooker S, Clements ACA, Bundy DAP. 2006. Global Epidemiology, Ecology and Control of
661 Soil-Transmitted Helminth Infections. *Advances in Parasitology*. Elsevier. pp. 221–261.
662 doi:10.1016/S0065-308X(05)62007-6

663 Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R,
664 Redman E, Stasiuk S, Schertzberg M, Angus McQuibban G, Caffrey CR, Cutler SR,
665 Tyers M, Giaever G, Nislow C, Fraser AG, MacRae CA, Gilleard J, Roy PJ. 2015.
666 *Caenorhabditis elegans* is a useful model for anthelmintic discovery. *Nat Commun*
667 **6**:7485–7485. doi:10.1038/ncomms8485

668 Butler JA, Mishur RJ, Bokov AF, Hakala KW, Weintraub ST, Rea SL. 2012. Profiling the
669 Anaerobic Response of *C. elegans* Using GC-MS. *PLoS ONE* **7**:1–9.
670 doi:10.1371/journal.pone.0046140

671 Cecchini G, Thompson CR, Ackrell BA, Westenberg DJ, Dean N, Gunsalus RP. 1986. Oxidation
672 of reduced menaquinone by the fumarate reductase complex in *Escherichia coli* requires
673 the hydrophobic FrdD peptide. *Proc Natl Acad Sci U S A* **83**:8898–8902.

674 Crane FL, Hatefi Y, Lester RL, Widmer C. 1957. Isolation of a quinone from beef heart
675 mitochondria. *Biochim Biophys Acta* **25**:220–221.

676 Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, Kurosu M. 2012.
677 Discovery of selective menaquinone biosynthesis inhibitors against *Mycobacterium*
678 *tuberculosis*. *J Med Chem* **55**:3739–3755. doi:10.1021/jm201608g

679 Detmer K, Massey V. 1985. Effect of substrate and pH on the oxidative half-reaction of phenol
680 hydroxylase. *J Biol Chem* **260**:5998–6005.

681 Downing RS, Kunkeler PJ, van Bekkum H. 1997. Catalytic syntheses of aromatic amines. *Catal*
682 *Today* **37**:121–136. doi:10.1016/S0920-5861(97)00005-9

683 Entsch B, Ballou DP, Massey V. 1976. Flavin-oxygen derivatives involved in hydroxylation by

684 p-hydroxybenzoate hydroxylase. *J Biol Chem* **251**:2550–2563.

685 Falk MJ, Zhang Z, Rosenjack JR, Nissim I, Daikhin E, Nissim I, Sedensky MM, Yudkoff M,
686 Morgan PG. 2008. Metabolic pathway profiling of mitochondrial respiratory chain
687 mutants in *C. elegans*. *Mol Genet Metab* **93**:388–397. doi:10.1016/j.ymgme.2007.11.007

688 Fioravanti CF, Kim Y. 1988. Rhodoquinone requirement of the *Hymenolepis diminuta*
689 mitochondrial electron transport system. *Mol Biochem Parasitol* **28**:129–134.
690 doi:10.1016/0166-6851(88)90060-6

691 Föll RL, Pleyers A, Lewandowski GJ, Wermter C, Hegemann V, Paul RJ, Fo RL, Paul J. 1999.
692 Anaerobiosis in the nematode *Caenorhabditis elegans*. *Comp Biochem Physiol B Biochem*
693 *Mol Biol* **124**:269–80.

694 Hayaishi O, Rothberg S, Mehler AH, Saito Y. 1957. Studies on oxygenases; enzymatic
695 formation of kynurenine from tryptophan. *J Biol Chem* **229**:889–896.

696 Heidelberger C, Gullberg ME. 1948. Concerning the mechanism of the mammalian conversion
697 of tryptophan into kynurenine, kynurenic acid, and nicotinic acid. *J Biol Chem* **175**:471.

698 Hochachka PW, Mustafa T. 1972. Invertebrate facultative anaerobiosis. *Science* **178**:1056–1060.

699 Isom GE, Liu DH, Way JL. 1975. Effect of sublethal doses of cyanide on glucose catabolism.
700 *Biochem Pharmacol* **24**:871–875.

701 Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, Chen F, Wu
702 X, Zhang G, Fang X, Kang Y, Anderson GA, Harris TW, Campbell BE, Vlaminck J,
703 Wang T, Cantacessi C, Schwarz EM, Ranganathan S, Geldhof P, Nejsum P, Sternberg
704 PW, Yang H, Wang Jun, Wang Jian, Gasser RB. 2011. *Ascaris suum* draft genome.
705 *Nature* **479**:529–533. doi:10.1038/nature10553

706 Jonassen T, Larsen PL, Clarke CF. 2001. A dietary source of coenzyme Q is essential for growth
707 of long-lived *Caenorhabditis elegans* clk-1 mutants. *Proc Natl Acad Sci U S A* **98**:421–6.
708 doi:10.1073/pnas.021337498

709 Jones AK, Buckingham SD, Sattelle DB. 2005. Chemistry-to-gene screens in *Caenorhabditis*
710 *elegans*. *Nat Rev Drug Discov* **4**:321–330. doi:10.1038/nrd1692

711 Kita K. 1992. Electron-transfer complexes of mitochondria in *Ascaris suum*. *Parasitol Today*
712 **8**:155–159.

713 Klockiewicz M, Gaasenbeek CPH, Tielens AGM, Van Hellemond JJ, Roos MH. 2002.
714 Rhodoquinone and Complex II of the Electron Transport Chain in Anaerobically
715 Functioning Eukaryotes. *J Biol Chem* **270**:31065–31070. doi:10.1074/jbc.270.52.31065

716 Kmetec E, Bueding E. 1961. Succinic and reduced diphosphopyridine nucleotide oxidase
717 systems of *Ascaris* muscle. *J Biol Chem* **236**:584–591.

718 Komuniecki R, McCrury J, Thissen J, Rubin N. 1989. Electron-transfer flavoprotein from
719 anaerobic *Ascaris suum* mitochondria and its role in NADH-dependent 2-methyl
720 branched-chain enoyl-CoA reduction. *BBA - Bioenerg* **975**:127–131. doi:10.1016/S0005-
721 2728(89)80210-5

722 Kotake Y. 1936. Studien über den intermediären Stoffwechsel des Tryptophans XVIII—XXIV.
723 *Hoppe-Seyler's Z Für Physiol Chem* **243**:237–265. doi:10.1515/bchm2.1936.243.6.237

724 Kurosu M, Narayanasamy P, Biswas K, Dhiman R, Crick DC. 2007. Discovery of 1,4-
725 dihydroxy-2-naphthoate [corrected] prenyltransferase inhibitors: new drug leads for
726 multidrug-resistant gram-positive pathogens. *J Med Chem* **50**:3973–3975.
727 doi:10.1021/jm070638m

728 Kwon O, Meganathan R. 2009. Biosynthesis of Menaquinone (Vitamin K2) and Ubiquinone
729 (Coenzyme Q). *EcoSal Plus* **3**. doi:10.1128/ecosalplus.3.6.3.3

730 Lonjers ZT, Dickson EL, Chu T-PT, Kreutz JE, Neacsu F a, Anders KR, Shepherd JN. 2012.
731 Identification of a new gene required for the biosynthesis of rhodoquinone in
732 *Rhodospirillum rubrum*. *J Bacteriol* **194**:965–71. doi:10.1128/JB.06319-11

733 Ma YC, Funk M, Dunham WR, Komuniecki R. 1993. Purification and characterization of
734 electron-transfer flavoprotein:rhodoquinone oxidoreductase from anaerobic mitochondria
735 of the adult parasitic nematode, *Ascaris suum*. *J Biol Chem* **268**:20360–20365.

736 Marbois BN, Clarke CF. 1996. The *COQ7* Gene Encodes a Protein in *Saccharomyces cerevisiae*
737 Necessary for Ubiquinone Biosynthesis. *J Biol Chem* **271**:2995–3004.
738 doi:10.1074/jbc.271.6.2995

739 Meyerhof O. 1927. Recent investigations on the aerobic and anaerobic metabolism of
740 carbohydrates. *J Gen Physiol* **8**:531–542.

741 Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS. 1999.
742 *Ascaris haemoglobin* is a nitric oxide-activated “deoxygenase.” *Nature* **401**:497–502.
743 doi:10.1038/46822

744 Mitchell P. 1975. Protonmotive redox mechanism of the cytochrome *b-c₁* complex in the
745 respiratory chain: Protonmotive ubiquinone cycle. *FEBS Lett* **56**:1–6. doi:10.1016/0014-
746 5793(75)80098-6

747 Mitchell P. 1961. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-
748 Osmotic type of Mechanism. *Nature* **191**:144–148. doi:10.1038/191144a0

749 Momose K, Rudney H. 1972. 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane
750 of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A
751 demonstration of isoprenoid synthesis in rat liver mitochondria. *J Biol Chem* **247**:3930–
752 3940.

753 Moore HW, Folkers K. 1965. Coenzyme Q. LXII. Structure and Synthesis of Rhodoquinone, a
754 Natural Aminoquinone of the Coenzyme Q Group. *J Am Chem Soc* **87**:1409–1410.
755 doi:10.1021/ja01084a065

756 Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu R-Y, van der
757 Giezen M, Tielens AGM, Martin WF. 2012. Biochemistry and evolution of anaerobic
758 energy metabolism in eukaryotes. *Microbiol Mol Biol Rev MMBR* **76**:444–95.
759 doi:10.1128/MMBR.05024-11

760 Nicholls P, Van Buuren KJH, Van Gelder BF. 1972. VIII. EFFECT OF CYANIDE ON THE
761 CATALYTIC ACTIVITY. *Biochim Biophys Acta* **275**:279–287.

762 Ozeir M, Pelosi L, Ismail A, Mellot-Draznieks C, Fontecave M, Pierrel F. 2015. Coq6 Is
763 Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in
764 *Saccharomyces cerevisiae*. *J Biol Chem* **290**:24140–24151.
765 doi:10.1074/jbc.M115.675744

766 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004.
767 UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput
768 Chem* **25**:1605–1612. doi:10.1002/jcc.20084

769 Pierrel F. 2017. Impact of Chemical Analogs of 4-Hydroxybenzoic Acid on Coenzyme Q
770 Biosynthesis: From Inhibition to Bypass of Coenzyme Q Deficiency. *Front Physiol*
771 **8**:436. doi:10.3389/fphys.2017.00436

772 Rioux A, Komuniecki R. 1984. 2-Methylvalerate formation in mitochondria of *Ascaris suum* and
773 its relationship to anaerobic energy generation. *J Comp Physiol B* **154**:349–354.

774 Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. *J
775 Mol Biol* **234**:779–815. doi:10.1006/jmbi.1993.1626

776 Sangster NC, Cowling A, Woodgate RG. 2018. Ten Events That Defined Anthelmintic
777 Resistance Research. *Trends Parasitol* **34**:553–563. doi:10.1016/j.pt.2018.05.001

778 Sato M, Ozawa H. 1969. Occurrence of ubiquinone and rhodoquinone in parasitic nematodes,
779 *metastrongylus elongatus* and *Ascaris lumbricoides* var. suis. *J Biochem (Tokyo)* **65**:861–
780 867. doi:10.1093/oxfordjournals.jbchem.a129090

781 Sato M, Yamada K, Ozawa H. 1972. Rhodoquinone specificity in the reactivation of
782 succinoxidase activity of acetone-extracted *Ascaris* mitochondria. *Biochem Biophys Res
783 Commun* **46**:578–582.

784 Saz HJ, Lescure OL. 1969. The functions of phosphoenolpyruvate carboxykinase and malic
785 enzyme in the anaerobic formation of succinate by *Ascaris lumbricoides*. *Comp Biochem
786 Physiol* **30**:49–60. doi:10.1016/0010-406X(69)91296-1

787 Saz HJ, Vidrine A. 1959. The mechanism of formation of succinate and propionate by *Ascaris*
788 *lumbricoides* muscle. *J Biol Chem* **234**:2001–2005.

789 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert
790 M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality
791 protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* **7**:539.
792 doi:10.1038/msb.2011.75

793 Spensley M, Del Borrello S, Pajkic D, Fraser AG. 2018. Acute Effects of Drugs on
794 *Caenorhabditis elegans* Movement Reveal Complex Responses and Plasticity. *G3
795 Bethesda Md* **8**:2941–2952. doi:10.1534/g3.118.200374

796 Stairs CW, Fawcett JP, Dellaire G, Roger AJ, Muñoz-Gómez SA, Cohen A, Eme L, Shepherd
797 JN. 2018. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a
798 gene involved in rhodoquinone biosynthesis. *eLife* **7**. doi:10.7554/elife.34292

799 Stiernagle T. 2006. Maintenance of *C. elegans*. *WormBook Online Rev C Elegans Biol* 1–11.
800 doi:10.1895/wormbook.1.101.1

801 Takamiya S, Matsuda M, Aoki T, Murayama K, Taka H, Matsui T. 2002. Free-Living
802 Nematodes *Caenorhabditis elegans* Possess in Their Mitochondria an Additional
803 Rhodoquinone, an Essential Component of the Eukaryotic Fumarate Reductase System.
804 *Arch Biochem Biophys* **371**:284–289. doi:10.1006/abbi.1999.1465

805 Tielens AG, Horemans AM, Dunnewijk R, van der Meer P, van den Bergh SG. 1992. The
806 facultative anaerobic energy metabolism of *Schistosoma mansoni* sporocysts. *Mol
807 Biochem Parasitol* **56**:49–57.

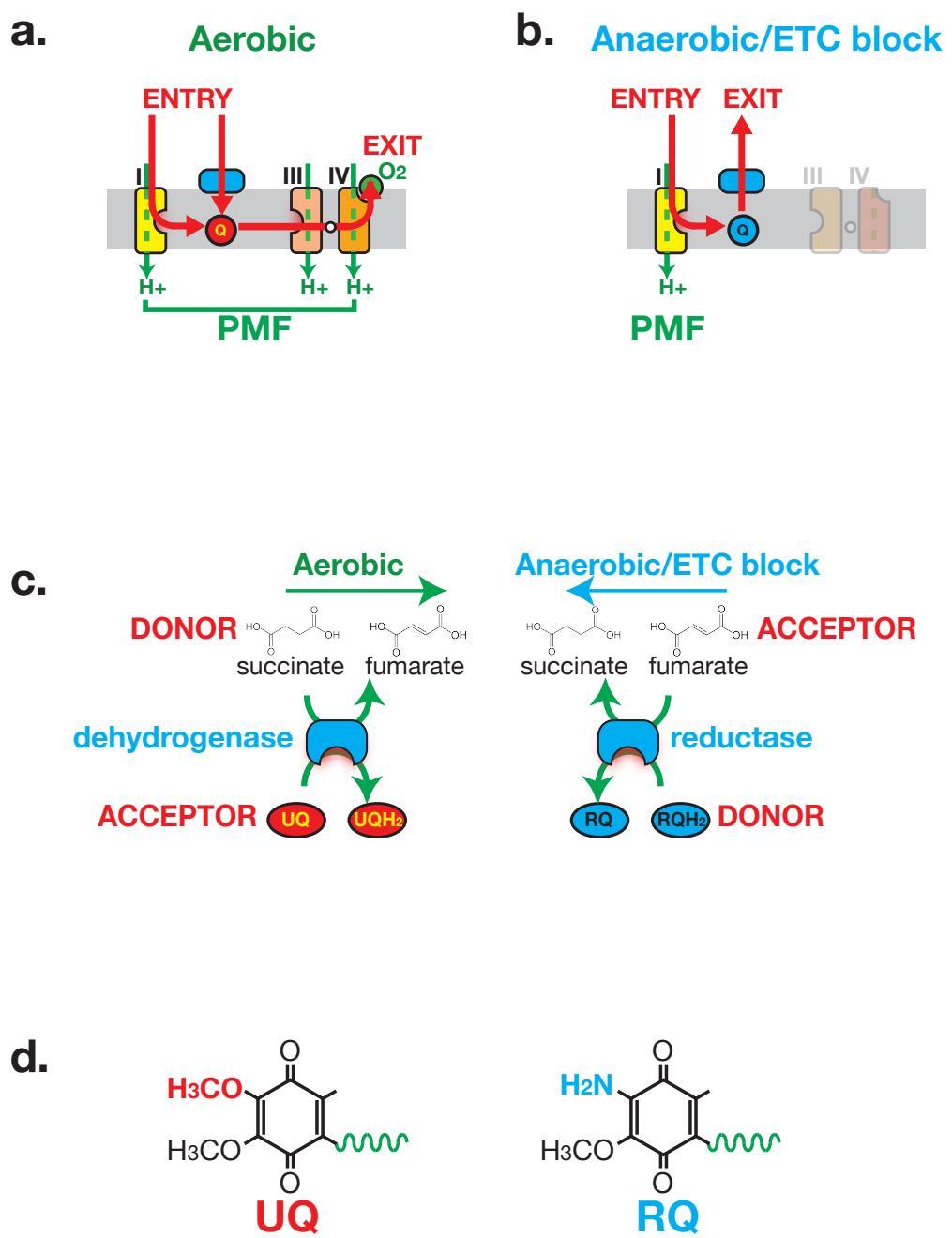
808 Tielens AGM. 1994. Energy generation in parasitic helminths. *Parasitol Today* **10**:346–352.
809 doi:10.1016/0169-4758(94)90245-3

810 Tielens AGM, van den Heuvel JM, van den Bergh SG. 1984. The energy metabolism of *Fasciola*
811 *hepatica* during its development in the final host. *Mol Biochem Parasitol* **13**:301–307.
812 doi:10.1016/0166-6851(84)90121-X

813 Trumppower BL, Houser RM, Olson RE. 1974. Studies on ubiquinone. Demonstration of the total
814 biosynthesis of ubiquinone-9 in rat liver mitochondria. *J Biol Chem* **249**:3041–3048.

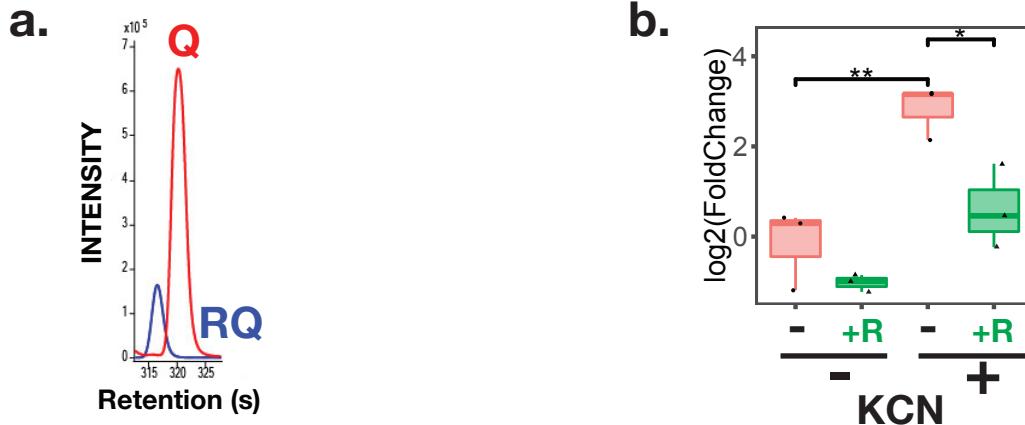
815 van der Goot AT, Zhu W, Vázquez-Manrique RP, Seinstra RI, Dettmer K, Michels H, Farina F,
816 Krijnen J, Melki R, Buijsman RC, Ruiz Silva M, Thijssen KL, Kema IP, Neri C, Oefner
817 PJ, Nollen EAA. 2012. Delaying aging and the aging-associated decline in protein
818 homeostasis by inhibition of tryptophan degradation. *Proc Natl Acad Sci U S A*
819 **109**:14912–14917. doi:10.1073/pnas.1203083109

820 Van Hellemond JJ, Klockiewicz M, Gaasenbeek CPH, Roos MH, Tielens AGM. 1995.
821 Rhodoquinone and Complex II of the Electron Transport Chain in Anaerobically

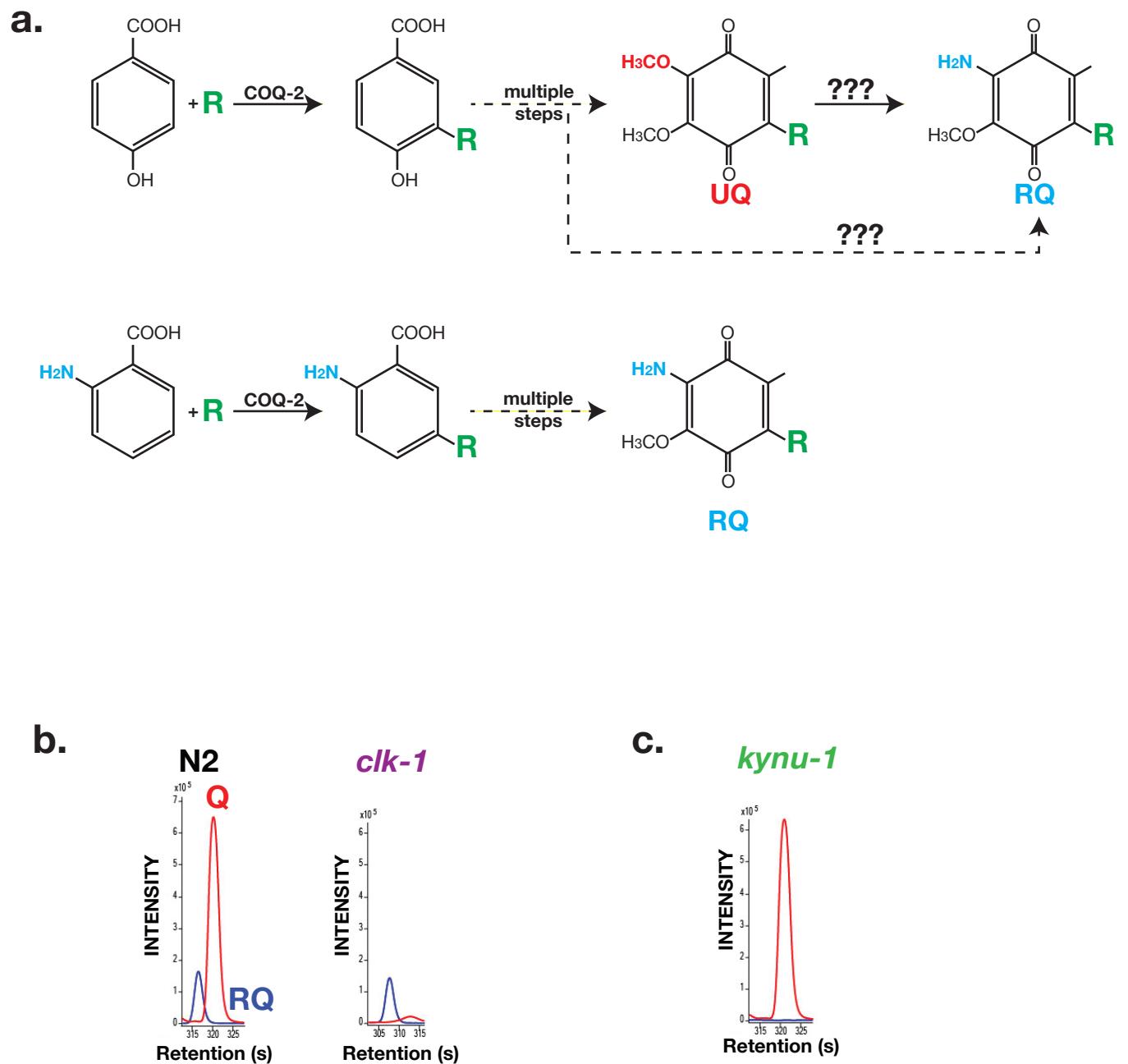

822 Functioning Eukaryotes. *J Biol Chem* **270**:31065–31070. doi:10.1074/jbc.270.52.31065

823 Van Hellemond JJ, Luijten M, Flesch FM, Gaasenbeek CPH, Tielens AGM. 1996.

824 Rhodoquinone is synthesized de novo by *Fasciola hepatica*. *Mol Biochem Parasitol*
825 **82**:217–226. doi:10.1016/0166-6851(96)02738-7

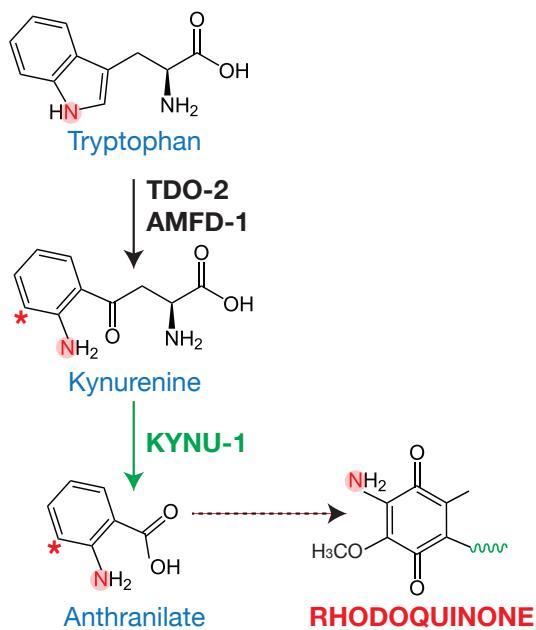

826 Webb B, Sali A. 2016. Comparative Protein Structure Modeling Using MODELLER. *Curr*
827 *Protoc Bioinforma* **54**:5.6.1-5.6.37. doi:10.1002/cpbi.3

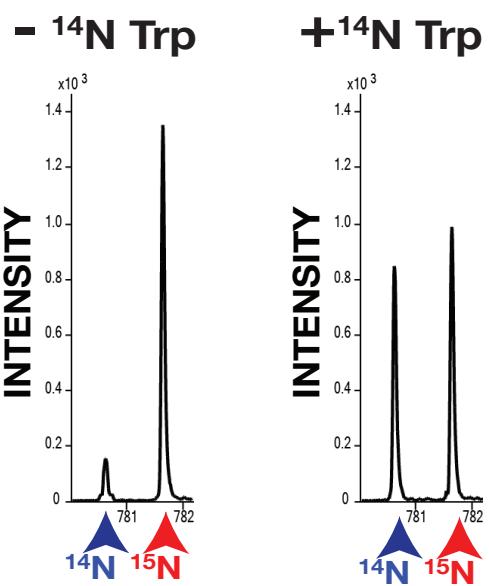
828 World Health Organization. 2002. Prevention and control of schistosomiasis and soil-transmitted
829 helminthiasis: report of a WHO expert committee.


FIGURE 1

Del Borrello et al.

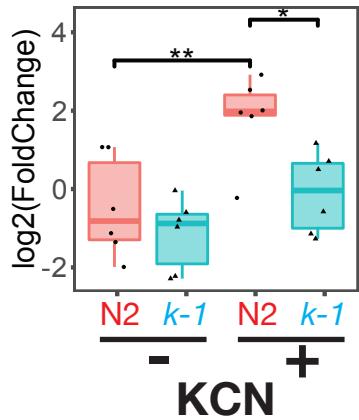
FIGURE 2


Del Borrello *et al.*

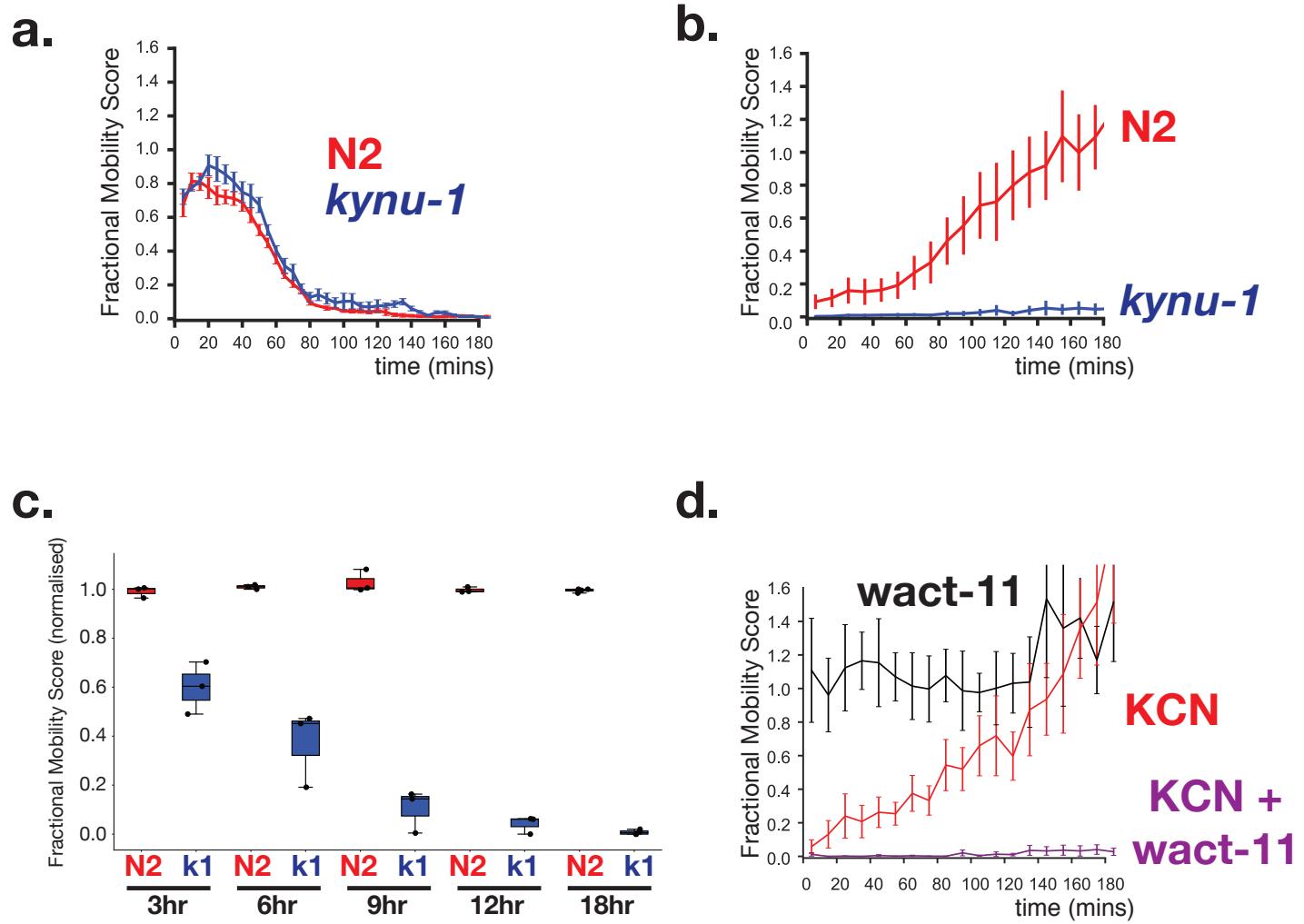

FIGURE 3

Del Borrello et al.

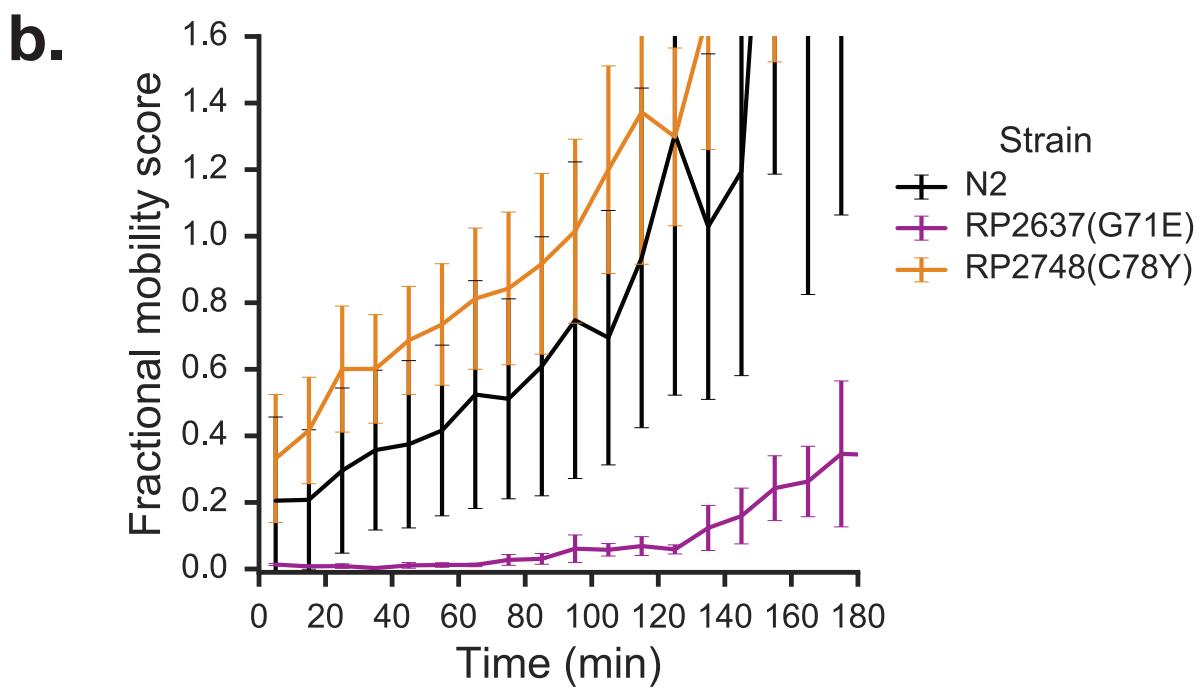
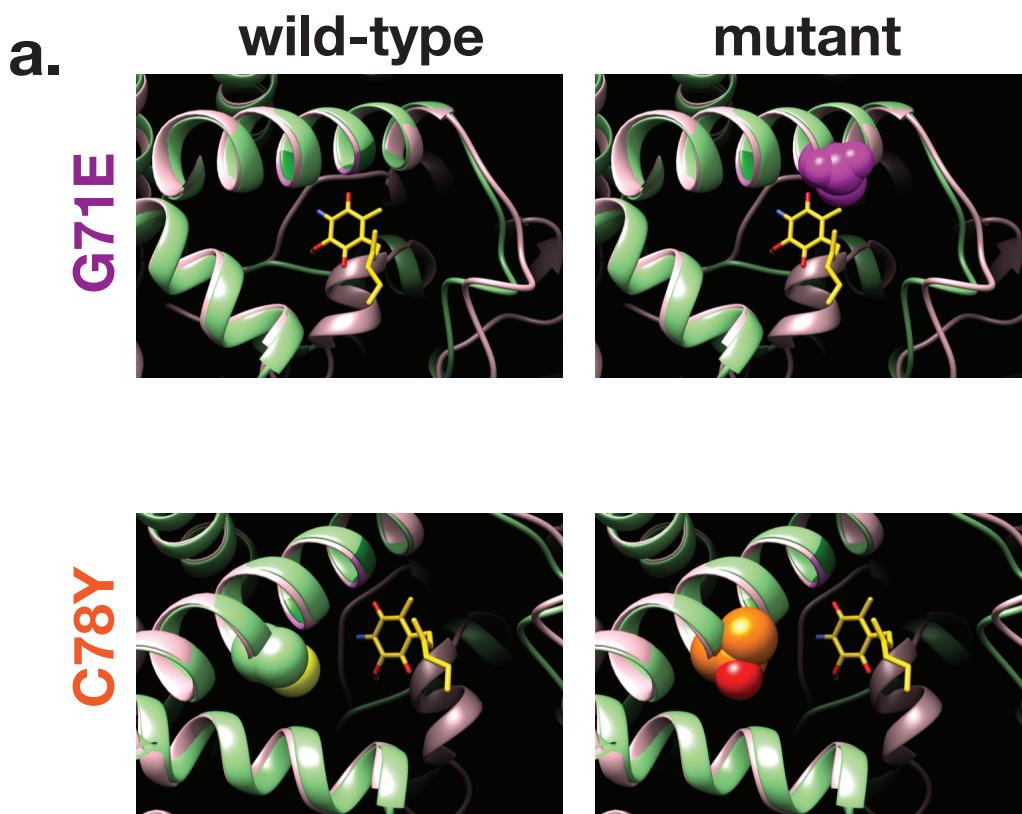
a.



b.

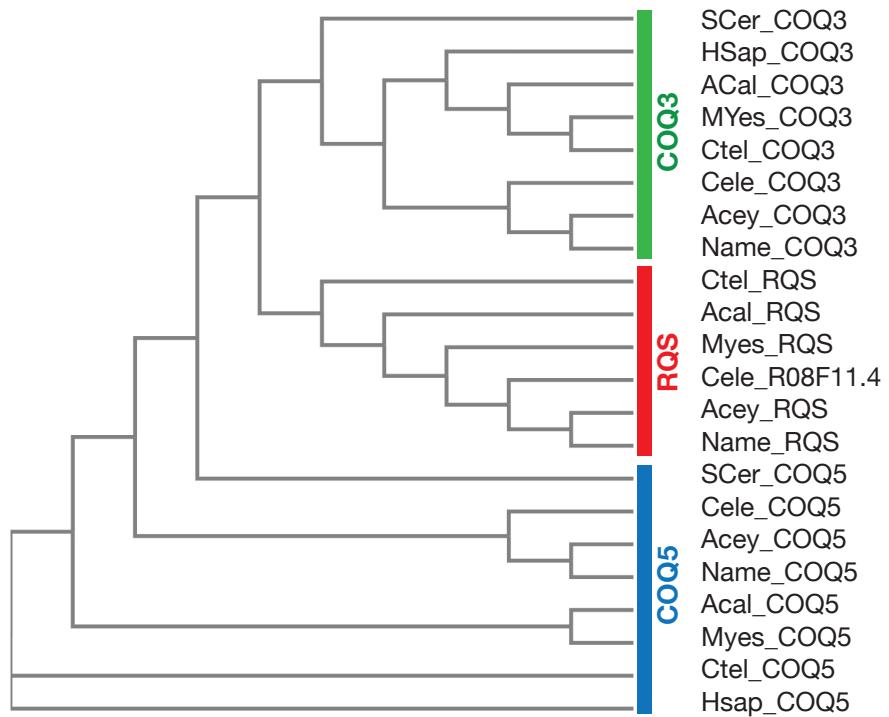

FIGURE 4

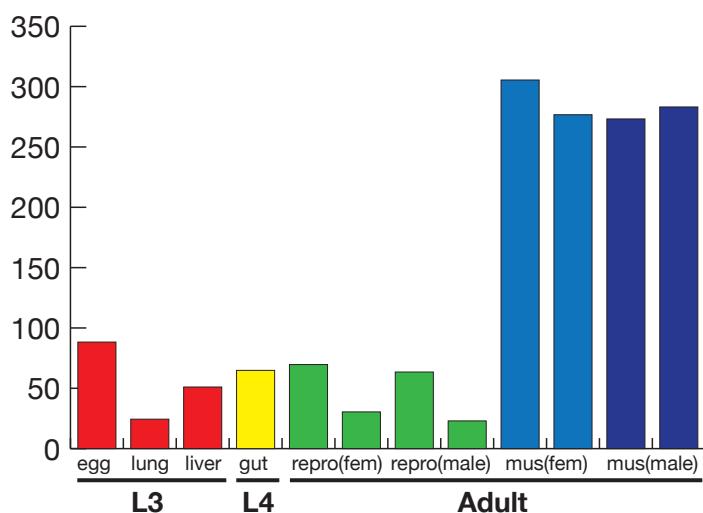
Del Borrello *et al.*



FIGURE 5

Del Borrello *et al.*

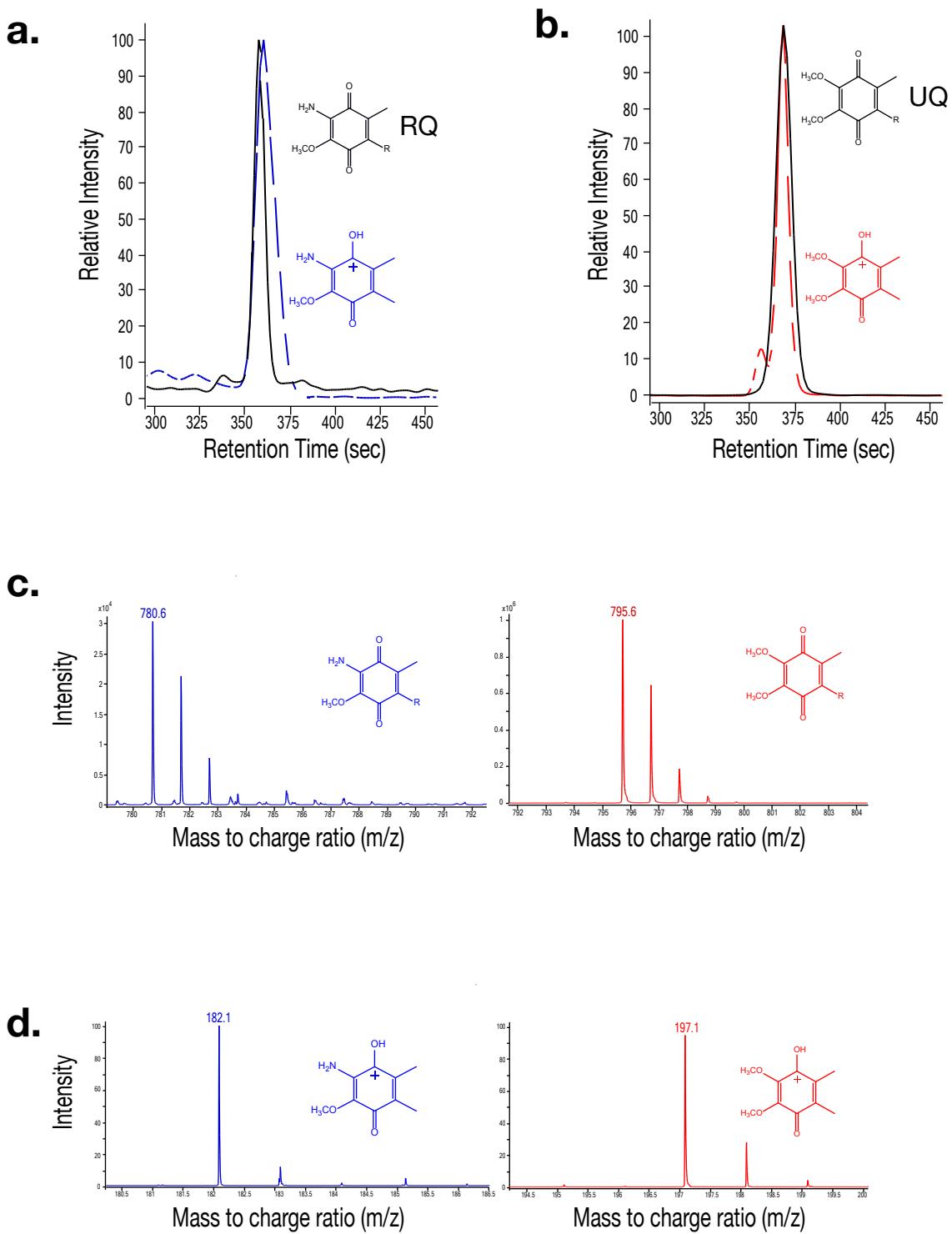
FIGURE 6


Del Borrello *et al.*


FIGURE 7

Del Borrello et al.

a.



b.

FIGURE 8

Del Borrello et al.

