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Abstract 

von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human 

frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to 

neuropsychiatric and neurodegenerative diseases, although little is known about other VEN 

cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identified a 

transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of 

pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse 

classification shows strong homology to extratelencephalic (ET) excitatory neurons that project 

to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human 

temporal cortex, but with a strikingly specific regional signature. Together these results predict 

VENs are a regionally distinctive type of ET neuron, and we additionally describe the first patch 

clamp recordings of VENs from neurosurgically-resected tissue that show distinctive intrinsic 

membrane properties relative to neighboring pyramidal neurons.   

 

Introduction 

von Economo neurons (VENs) are a morphologically-defined neuron type with a large, 

characteristic spindle-shaped cell body, thick bipolar dendrites with limited branching and a 

moderate density of spines, and often an axon initial segment that emanates from the side of the 

cell body 1,2,3.  VENs have been described in several large-brained mammals, such as humans, 

great apes, macaques, cetaceans, cows, and elephants, but not in rodents 4,5,6,7,8,9,10,1,11. In 

humans, they are restricted to the anterior cingulate (ACC), frontoinsular (FI), and medial 

frontopolar regions of cerebral cortex 12, while in most other species they are also found in the 

frontal and occipital poles 13 and may not be restricted to layer 5. Fork cells, another distinctive 
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morphological-defined neuron type, are often found in the same brain regions as VENs and are 

similarly characterized by a single large basal dendrite, but differ from VENs by having a 

divided apical dendrite 1,14. VENs and fork cells appear to be selectively vulnerable neuron types, 

as loss of these cells has been observed in behavioral variant frontotemporal dementia 

(bvFTD) 15,16,17. Loss of VENs has also been observed in several neuropsychiatric disorders, 

including schizophrenia 18 and suicidal psychosis 19, as well as in autism 20, agenesis of the 

corpus callosum 21, and possibly Alzheimer’s disease 22,23.   

 

Very little is known about VEN cellular phenotypes beyond their hallmark morphology, 

especially in human cortex.  Human FI and ACC neurosurgical resections are extremely rare for 

functional studies, and VEN sparsity without some form of genetically-based labeling makes 

their analysis difficult. VENs have been described in rhesus monkey and tract tracing studies 

suggest that they might project to ipsilateral ACC and contralateral anterior insula 4,24, as well as 

to more distant targets in the parabrachial nucleus of pons and the midbrain periaqueductal 

gray 25,26. Molecular analyses of human VENs have been more fruitful since these techniques can 

be applied to postmortem human tissues.  For example, a recent study using in situ hybridization 

(ISH) data from the Allen Brain Atlas identified ADRA1A, GABRQ and VMAT2 as VEN marker 

genes 27, and a study using laser microdissection of VENs followed by RNA-sequencing 

identified additional potential VEN marker genes 28. VENs have also been reported to express 

serotonin receptor 2B (HTR2B) and dopamine receptor D3 (DRD3) 29, and the Schizophrenia-

associated protein DISC14,25. Additionally, they express transcription 

factors FEZF2 and CTIP2 26 which are required for generating subcortical projection neurons in 

mice 30, and this has been used as evidence that VENs are subcortically-projecting neurons, 
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referred to here as extratelencephalic-projecting excitatory neurons (ET) (though we 

acknowledge that ET neurons may not strictly project to subcortical structures and may have 

telencephalic collaterals 31). However, Fezf2 is not specific for ET neurons but is also expressed 

in near-projecting pyramidal neurons in adult mouse 32, and expression of many cellular marker 

genes is not conserved between mouse and human 33,34. Furthermore, many of the reported 

markers of VENs are not exclusive to these cells but are also expressed in fork cells and 

pyramidal-shaped neurons. This highly incomplete characterization leaves unresolved many 

questions about whether morphologically-defined VENs represent a molecularly-distinct cell 

type and what their other properties are.   

 

Single cell RNA-sequencing (scRNA-seq) has emerged as an effective strategy for classifying 

and characterizing cell types in complex brain tissues, and single nucleus (sn) RNA-seq can be 

used on frozen postmortem human brain specimens 35,36.  Applied to cortex, this approach 

reveals a high degree of cellular diversity, with upwards of 100 transcriptomically-defined cell 

types in any cortical area 33,32,37,38. Furthermore, these data enable quantitative alignment of cell 

types across brain regions and between species to establish identity by transcriptional similarity 

using new computational strategies for mapping of transcriptomic types between datasets 39,40,41. 

Such alignment permits prediction of cellular properties and projection targets in human based 

on properties described in well-studied mouse cell types 33.   

 

To reveal the transcriptomic signature and predict properties of VENs, we performed snRNA-seq 

on nuclei from layer 5 of FI and compared to similar data from mouse visual and human 

temporal cortex. We find a single transcriptomic cluster expressing several known markers for 
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VENs that aligns with ET neurons in mouse cortex, as well as a putative transcriptomically-

defined ET cluster in human temporal cortex that has a distinctive regional signature compared 

to FI. We identify many novel markers for this cluster and demonstrate that they are co-

expressed in a combination of pyramidal neurons, VENs, and fork cells. Finally, we present a 

case study with the first electrophysiological recordings of putative VENs, and show that they 

have distinctive intrinsic membrane properties from neighboring layer 5 pyramidal neurons.  

 

Results 

Transcriptomic cell types in layer 5 of FI 

We employed snRNA-seq 35,36 to profile nuclei from FI of two postmortem human brain 

specimens (Fig. 1a) as previously described 42,33. Briefly, layer 5 was microdissected from 

fluorescent Nissl-stained vibratome sections of FI and nuclei were liberated from tissue by 

Dounce homogenization. NeuN staining and fluorescence-activated cell sorting (FACS) were 

used to enrich for neuronal (NeuN+) and non-neuronal (NeuN-) nuclei (Supplementary Figure 

1a). RNA-sequencing was carried out using Smart-seq2, Nextera XT, and HiSeq sequencing. In 

total 879 nuclei were processed for RNA-seq and were sequenced to a median of 4 million 

mapped reads. Median gene detection (expression > 0) was 10,339 for excitatory neurons, 9,426 

for inhibitory neurons, and 6,146 for non-neuronal cells, consistent with previous reports 42,33,32 

(Supplementary Fig. 1b).   
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Figure 1. Cell type characterization in human frontal agranular insular cortex (FI). (A) Schematic 

diagram illustrating nuclei isolation from postmortem human brain specimens. The FI region was 

isolated, vibratome sectioned, stained with fluorescent Nissl, and layer 5 was dissected and processed for 
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nuclei isolation, fluorescence-activated cell sorting (FACS), and RNA-sequencing. Examples of cells with 

morphologies typical of von Economo neurons (VENs) are shown in the images of Nissl-stained tissues 

(arrowheads). In total 561 single layer 5 neurons passed quality control. (B) Hierarchical representation 

of 18 neuronal (5 inhibitory, 13 excitatory) and 4 non-neuronal transcriptomic cell types based on 

median cluster expression. Major cell classes are labeled at branch points in the dendrogram. The bar 

plot below the dendrogram represents the number of nuclei within each cluster. Cluster-specific colors 

and labels are used in all subsequent figures. (C) Heatmap showing the expression of cell class marker 

genes across all clusters. Maximum expression values for each gene are listed on the far right-hand side 

of the plot. Gene expression values are quantified as counts per million of intronic plus exonic reads and 

displayed on a log10 scale. (D) Violin plots showing expression of four marker genes per excitatory 

cluster. Each row represents a gene, black dots show median gene expression within clusters, and 

maximum expression values for each gene are shown on the right-hand side of each row. Gene expression 

values are displayed on a linear scale. 

 

Iterative clustering was used as described 42,33,32 to group nuclei by gene expression similarity. 

Briefly, high variance genes were identified while accounting for gene dropouts, expression 

dimensionality was reduced with principal components analysis (PCA), and nuclei were 

clustered using Jaccard-Louvain community detection. Clusters containing cells from only a 

single donor as well as nuclei mapping to low-quality outlier clusters (n=318) were excluded 

from further analysis, leaving a total of 561 high quality nuclei. We identified a robust set of 22 

transcriptomically-defined clusters (Fig. 1b) that contained cells from both donors at roughly 

comparable proportions within broad classes (Supplementary Fig. 1c, d). Five inhibitory neuron 

types spanning all expected subclasses (two LAMP5 types, VIP, SST, and a LHX6+/SST- cluster 

corresponding to PVALB), 13 excitatory neuron types, and four major non-neuronal cell types 

(oligodendrocyte precursor cells, oligodendrocytes, astrocytes, and microglia) were identified 

(Fig. 1c). Clusters were named using a broad class marker in combination with a highly specific 

marker, as described previously 33. 

 

Excitatory clusters in FI expressed broad class markers previously identified in human middle 

temporal gyrus (MTG) (Fig. 1c, d) 33. One cluster had high expression of the MTG upper layer 

marker LINC00507 and likely represents deep layer 3 pyramidal neurons sampled at the layer 
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3/5a boundary, since FI is agranular and does not contain layer 4. Three clusters express CTGF, 

a canonical marker for deep layer 6 neurons in mouse that has more widespread layer 6 

expression in human 34, suggesting these clusters represent cells captured at the layer 5b/6 

border. Two clusters highly express THEMIS, which is also expressed in layer 5 and 6 excitatory 

neuron types in MTG 33. Four clusters express RORB, which marks a subset of cells localized 

throughout layers 3-5 in MTG 33 and has a similar pattern of expression in FI (Fig. 2). Finally, 

we find 3 clusters with high expression of FEZF2, previously shown to be expressed in VENs 26, 

subcortically-projecting and near-projecting excitatory neurons in mouse cortex 32, and several 

deep layer excitatory types in human MTG 33.    

 

Identifying a transcriptomic cell type corresponding to VENs 

To characterize each cluster and determine whether one might represent VENs, we examined 

selective marker genes for each excitatory cluster (the top four per cluster are shown in Fig. 

1d). One cluster, Exc FEZF2 GABRQ, specifically expressed the reported VEN and fork cell 

markers GABRQ and ADRA1A 27, suggesting that this cluster, but not the other two FEZF2+ 

clusters (Fig. 1c), likely included VENs. Exc FEZF2 GABRQ also had the largest number of 

expressed genes (Supplementary Fig. 1b), suggesting high RNA content and perhaps correlated 

with the reported large size of VENs 12,1. To confirm that Exc FEZF2 GABRQ included VENs, 

we looked for genes selective for one or more excitatory cell types in our dataset that also had 

existing ISH data in the Allen Human Brain Atlas (http://human.brain-map.org/) 43,34 (Fig. 2a).   
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Figure 2. Identifying a transcriptomic cell type that corresponds to von Economo neurons (VENs) in 

situ. (A) Violin plots showing distributions of genes further examined by in situ hybridization (ISH). Each 

row represents a gene, black dots indicate median gene expression within clusters, and maximum gene 

expression values are shown on the right-hand side of each row. Gene expression values are displayed on 

a linear scale. The EXC GABRQ FEZF2 type expresses GABRQ and ADRA1A, previously defined 

markers of VENs. (B) Chromogenic single gene ISH from the Allen Human Brain Atlas for GABRQ 

and ADRA1A confirms a subset of layer 5b cells expressing these genes have spindle-shaped cell bodies 

typical of VENs (red arrows). The nearest Nissl-stained section is shown for each ISH image for laminar 

context.  (C) ISH from the Allen Human Brain Atlas for genes expressed in other excitatory neuron types 

revealed by our analyses. Genes are expressed in and around layer 5 of FI but labeled cells lack spindle-

shaped cell bodies typical of VENs. Red arrows in the nearest Nissl-stained section for each ISH image 

show cells with VEN morphology in the approximate region highlighted in the neighboring ISH image 

(red rectangle). Scale bars in B and C: low magnification, 150 μm, high magnification 50 μm. (D) 

Multiplex fluorescent ISH (top left) and double chromogenic ISH for marker genes of Exc FEZF2 

GABRQ. Cells with pyramidal (P), VEN (V), and fork (F) morphologies are indicated by labeled arrows 

in each image. Scale bars, 10 μm. (E) Quantification of the proportion of ADRA1A+, POU3F1+ cells 

with pyramidal versus VEN morphologies (n=5 human donors). Cells lacking defining features of these 

morphological classes were called uncharacterized. Bars show the mean and error bars the standard 

deviation.  

  

As previously reported 27 and supporting identification of Exc FEZF2 GABRQ as the cluster 

containing VENs, ISH for GABRQ and ADRA1A showed that a subset of cells in layer 5b 

expressing these genes have spindle-shaped cell bodies typical of VENs (Fig. 2b). However, not 

all cells labeled with GABRQ and ADRA1A had spindle-shaped cell bodies, indicating that these 

genes do not exclusively mark VENs. In contrast, ISH for genes expressed in other excitatory 

neuron types did not label cells with obviously spindle-shaped cell bodies (Fig. 2c). In particular, 

both HTR2C and ALDH1A1, which were expressed in the other two FEZF2+ cell types that we 

found, did not label any spindle-shaped cells. 

 

To further validate and explore the morphological cell types comprising the Exc FEZF2 

GABRQ cluster, we performed multiplex fluorescent (mFISH) and double chromogenic (dISH) 

ISH for cluster-specific marker genes (Fig. 2a, d). Consistent with single gene ISH for GABRQ 

and ADRA1A, we find that pyramidal-shaped neurons, fork cells, and VENs are all labeled with 

combinations of specific marker genes for Exc FEZF2 GABRQ suggesting that this single 
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transcriptomic type contains a mixture of morphological cell types (Fig. 2d). To quantify the 

proportions of Exc FEZF2 GABRQ cells with these different morphologies, we performed dISH 

staining for ADRA1A+ and POU3F1+ double-positive cells because high expression of these 

genes coupled with significant amplification of signal intensity in the dISH method highlights 

the morphology of labeled cells (Fig. 2d). Double-positive cells were classed as pyramidal, 

VEN, or uncharacterized (cells that lacked defining morphological features and were likely 

bisected by the plane of section, Methods) in FI tissues from 5 different human donors. Fork 

cells were extremely rare and were not explicitly quantified. Our results show that of 

all ADRA1A+ and POU3F1+ double-positive cells, ~60% had pyramidal morphology compared 

with ~25% that had VEN morphology, confirming that morphologically-defined VENs represent 

only a subset of the neurons that comprise the Exc FEZF2 GABRQ type.  

 

VENs are predicted to be regionally specialized extratelencephalic-projecting neurons 

New methods that enable alignment of cells between data sets based on gene expression profiles 

can be used to align cell types across cortical regions and across species 39,40,41. This provides a 

mechanism for predicting cellular properties of human cell types based on measurements made 

in homologous cell types from model systems. For example, by performing retrograde labeling 

and scRNA-seq on the same cells (i.e. Retro-seq), the long-range projection specificity of each 

excitatory transcriptomic type in mouse cortex can be assessed 32. Previously we showed that 

nearly all transcriptomically-defined cell classes and subclasses identified in human MTG can be 

aligned with transcriptomically-defined types in mouse anterior lateral motor cortex (ALM) and 

primary visual cortex (VISp), even if other features are distinct between species 33, enabling 

prediction of the projection targets of homologous human types.   
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To shed light on the cellular properties of the Exc FEZF2 GABRQ type, we combined the present 

data from human FI with representative sets of cells from human MTG 33 and mouse ALM and 

VISp 32 into an integrated reference using Seurat (V3.0) 39,40. Only excitatory cells from each 

data set were included in the assembly, and cells from mouse data sets were grouped based on 

subclass, which combines cell types with matched predominant layer of soma location and long-

range projection targets 32. Eight clusters were identified using Seurat, which each contain cells 

from all four data sets (Fig. 3a) and that matched with the groupings visualized through UMAP 

dimensionality reduction (Fig. 3b). More importantly, nearly all cells from mouse were mapped 

to the cluster in the joint assembly that matched their initially assigned subclass (Fig. 3c), with 

one exception.  As reported in mouse ALM 32, we identify one cluster in agranular human FI 

(Exc RORB SLC38A11) whose best match is with intratelencephalic (IT) layer 4 clusters in 

human MTG and mouse VISp. Furthermore, the subclass assignments here match those reported 

previously using different alignment strategies for almost all MTG clusters (compare Fig. 3c 

with Fig 6f from 33). This analysis shows that Exc FEZF2 GABRQ co-clusters with Exc L4-

5 FEZF2 SCN4B from human MTG and all layer 5 ET clusters from mouse VISp and ALM (Fig. 

3c), suggesting that VENs are part of a cluster of neurons with deep subcortical projections.  
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Figure 3. Evolutionary conservation of cell types between human and mouse predicts that VENs 

project sub-cortically. (A-B) Excitatory neurons in human FI (red), human MTG (green), mouse ALM 

(cyan), and mouse VISp (purple) were integrated and aligned using Seurat v3 37 with default parameters, 

and visualized using UMAP.  (A) Cells from each data-set co-cluster, indicating good matching of types 

between brain regions and species. (B) Eight Seurat clusters were identified using the Louvain algorithm 

and labeled based on expected cortical layer and projection target (as described in C). (C) Membership 

of cells from excitatory clusters in each data set in the Seurat clusters.  Colors indicate the fraction of 

total cells per cluster assigned to each Seurat cluster (rows sum to 1). Data set clusters are grouped 

based on maximal fraction of cells in the cluster. Cortical layer of cluster inferred based on predominant 

cortical layer of cells from mouse and human data sets, except for the layer 4 (L4* IT) cluster which 

primarily includes cells from layer 5 in structures without a layer 4. Projection targets of clusters are 

inferred based on known projection targets of clusters in mouse ALM and VISp (IT - intratelencephalic, 

ET - extratelencephalic, NP - near-projecting, CT - corticothalamic).  Box highlights that the Exc FEZF2 

GABRQ cluster is part of a L5 ET cluster.  
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Interestingly, the other two FEZF2+ clusters in FI co-cluster with near-projecting neurons in 

mouse, indicating that, despite the developmental role of FEZF2 in specifying subcortical 

projection neurons 30, not all neurons that express FEZF2 in the adult brain project subcortically.  

A summary of these results, including common markers between species, is shown 

in Supplementary Figure 2.   

 

Molecular characteristics of putative extratelencephalic neurons in human cortex 

While a number of VEN marker genes have been previously described27,26,44, we find that 

although most of these genes are expressed in Exc FEZF2 GABRQ, very few are specific to this 

cluster but rather are expressed in several or many other excitatory neuron types 

(Supplementary Fig. 3). To describe a more refined set of genes selectively expressed in VENs 

and other putative ET neurons, we performed differential expression analysis comparing 

Exc FEZF2 GABRQ to all other excitatory clusters (Methods) and identified 30 genes 

selectively expressed in Exc FEZF2 GABRQ (Fig. 4a). These genes included reported markers 

for VENs such as GABRQ and ADRA1A, as well as many novel markers. Several genes appear to 

be common ET markers in mouse and human, including FAM84B, POU3F1, 

and ANKRD34B (Supplementary Fig. 2), although many more show divergent patterning 

between species than between region, as previously shown 33.    
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Figure 4. Extratelencephalic (ET) cells in human frontoinsula (FI) and middle temporal gyrus (MTG) 

share many common markers but differ in frequency. (A-B) Violin plots in human FI (A) and MTG (B) 

showing expression of genes enriched in Exc FEZF2 GABRQ, the corresponding cluster in human MTG, 

or both (see Methods), including many novel putative markers of VENs. Gene expression values are 

displayed on a log2 scale. (C) Representative inverted images of DAPI-stained sections of FI and MTG. 

Red dots depict the locations of cells labeled using multiplex fluorescent in situ hybridization (mFISH) for 

ET marker gene POU3F1 and SLC17A7. Scale bars in (C): DAPI images 50 μm, mFISH images 10 

μm. (D) Black, quantification of the proportion of SLC17A7+ cells expressing the ET marker POU3F1 in 
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FI and MTG expressed as a fraction of the total number of excitatory (SLC17A7+) cells in layer 5 of 

either region. Green, comparable quantification of the fraction of excitatory neurons dissected from layer 

5 that are assigned to the ET clusters “Exc L4-5 FEZF2 SCN4B” (MTG) or “Exc FEZF2 GABRQ” 

(FI). By both mFISH and single nucleus RNA-seq (snRNA-seq), a higher fraction of putative ET cells is 

found in FI. Bars show the mean and error bars the standard deviation.  

 

Interestingly, approximately half of genes enriched in Exc FEZF2 GABRQ were similarly 

enriched in the matching MTG ET cluster (e.g., ADRA1A) (Methods, Fig. 4b). However, region-

specific genes were apparent for both FI (Exc FEZF2 GABRQ) and MTG (Exc L4-5 FEZF2 

SCN4B), consistent with reported variation of excitatory neurons across cortical areas 32, and 

more region-specific marker genes were apparent in FI (e.g. GABRQ) compared to MTG 

(e.g. FREM2). SnRNA-seq data suggested that the proportion of putative ET neurons may also 

vary between MTG and FI (Fig. 4c). To further examine this difference in situ we used mFISH 

to count the fraction of total excitatory cells (SLC17A7+) in layer 5 that also express the ET 

marker gene POU3F1 (Fig. 4c, d). In agreement with snRNA-seq data, mFISH counts showed 

that a substantially higher fraction of putative ET cells was found in FI than in MTG. Together 

these results indicate that, while the primary features of putative ET neurons in human are 

conserved across cortical areas, ET neurons in FI appear to be more abundant and have a greater 

number cluster-enriched genes (Fig. 4) and more diverse cellular morphologies than those in 

MTG (Fig. 2, 4). 

 

Intrinsic membrane properties of putative VENs 

ET neurons possess distinctive intrinsic membrane properties from neighboring non-ET 

neurons45,46. To test whether VENs also have distinctive electrophysiological properties, we took 

advantage of a very rare opportunity to perform single neuron patch clamp recordings in human 

insula ex vivo brain slices from a single human donor. In this case study, peri-tumor insula tissue 
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was removed from the brain of a 68-year-old female patient to access a deep brain tumor located 

in the left insula/putamen region (Fig. 5a-c). We performed whole-cell patch clamp recordings 

from large spindle-shaped neurons (putative VENs) in layer 5 (n=3) and nearby (presumably 

non-ET) pyramidal neurons for comparison (n = 5). A biocytin cell fill was also recovered for 

one recorded VEN (Fig. 5d), with confirmed layer 5 localization based on soma location (1.7 

mm from the pial surface of the slice) in the DAPI stain.  

 

 

Figure 5. Distinctive electrophysiological properties of putative L5 VENs in ex vivo insula brain slices 

from a human neurosurgery patient. (A) MRI image data indicating the location of the excised insula 

tissue specimen for research. (B) Best matched location in the Allen 2D coronal human brain reference 

atlas, with crosshairs centered on the short insular gyrus. Scale bar: 1cm. (C) Reported distribution and 
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relative density of VENs in the human insula (adapted from Figure 13d in Nieuwenhuys 2012 Progress in 

Brain Research). (D) Biocytin-filled putative VEN in L5 of an ex vivo insula brain slice. Low 

magnification brightfield and DAPI image confirms the L5 location of the neuron. The boxed region 

bounding the biocytin-filled neuron in expanded at right.  Inset: image of Alexa dye fill following patch 

clamp recording in live tissue.  Scale bars: 1 mm and 100 microns. (E) Example traces of action potential 

firing pattern in response to current injection steps for a representative pyramidal neuron (PN) and VEN. 

Scale bars: 50pA, 500msec. (F) Summary plot of action potential firing in response to current injection 

steps.  *p<0.0001, 2-way ANOVA. (G) Summary plot of coefficient of variation (CV) for VENs versus 

PNs.  *p<0.05, Mann-Whitney. (H) Summary plot of spike frequency adaptation (SFA) for VENs versus 

PNs.  *p<0.05, Mann-Whitney.   

 

 

This cell displayed the expected large spindle-shaped morphology with large caliber bipolar 

dendrites that extended into layer 6 (descending trunk), as well as towards the pial surface into 

upper layer 3 (ascending trunk). Dendritic branching was very simple, but with notable short and 

wispy lateral branches concentrated proximal to the soma. The axon could not be readily 

distinguished from these finer dendrites. The fill quality was not sufficient to make out clear 

dendritic spines; however, these recorded VENs appear to have a lower spine density than 

recorded pyramidal cells, which would be consistent with previous reports based on Golgi 

staining3. 

 

We observed marked differences in the suprathreshold response of putative VENs versus 

neighboring pyramidal neurons in response to 1s current injection steps (Fig. 5e-h). Specifically, 

VENs produced fewer action potentials in response to a given level of current injection. This 

difference may be related to differences in spike timing during a train of action potentials; 

putative VENs displayed higher variability in spike timing and greater spike frequency 

accommodation than neighboring pyramidal neurons. All putative VENs displayed brief pauses 

and prominent subthreshold membrane oscillations during sustained firing.  Although this result 

was not statistically significant (p>0.05), the differences in average input resistance of the 
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putative VENs (61 ± 14 Mohms, mean ± standard error [SE]) compared with neighboring 

pyramids (113 ± 25 Mohm, mean ± SE) may also contribute to differences in firing of these 

morphologically-distinct types. 

 

Discussion 

To determine if VENs represent a discrete transcriptionally-defined cell type, we applied 

snRNA-seq to classify neurons in FI layer 5 and carried out cross-species homology mapping to 

make predictions about VEN cellular phenotypes that are difficult to measure in human tissues. 

We define 13 excitatory neuron types, including one type (Exc FEZF2 GABRQ) that contains all 

VENs, but also neurons with fork and pyramidal morphologies. This approach identified many 

novel and selective marker genes of VENs and other excitatory neuron types that will facilitate 

better identification and study of these populations in situ. However, consistent with all 

published studies to date, we do not find a molecular signature that can distinguish VENs from 

transcriptionally similar fork or pyramidal neurons that comprise the Exc FEZF2 GABRQ type. 

One possibility is that these cells are not molecularly distinct in the adult, but rather represent a 

spectrum of morphologies established during development within a broader excitatory cell class. 

Alternatively, the current study may have lacked the power to discriminate closely related VEN 

and pyramidal neuron types due to the rarity of VENs relative to all excitatory neurons in layer 5 

and lack of a way to specifically enrich for these cells in human. Supporting this latter idea, 

greater diversity of ET neurons is seen in mouse where they are more abundant and can be 

selectively enriched 32,33, including one type projecting predominantly to myelencephalon and 

others targeting additional subcortical areas 32. Further studies using higher-throughput snRNA-
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seq technologies will be required to definitively answer this question, but it is clear that VENs, 

fork cells and a subset of pyramidal cells are transcriptomically similar to one another. 

 

Homology mapping to mouse strongly supports that VENs are deep-projecting ET neurons. Prior 

studies in mouse demonstrate a robust division between locally-projecting (IT) and deep-

projecting (ET) neurons 32. Alignment of human FI data with mouse cortical scRNA-seq data 

shows that Exc FEZF2 GABRQ is highly homologous to ET neurons in mouse VISp and 

ALM 32. In addition, VENs express transcription factors required for the generation of 

subcortically-projecting neurons, such as FEZF2 30, but do not express transcription factors 

associated with corticothalamic or callosal projections 26. Lastly, a study in rhesus monkey 

proposed that VENs primarily project to distant deep brain regions, including the parabrachial 

nucleus of dorsolateral pons and the periaqueductal gray 25. Together, our findings and those of 

previous reports 25,26 strongly suggest that VENs project to deep subcortical structures.  

However, VEN projections might not be restricted to ET targets as the tract-tracing study above 

indicates that some VENs project to both ipsilateral and contralateral cortical targets, potentially 

including VEN populations within homologous structures of the contralateral hemisphere 25. 

These results suggest that, like rosehip neurons 42 and interlaminar astrocytes 33, VENs may 

represent species-specific morphological specialization of an evolutionarily shared cell type. 

Furthermore, we recently used homology mapping in human MTG and identified a putative ET 

type homologous to mouse ET types 33. This MTG ET type aligns to the FI ET type, and much of 

the ET molecular signature is shared between FI and MTG. However, many genes are expressed 

selectively by the FI type that are distinct from MTG. MTG has not been shown to contain 

VENs, and putative ET cells in MTG appear to have pyramidal neuron morphology (Fig. 4) 33, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/627505doi: bioRxiv preprint 

https://doi.org/10.1101/627505
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

suggesting that VENs and fork cells might represent within-species regional specialization of a 

common class of large, subcortically-projecting excitatory neurons. 

 

Selective loss of VENs and fork cells in FI and ACC has been proposed to contribute to several 

neuropsychiatric disorders characterized by social-emotional deficits 20,18,19,21,47,16. Many of these 

disorders show dysfunction of the salience network 47, which has key nodes in these same brain 

regions 48 and coordinates the brain’s responses to behaviorally-relevant stimuli 49, suggesting a 

direct link between VEN loss and dysfunction. Additionally, the salience network has functional 

connectivity in several subcortical areas including parts of amygdala, striatum, dorsomedial 

thalamus, and substantia nigra 48, consistent with the predicted projection targets of VENs. 

However, our results suggest the possibility that bvFTD and other neuropsychiatric disorders 

targeting FI might result from loss of ET neurons more generally, rather than exclusive loss of 

VENs and fork cells. The novel markers identified here for ET neurons and other excitatory 

types provide numerous opportunities for a refined analysis of disease-related loss of excitatory 

neurons. Importantly, despite the lack of VENs in rodent brains, mouse models of bvFTD are 

surprisingly effective at recapitulating histopathological 50 and behavioral 51 impairments 

reported in humans, suggesting that additional cell types are likely affected or that rodent has a 

homologous type to VENs that, despite different morphology, has similar circuit function.   

 

A major challenge in understanding human brain cellular and circuit function is a paucity of 

tools, techniques, and tissue. However, techniques for physiological and morphological analysis 

using in vitro slice preparations and patch clamp physiology work robustly on human tissue from 

neurosurgical resections 52,53,54,55,56,57,58.  Although it is exceedingly rare for tissue to be removed 
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from regions like FI and ACC during such surgeries, the instances in which such specimens can 

be collected for research purposes represent rare opportunities to collect highly valuable data in 

the spirit of case studies in disease, where even sparse data can provide important observations 

and generate testable hypotheses. From the singular such specimen collected in more than three 

years, we demonstrate that neurons with VEN-like morphology in layer 5 of human insula can be 

targeted and functionally characterized. Furthermore, these putative VENs exhibit distinctive 

intrinsic physiological properties compared to neighboring pyramidal neurons in the same brain 

region. These data represent the first reported patch clamp recordings from putative VENs in the 

human insula, and our findings are consistent with the hypothesis that VENs represent a 

functionally specialized cell type, although further evidence will be necessary to establish the 

exact contributions of this cell type to human brain function in health and disease.  

 

It is essential to find experimental strategies to understand the specifics of the human brain, 

particularly for cell types affected by disease that are not present in widely used and genetically 

tractable model organisms. New technological advances built on the transcriptomic approach to 

cell type classification promise to accelerate progress on functional analyses of human neuron 

types. Patch-seq allows the combination of electrophysiological, transcriptomic and 

morphological analysis 59,60, which can in principle be applied to human brain slice studies over 

extended time frames with recent advances culturing of human ex vivo brain tissue 52.  

Furthermore, novel viral tools provide cell type-specific genetic targeting in this system 61, and 

application of enhancers for ET cells, such as the Fam84b enhancer that labels mouse ET cells 

with >90% specificity 62, could be used to label VENs in ex vivo human brain tissue. Such 

studies can help to further refine our understanding of the defining characteristics of VENs, 
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potentially providing information about their local connectivity and teasing out subtle gene 

expression differences between ET cells with spindle, fork, and pyramidal shapes.  

 

Methods 

Postmortem tissue donors 

After obtaining permission from decedent next-of-kin, postmortem adult human brain tissue was 

collected by the San Diego Medical Examiner’s office and provided to the Allen Institute for 

Brain Science. All tissue collection was performed in accordance with the provisions of the 

Uniform Anatomical Gift Act described in Health and Safety Code §§ 7150, et seq., and other 

applicable state and federal laws and regulations. The Western Institutional Review Board 

reviewed tissue collection processes and determined that they did not constitute human subjects 

research requiring IRB review. Tissue donors were prescreened for history of neuropsychiatric 

disorders, neuropathology, and infectious disease (HIV, Hepatitis B, Hepatitis C), and 

postmortem blood samples were sent for routine serology and toxicology testing. Specimens 

were further screened for RNA quality and had an RNA integrity number (RIN) ≥7. Tissues used 

for RNA-sequencing in this study were from two control Caucasian male donors who died from 

cardiovascular-related issues, aged 50 (H200.1025) and 54 (H200.1030) years, as previously 

described 42.   

 

Tissue processing and isolation of nuclei 

Whole postmortem brain specimens were processed as previously described 42,33. For RNA-

sequencing experiments, frontoinsula (FI) was identified on slabs of interest and vibratome 

sectioned as described 42,33 (Fig. 1). Layer 5 was microdissected from vibratome sections stained 
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with fluorescent Nissl. Mouse monoclonal anti-NeuN antibody (EMD Millipore, MAB377) was 

applied to nuclei preparations followed by secondary antibody staining (goat anti mouse Alexa 

Fluor 594, ThermoFisher), and single-nucleus sorting was carried out on a BD FACSAria Fusion 

instrument (BD Biosciences) using a 130 µm nozzle following a standard gating procedure as 

previously described (Supplemental Fig. 1) 42,33. Approximately 10% of nuclei were NeuN–

negative non-neuronal nuclei. Single nuclei were sorted into 96-well PCR plates (ThermoFisher 

Scientific) containing 2 µL of lysis buffer (0.2% Triton-X 100, 0.2% NP-40 (Sigma Aldrich), 1 

U/µL RNaseOUT (ThermoFisher Scientific), PCR-grade water (Ambion), and ERCC spike-in 

synthetic RNAs (Ambion). 96-well plates were snap frozen and stored at –80 °C until use. 

Positive controls were pools of 10 nuclei, 10 pg total RNA, and 1 pg total RNA.   

 

cDNA and sequencing library preparation 

Single nucleus cDNA libraries were prepared using Smart-seq2 with minor modifications as 

previously described 42. Sequencing libraries were prepared using Nextera XT (Illumina) with 

input cDNA at 250 pg per reaction; reactions were carried out at 1/4 the volume recommended 

by the manufacturer with a 10 minute tagmentation step. Libraries were sequenced on a HiSeq 

4000 instrument (Illumina) using 150bp paired-end reads. 

 

RNA-seq processing 

SnRNA-seq data was processed and analyzed as previously described 36,42. Briefly, following 

demultiplexing of barcoded reads generated on the Illumina HiSeq platform, the amplification 

(cDNA and PCR) and sequencing primers (Illumina) and the low-quality bases were removed 

using Trimmomatic 0.35 software 63. Trimmed reads were mapped to the human reference 
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genome, version GRCh38 (Ensembl), guided by the version 21 annotations obtained from the 

GENCODE repository. RSEM 1.2.31 64, TOPHAT 2.1.1, and CUFFLINKS 2.2.1 65 were used to 

quantify transcript expression at the transcriptome (exon) and whole genome (exon plus intron) 

levels, respectively. Software packages fastQC 0.10.1 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), FASTX 0.0.14 

(http://hannonlab.cshl.edu/fastx_toolkit/download.html), RSeQC 2.6.1 66, and RNA-seq-QC 

1.1.8 67 were used to generate various sequence and alignment quality metrics used for 

classifying sample quality. A novel pipeline (SCavenger, J.M., unpublished) was created to 

automate execution across statistical analysis tools, integrate preformatted laboratory and 

clustering metrics, and calculate new statistics specific to biases identified in the single-nuclei 

lab and sequence preparation protocol.  

 

RNA-seq quality control 

To remove data from low-quality samples before downstream analysis, we implemented a 

random forest machine-learning classification approach as previously described 42,68. The overall 

workflow for sample quality classification and filtering was to (i) establish a training set using a 

representative subset of samples, (ii) collect a series of 108 quality control metrics (for example, 

percent unique reads, percent reads surviving trimming, transcript isoform counts) spanning both 

the laboratory and data analysis workflows as model features, (iii) use these training data and 

quality control metrics to build a classification model using the random forest method, and (iv) 

apply the model to the entire dataset for quality classification and data filtering. 
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The random forest quality control model was then applied to the data and final quality Pass-Fail 

classifications were determined. A Pass confidence cutoff of 0.6 or greater was used to select 

single-nuclei data for downstream analysis. Using this random forest model applied to the entire 

layer 5 dataset, 78% of 1,118 single-nuclei samples passed quality control. For these Pass 

samples, the average number of reads after trimming was 16,715,521 ± 20,434,739, the number 

of ERCC transcripts detected was 41.78 ± 4.79 out of 92, and the average number of genes 

detected across all passing nuclei at FPKM > 1 was 5,584 ± 2,004, giving an average coverage of 

2,174 reads per human gene detected. Additional summary statistics (grouped by donor or 

cluster) for nuclei passing QC and included in the analysis are shown in Supplementary Figure 

1. 

 

Gene expression calculation 

 

For each nucleus, expression levels were estimated based on the scaled coverage across each 

gene. Specifically, bam files were read into R using the readGAlignmentPairs function in the 

GenomicAlignments library, and genomic coverage was calculated using the coverage function 

in GenomicRanges 69. All genes in GENCODE human genome GRCh38, version 21 (Ensembl 

77; 09-29-2014) were included, with gene bounds defined as the start and end locations of each 

unique gene specified in the gtf file (https://www.gencodegenes.org/releases/21.html). Total 

counts for each gene (including reads from both introns and exons) were estimated by dividing 

total coverage by twice the read length (150 bp, paired end). Expression levels were normalized 

across nuclei by calculating counts per million (CPM).  
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Clustering nuclei 

Nuclei and cells were grouped into transcriptomic cell types using an iterative clustering 

procedure as described in Boldog et al.42. Briefly, intronic and exonic read counts were summed, 

and log2-transformed expression (CPM + 1) was centered and scaled across nuclei. 

Differentially expressed genes were selected while accounting for gene dropouts, and principal 

components analysis (PCA) followed by t-distributed stochastic neighbor embedding (t-SNE)70 

was used to reduce dimensionality. Nearest-neighbor distances between nuclei were calculated, 

and segmented linear regression (segmented R package) was applied to estimate the distribution 

breakpoint to help define the distance scale for density clustering. The statistical significance of 

the separation of clusters identified by density clustering was evaluated with the R package 

sigclust71, which compares the distribution of nuclei to the null hypothesis that nuclei are drawn 

from a single multivariate Gaussian. Iterative clustering was used to split nuclei into subclusters 

until the occurrence of one of four stop criteria: (i) fewer than 6 nuclei in a cluster (because it 

cannot be split due a minimum cluster size of 3), (ii) no significantly variable genes, (iii) no 

significantly variable principal components, or (iv) no significant subclusters. 

 

To assess the robustness of clusters, the iterative clustering procedure described above was 

repeated 100 times for random subsamples of 80% of nuclei. A co-clustering matrix was 

generated that represented the proportion of clustering iterations in which each pair of nuclei was 

assigned to the same cluster. Average-linkage hierarchical clustering was applied to this matrix, 

followed by dynamic branch cutting (R package WGCNA) with cut heights ranging from 0.01 to 

0.99 in steps of 0.01. A cut height resulting in 25 clusters was selected to balance cohesion 

(average within cluster co-clustering) and discreteness (average between cluster co-clustering) 
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across clusters. Finally, gene markers were identified for all cluster pairs, and clusters were 

merged if they lacked binary markers (gene expressed in > 50% nuclei in first cluster and < 10% 

in second cluster) with average CPM > 1. Clusters were marked as outliers and excluded from 

analysis if they contained lower quality nuclei based on QC metrics or expression of 

mitochondrial genes. 

 

Cluster names were defined using an automated strategy that combined molecular information 

(marker genes) and anatomical information (layer of dissection).  Clusters were assigned to the 

major classes interneuron, excitatory neuron, microglia, astrocyte, oligodendrocyte precursor, or 

oligodendrocyte based on maximal median cluster CPM of GAD1, SLC17A7, C3, AQP4, 

CSPG4, or OPALIN, respectively. Clusters were then assigned a subclass marker, defined by 

maximal median CPM of LAMP5, VIP, SST, PVALB, LHX6, LINC00507, RORB, THEMIS, 

FEZF2, CTGF, C3, FGFR3, CSPG4, or OPALIN. Finally, clusters in all major classes that 

contained more than one cluster were assigned a cluster-specific marker gene. These marker 

genes had the greatest difference in the proportion of expression (CPM > 1) with a cluster 

compared to all other clusters regardless of mean expression level. In some cases the most 

specific marker gene was the subclass marker (SST and VIP). 

 

Scoring cluster marker genes 

Many genes were expressed in the majority of nuclei in a subset of clusters. A marker score 

(beta) was defined for all genes to measure how binary expression was among clusters, 

independent of the number of clusters labeled. labeled. First, the proportion (xi) of nuclei in each 

cluster that expressed a gene above background level (CPM > 1) was calculated. Then, scores 
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were defined as the squared differences in proportions normalized by the sum of absolute 

differences plus a small constant (ε) to avoid division by zero. Scores ranged from 0 to 1, and a 

perfectly binary marker had a score equal to 1.   

∑ ∑ (𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑖 − 𝑥𝑗)

2

∑ ∑ |𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑖 − 𝑥𝑗| + 𝜖

. 

 

Enrichment marker genes 

Genes were defined as enriched in Exc FEZF2 GABRQ if they met the following criteria: 1) they 

were expressed in at least half the cells in Exc FEZF2 GABRQ, 2) they were expressed in fewer 

than half the cells in every other cluster, 3) they were expressed in at least 25% more cells in 

Exc FEZF2 GABRQ than in any cluster, and 4) the average expression in Exc FEZF2 GABRQ 

was at least two-fold higher than every other cluster. Thirty-two genes met these criteria. 

 

Cluster dendrograms 

Clusters were arranged by transcriptomic similarity based on hierarchical clustering. First, the 

average expression level of the top 1200 scoring cluster marker genes (highest beta scores, as 

above) was calculated for each cluster. A correlation-based distance matrix (𝐷𝑥𝑦 =
1−𝜌(𝑥,𝑦)

2
) was 

calculated, and complete-linkage hierarchical clustering was performed using the “hclust” R 

function with default parameters. The resulting dendrogram branches were reordered to show 

inhibitory clusters followed by excitatory clusters, with larger clusters first, while retaining the 

tree structure. Note that this measure of cluster similarity is complementary to the co-clustering 

separation described above. For example, two clusters with similar gene expression patterns but 

a few binary marker genes may be close on the tree but highly distinct based on co-clustering.     
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Gene expression visualization 

Gene expression (CPM) was visualized using heat maps and violin plots, which both show genes 

as rows and nuclei as columns, sorted by cluster. Heat maps display each nucleus as a short 

vertical bar, color-coded by expression level (blue = low; red = high), and clusters were ordered 

as described above. The distributions of marker gene expression across nuclei in each cluster 

were represented as violin plots, which are density plots turned 90 degrees and reflected on the y 

axis. Black dots indicate the median gene expression in nuclei of a given cluster; dots above 

y = 0 indicate that a gene is expressed in more than half of the nuclei in that cluster. 

 

Colorimetric in situ hybridization 

Information about postmortem tissue donors and methods used for colorimetric in situ 

hybridization (ISH) is available from the Allen Human Brain Atlas documentation 

at http://human.brain-map.org/.  

 

Multiplex fluorescent in situ hybridization (FISH) 

Human tissue specimens used for RNAscope mFISH came from a cohort of neurosurgical 

resection and postmortem tissues that included donors used for snRNA-seq. Fresh-frozen tissues 

were sectioned at 14-16 μm onto Superfrost Plus glass slides (Fisher Scientific). Sections were 

dried for 20 minutes at -20°C and then vacuum sealed and stored at -80°C until use. The 

RNAscope multiplex fluorescent v1 kit was used per the manufacturer’s instructions for fresh-

frozen tissue sections (ACD Bio), except that fixation was performed for 60 minutes in 4% 

paraformaldehyde in 1X PBS at 4°C and protease treatment was shortened to 10 
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minutes. Positive controls used to assess RNA quality in tissue sections were either a set from 

ACD Bio (POLR2A, PPIB, UBC, #320861) or with a combination of SLC17A7, VIP, and GFAP. 

Sections were imaged using either a 40X or 60X oil immersion lens on a Nikon TiE fluorescent 

microscope equipped with NIS-Elements Advanced Research imaging software (version 4.20). 

For all RNAscope mFISH experiments, positive cells were called by manually counting RNA 

spots for each gene. Cells were called positive for a gene if they contained ≥ 5 RNA spots for 

that gene. Lipofuscin autofluorescence was distinguished from RNA spot signal based on the 

larger size of lipofuscin granules and broad fluorescence spectrum of lipofuscin.    

 

Dual chromogenic in situ hybridization 

Dual chromogenic in situ hybridization (dISH) was performed using the RNAscope 2.5 HD 

Duplex Assay Kit (ACD Bio) per the manufacturer’s protocol. Experiments were performed 

using fresh-frozen tissues sectioned at 16-25 μm onto Superfrost Plus glass slides (Fisher 

Scientific) and sections were counterstained with hematoxylin to visualize nuclei.   

 

Scoring of morphological types using dual chromogenic in situ hybridization 

Staining for the EXC FEZF2 GABRQ markers ADRA1A and POU3F1 was carried out using 

dISH as described above. At least 3 sections from 5 individual human donors were used for 

morphological assessment and scoring. First, the total number of layer 5 cells positive for 

both ADRA1A and POU3F1 was determined for each donor. Then, the morphology of each 

double positive cell was assessed and scored as either pyramidal (cell body round to pyramidal in 

shape and wider than tall), VEN (cell body elongated, spindle-shaped and taller than wide) and 

uncharacterized (lacking definitive morphological features perhaps due to bisection of cells 
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during sectioning). The proportion of cells in each morphological type was then calculated as a 

fraction of the total number of ADRA1A and POU3F1 double positive cells. Cells were called 

positive for a gene if they contained ≥ 5 RNA spots for that gene. 

 

Electrophysiology 

Electrophysiological experiments were performed as reported previously53. Briefly, the surgical 

specimen was sectioned into 300 μm thick slices using a Compresstome VF-200 (Precisionary 

Instruments) in a solution composed of (in mM): 92 with N-methyl-D-glucamine (NMDG), 2.5 

KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl24H2O and 10 

MgSO47H2O. After warming for 10 minutes in the same solution, slices were transferred to a 

holding chamber containing 92 NaCl, 2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 

glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 2 CaCl24H2O and 2 MgSO47H2O. Slices 

were submerged in a recording chamber continually perfused with artificial cerebrospinal fluid 

(aCSF) consisting of 119 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 12.5 glucose, 2 

CaCl24H2O and 2 MgSO47H2O and were viewed with an Olympus BX51WI microscope 

equipped with infrared differential contrast optics and a 40x water immersion objective.  

 

Whole cell somatic recordings were acquired using a Multiclamp 700B amplifier and PClamp 10 

data acquisition software (Molecular Devices). Electrical signals were digitized at 20-50kHz and 

filtered at 2-10 kHz. The pipette solution contained 130 K-gluconate, 4 KCl, 10 HEPES, 0.3 

EGTA, 10 Phosphocreatine-Na2, 4 Mg-ATP, 0.3 Na2-GTP, 0.5% biocytin and .020 Alexa 594. 

Pipette capacitance was compensated and the bridge was balanced throughout the recording.  
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Data were analyzed using custom analysis scripts written in Igor Pro (Wavemetrics). All 

measurements were made at resting potential. FI curves were constructed by measuring the 

number of action potentials elicited by 1 s long current injections of increasing amplitude (Δ50 

pA). Spike frequency accommodation was determined from the current injection yielding 10 ± 2 

spikes and was calculated as the ratio of the last to the second interspike interval. The coefficient 

of variation of spike times was calculated from the same sweep. 

 

Quantification of putative extratelencephalic (ET) neurons 

The fraction of ET neurons in FI and MTG was estimated using both mFISH and RNA-Seq. For 

mFISH estimates, the total numbers of SLC17A7+, POU3F1+ and SLC17A7+, POU3F1- cells in 

layer 5 were quantified in at least 3 sections per donor (n=3 donors for both FI and MTG). The 

percentage of ET cells (SLC17A7+, POU3F1+) was then calculated as a fraction of the total 

number of SLC17A7+ cells in layer 5. RNA-seq estimates were made by taking the total number 

of neurons mapping to the relevant ET cluster (Exc FEZF2 GABRQ and Exc L4-5 FEZF2 

SCN4B in FI and MTG, respectively) and dividing by the total number of excitatory neurons 

collected in layer 5 dissections. 

 

Cross-species data integration 

To assess cross-species cell type homology, excitatory cells (mouse) or nuclei (human) collected 

from human FI (these data), human MTG 33, mouse VISp, and mouse ALM 32 were compared.  

Log2-transformed CPM of intronic plus exonic reads was used as input for all four datasets. 

Including exonic reads increased experimental differences due to measuring whole cell versus 
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nuclear transcripts, but this was out-weighed by improved gene detection. To the extent possible, 

a matched subset of cells was included as input to Seurat. In human MTG, we included all cells 

dissected from layers 4 or 5 that were mapped to excitatory clusters with at least 10 total cells 

from layer 5, including up to 50 randomly sampled cells per cluster (for a total of 616 nuclei); 

cells from layer 4 were included since FI does not contain a layer 4. In mouse VISp and ALM, 

cells were grouped by subclass (rather than cell type) and we selected 100 random cells per 

subclass (for a total of 700 in ALM, which does not contain layer 4, and 800 in VISp). All genes 

that could be matched between data sets, except a set of sex and mitochondrial genes, were 

considered. 

 

These data sets were assembled into an integrated reference using Seurat 

V3 (https://satijalab.org/seurat/) 39,40 following the tutorial for Integration and Label Transfer and 

using default parameters for all functions, except when they differed from those used in the 

tutorial. More specifically, we first selected the union of the 2,000 most variable genes in each 

data set (using FindVariableFeatures with method=“vst”). Next, we projected this data sets into 

subspace based on common correlation structure using canonical correlation analysis (CCA) 

followed by L2 normalization, and found integration anchors (cells that are mutual nearest 

neighbors between data sets) in this subspace.  Each anchor is weighted based on the consistency 

of anchors in its local neighborhood, and these anchors were then used as input to guide data 

integration (or batch-correction), as proposed previously 72. We then scaled the data, reduced the 

dimensionality using principal component analysis, and visualized the results with Uniform 

Manifold Approximation and Projection (UMAP) 73. We defined homologous cell types by 

constructing a shared nearest neighbor (SNN) graph on the integrated data sets based on the 
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Jaccard similarity of the 10 nearest neighbors of each sample. Louvain community detection was 

run to identify clusters that optimized the global modularity of the partitioned graph. Data set 

clusters are grouped based on the maximal fraction of cells in these Seurat-assigned cluster, 

which were nearly perfectly aligned for most subclasses, including ET. Changes in parameters 

did not change the integration of cluster Exc FEZF2 GABRQ with mouse ET clusters. 

 

Data availability 

Raw and aligned data have been registered with dbGaP 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001791.v1.p1) and 

have been deposited in the NeMO archive (https://nemoarchive.org/). Specific links to these 

controlled-access data will be included on the dbGaP site once they become available. 

 

Code availability 

Custom R code and count data used to generate transcriptomics related figures can be 

downloaded from https://github.com/AllenInstitute/L5_VEN. 
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