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Abstract

von Economo neurons (VENS) are bipolar, spindle-shaped neurons restricted to layer 5 of human
frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to
neuropsychiatric and neurodegenerative diseases, although little is known about other VEN
cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identified a
transcriptomically-defined cell cluster that contained VENS, but also fork cells and a subset of
pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse
classification shows strong homology to extratelencephalic (ET) excitatory neurons that project
to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human
temporal cortex, but with a strikingly specific regional signature. Together these results predict
VENSs are a regionally distinctive type of ET neuron, and we additionally describe the first patch
clamp recordings of VENSs from neurosurgically-resected tissue that show distinctive intrinsic

membrane properties relative to neighboring pyramidal neurons.

Introduction

von Economo neurons (VENS) are a morphologically-defined neuron type with a large,
characteristic spindle-shaped cell body, thick bipolar dendrites with limited branching and a
moderate density of spines, and often an axon initial segment that emanates from the side of the
cell body 123, VENSs have been described in several large-brained mammals, such as humans,
great apes, macaques, cetaceans, cows, and elephants, but not in rodents 45678910111 I
humans, they are restricted to the anterior cingulate (ACC), frontoinsular (FI), and medial
frontopolar regions of cerebral cortex 2, while in most other species they are also found in the

frontal and occipital poles 3 and may not be restricted to layer 5. Fork cells, another distinctive
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morphological-defined neuron type, are often found in the same brain regions as VENSs and are
similarly characterized by a single large basal dendrite, but differ from VENS by having a
divided apical dendrite 14, VENs and fork cells appear to be selectively vulnerable neuron types,
as loss of these cells has been observed in behavioral variant frontotemporal dementia

(bvFTD) 151817 | oss of VENS has also been observed in several neuropsychiatric disorders,
including schizophrenia 8 and suicidal psychosis °, as well as in autism 2, agenesis of the

corpus callosum %, and possibly Alzheimer’s disease #?3,

Very little is known about VEN cellular phenotypes beyond their hallmark morphology,
especially in human cortex. Human FI and ACC neurosurgical resections are extremely rare for
functional studies, and VEN sparsity without some form of genetically-based labeling makes
their analysis difficult. VENs have been described in rhesus monkey and tract tracing studies
suggest that they might project to ipsilateral ACC and contralateral anterior insula 2, as well as
to more distant targets in the parabrachial nucleus of pons and the midbrain periaqueductal

gray 2>%5, Molecular analyses of human VENSs have been more fruitful since these techniques can
be applied to postmortem human tissues. For example, a recent study using in situ hybridization
(ISH) data from the Allen Brain Atlas identified ADRA1A, GABRQ and VMAT2 as VEN marker
genes #/, and a study using laser microdissection of VENSs followed by RNA-sequencing
identified additional potential VEN marker genes 2. VENSs have also been reported to express
serotonin receptor 2B (HTR2B) and dopamine receptor D3 (DRD3) ?°, and the Schizophrenia-
associated protein DISC1*2%. Additionally, they express transcription

factors FEZF2 and CTIP2 2® which are required for generating subcortical projection neurons in

mice 3, and this has been used as evidence that VENs are subcortically-projecting neurons,
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referred to here as extratelencephalic-projecting excitatory neurons (ET) (though we
acknowledge that ET neurons may not strictly project to subcortical structures and may have
telencephalic collaterals 3t). However, Fezf2 is not specific for ET neurons but is also expressed
in near-projecting pyramidal neurons in adult mouse 32, and expression of many cellular marker
genes is not conserved between mouse and human 3334, Furthermore, many of the reported
markers of VENSs are not exclusive to these cells but are also expressed in fork cells and
pyramidal-shaped neurons. This highly incomplete characterization leaves unresolved many
questions about whether morphologically-defined VENS represent a molecularly-distinct cell

type and what their other properties are.

Single cell RNA-sequencing (scCRNA-seq) has emerged as an effective strategy for classifying
and characterizing cell types in complex brain tissues, and single nucleus (sn) RNA-seq can be
used on frozen postmortem human brain specimens *>%. Applied to cortex, this approach
reveals a high degree of cellular diversity, with upwards of 100 transcriptomically-defined cell
types in any cortical area 33323738 Furthermore, these data enable quantitative alignment of cell
types across brain regions and between species to establish identity by transcriptional similarity
using new computational strategies for mapping of transcriptomic types between datasets 32404,
Such alignment permits prediction of cellular properties and projection targets in human based

on properties described in well-studied mouse cell types 3.

To reveal the transcriptomic signature and predict properties of VENs, we performed snRNA-seq
on nuclei from layer 5 of FI and compared to similar data from mouse visual and human

temporal cortex. We find a single transcriptomic cluster expressing several known markers for
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VENS that aligns with ET neurons in mouse cortex, as well as a putative transcriptomically-
defined ET cluster in human temporal cortex that has a distinctive regional signature compared
to FI. We identify many novel markers for this cluster and demonstrate that they are co-
expressed in a combination of pyramidal neurons, VENSs, and fork cells. Finally, we present a
case study with the first electrophysiological recordings of putative VENS, and show that they

have distinctive intrinsic membrane properties from neighboring layer 5 pyramidal neurons.

Results

Transcriptomic cell types in layer 5 of FI

We employed snRNA-seq %% to profile nuclei from FI of two postmortem human brain
specimens (Fig. 1a) as previously described 2%, Briefly, layer 5 was microdissected from
fluorescent Nissl-stained vibratome sections of FI and nuclei were liberated from tissue by
Dounce homogenization. NeuN staining and fluorescence-activated cell sorting (FACS) were
used to enrich for neuronal (NeuN+) and non-neuronal (NeuN-) nuclei (Supplementary Figure
1a). RNA-sequencing was carried out using Smart-seq2, Nextera XT, and HiSeq sequencing. In
total 879 nuclei were processed for RNA-seq and were sequenced to a median of 4 million
mapped reads. Median gene detection (expression > 0) was 10,339 for excitatory neurons, 9,426
for inhibitory neurons, and 6,146 for non-neuronal cells, consistent with previous reports 423332

(Supplementary Fig. 1b).
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Figure 1. Cell type characterization in human frontal agranular insular cortex (FI). (A) Schematic
diagram illustrating nuclei isolation from postmortem human brain specimens. The FI region was
isolated, vibratome sectioned, stained with fluorescent Nissl, and layer 5 was dissected and processed for
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nuclei isolation, fluorescence-activated cell sorting (FACS), and RNA-sequencing. Examples of cells with
morphologies typical of von Economo neurons (VENS) are shown in the images of Nissl-stained tissues
(arrowheads). In total 561 single layer 5 neurons passed quality control. (B) Hierarchical representation
of 18 neuronal (5 inhibitory, 13 excitatory) and 4 non-neuronal transcriptomic cell types based on
median cluster expression. Major cell classes are labeled at branch points in the dendrogram. The bar
plot below the dendrogram represents the number of nuclei within each cluster. Cluster-specific colors
and labels are used in all subsequent figures. (C) Heatmap showing the expression of cell class marker
genes across all clusters. Maximum expression values for each gene are listed on the far right-hand side
of the plot. Gene expression values are quantified as counts per million of intronic plus exonic reads and
displayed on a log10 scale. (D) Violin plots showing expression of four marker genes per excitatory
cluster. Each row represents a gene, black dots show median gene expression within clusters, and
maximum expression values for each gene are shown on the right-hand side of each row. Gene expression
values are displayed on a linear scale.

Iterative clustering was used as described #2332 to group nuclei by gene expression similarity.
Briefly, high variance genes were identified while accounting for gene dropouts, expression
dimensionality was reduced with principal components analysis (PCA), and nuclei were
clustered using Jaccard-Louvain community detection. Clusters containing cells from only a
single donor as well as nuclei mapping to low-quality outlier clusters (n=318) were excluded
from further analysis, leaving a total of 561 high quality nuclei. We identified a robust set of 22
transcriptomically-defined clusters (Fig. 1b) that contained cells from both donors at roughly
comparable proportions within broad classes (Supplementary Fig. 1c, d). Five inhibitory neuron
types spanning all expected subclasses (two LAMPS5 types, VIP, SST, and a LHX6+/SST- cluster
corresponding to PVALB), 13 excitatory neuron types, and four major non-neuronal cell types
(oligodendrocyte precursor cells, oligodendrocytes, astrocytes, and microglia) were identified
(Fig. 1c). Clusters were named using a broad class marker in combination with a highly specific

marker, as described previously .

Excitatory clusters in FI expressed broad class markers previously identified in human middle
temporal gyrus (MTG) (Fig. 1c, d) *. One cluster had high expression of the MTG upper layer

marker LINC00507 and likely represents deep layer 3 pyramidal neurons sampled at the layer
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3/5a boundary, since FI is agranular and does not contain layer 4. Three clusters express CTGF,
a canonical marker for deep layer 6 neurons in mouse that has more widespread layer 6
expression in human **, suggesting these clusters represent cells captured at the layer 5b/6
border. Two clusters highly express THEMIS, which is also expressed in layer 5 and 6 excitatory
neuron types in MTG %, Four clusters express RORB, which marks a subset of cells localized
throughout layers 3-5 in MTG 32 and has a similar pattern of expression in Fl (Fig. 2). Finally,
we find 3 clusters with high expression of FEZF2, previously shown to be expressed in VENSs 2°,
subcortically-projecting and near-projecting excitatory neurons in mouse cortex 2, and several

deep layer excitatory types in human MTG 3.

Identifying a transcriptomic cell type corresponding to VENS

To characterize each cluster and determine whether one might represent VENS, we examined
selective marker genes for each excitatory cluster (the top four per cluster are shown in Fig.

1d). One cluster, Exc FEZF2 GABRQ, specifically expressed the reported VEN and fork cell
markers GABRQ and ADRA1A 27, suggesting that this cluster, but not the other two FEZF2+
clusters (Fig. 1c), likely included VENSs. Exc FEZF2 GABRQ also had the largest number of
expressed genes (Supplementary Fig. 1b), suggesting high RNA content and perhaps correlated
with the reported large size of VENSs 121, To confirm that Exc FEZF2 GABRQ included VENS,
we looked for genes selective for one or more excitatory cell types in our dataset that also had

existing ISH data in the Allen Human Brain Atlas (http://human.brain-map.org/) 43 (Fig. 2a).
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Figure 2. Identifying a transcriptomic cell type that corresponds to von Economo neurons (VENS) in
situ. (A) Violin plots showing distributions of genes further examined by in situ hybridization (ISH). Each
row represents a gene, black dots indicate median gene expression within clusters, and maximum gene
expression values are shown on the right-hand side of each row. Gene expression values are displayed on
a linear scale. The EXC GABRQ FEZF2 type expresses GABRQ and ADRA1A, previously defined
markers of VENs. (B) Chromogenic single gene ISH from the Allen Human Brain Atlas for GABRQ

and ADRA1A confirms a subset of layer 5b cells expressing these genes have spindle-shaped cell bodies
typical of VENSs (red arrows). The nearest Nissl-stained section is shown for each ISH image for laminar
context. (C) ISH from the Allen Human Brain Atlas for genes expressed in other excitatory neuron types
revealed by our analyses. Genes are expressed in and around layer 5 of FI but labeled cells lack spindle-
shaped cell bodies typical of VENSs. Red arrows in the nearest Nissl-stained section for each ISH image
show cells with VEN morphology in the approximate region highlighted in the neighboring ISH image
(red rectangle). Scale bars in B and C: low magnification, 750 um, high magnification 50 um. (D)
Multiplex fluorescent ISH (top left) and double chromogenic ISH for marker genes of Exc FEZF2
GABRQ. Cells with pyramidal (P), VEN (V), and fork (F) morphologies are indicated by labeled arrows
in each image. Scale bars, 10 um. (E) Quantification of the proportion of ADRA1A+, POU3F1+ cells
with pyramidal versus VEN morphologies (n=5 human donors). Cells lacking defining features of these
morphological classes were called uncharacterized. Bars show the mean and error bars the standard
deviation.

As previously reported 27 and supporting identification of Exc FEZF2 GABRQ as the cluster
containing VENSs, ISH for GABRQ and ADRA1A showed that a subset of cells in layer 5b
expressing these genes have spindle-shaped cell bodies typical of VENSs (Fig. 2b). However, not
all cells labeled with GABRQ and ADRA1A had spindle-shaped cell bodies, indicating that these
genes do not exclusively mark VENSs. In contrast, ISH for genes expressed in other excitatory
neuron types did not label cells with obviously spindle-shaped cell bodies (Fig. 2c). In particular,
both HTR2C and ALDHZ1AL, which were expressed in the other two FEZF2+ cell types that we

found, did not label any spindle-shaped cells.

To further validate and explore the morphological cell types comprising the Exc FEZF2

GABRQ cluster, we performed multiplex fluorescent (mFISH) and double chromogenic (dISH)
ISH for cluster-specific marker genes (Fig. 2a, d). Consistent with single gene ISH for GABRQ
and ADRA1A, we find that pyramidal-shaped neurons, fork cells, and VENs are all labeled with

combinations of specific marker genes for Exc FEZF2 GABRQ suggesting that this single
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transcriptomic type contains a mixture of morphological cell types (Fig. 2d). To quantify the
proportions of Exc FEZF2 GABRQ cells with these different morphologies, we performed dISH
staining for ADRA1A+ and POU3F1+ double-positive cells because high expression of these
genes coupled with significant amplification of signal intensity in the dISH method highlights
the morphology of labeled cells (Fig. 2d). Double-positive cells were classed as pyramidal,
VEN, or uncharacterized (cells that lacked defining morphological features and were likely
bisected by the plane of section, Methods) in FI tissues from 5 different human donors. Fork
cells were extremely rare and were not explicitly quantified. Our results show that of

all ADRA1A+ and POU3F1+ double-positive cells, ~60% had pyramidal morphology compared
with ~25% that had VEN morphology, confirming that morphologically-defined VENSs represent

only a subset of the neurons that comprise the Exc FEZF2 GABRQ type.

VENSs are predicted to be regionally specialized extratelencephalic-projecting neurons

New methods that enable alignment of cells between data sets based on gene expression profiles
can be used to align cell types across cortical regions and across species 3%4%4!, This provides a
mechanism for predicting cellular properties of human cell types based on measurements made
in homologous cell types from model systems. For example, by performing retrograde labeling
and scRNA-seq on the same cells (i.e. Retro-seq), the long-range projection specificity of each
excitatory transcriptomic type in mouse cortex can be assessed 2. Previously we showed that
nearly all transcriptomically-defined cell classes and subclasses identified in human MTG can be
aligned with transcriptomically-defined types in mouse anterior lateral motor cortex (ALM) and
primary visual cortex (VISp), even if other features are distinct between species 3, enabling

prediction of the projection targets of homologous human types.
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To shed light on the cellular properties of the Exc FEZF2 GABRQ type, we combined the present
data from human FI with representative sets of cells from human MTG * and mouse ALM and
VISp 3 into an integrated reference using Seurat (V3.0) 3% Only excitatory cells from each
data set were included in the assembly, and cells from mouse data sets were grouped based on
subclass, which combines cell types with matched predominant layer of soma location and long-
range projection targets 32. Eight clusters were identified using Seurat, which each contain cells
from all four data sets (Fig. 3a) and that matched with the groupings visualized through UMAP
dimensionality reduction (Fig. 3b). More importantly, nearly all cells from mouse were mapped
to the cluster in the joint assembly that matched their initially assigned subclass (Fig. 3c), with
one exception. As reported in mouse ALM 32, we identify one cluster in agranular human FI
(Exc RORB SLC38A11) whose best match is with intratelencephalic (IT) layer 4 clusters in
human MTG and mouse VISp. Furthermore, the subclass assignments here match those reported
previously using different alignment strategies for almost all MTG clusters (compare Fig. 3c
with Fig 6f from 23). This analysis shows that Exc FEZF2 GABRQ co-clusters with Exc L4-

5 FEZF2 SCN4B from human MTG and all layer 5 ET clusters from mouse VISp and ALM (Fig.

3c), suggesting that VENS are part of a cluster of neurons with deep subcortical projections.

12
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Figure 3. Evolutionary conservation of cell types between human and mouse predicts that VENs
project sub-cortically. (A-B) Excitatory neurons in human FI (red), human MTG (green), mouse ALM
(cyan), and mouse VISp (purple) were integrated and aligned using Seurat v3 ¥ with default parameters,
and visualized using UMAP. (A) Cells from each data-set co-cluster, indicating good matching of types
between brain regions and species. (B) Eight Seurat clusters were identified using the Louvain algorithm
and labeled based on expected cortical layer and projection target (as described in C). (C) Membership
of cells from excitatory clusters in each data set in the Seurat clusters. Colors indicate the fraction of
total cells per cluster assigned to each Seurat cluster (rows sum to 1). Data set clusters are grouped
based on maximal fraction of cells in the cluster. Cortical layer of cluster inferred based on predominant
cortical layer of cells from mouse and human data sets, except for the layer 4 (L4* IT) cluster which
primarily includes cells from layer 5 in structures without a layer 4. Projection targets of clusters are
inferred based on known projection targets of clusters in mouse ALM and VISp (IT - intratelencephalic,
ET - extratelencephalic, NP - near-projecting, CT - corticothalamic). Box highlights that the Exc FEZF2
GABRQ cluster is part of a L5 ET cluster.
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Interestingly, the other two FEZF2+ clusters in FI co-cluster with near-projecting neurons in
mouse, indicating that, despite the developmental role of FEZF2 in specifying subcortical
projection neurons 2, not all neurons that express FEZF2 in the adult brain project subcortically.
A summary of these results, including common markers between species, is shown

in Supplementary Figure 2.

Molecular characteristics of putative extratelencephalic neurons in human cortex

While a number of VEN marker genes have been previously described?”-?644 we find that
although most of these genes are expressed in Exc FEZF2 GABRQ, very few are specific to this
cluster but rather are expressed in several or many other excitatory neuron types
(Supplementary Fig. 3). To describe a more refined set of genes selectively expressed in VENs
and other putative ET neurons, we performed differential expression analysis comparing

Exc FEZF2 GABRQ to all other excitatory clusters (Methods) and identified 30 genes
selectively expressed in Exc FEZF2 GABRQ (Fig. 4a). These genes included reported markers
for VENSs such as GABRQ and ADRA1A, as well as many novel markers. Several genes appear to
be common ET markers in mouse and human, including FAM84B, POU3F1,

and ANKRD34B (Supplementary Fig. 2), although many more show divergent patterning

between species than between region, as previously shown .
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Figure 4. Extratelencephalic (ET) cells in human frontoinsula (FI) and middle temporal gyrus (MTG)
share many common markers but differ in frequency. (A-B) Violin plots in human FI (A) and MTG (B)
showing expression of genes enriched in Exc FEZF2 GABRQ, the corresponding cluster in human MTG,
or both (see Methods), including many novel putative markers of VENs. Gene expression values are
displayed on a log2 scale. (C) Representative inverted images of DAPI-stained sections of Fl and MTG.
Red dots depict the locations of cells labeled using multiplex fluorescent in situ hybridization (mFISH) for
ET marker gene POU3F1 and SLC17A7. Scale bars in (C): DAPI images 50 um, mFISH images 10

um. (D) Black, quantification of the proportion of SLC17A7+ cells expressing the ET marker POU3FL1 in
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FI and MTG expressed as a fraction of the total number of excitatory (SLC17A7+) cells in layer 5 of
either region. Green, comparable quantification of the fraction of excitatory neurons dissected from layer
5 that are assigned to the ET clusters “Exc L4-5 FEZF2 SCN4B” (MTG) or “Exc FEZF2 GABRQ”

(FI). By both mFISH and single nucleus RNA-seq (snRNA-seq), a higher fraction of putative ET cells is
found in FI. Bars show the mean and error bars the standard deviation.

Interestingly, approximately half of genes enriched in Exc FEZF2 GABRQ were similarly
enriched in the matching MTG ET cluster (e.g., ADRA1A) (Methods, Fig. 4b). However, region-
specific genes were apparent for both FI (Exc FEZF2 GABRQ) and MTG (Exc L4-5 FEZF2
SCN4B), consistent with reported variation of excitatory neurons across cortical areas *, and
more region-specific marker genes were apparent in FI (e.g. GABRQ) compared to MTG

(e.g. FREM2). SnRNA-seq data suggested that the proportion of putative ET neurons may also
vary between MTG and FI (Fig. 4c). To further examine this difference in situ we used mFISH
to count the fraction of total excitatory cells (SLC17A7+) in layer 5 that also express the ET
marker gene POU3F1 (Fig. 4c, d). In agreement with snRNA-seq data, mFISH counts showed
that a substantially higher fraction of putative ET cells was found in FI than in MTG. Together
these results indicate that, while the primary features of putative ET neurons in human are
conserved across cortical areas, ET neurons in FI appear to be more abundant and have a greater
number cluster-enriched genes (Fig. 4) and more diverse cellular morphologies than those in

MTG (Fig. 2, 4).

Intrinsic membrane properties of putative VENs

ET neurons possess distinctive intrinsic membrane properties from neighboring non-ET
neurons*>*8, To test whether VENS also have distinctive electrophysiological properties, we took
advantage of a very rare opportunity to perform single neuron patch clamp recordings in human

insula ex vivo brain slices from a single human donor. In this case study, peri-tumor insula tissue
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was removed from the brain of a 68-year-old female patient to access a deep brain tumor located
in the left insula/putamen region (Fig. 5a-c). We performed whole-cell patch clamp recordings
from large spindle-shaped neurons (putative VENS) in layer 5 (n=3) and nearby (presumably
non-ET) pyramidal neurons for comparison (n = 5). A biocytin cell fill was also recovered for
one recorded VEN (Fig. 5d), with confirmed layer 5 localization based on soma location (1.7

mm from the pial surface of the slice) in the DAPI stain.
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Figure 5. Distinctive electrophysiological properties of putative L5 VENSs in ex vivo insula brain slices
from a human neurosurgery patient. (A) MRI image data indicating the location of the excised insula
tissue specimen for research. (B) Best matched location in the Allen 2D coronal human brain reference
atlas, with crosshairs centered on the short insular gyrus. Scale bar: 1cm. (C) Reported distribution and
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relative density of VENSs in the human insula (adapted from Figure 13d in Nieuwenhuys 2012 Progress in
Brain Research). (D) Biocytin-filled putative VEN in L5 of an ex vivo insula brain slice. Low
magnification brightfield and DAPI image confirms the L5 location of the neuron. The boxed region
bounding the biocytin-filled neuron in expanded at right. Inset: image of Alexa dye fill following patch
clamp recording in live tissue. Scale bars: 1 mm and 100 microns. (E) Example traces of action potential
firing pattern in response to current injection steps for a representative pyramidal neuron (PN) and VEN.
Scale bars: 50pA, 500msec. (F) Summary plot of action potential firing in response to current injection
steps. *p<0.0001, 2-way ANOVA. (G) Summary plot of coefficient of variation (CV) for VENS versus
PNs. *p<0.05, Mann-Whitney. (H) Summary plot of spike frequency adaptation (SFA) for VENS versus
PNs. *p<0.05, Mann-Whitney.

This cell displayed the expected large spindle-shaped morphology with large caliber bipolar
dendrites that extended into layer 6 (descending trunk), as well as towards the pial surface into
upper layer 3 (ascending trunk). Dendritic branching was very simple, but with notable short and
wispy lateral branches concentrated proximal to the soma. The axon could not be readily
distinguished from these finer dendrites. The fill quality was not sufficient to make out clear
dendritic spines; however, these recorded VENS appear to have a lower spine density than
recorded pyramidal cells, which would be consistent with previous reports based on Golgi

staining®.

We observed marked differences in the suprathreshold response of putative VENS versus
neighboring pyramidal neurons in response to 1s current injection steps (Fig. 5e-h). Specifically,
VENSs produced fewer action potentials in response to a given level of current injection. This
difference may be related to differences in spike timing during a train of action potentials;
putative VENSs displayed higher variability in spike timing and greater spike frequency
accommodation than neighboring pyramidal neurons. All putative VENSs displayed brief pauses
and prominent subthreshold membrane oscillations during sustained firing. Although this result

was not statistically significant (p>0.05), the differences in average input resistance of the
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putative VENSs (61 + 14 Mohms, mean + standard error [SE]) compared with neighboring
pyramids (113 + 25 Mohm, mean £+ SE) may also contribute to differences in firing of these

morphologically-distinct types.

Discussion

To determine if VENS represent a discrete transcriptionally-defined cell type, we applied
SnRNA-seq to classify neurons in FI layer 5 and carried out cross-species homology mapping to
make predictions about VEN cellular phenotypes that are difficult to measure in human tissues.
We define 13 excitatory neuron types, including one type (Exc FEZF2 GABRQ) that contains all
VENS, but also neurons with fork and pyramidal morphologies. This approach identified many
novel and selective marker genes of VENSs and other excitatory neuron types that will facilitate
better identification and study of these populations in situ. However, consistent with all
published studies to date, we do not find a molecular signature that can distinguish VENs from
transcriptionally similar fork or pyramidal neurons that comprise the Exc FEZF2 GABRQ type.
One possibility is that these cells are not molecularly distinct in the adult, but rather represent a
spectrum of morphologies established during development within a broader excitatory cell class.
Alternatively, the current study may have lacked the power to discriminate closely related VEN
and pyramidal neuron types due to the rarity of VENS relative to all excitatory neurons in layer 5
and lack of a way to specifically enrich for these cells in human. Supporting this latter idea,
greater diversity of ET neurons is seen in mouse where they are more abundant and can be
selectively enriched 323, including one type projecting predominantly to myelencephalon and

others targeting additional subcortical areas 2. Further studies using higher-throughput sSnRNA-

19


https://doi.org/10.1101/627505
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/627505; this version posted May 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

seq technologies will be required to definitively answer this question, but it is clear that VENS,

fork cells and a subset of pyramidal cells are transcriptomically similar to one another.

Homology mapping to mouse strongly supports that VENS are deep-projecting ET neurons. Prior
studies in mouse demonstrate a robust division between locally-projecting (IT) and deep-
projecting (ET) neurons *2. Alignment of human FI data with mouse cortical ScRNA-seq data
shows that Exc FEZF2 GABRQ is highly homologous to ET neurons in mouse VISp and

ALM 32, In addition, VENS express transcription factors required for the generation of
subcortically-projecting neurons, such as FEZF2 *°, but do not express transcription factors
associated with corticothalamic or callosal projections ?°. Lastly, a study in rhesus monkey
proposed that VENSs primarily project to distant deep brain regions, including the parabrachial
nucleus of dorsolateral pons and the periaqueductal gray %. Together, our findings and those of
previous reports 2>% strongly suggest that VENS project to deep subcortical structures.

However, VEN projections might not be restricted to ET targets as the tract-tracing study above
indicates that some VENS project to both ipsilateral and contralateral cortical targets, potentially
including VEN populations within homologous structures of the contralateral hemisphere 2.
These results suggest that, like rosehip neurons #2 and interlaminar astrocytes %, VENs may
represent species-specific morphological specialization of an evolutionarily shared cell type.
Furthermore, we recently used homology mapping in human MTG and identified a putative ET
type homologous to mouse ET types 3. This MTG ET type aligns to the FI ET type, and much of
the ET molecular signature is shared between Fl and MTG. However, many genes are expressed
selectively by the FI type that are distinct from MTG. MTG has not been shown to contain

VENS, and putative ET cells in MTG appear to have pyramidal neuron morphology (Fig. 4) 3,
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suggesting that VENSs and fork cells might represent within-species regional specialization of a

common class of large, subcortically-projecting excitatory neurons.

Selective loss of VENs and fork cells in FI and ACC has been proposed to contribute to several
neuropsychiatric disorders characterized by social-emotional deficits 201819214716 ‘Many of these
disorders show dysfunction of the salience network #’, which has key nodes in these same brain
regions “8 and coordinates the brain’s responses to behaviorally-relevant stimuli #°, suggesting a
direct link between VEN loss and dysfunction. Additionally, the salience network has functional
connectivity in several subcortical areas including parts of amygdala, striatum, dorsomedial
thalamus, and substantia nigra *, consistent with the predicted projection targets of VENS.
However, our results suggest the possibility that bvFTD and other neuropsychiatric disorders
targeting FI might result from loss of ET neurons more generally, rather than exclusive loss of
VENSs and fork cells. The novel markers identified here for ET neurons and other excitatory
types provide numerous opportunities for a refined analysis of disease-related loss of excitatory
neurons. Importantly, despite the lack of VENSs in rodent brains, mouse models of bvFTD are
surprisingly effective at recapitulating histopathological *° and behavioral ! impairments
reported in humans, suggesting that additional cell types are likely affected or that rodent has a

homologous type to VENS that, despite different morphology, has similar circuit function.

A major challenge in understanding human brain cellular and circuit function is a paucity of
tools, techniques, and tissue. However, techniques for physiological and morphological analysis
using in vitro slice preparations and patch clamp physiology work robustly on human tissue from

neurosurgical resections 5253545565758 ~ Although it is exceedingly rare for tissue to be removed
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from regions like Fl and ACC during such surgeries, the instances in which such specimens can
be collected for research purposes represent rare opportunities to collect highly valuable data in
the spirit of case studies in disease, where even sparse data can provide important observations
and generate testable hypotheses. From the singular such specimen collected in more than three
years, we demonstrate that neurons with VEN-like morphology in layer 5 of human insula can be
targeted and functionally characterized. Furthermore, these putative VENSs exhibit distinctive
intrinsic physiological properties compared to neighboring pyramidal neurons in the same brain
region. These data represent the first reported patch clamp recordings from putative VENS in the
human insula, and our findings are consistent with the hypothesis that VENSs represent a
functionally specialized cell type, although further evidence will be necessary to establish the

exact contributions of this cell type to human brain function in health and disease.

It is essential to find experimental strategies to understand the specifics of the human brain,
particularly for cell types affected by disease that are not present in widely used and genetically
tractable model organisms. New technological advances built on the transcriptomic approach to
cell type classification promise to accelerate progress on functional analyses of human neuron
types. Patch-seq allows the combination of electrophysiological, transcriptomic and
morphological analysis >>®°, which can in principle be applied to human brain slice studies over
extended time frames with recent advances culturing of human ex vivo brain tissue 2.
Furthermore, novel viral tools provide cell type-specific genetic targeting in this system !, and
application of enhancers for ET cells, such as the Fam84b enhancer that labels mouse ET cells
with >90% specificity 2, could be used to label VENSs in ex vivo human brain tissue. Such

studies can help to further refine our understanding of the defining characteristics of VENSs,
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potentially providing information about their local connectivity and teasing out subtle gene

expression differences between ET cells with spindle, fork, and pyramidal shapes.

Methods

Postmortem tissue donors

After obtaining permission from decedent next-of-kin, postmortem adult human brain tissue was
collected by the San Diego Medical Examiner’s office and provided to the Allen Institute for
Brain Science. All tissue collection was performed in accordance with the provisions of the
Uniform Anatomical Gift Act described in Health and Safety Code 8§88 7150, et seq., and other
applicable state and federal laws and regulations. The Western Institutional Review Board
reviewed tissue collection processes and determined that they did not constitute human subjects
research requiring IRB review. Tissue donors were prescreened for history of neuropsychiatric
disorders, neuropathology, and infectious disease (HIV, Hepatitis B, Hepatitis C), and
postmortem blood samples were sent for routine serology and toxicology testing. Specimens
were further screened for RNA quality and had an RNA integrity number (RIN) >7. Tissues used
for RNA-sequencing in this study were from two control Caucasian male donors who died from
cardiovascular-related issues, aged 50 (H200.1025) and 54 (H200.1030) years, as previously

described #2.

Tissue processing and isolation of nuclei
Whole postmortem brain specimens were processed as previously described 4233, For RNA-
sequencing experiments, frontoinsula (FI) was identified on slabs of interest and vibratome

sectioned as described 4233 (Fig. 1). Layer 5 was microdissected from vibratome sections stained
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with fluorescent Nissl. Mouse monoclonal anti-NeuN antibody (EMD Millipore, MAB377) was
applied to nuclei preparations followed by secondary antibody staining (goat anti mouse Alexa
Fluor 594, ThermoFisher), and single-nucleus sorting was carried out on a BD FACSAria Fusion
instrument (BD Biosciences) using a 130 pm nozzle following a standard gating procedure as
previously described (Supplemental Fig. 1) 2%, Approximately 10% of nuclei were NeuN—
negative non-neuronal nuclei. Single nuclei were sorted into 96-well PCR plates (ThermoFisher
Scientific) containing 2 pL of lysis buffer (0.2% Triton-X 100, 0.2% NP-40 (Sigma Aldrich), 1
U/uL RNaseOUT (ThermoFisher Scientific), PCR-grade water (Ambion), and ERCC spike-in
synthetic RNAs (Ambion). 96-well plates were snap frozen and stored at —80 °C until use.

Positive controls were pools of 10 nuclei, 10 pg total RNA, and 1 pg total RNA.

cDNA and sequencing library preparation

Single nucleus cDNA libraries were prepared using Smart-seq2 with minor modifications as
previously described #2. Sequencing libraries were prepared using Nextera XT (lllumina) with
input cDNA at 250 pg per reaction; reactions were carried out at 1/4 the volume recommended
by the manufacturer with a 10 minute tagmentation step. Libraries were sequenced on a HiSeq

4000 instrument (Illumina) using 150bp paired-end reads.

RNA-seq processing

SnRNA-seq data was processed and analyzed as previously described 2642, Briefly, following
demultiplexing of barcoded reads generated on the Illumina HiSeq platform, the amplification
(cDNA and PCR) and sequencing primers (Illumina) and the low-quality bases were removed

using Trimmomatic 0.35 software ®3. Trimmed reads were mapped to the human reference
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genome, version GRCh38 (Ensembl), guided by the version 21 annotations obtained from the
GENCODE repository. RSEM 1.2.31 ®, TOPHAT 2.1.1, and CUFFLINKS 2.2.1 % were used to
quantify transcript expression at the transcriptome (exon) and whole genome (exon plus intron)
levels, respectively. Software packages fastQC 0.10.1
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), FASTX 0.0.14
(http://hannonlab.cshl.edu/fastx_toolkit/download.html), RSeQC 2.6.1 %, and RNA-seq-QC
1.1.8 ®7 were used to generate various sequence and alignment quality metrics used for
classifying sample quality. A novel pipeline (SCavenger, J.M., unpublished) was created to
automate execution across statistical analysis tools, integrate preformatted laboratory and
clustering metrics, and calculate new statistics specific to biases identified in the single-nuclei

lab and sequence preparation protocol.

RNA-seq quality control

To remove data from low-quality samples before downstream analysis, we implemented a
random forest machine-learning classification approach as previously described 2%, The overall
workflow for sample quality classification and filtering was to (i) establish a training set using a
representative subset of samples, (ii) collect a series of 108 quality control metrics (for example,
percent unique reads, percent reads surviving trimming, transcript isoform counts) spanning both
the laboratory and data analysis workflows as model features, (iii) use these training data and
quality control metrics to build a classification model using the random forest method, and (iv)

apply the model to the entire dataset for quality classification and data filtering.
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The random forest quality control model was then applied to the data and final quality Pass-Fail
classifications were determined. A Pass confidence cutoff of 0.6 or greater was used to select
single-nuclei data for downstream analysis. Using this random forest model applied to the entire
layer 5 dataset, 78% of 1,118 single-nuclei samples passed quality control. For these Pass
samples, the average number of reads after trimming was 16,715,521 + 20,434,739, the number
of ERCC transcripts detected was 41.78 £ 4.79 out of 92, and the average number of genes
detected across all passing nuclei at FPKM > 1 was 5,584 + 2,004, giving an average coverage of
2,174 reads per human gene detected. Additional summary statistics (grouped by donor or
cluster) for nuclei passing QC and included in the analysis are shown in Supplementary Figure

1.

Gene expression calculation

For each nucleus, expression levels were estimated based on the scaled coverage across each
gene. Specifically, bam files were read into R using the readGAlignmentPairs function in the
GenomicAlignments library, and genomic coverage was calculated using the coverage function
in GenomicRanges °. All genes in GENCODE human genome GRCh38, version 21 (Ensembl
77; 09-29-2014) were included, with gene bounds defined as the start and end locations of each
unique gene specified in the gtf file (https://www.gencodegenes.org/releases/21.html). Total
counts for each gene (including reads from both introns and exons) were estimated by dividing
total coverage by twice the read length (150 bp, paired end). Expression levels were normalized

across nuclei by calculating counts per million (CPM).
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Clustering nuclei

Nuclei and cells were grouped into transcriptomic cell types using an iterative clustering
procedure as described in Boldog et al.*2. Briefly, intronic and exonic read counts were summed,
and log2-transformed expression (CPM + 1) was centered and scaled across nuclei.
Differentially expressed genes were selected while accounting for gene dropouts, and principal
components analysis (PCA) followed by t-distributed stochastic neighbor embedding (t-SNE)™®
was used to reduce dimensionality. Nearest-neighbor distances between nuclei were calculated,
and segmented linear regression (segmented R package) was applied to estimate the distribution
breakpoint to help define the distance scale for density clustering. The statistical significance of
the separation of clusters identified by density clustering was evaluated with the R package
sigclust’™, which compares the distribution of nuclei to the null hypothesis that nuclei are drawn
from a single multivariate Gaussian. Iterative clustering was used to split nuclei into subclusters
until the occurrence of one of four stop criteria: (i) fewer than 6 nuclei in a cluster (because it
cannot be split due a minimum cluster size of 3), (ii) no significantly variable genes, (iii) no

significantly variable principal components, or (iv) no significant subclusters.

To assess the robustness of clusters, the iterative clustering procedure described above was
repeated 100 times for random subsamples of 80% of nuclei. A co-clustering matrix was
generated that represented the proportion of clustering iterations in which each pair of nuclei was
assigned to the same cluster. Average-linkage hierarchical clustering was applied to this matrix,
followed by dynamic branch cutting (R package WGCNA) with cut heights ranging from 0.01 to
0.99 in steps of 0.01. A cut height resulting in 25 clusters was selected to balance cohesion

(average within cluster co-clustering) and discreteness (average between cluster co-clustering)

27


https://doi.org/10.1101/627505
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/627505; this version posted May 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

across clusters. Finally, gene markers were identified for all cluster pairs, and clusters were
merged if they lacked binary markers (gene expressed in > 50% nuclei in first cluster and < 10%
in second cluster) with average CPM > 1. Clusters were marked as outliers and excluded from
analysis if they contained lower quality nuclei based on QC metrics or expression of

mitochondrial genes.

Cluster names were defined using an automated strategy that combined molecular information
(marker genes) and anatomical information (layer of dissection). Clusters were assigned to the
major classes interneuron, excitatory neuron, microglia, astrocyte, oligodendrocyte precursor, or
oligodendrocyte based on maximal median cluster CPM of GAD1, SLC17A7, C3, AQP4,
CSPG4, or OPALIN, respectively. Clusters were then assigned a subclass marker, defined by
maximal median CPM of LAMP5, VIP, SST, PVALB, LHX6, LINC00507, RORB, THEMIS,
FEZF2, CTGF, C3, FGFR3, CSPG4, or OPALIN. Finally, clusters in all major classes that
contained more than one cluster were assigned a cluster-specific marker gene. These marker
genes had the greatest difference in the proportion of expression (CPM > 1) with a cluster
compared to all other clusters regardless of mean expression level. In some cases the most

specific marker gene was the subclass marker (SST and VIP).

Scoring cluster marker genes

Many genes were expressed in the majority of nuclei in a subset of clusters. A marker score
(beta) was defined for all genes to measure how binary expression was among clusters,
independent of the number of clusters labeled. labeled. First, the proportion (xi) of nuclei in each

cluster that expressed a gene above background level (CPM > 1) was calculated. Then, scores
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were defined as the squared differences in proportions normalized by the sum of absolute
differences plus a small constant (¢) to avoid division by zero. Scores ranged from 0 to 1, and a

perfectly binary marker had a score equal to 1.

=1 Z;'l=1(xi - xj)2

Enrichment marker genes

Genes were defined as enriched in Exc FEZF2 GABRQ if they met the following criteria: 1) they
were expressed in at least half the cells in Exc FEZF2 GABRQ, 2) they were expressed in fewer
than half the cells in every other cluster, 3) they were expressed in at least 25% more cells in
Exc FEZF2 GABRQ than in any cluster, and 4) the average expression in Exc FEZF2 GABRQ

was at least two-fold higher than every other cluster. Thirty-two genes met these criteria.

Cluster dendrograms
Clusters were arranged by transcriptomic similarity based on hierarchical clustering. First, the

average expression level of the top 1200 scoring cluster marker genes (highest beta scores, as

above) was calculated for each cluster. A correlation-based distance matrix (D, = ka(x’y)) was

calculated, and complete-linkage hierarchical clustering was performed using the “hclust” R
function with default parameters. The resulting dendrogram branches were reordered to show
inhibitory clusters followed by excitatory clusters, with larger clusters first, while retaining the
tree structure. Note that this measure of cluster similarity is complementary to the co-clustering
separation described above. For example, two clusters with similar gene expression patterns but

a few binary marker genes may be close on the tree but highly distinct based on co-clustering.
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Gene expression visualization

Gene expression (CPM) was visualized using heat maps and violin plots, which both show genes
as rows and nuclei as columns, sorted by cluster. Heat maps display each nucleus as a short
vertical bar, color-coded by expression level (blue = low; red =high), and clusters were ordered
as described above. The distributions of marker gene expression across nuclei in each cluster
were represented as violin plots, which are density plots turned 90 degrees and reflected on the y
axis. Black dots indicate the median gene expression in nuclei of a given cluster; dots above

y =0 indicate that a gene is expressed in more than half of the nuclei in that cluster.

Colorimetric in situ hybridization
Information about postmortem tissue donors and methods used for colorimetric in situ
hybridization (ISH) is available from the Allen Human Brain Atlas documentation

at http://human.brain-map.org/.

Multiplex fluorescent in situ hybridization (FISH)

Human tissue specimens used for RNAscope mFISH came from a cohort of neurosurgical
resection and postmortem tissues that included donors used for ShARNA-seq. Fresh-frozen tissues
were sectioned at 14-16 um onto Superfrost Plus glass slides (Fisher Scientific). Sections were
dried for 20 minutes at -20°C and then vacuum sealed and stored at -80°C until use. The
RNAscope multiplex fluorescent v1 kit was used per the manufacturer’s instructions for fresh-
frozen tissue sections (ACD Bio0), except that fixation was performed for 60 minutes in 4%

paraformaldehyde in 1X PBS at 4°C and protease treatment was shortened to 10
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minutes. Positive controls used to assess RNA quality in tissue sections were either a set from
ACD Bio (POLR2A, PPIB, UBC, #320861) or with a combination of SLC17A7, VIP, and GFAP.
Sections were imaged using either a 40X or 60X oil immersion lens on a Nikon TiE fluorescent
microscope equipped with NIS-Elements Advanced Research imaging software (version 4.20).
For all RNAscope mFISH experiments, positive cells were called by manually counting RNA
spots for each gene. Cells were called positive for a gene if they contained > 5 RNA spots for
that gene. Lipofuscin autofluorescence was distinguished from RNA spot signal based on the

larger size of lipofuscin granules and broad fluorescence spectrum of lipofuscin.

Dual chromogenic in situ hybridization

Dual chromogenic in situ hybridization (dISH) was performed using the RNAscope 2.5 HD
Duplex Assay Kit (ACD Bio) per the manufacturer’s protocol. Experiments were performed
using fresh-frozen tissues sectioned at 16-25 um onto Superfrost Plus glass slides (Fisher

Scientific) and sections were counterstained with hematoxylin to visualize nuclei.

Scoring of morphological types using dual chromogenic in situ hybridization

Staining for the EXC FEZF2 GABRQ markers ADRA1A and POU3F1 was carried out using
dISH as described above. At least 3 sections from 5 individual human donors were used for
morphological assessment and scoring. First, the total number of layer 5 cells positive for

both ADRA1A and POU3F1 was determined for each donor. Then, the morphology of each
double positive cell was assessed and scored as either pyramidal (cell body round to pyramidal in
shape and wider than tall), VEN (cell body elongated, spindle-shaped and taller than wide) and

uncharacterized (lacking definitive morphological features perhaps due to bisection of cells
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during sectioning). The proportion of cells in each morphological type was then calculated as a
fraction of the total number of ADRA1A and POU3F1 double positive cells. Cells were called

positive for a gene if they contained > 5 RNA spots for that gene.

Electrophysiology

Electrophysiological experiments were performed as reported previously®. Briefly, the surgical
specimen was sectioned into 300 um thick slices using a Compresstome VF-200 (Precisionary
Instruments) in a solution composed of (in mM): 92 with N-methyl-D-glucamine (NMDG), 2.5
KCI, 1.25 NaH2PO4, 30 NaHCOs3, 20 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl,e4H,0 and 10
MgSO4e7H,0. After warming for 10 minutes in the same solution, slices were transferred to a
holding chamber containing 92 NaCl, 2.5 KCI, 1.25 NaH2PO4, 30 NaHCOs3, 20 HEPES, 25
glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 2 CaCl,e4H>0 and 2 MgSO4e7H-0. Slices
were submerged in a recording chamber continually perfused with artificial cerebrospinal fluid
(aCSF) consisting of 119 NaCl, 2.5 KCI, 1.25 NaH2PO4, 24 NaHCO3, 12.5 glucose, 2
CaClye4H,0 and 2 MgSO4e7H,0 and were viewed with an Olympus BX51WI microscope

equipped with infrared differential contrast optics and a 40x water immersion objective.

Whole cell somatic recordings were acquired using a Multiclamp 700B amplifier and PClamp 10
data acquisition software (Molecular Devices). Electrical signals were digitized at 20-50kHz and
filtered at 2-10 kHz. The pipette solution contained 130 K-gluconate, 4 KCI, 10 HEPES, 0.3
EGTA, 10 Phosphocreatine-Naz, 4 Mg-ATP, 0.3 Nax-GTP, 0.5% biocytin and .020 Alexa 594.

Pipette capacitance was compensated and the bridge was balanced throughout the recording.
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Data were analyzed using custom analysis scripts written in Igor Pro (Wavemetrics). All
measurements were made at resting potential. FI curves were constructed by measuring the
number of action potentials elicited by 1 s long current injections of increasing amplitude (A50
pA). Spike frequency accommodation was determined from the current injection yielding 10 + 2
spikes and was calculated as the ratio of the last to the second interspike interval. The coefficient

of variation of spike times was calculated from the same sweep.

Quantification of putative extratelencephalic (ET) neurons

The fraction of ET neurons in Fl and MTG was estimated using both mFISH and RNA-Seq. For
mFISH estimates, the total numbers of SLC17A7+, POU3F1+ and SLC17A7+, POU3F1- cells in
layer 5 were quantified in at least 3 sections per donor (n=3 donors for both FI and MTG). The
percentage of ET cells (SLC17A7+, POU3F1+) was then calculated as a fraction of the total
number of SLC17A7+ cells in layer 5. RNA-seq estimates were made by taking the total number
of neurons mapping to the relevant ET cluster (Exc FEZF2 GABRQ and Exc L4-5 FEZF2
SCN4B in Fl and MTG, respectively) and dividing by the total number of excitatory neurons

collected in layer 5 dissections.

Cross-species data integration

To assess cross-species cell type homology, excitatory cells (mouse) or nuclei (human) collected
from human FI (these data), human MTG *, mouse VISp, and mouse ALM 32 were compared.
Log2-transformed CPM of intronic plus exonic reads was used as input for all four datasets.

Including exonic reads increased experimental differences due to measuring whole cell versus
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nuclear transcripts, but this was out-weighed by improved gene detection. To the extent possible,
a matched subset of cells was included as input to Seurat. In human MTG, we included all cells
dissected from layers 4 or 5 that were mapped to excitatory clusters with at least 10 total cells
from layer 5, including up to 50 randomly sampled cells per cluster (for a total of 616 nuclei);
cells from layer 4 were included since FI does not contain a layer 4. In mouse VISp and ALM,
cells were grouped by subclass (rather than cell type) and we selected 100 random cells per
subclass (for a total of 700 in ALM, which does not contain layer 4, and 800 in VISp). All genes
that could be matched between data sets, except a set of sex and mitochondrial genes, were

considered.

These data sets were assembled into an integrated reference using Seurat

V3 (https://satijalab.org/seurat/) 3240 following the tutorial for Integration and Label Transfer and
using default parameters for all functions, except when they differed from those used in the
tutorial. More specifically, we first selected the union of the 2,000 most variable genes in each
data set (using FindVariableFeatures with method="vst”). Next, we projected this data sets into
subspace based on common correlation structure using canonical correlation analysis (CCA)
followed by L2 normalization, and found integration anchors (cells that are mutual nearest
neighbors between data sets) in this subspace. Each anchor is weighted based on the consistency
of anchors in its local neighborhood, and these anchors were then used as input to guide data
integration (or batch-correction), as proposed previously "2, We then scaled the data, reduced the
dimensionality using principal component analysis, and visualized the results with Uniform
Manifold Approximation and Projection (UMAP) 3. We defined homologous cell types by

constructing a shared nearest neighbor (SNN) graph on the integrated data sets based on the
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Jaccard similarity of the 10 nearest neighbors of each sample. Louvain community detection was
run to identify clusters that optimized the global modularity of the partitioned graph. Data set
clusters are grouped based on the maximal fraction of cells in these Seurat-assigned cluster,
which were nearly perfectly aligned for most subclasses, including ET. Changes in parameters

did not change the integration of cluster Exc FEZF2 GABRQ with mouse ET clusters.

Data availability

Raw and aligned data have been registered with dbGaP
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001791.v1.p1) and
have been deposited in the NeMO archive (https://nemoarchive.org/). Specific links to these

controlled-access data will be included on the dbGaP site once they become available.

Code availability
Custom R code and count data used to generate transcriptomics related figures can be

downloaded from https://github.com/Alleninstitute/L5 VEN.
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