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1 Abstract

2 Restoration of alpine sand dunes has been increasingly attracting the attention of ecologists due to their
3 difficulty and importance among the mountain-river-forest-farmland-lake-grass system (referred as
4 meta-ecosystem) restoration. Alpine sand dunes are suffered from unstable soil and lack of plants.
5 Efficient restoration measures are vital to guide the sand dune restoration. Whether the engineering
6 materials co-applied with seeding could achieve considerable restoration in such areas? Here, sandbag
7 and wicker as environmental friendly materials combined with Elymus nutans seeding were
8 implemented on the Zoige Plateau sand dune, comparing with the ‘control’ treatment that only seeding.
9 We assessed the topsoil conditions by sampled the surface soil and measured the water capacity and
10  nutrients. We also utilized interspecific relationship and population niche to analyse the plant
11 community structure variances among different restoration measures. Results showed that the soil
12 conditions got clearly improved in sandbag area than that in wicker area when compared with that in
13 control area. The community in control area was the least structured, while the species showed the
14 closest related in sandbag area. In addition, average population niche overlap showed a control (0.26)
15 < wicker (0.32) < sandbag (0.39) ranking. Thus, we suggested that sandbag or wicker co-applied with
16 indigenous grass seeding is a practical and quick restoration approach in alpine sand dunes, and the
17 sandbag may surpasses the wicker. Moreover, soil amending measures including nutrient improvement,
18 and microbial fertilizer addition may further accelerate sand dune restoration.

19 Keywords: interspecific relationship; niche; Elymus nutans; sand barrier; restoration
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20 1. Introduction

21 The terrestrial ecosystem has experienced increasingly severe land degradation and desertification
22 [1]. Desertification threatens the ecological safety and its restoration is one of the vital elements in the
23 mountain-river-forest-farmland-lake-grass system (referred as meta-ecosystem) restoration [2, 3]. The
24 long-termed complex causes (e.g., overgrazing, climate change) accelerate desertification process and
25 the sand dunes are expanding continuously on the Zoige Plateau [4-6]. Sand dunes are generally
26 covered by nutrient devoid sandy soil that lacks favourable properties for plant growth and is prone to
27 wind erosion [7]. The expanded sand dunes destroy fertile land and welfare of local populations. For
28 example, they threaten livestock productivity, society development, ecological civilization, household
29 income or human beings health [8-10]. Hence, sand dunes restoration is crucial in ensuring the
30  conservation and sustainable development of the Zoige Plateau and meeting aspiration for better living
31 standards in local people.

32 Decades worth of works have been conducted on sand dunes restoration [11, 12]. Mechanical sand
33 barriers as the classical and simplest measure have been shown to contribute to reduce sand dunes
34  mobility [13]. Stone or straw checkerboard barriers have been utilized to fix active sand dunes along
35 the railway in alpine sandy land, such as Baotou-Lanzhou Railway and the eastern shore of the Qinghai
36 Lake [14]. However, the single use of types of barriers is non-optimal choice in alpine sand dune
37 restoration. They were often buried by sand sediments due to lack of vegetation cover eventually, in
38 addition, traditional mechanical materials were much expensive and hard to operate [13].

39 Vegetation restoration is an important objective during sand dune restoration [15, 16]. It has been

40  proved to be practical in decreasing wind velocity and increasing soil nutrients in sand dune to
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41 accelerate vegetation restoration [17-19]. Given the poor seed bank in active sand dunes, natural

42 vegetation restoration is almost not feasible [20, 21], so that of indigenous seeds application is an

43 inevitable method to improve seed bank [22, 23]. For example, marram grass (Ammophila arenaria)

44 was one of an optimal species for sand dune restoration in Ille et Vilaine, France [11]. ‘Tree-screens’

45 and ‘shelter-belt’ plantations of the Thar Desert in India were launched and achieved great ecological

46 benefits in vegetation cover [17]. Sahara mustard (Brassica tournefortii) usually occupied dominated

47 status in the drier sand dune region, and the flourishing weed also could control sand dune in the

48 semi-arid regions of Inner Mongolia [24, 25]. In addition, Farmland constructed in the Mu Us Sandy

49 Land has changed the barren desert to fertile farmland over ten-year restoration, providing compelling

50 evidence of biotic approaches advantages in sand dune restoration [26]. Also, shrub-planting is an

51 effective restoration measure to fix the sand dune in the semiarid Mu Us desert [27].

52 Although there were plenty of successful project cases of sand dunes restoration around the world

53 previously, few of them were suitable for sand dune restoration on the alpine area. Here, we focus on

54 two environmental friendly barrier materials (i.e., Poly Lactic Acid sandbag and Salix paraplesia

55 wicker) that are easily reproducible and durable in harsh conditions. Poly Lactic Acid is hydrophilic,

56 ultraviolet radiation resistance, and easy transportation [28], making them as optimal barrier materials

57 in sand dune restoration on the Zoige Plateau. Meanwhile, S. paraplesia is widely cultivated in alpine

58 area which makes it convenient to acquire wicker materials. These two materials combined with

59 indigenous grass (Elymus nutans) were used with expectation to fix the active sand dune on the alpine

60  sand dunes. Our objectives were compare the different restoration approaches’ effects on the alpine

61 sand dunes and expect to provide a suitable strategy for alpine sand dune restoration.
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62 2. Materials and Methods

63 2.1. Study area

64 The study area is located in Xiaman, Assi Township, on the Zoige Plateau (3,486 m asl.), which is
65 characterized by an alpine continental monsoon climate with a pronounced winter season. The annual
66 average temperature is 2.5°C and the average annual rainfall is 520 mm. The maximum wind speed is
67 up to 36 m/s, with northwest prevailing winds [9]. The soil is dominated by alpine or subalpine
68 meadow soil, with marshlands distributed throughout. Over the years, the land degradation process has
69 increased greatly. Thus it led to types of degraded landscapes, form a large area of active sand dune.

70 The active sand dune has caused serious threatens to ecological safety.

71 2.2. Field investigation design and sampling

72 We established a restoration demonstration zone in a 10 ha degraded land in which active sand
73 land occupied more than 55%. This area is a typical degraded alpine land on the Zoige Plateau. We
74 employ sandbag and wicker as sand barrier materials combined with Elymus nutans (60 kg hm?2)
75 sowing in the study area (referred as “sandbag” and “wicker”). The sand dune that only implemented
76 sowing was set as ‘control’. Thus, three restoration measures areas consist of control, wicker, and
77 sandbag area were organized in a randomized block design in the restoration demonstration zone. The
78 barrier checkerboard was 2.0 m x 2.0 m x 0.3 m. (Fig 1)

79 108 quadrats were randomly investigated in three restoration areas at the third growth season after
80 the restoration measures were implemented. Parameters of plant taxa, natural plant height, species

81 cover and stem number were recorded. Surface soil in each quadrat was sampled by soil core, sieved (<
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82 2 mm) to filter out gravel or plant roots and divided into three subsamples. One was saved in a

83 refrigerator (4°C) for microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN)

84 determination by the chloroform fumigation-incubation method co-applied with an N/C Analyser

85 (multi N/C® 3100 TOC, analytikjena, Germany); one was air-dried to measure total soil organic

86 carbon (thereafter SOC) by titrimetry, total soil nitrogen (TN), total soil phosphorus (TP), soil

87 ammonium nitrogen (AN), soil nitric nitrogen (NN), soil available phosphorus (AP) by Smartchem

88  Discrete Auto Analyzer (Smartchem 200, AMS/Westco, Italy); and one was used for soil moisture

89 determination using the gravimetrical method by drying at 105°C.
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91 Fig 1. Demonstration area and speed flow distribution characteristics of different restoration

92 measure on the Zoige Plateau

93 2.3 Data analysis

94 The species importance value (/) was calculated using the following equation:

relative cover + relative height + relative density
95 V= 3
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The Jaccard interspecific association (JI) test was conducted based on the 2 x 2 contingency tables

by the plant investigation data (Table 1).

Table 1. Illustration of the 2x2 contingency tables.

Quadrats number of | Quadrats number of
species j appeared species j absented
Quadrats number of species i appeared a b
Quadrats number of species i absented c -
a
Jr= at+b+c

The JI value was classified into 4 grades: none association, 0 =JI/=0.25; weak association, 0.25 <
JI=0.5; middle association, 0.5 < JI=0.75; and song association, 0.75 < JI=1.0 [29].
Furthermore, the Spearman rank correlation (r(i, k)) was tested to assess the interspecific

correlation degree.

N
62 (xij = Xk’

j=1

) =1-—— 53—

Here, 7(i, k) is the correlation coefficient between species i and k, x; and x; are the importance
values of species i and k in quadrat ;.

Additionally, niche theory has been widely used in the study of plant community ecology [30].
Niche breadth and overlap are important indices to further quantify the resource utilization efficiency
and competition/coexistence of different populations [31-33]. Shannon-Wiener niche breadth (B;) was

calculated following Colwell & Futuyma [34] and The Pianka niche overlap (Oy) was calculated using

the following equation [35]:

.
B;=- Z (Pijln Py)

j=1

L
Piy= /Ni]-
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r

j=1

O = - . >
O.Pp) QP
j=1 j=1

Here, P; and Py, are a proportion of quadrat j among the total quadrats occupied by species i and £;
r is the total number of quadrats. The n; is the importance values of species i in quadrat j and N;; =
Znij.

The soil metric and species richness data were calculated using MS Excel 2010, and statistical
analyses were performed using SPSS Statistics 20.0 (P<0.05) (SPSS Inc., Chicago, IL, US). The soil
condition graphs were run with OriginPro 2016 (OriginLab Corporation, Northampton, MA, US). The
map was created with ArcGIS v10.2. The speed flow distribution characteristics were simulated by
Gambit 2.4, Fluent 16.0, and Tecplot 360. The niche overlap matrix diagram was run with the ‘Lattice’
package in R. The Jaccard interspecific association graphs, niche overlap matrix diagrams, and field

experimental site pictures were merged by Adobe Photoshop CS6 v6.0.335.0.

3. Results

3.1. Plant composition and soil conditions in different

restoration area

We recorded 9, 12, and 10 plant species in the sandbag, wicker and control area, respectively. The
vegetation cover increased by 161.99% in wicker area and 331.67% in sandbag area compared with
that in control (P<0.05). The same species importance values varied among the different restoration

area. The E. nutans occupied the dominant position in all restoration area, especially in the sandbag
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132 area in which its importance value was up to 52.89. (Table 2)

133

134

135 Table 2. Plant composition, importance value (IV), niche breadth (Bi), and vegetation cover (VC)

136 in different restoration area.

Sandbag Wicker Control

Species w Bi vC Species w Bi VvC Species w Bi vC

En. 52.89 | 1.55 En. 32.03 | 1.54 En. 39.57 | 1.55
Cm. 17.04 | 1.54 Ls. 19.43 | 1.48 Cm. 19.64 | 1.42
Ls. 10.86 | 1.50 Hb. 12.21 | 1.50 Kr. 17.77 | 1.46
Hb. 8.19 | 141 of. 10.98 | 1.40 Ls. 7.48 | 1.17

of. 7.78 | 1.39 | 19.08 HI. 7.61 | 140 | 11.58 Pb. 438 | 091 4.42

Fo. 1.43 | 0.69 | £0.77c Cm. 7.48 | 1.11 | £0.70b Hb. 420 | 1.07 | £0.16a
Dh. 1.27 | 0.82 Kr. 552 | 1.24 HI. 2.28 | 0.76
Ms. 031 | 048 Am. 1.27 | 0.58 of. 2.03 | 048
Od. 0.23 | 0.30 Ps. 1.24 | 0.38 Dh. 1.82 | 0.69
Ms. 0.87 | 0.77 Ms. 0.82 | 0.48
Se. 0.84 | 0.48

Ap. 0.54 | 0.48

137 Note: En., Elymus nutans; Cm., Carex moorcroftii; Kr., Kobresia robusta; Ls., Ligusticum scapiforme; Pb., Potentilla

138 bifurca; Hb., Heteropappus bowerii; Hl., Hypecoum leptocarpum; Of., Oxytropis falcate;, Dh., Dracocephalum heterophyllum;

139 Ms., Microula sikkimensis, Am., Artemisia macrocephala; Ps., Polygonum sibiricum, Sc., Salsola collina; Ap., Axyris prostrata;

140 Fo., Festuca ovina, Od., Oxytropis densa.

141 The soil water capacity and nutrient metrics increased greatly in the area where the sand barriers

142 were implemented (P<0.05). The atomic ratios of SOC: TN, SOC: TP, TN: TP, and MBC: MBN

143 varied in different restoration area. Comparing with the control, MBC: MBN ratios decreased a lot in

144 sandbag area and wicker area, while the SOC: TP and TN: TP ratios increased. In more detail, the

145 SOC: TN and MBC: MBN were only 11.67+ 1.46 and 10.57+ 0.21 in sandbag area, which was lower

146 than that in wicker and control areas; the MBC: MBN in sandbag area was less than one-half of that
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147 in control area. The TN: TP and the SOC: TP ratios also were the highest in sandbag area while

148 lowest in control area. (Table 3; Fig 2)

149

150 Table 3. The soil conditions variances in different restoration area (P < 0.05).

TN/ TP/ AN/ NN/ AP/ SOC/ MBC/ MBN/
Moisture/ %
gkg' | gkg' | mgkg' | mgkg' | mgkg' | gkg! mg kg'! mg kg
411a 0.19a | 030a | 2493a 7.68 a 84.05a 2.19a 6583 a 623 a
Sandbag
+0.02 +0.02 +0.00 +2.04 +0.24 +0.24 +0.10 +0.31 +0.14
3.60b 0.10b | 033a | 22.19a 5.78b 73370 1.66 b 5237b 353b
Wicker
+0.02 +0.01 +0.01 +1.24 +0.50 +0.34 +0.09 +0.17 +0.14
2.8lc 0.06b | 0.22b 13.39b 3.07¢ 43.80 ¢ 095¢ 1527 ¢ 0.67 ¢
Control
+0.08 +0.00 +0.02 +0.55 +0.74 +0.71 +0.03 +0.60 +0.07
151 Note: The different lowercase letters means significant difference in a certain soil condition (P < 0.05).
30 -
b
£ 25 +
[}
£
<
D 20 4
€ b
£ be a
=
2 154 4
o
Qo a
g 104 a
£ o
] b
% 51
—P b
0 T T T T
SOC: TN soc: TP TN:TP MBC: MBN

Topsoil nutrients
152

153 Fig 2. The soil nutrients atomic ratios in different restoration area. The different lowercase

154 letters means significant difference in a certain pair-wise (P < 0.05).

155 3.2, Interspecific relationship in different restoration area

156 The summed ratio of none and weak associations were 93.33%, 83.33%, and 75.00% in control,
157 wicker, and sandbag areas, respectively. Both of strong and middle association ratios rank was control

158 < wicker < sandbag. The plant community was the simplest structured in the control area, and less

10
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159 structured in wicker area compared with that in sandbag area where the species association degree was

160 stronger. It indicated that the community stability and community development status got better in sand

161 barriers areas (Fig 3).

m strong

m middle

sandbag| wicker

weak

| none

162

163 Fig 3. The Jaccard interspecific association (JI) ratios in different restoration area.

164 The species Spearman rank correlation indices were mostly negative in all restoration areas. E.

165  nutans was negatively correlated with most of plants. The positive correlation ratio was the lowest in

166 sandbag area. In addition, the same species pair interspecific correlation changed when the sand

167 barriers were implemented to fix the active sand land. For example, the interspecific correlation of E.

168 nutans-C. moorcroftii changed from greatly negative correlation to positive correlation (-0.47 (P< 0.01)

169 in control, -0.18 in wicker, and 0.10 in sandbag area); and the negative correlation degree of E.

170  nutans-H. bowerii was enhanced in wicker and sandbag area (-0.08 in control, -0.34 (P< 0.05) in

171 wicker, and -0.47 (P< 0.01) in sandbag area) (Tables 4-6).

172 Table 4. Spearman rank correlation between species-pair in sandbag area.

En Cm Ls Hb of Fo Dh Ms

Cm 0.096

Ls -0.217 -0.149

Hb | -0.466** -0.050 -0.266

of -0.006 -0.489** -0.318 -0.189

11
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Fo -0.055 0.113 -0.528** | 0.148 | -0.081

Dh | -0.339* -0.363* | 0.629%* | -0.071 | -0.246 | -0.195

Ms | -0.470%* -0.254 -0.442*%* | 0.393* | 0.395* | 0.508** | -0.147

Od -0.108 0.203 -0.265 0.190 | -0.084 | -0.097 | -0.118 | -0.073

Table 5. Spearman rank correlation between species-pair in wicker area.

En Ls Hb of Hi Cm Kr Am Ps Ms Sc

Ls -0.128

Hb | -0.336* -0.345%

of -0.150 0.225 -0.237

Hi -0.269 -0.196 0.005 -0.275

Cm -0.179 -0.689%* | 0.526%* -0.214 0.053

Kr 0.337%* 0.395% -0.488** | -0.162 -0.047 | -0.747**

Am | -0.416% -0.145 0.195 -0.151 0.304 -0.054 -0.147

Ps | -0.359* -0.344* 0.180 -0.075 0.242 0.175 -0.279 | 0.585%*

Ms | -0.511* 0.022 0.143 0.218 0.153 0.099 -0.119 | -0.157 | -0.134

*

Sc 0.202 -0.478** | 0.339*% | -0.394* | -0.394* | 0.533** | -0.279 | -0.106 | -0.091 | -0.134

Ap 0.363* -0.172 -0.479** | 0.196 0.060 -0.243 0.348* | -0.106 | -0.091 | -0.134 | -0.091

Table 6. Spearman rank correlation between species-pair in control area.

En Cm Kr Ls Pb Hb Hi of Dh

Cm | -0.465%*

Kr 0.102 -0.614%*

Ls -0.314 -0.277 0.068

Pb -0.019 -0.181 0.405%* -0.241

Hb -0.085 0.405* | -0.487** | -0.380* | -0.392*

Hi 0.118 0.101 -0.455%* | -0.359*% | -0.253 | 0.701%**

of 0.278 0312 -0.436%* | -0.243 -0.172 -0.207 | -0.134

Dh -0.207 -0.326 0.246 0.596** | -0.228 -0.275 | -0.178 | -0.121

Ms | -0.376* 0.082 0.027 0.224 -0.172 -0.207 | -0.134 | -0.091 | -0.121

Note: *, P <0.05; **, P<0.01.

3.3. Niche breadth and overlap in different restoration area

Population niche breadth and niche overlap analyses could effectively assess the resources

utilization and interspecific competition. The niche breadth ranged from 0.48 to 1.55 in control area,

12
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180 0.38 to 1.54 in wicker area, and 0.29 to 1.55 in sandbag area. E. nutans had the widest niche breadth in

181 all restoration areas. And the drought resistance plants, such as H. bowerii, and C. moorcroftii also

182 occupied a relative wide niche breadth in all restoration areas. Furthermore, sand barriers provided a

183  possibility for some other species’ dispersal and settle down, such as P. sibiricum, S. collina, and F.

184  ovina (Table 2).

185 The average population niche overlap indices in sandbag, wicker, and control areas were 0.39,

186 0.32, and 0.26, respectively. Furthermore, the niche overlap indices species pair number ratio that

187 higher than 0.50 were 33.33%, 25.76%, and 20.00% in sandbag, wicker, and control areas, respectively.

188 The increased niche overlap indicated that the competition was stronger after the sand barriers were

189 implemented. Moreover, there was a stronger effect of sandbag sand barriers on plant community

190  (Figure 4).

éanabég ‘wicker] - 10
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Cm 4 Pb
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HI
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191
192 Figure 4 Niche overlap of all plant pairs in different restoration area
L3 [
193 4. Discussion
194 The sandbag and wicker sand barriers co-applied with seeding amendment were both practical

195 approaches and were better than that only seeding during alpine sand dunes restoration. The vegetation

13


https://doi.org/10.1101/627091
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/627091; this version posted May 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

196 and soil conditions were the best in the sandbag area and also were improved greatly in the wicker area

197 compared with the control. In the control area, the soil was extremely droughty and poor, and the

198 vegetation cover was also the lowest. The soil moisture and nutrients conditions are the preconditions

199 that regulate the plant growth on the sand dune [36]. The soil moisture and nutrient conditions were

200 improved greatly in the sandbag area. The sandbag is airtight whereas the wicker has a higher porosity

201 and there was no protection in the control area. This difference leads to different near-surface wind

202 velocities that pass by the restoration area [37, 38] (Fig 1). The strong wind would take away the soil

203 water and destabilize the surface soil which makes it difficult for plant to sprout and grow. In addition,

204 although the soil nutrients were was lower than the wetland where the TN was 4.9-12.0 g kg'! on the

205 Zoige Plateau [39], they were promoted greatly under wicker or sandbag amendments. The greatly

206 increased microbial mass indicated higher microbe richness. Hence, it accelerated the litter

207 decomposition in the soil and fed back a nutrients increasing which promoted the nitrogen content and

208 led a lower MBC: MBN ratios [40]. The SOC: TN ratio in sandbag area also decreased to close to the

209 level of the meadow on the Zoige Plateau (SOC: TN=11.8) [41]. Nonetheless, the SOC: TP and TN:

210 TP ratios were far less than the ratios reported in the meadow which indicated a clear phosphorus

211  inhibition [42]. These changes suggested that the nutrients inhibition degree was reduced, such as

212 nitrogen inhibition was reduced, when the sand barriers were implemented. And the amendment effect

213 of sandbag sand barrier on soil conditions was stronger than that of wicker. Moreover, soil amendments

214 may also provide indispensable assistance during the sand dunes restoration. Except for soil nutrients

215 regulation, bioactive fertilizer amendment may also be an effective and environmentally friendly

216 measure to promote the microbial biomass and accelerate restoration in alpine areas [43, 44].

217 Plant interspecific association is important for revealing how species interact with each other and
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218 adapt with the environment, and hence have important implications for optimal restoration in degraded

219 ecosystems [45]. Species interspecific relationships or niches play a critical role in stabilizing

220 community [30, 46]. The tighter interspecific correlation and higher niche overlap reflected a stronger

221  plants competitive relationship when the sand barriers were conducted [47]. The population space

222 occupancy and correlation degree was the lowest in control while highest in sandbag area. Hence, the

223 sandbag barrier may lead to the best plant community development in sand dune restoration [37]. The

224 interspecific association degree was enhanced when the community was improved by wicker or

225 sandbag barriers. However, some previous studies stated that interspecific competition/association

226 intensity reduced gradually with the plant community development [48, 49]. The plant community that

227 developed in alpine sand dunes area was still with limited structure and minimal resource acquisition

228 ability, thus the independence between vascular plants was strong in such barren habitat [50].

229 Plant communities in sand dunes area are sensitive and vulnerable to environment changes,

230 indicating the orientation of plant community development as well [51], allowing for revealing

231 quantitatively community assembly mechanism or community stability [49, 52]. Plant species survived

232 and reproduced within different restoration areas, and the population niche and interspecific

233 relationships changed along this abiotic gradient [53]. These changes stimulated the development of the

234 sand dune community [49, 54, 55]. Resource variations cause populations to adopt different ecological

235 strategies to intersect with other populations [50, 56, 57]. The E. nutans importance value improved in

236  the sand barrier area, especially in the sandbag area. And it occupied the wider niche to compete for the

237 soil and light resource with the similar strategies species and coexist with the different niche

238 requirement species. For example, E. nutans-C. moorcrofiii changed from greatly negative correlation

239 to positive correlation while the negative correlation degree of E. nutans-H. bowerii was enhanced in
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240  wicker and sandbag area. Thus, it suggested that the seeded grass regulated the relationship with other
241 species with similar or different strategies to adapt the changed habitat and thus increase the vegetation
242 cover. Accordingly, we also suggested that it is important to restore sand dunes by preliminarily

243 developing a community with different ecological strategies.

224 5. Conclusions

245 The alpine sand dunes restoration by implementing the sand barriers and indigenous grass
246 enhances community structure and improves the soil conditions. Using sandbag or wicker sand barriers
247 to fix the active sand dunes would gain a better restoration effect than that only seeding. Moreover,
248 sandbag sand barrier allowed for a better restoration of harsh soil conditions and plant community. We
249 suggest that species interspecific relationships and niche breadth could assess the sand dune restoration
250 efficiency well. And the soil amending measures including nutrient improvement, and microbial

251 fertilizer addition may further accelerate sand dune restoration.
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