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1 Abstract

2 Restoration of alpine sand dunes has been increasingly attracting the attention of ecologists due to their 

3 difficulty and importance among the mountain-river-forest-farmland-lake-grass system (referred as 

4 meta-ecosystem) restoration. Alpine sand dunes are suffered from unstable soil and lack of plants. 

5 Efficient restoration measures are vital to guide the sand dune restoration. Whether the engineering 

6 materials co-applied with seeding could achieve considerable restoration in such areas? Here, sandbag 

7 and wicker as environmental friendly materials combined with Elymus nutans seeding were 

8 implemented on the Zoige Plateau sand dune, comparing with the ‘control’ treatment that only seeding. 

9 We assessed the topsoil conditions by sampled the surface soil and measured the water capacity and 

10 nutrients. We also utilized interspecific relationship and population niche to analyse the plant 

11 community structure variances among different restoration measures. Results showed that the soil 

12 conditions got clearly improved in sandbag area than that in wicker area when compared with that in 

13 control area. The community in control area was the least structured, while the species showed the 

14 closest related in sandbag area. In addition, average population niche overlap showed a control (0.26)

15 ﹤wicker (0.32)﹤sandbag (0.39) ranking. Thus, we suggested that sandbag or wicker co-applied with 

16 indigenous grass seeding is a practical and quick restoration approach in alpine sand dunes, and the 

17 sandbag may surpasses the wicker. Moreover, soil amending measures including nutrient improvement, 

18 and microbial fertilizer addition may further accelerate sand dune restoration.

19 Keywords: interspecific relationship; niche; Elymus nutans; sand barrier; restoration
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20 1. Introduction

21 The terrestrial ecosystem has experienced increasingly severe land degradation and desertification 

22 [1]. Desertification threatens the ecological safety and its restoration is one of the vital elements in the 

23 mountain-river-forest-farmland-lake-grass system (referred as meta-ecosystem) restoration [2, 3]. The 

24 long-termed complex causes (e.g., overgrazing, climate change) accelerate desertification process and 

25 the sand dunes are expanding continuously on the Zoige Plateau [4-6]. Sand dunes are generally 

26 covered by nutrient devoid sandy soil that lacks favourable properties for plant growth and is prone to 

27 wind erosion [7]. The expanded sand dunes destroy fertile land and welfare of local populations. For 

28 example, they threaten livestock productivity, society development, ecological civilization, household 

29 income or human beings health [8-10]. Hence, sand dunes restoration is crucial in ensuring the 

30 conservation and sustainable development of the Zoige Plateau and meeting aspiration for better living 

31 standards in local people.

32 Decades worth of works have been conducted on sand dunes restoration [11, 12]. Mechanical sand 

33 barriers as the classical and simplest measure have been shown to contribute to reduce sand dunes 

34 mobility [13]. Stone or straw checkerboard barriers have been utilized to fix active sand dunes along 

35 the railway in alpine sandy land, such as Baotou-Lanzhou Railway and the eastern shore of the Qinghai 

36 Lake [14]. However, the single use of types of barriers is non-optimal choice in alpine sand dune 

37 restoration. They were often buried by sand sediments due to lack of vegetation cover eventually, in 

38 addition, traditional mechanical materials were much expensive and hard to operate [13]. 

39 Vegetation restoration is an important objective during sand dune restoration [15, 16]. It has been 

40 proved to be practical in decreasing wind velocity and increasing soil nutrients in sand dune to 
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41 accelerate vegetation restoration [17-19]. Given the poor seed bank in active sand dunes, natural 

42 vegetation restoration is almost not feasible [20, 21], so that of indigenous seeds application is an 

43 inevitable method to improve seed bank [22, 23]. For example, marram grass (Ammophila arenaria) 

44 was one of an optimal species for sand dune restoration in Ille et Vilaine, France [11]. ‘Tree-screens’ 

45 and ‘shelter-belt’ plantations of the Thar Desert in India were launched and achieved great ecological 

46 benefits in vegetation cover [17]. Sahara mustard (Brassica tournefortii) usually occupied dominated 

47 status in the drier sand dune region, and the flourishing weed also could control sand dune in the 

48 semi-arid regions of Inner Mongolia [24, 25]. In addition, Farmland constructed in the Mu Us Sandy 

49 Land has changed the barren desert to fertile farmland over ten-year restoration, providing compelling 

50 evidence of biotic approaches advantages in sand dune restoration [26]. Also, shrub-planting is an 

51 effective restoration measure to fix the sand dune in the semiarid Mu Us desert [27].

52 Although there were plenty of successful project cases of sand dunes restoration around the world 

53 previously, few of them were suitable for sand dune restoration on the alpine area. Here, we focus on 

54 two environmental friendly barrier materials (i.e., Poly Lactic Acid sandbag and Salix paraplesia 

55 wicker) that are easily reproducible and durable in harsh conditions. Poly Lactic Acid is hydrophilic, 

56 ultraviolet radiation resistance, and easy transportation [28], making them as optimal barrier materials 

57 in sand dune restoration on the Zoige Plateau. Meanwhile, S. paraplesia is widely cultivated in alpine 

58 area which makes it convenient to acquire wicker materials. These two materials combined with 

59 indigenous grass (Elymus nutans) were used with expectation to fix the active sand dune on the alpine 

60 sand dunes. Our objectives were compare the different restoration approaches’ effects on the alpine 

61 sand dunes and expect to provide a suitable strategy for alpine sand dune restoration.
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62 2. Materials and Methods

63 2.1. Study area

64 The study area is located in Xiaman, Assi Township, on the Zoige Plateau (3,486 m asl.), which is 

65 characterized by an alpine continental monsoon climate with a pronounced winter season. The annual 

66 average temperature is 2.5°C and the average annual rainfall is 520 mm. The maximum wind speed is 

67 up to 36 m/s, with northwest prevailing winds [9]. The soil is dominated by alpine or subalpine 

68 meadow soil, with marshlands distributed throughout. Over the years, the land degradation process has 

69 increased greatly. Thus it led to types of degraded landscapes, form a large area of active sand dune. 

70 The active sand dune has caused serious threatens to ecological safety.

71 2.2. Field investigation design and sampling

72 We established a restoration demonstration zone in a 10 ha degraded land in which active sand 

73 land occupied more than 55%. This area is a typical degraded alpine land on the Zoige Plateau. We 

74 employ sandbag and wicker as sand barrier materials combined with Elymus nutans (60 kg hm-2) 

75 sowing in the study area (referred as “sandbag” and “wicker”). The sand dune that only implemented 

76 sowing was set as ‘control’. Thus, three restoration measures areas consist of control, wicker, and 

77 sandbag area were organized in a randomized block design in the restoration demonstration zone. The 

78 barrier checkerboard was 2.0 m × 2.0 m × 0.3 m. (Fig 1)

79 108 quadrats were randomly investigated in three restoration areas at the third growth season after 

80 the restoration measures were implemented. Parameters of plant taxa, natural plant height, species 

81 cover and stem number were recorded. Surface soil in each quadrat was sampled by soil core, sieved (< 
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82 2 mm) to filter out gravel or plant roots and divided into three subsamples. One was saved in a 

83 refrigerator (4°C) for microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) 

84 determination by the chloroform fumigation-incubation method co-applied with an N/C Analyser 

85 (multi N/C® 3100 TOC, analytikjena, Germany); one was air-dried to measure total soil organic 

86 carbon (thereafter SOC) by titrimetry, total soil nitrogen (TN), total soil phosphorus (TP), soil 

87 ammonium nitrogen (AN), soil nitric nitrogen (NN), soil available phosphorus (AP) by Smartchem 

88 Discrete Auto Analyzer (Smartchem 200, AMS/Westco, Italy); and one was used for soil moisture 

89 determination using the gravimetrical method by drying at 105°C.

90

91 Fig 1. Demonstration area and speed flow distribution characteristics of different restoration 

92 measure on the Zoige Plateau 

93 2.3 Data analysis

94 The species importance value (IV) was calculated using the following equation: 

95 𝐼𝑉 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑣𝑒𝑟 + 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

3
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96 The Jaccard interspecific association (JI) test was conducted based on the 2 × 2 contingency tables 

97 by the plant investigation data (Table 1).

98 Table 1. Illustration of the 2×2 contingency tables.

Quadrats number of

species j appeared

Quadrats number of

species j absented

 Quadrats number of species i appeared a b

Quadrats number of species i absented c -

99 𝐽𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐

100 The JI value was classified into 4 grades: none association, 0≦JI≦0.25; weak association, 0.25﹤

101 JI≦0.5; middle association, 0.5﹤JI≦0.75; and song association, 0.75﹤JI≦1.0 [29].

102 Furthermore, the Spearman rank correlation (r(i, k)) was tested to assess the interspecific 

103 correlation degree.

104 𝑟(𝑖,𝑘) = 1 ‒

6
𝑁

∑
𝑗 = 1

(𝑥𝑖𝑗 ‒ 𝑥𝑘𝑗)
2

𝑁3 ‒ 𝑁

105 Here, r(i, k) is the correlation coefficient between species i and k, xij and xkj are the importance 

106 values of species i and k in quadrat j.

107 Additionally, niche theory has been widely used in the study of plant community ecology [30]. 

108 Niche breadth and overlap are important indices to further quantify the resource utilization efficiency 

109 and competition/coexistence of different populations [31-33]. Shannon-Wiener niche breadth (Bi) was 

110 calculated following Colwell & Futuyma [34] and The Pianka niche overlap (Oik) was calculated using 

111 the following equation [35]:

112           𝐵𝑖 =‒
𝑟

∑
𝑗 = 1

(𝑃𝑖𝑗ln 𝑃𝑖𝑗)

113 𝑃𝑖𝑗 =
𝑛𝑖𝑗

𝑁𝑖𝑗
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114 𝑂𝑖𝑘 =

𝑟

∑
𝑗 = 1

𝑃𝑖𝑗𝑃𝑘𝑗

(
𝑟

∑
𝑗 = 1

𝑃𝑖𝑗)

2

(
𝑟

∑
𝑗 = 1

𝑃𝑘𝑗)

2

115 Here, Pij and Pkj are a proportion of quadrat j among the total quadrats occupied by species i and k; 

116 r is the total number of quadrats. The nij is the importance values of species i in quadrat j and 𝑁𝑖𝑗 =

117 .∑𝑛𝑖𝑗

118 The soil metric and species richness data were calculated using MS Excel 2010, and statistical 

119 analyses were performed using SPSS Statistics 20.0 (P<0.05) (SPSS Inc., Chicago, IL, US). The soil 

120 condition graphs were run with OriginPro 2016 (OriginLab Corporation, Northampton, MA, US). The 

121 map was created with ArcGIS v10.2. The speed flow distribution characteristics were simulated by 

122 Gambit 2.4, Fluent 16.0, and Tecplot 360. The niche overlap matrix diagram was run with the ‘Lattice’ 

123 package in R. The Jaccard interspecific association graphs, niche overlap matrix diagrams, and field 

124 experimental site pictures were merged by Adobe Photoshop CS6 v6.0.335.0.

125 3. Results

126 3.1. Plant composition and soil conditions in different 

127 restoration area

128 We recorded 9, 12, and 10 plant species in the sandbag, wicker and control area, respectively. The 

129 vegetation cover increased by 161.99% in wicker area and 331.67% in sandbag area compared with 

130 that in control (P<0.05). The same species importance values varied among the different restoration 

131 area. The E. nutans occupied the dominant position in all restoration area, especially in the sandbag 
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132 area in which its importance value was up to 52.89. (Table 2)

133

134

135 Table 2. Plant composition, importance value (IV), niche breadth (Bi), and vegetation cover (VC) 

136 in different restoration area.

Sandbag Wicker Control

Species IV Bi VC Species IV Bi VC Species IV Bi VC

En. 52.89 1.55 En. 32.03 1.54 En. 39.57 1.55

Cm. 17.04 1.54 Ls. 19.43 1.48 Cm. 19.64 1.42

Ls. 10.86 1.50 Hb. 12.21 1.50 Kr. 17.77 1.46

Hb. 8.19 1.41 Of. 10.98 1.40 Ls. 7.48 1.17

Of. 7.78 1.39 19.08 Hl. 7.61 1.40 11.58 Pb. 4.38 0.91 4.42

Fo. 1.43 0.69 ±0.77c Cm. 7.48 1.11 ±0.70b Hb. 4.20 1.07 ±0.16a

Dh. 1.27 0.82 Kr. 5.52 1.24 Hl. 2.28 0.76

Ms. 0.31 0.48 Am. 1.27 0.58 Of. 2.03 0.48

Od. 0.23 0.30 Ps. 1.24 0.38 Dh. 1.82 0.69

Ms. 0.87 0.77 Ms. 0.82 0.48

Sc. 0.84 0.48

Ap. 0.54 0.48

137 Note: En., Elymus nutans; Cm., Carex moorcroftii; Kr., Kobresia robusta; Ls., Ligusticum scapiforme; Pb., Potentilla 

138 bifurca; Hb., Heteropappus bowerii; Hl., Hypecoum leptocarpum; Of., Oxytropis falcate; Dh., Dracocephalum heterophyllum; 

139 Ms., Microula sikkimensis; Am., Artemisia macrocephala; Ps., Polygonum sibiricum; Sc., Salsola collina; Ap., Axyris prostrata; 

140 Fo., Festuca ovina; Od., Oxytropis densa.

141 The soil water capacity and nutrient metrics increased greatly in the area where the sand barriers 

142 were implemented (P<0.05). The atomic ratios of SOC: TN, SOC: TP, TN: TP, and MBC: MBN 

143 varied in different restoration area. Comparing with the control, MBC: MBN ratios decreased a lot in 

144 sandbag area and wicker area, while the SOC: TP and TN: TP ratios increased. In more detail, the 

145 SOC: TN and MBC: MBN were only 11.67± 1.46 and 10.57± 0.21 in sandbag area, which was lower 

146 than that in wicker and control areas; the MBC: MBN in sandbag area was less than one-half of that 
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147 in control area. The TN: TP and the SOC: TP ratios also were the highest in sandbag area while 

148 lowest in control area. (Table 3; Fig 2)

149

150 Table 3. The soil conditions variances in different restoration area (P < 0.05).

Moisture/ %
TN /

g kg-1

TP/

g kg-1

AN/

mg kg-1

NN/

mg kg-1

AP/

mg kg-1

SOC/

g kg-1

MBC/

mg kg-1

MBN/

mg kg-1

Sandbag
4.11 a

±0.02 

0.19 a

±0.02

0.30 a

±0.00

24.93 a

±2.04

7.68 a

±0.24

84.05 a

±0.24

2.19 a

±0.10

65.83 a

±0.31

6.23 a

±0.14

Wicker
3.60 b

±0.02

0.10 b

±0.01

0.33 a

±0.01

22.19 a

±1.24

5.78 b

±0.50

73.37 b

±0.34

1.66 b

±0.09

52.37 b

±0.17

3.53 b

±0.14

Control
2.81 c

±0.08

0.06 b

±0.00

0.22 b

±0.02

13.39 b

±0.55

3.07 c

±0.74

43.80 c

±0.71

0.95 c

±0.03

15.27 c

±0.60

0.67 c

±0.07

151 Note: The different lowercase letters means significant difference in a certain soil condition (P < 0.05).

152

153 Fig 2. The soil nutrients atomic ratios in different restoration area. The different lowercase 

154 letters means significant difference in a certain pair-wise (P < 0.05).

155 3.2. Interspecific relationship in different restoration area

156 The summed ratio of none and weak associations were 93.33%, 83.33%, and 75.00% in control, 

157 wicker, and sandbag areas, respectively. Both of strong and middle association ratios rank was control

158 ﹤wicker﹤ sandbag. The plant community was the simplest structured in the control area, and less 
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159 structured in wicker area compared with that in sandbag area where the species association degree was 

160 stronger. It indicated that the community stability and community development status got better in sand 

161 barriers areas (Fig 3).

162

163 Fig 3. The Jaccard interspecific association (JI) ratios in different restoration area.

164 The species Spearman rank correlation indices were mostly negative in all restoration areas. E. 

165 nutans was negatively correlated with most of plants. The positive correlation ratio was the lowest in 

166 sandbag area. In addition, the same species pair interspecific correlation changed when the sand 

167 barriers were implemented to fix the active sand land. For example, the interspecific correlation of E. 

168 nutans-C. moorcroftii changed from greatly negative correlation to positive correlation (-0.47 (P< 0.01) 

169 in control, -0.18 in wicker, and 0.10 in sandbag area); and the negative correlation degree of E. 

170 nutans-H. bowerii was enhanced in wicker and sandbag area (-0.08 in control, -0.34 (P< 0.05) in 

171 wicker, and -0.47 (P< 0.01) in sandbag area) (Tables 4-6). 

172 Table 4. Spearman rank correlation between species-pair in sandbag area.

En Cm Ls Hb Of Fo Dh Ms

Cm 0.096

Ls -0.217 -0.149

Hb -0.466** -0.050 -0.266

Of -0.006 -0.489** -0.318 -0.189
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Fo -0.055 0.113 -0.528** 0.148 -0.081

Dh -0.339* -0.363* 0.629** -0.071 -0.246 -0.195

Ms -0.470** -0.254 -0.442** 0.393* 0.395* 0.508** -0.147

Od -0.108 0.203 -0.265 0.190 -0.084 -0.097 -0.118 -0.073

173

174 Table 5. Spearman rank correlation between species-pair in wicker area.

En Ls Hb Of Hl Cm Kr Am Ps Ms Sc

Ls -0.128

Hb -0.336* -0.345*

Of -0.150 0.225 -0.237

Hl -0.269 -0.196 0.005 -0.275

Cm -0.179 -0.689** 0.526** -0.214 0.053

Kr 0.337* 0.395* -0.488** -0.162 -0.047 -0.747**

Am -0.416* -0.145 0.195 -0.151 0.304 -0.054 -0.147

Ps -0.359* -0.344* 0.180 -0.075 0.242 0.175 -0.279 0.585**

Ms -0.511*

*

0.022 0.143 0.218 0.153 0.099 -0.119 -0.157 -0.134

Sc 0.202 -0.478** 0.339* -0.394* -0.394* 0.533** -0.279 -0.106 -0.091 -0.134

Ap 0.363* -0.172 -0.479** 0.196 0.060 -0.243 0.348* -0.106 -0.091 -0.134 -0.091

175 Table 6. Spearman rank correlation between species-pair in control area.

En Cm Kr Ls Pb Hb Hl Of Dh

Cm -0.465**

Kr 0.102 -0.614**

Ls -0.314 -0.277 0.068

Pb -0.019 -0.181 0.405* -0.241

Hb -0.085 0.405* -0.487** -0.380* -0.392*

Hl 0.118 0.101 -0.455** -0.359* -0.253 0.701**

Of 0.278 0.312 -0.436** -0.243 -0.172 -0.207 -0.134

Dh -0.207 -0.326 0.246 0.596** -0.228 -0.275 -0.178 -0.121

Ms -0.376* 0.082 0.027 0.224 -0.172 -0.207 -0.134 -0.091 -0.121

176 Note: *, P < 0.05; **, P < 0.01.

177 3.3. Niche breadth and overlap in different restoration area

178 Population niche breadth and niche overlap analyses could effectively assess the resources 

179 utilization and interspecific competition. The niche breadth ranged from 0.48 to 1.55 in control area, 
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180 0.38 to 1.54 in wicker area, and 0.29 to 1.55 in sandbag area. E. nutans had the widest niche breadth in 

181 all restoration areas. And the drought resistance plants, such as H. bowerii, and C. moorcroftii also 

182 occupied a relative wide niche breadth in all restoration areas. Furthermore, sand barriers provided a 

183 possibility for some other species’ dispersal and settle down, such as P. sibiricum, S. collina, and F. 

184 ovina (Table 2). 

185 The average population niche overlap indices in sandbag, wicker, and control areas were 0.39, 

186 0.32, and 0.26, respectively. Furthermore, the niche overlap indices species pair number ratio that 

187 higher than 0.50 were 33.33%, 25.76%, and 20.00% in sandbag, wicker, and control areas, respectively. 

188 The increased niche overlap indicated that the competition was stronger after the sand barriers were 

189 implemented. Moreover, there was a stronger effect of sandbag sand barriers on plant community 

190 (Figure 4).

191

192 Figure 4 Niche overlap of all plant pairs in different restoration area

193 4. Discussion

194 The sandbag and wicker sand barriers co-applied with seeding amendment were both practical 

195 approaches and were better than that only seeding during alpine sand dunes restoration. The vegetation 
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196 and soil conditions were the best in the sandbag area and also were improved greatly in the wicker area 

197 compared with the control. In the control area, the soil was extremely droughty and poor, and the 

198 vegetation cover was also the lowest. The soil moisture and nutrients conditions are the preconditions 

199 that regulate the plant growth on the sand dune [36]. The soil moisture and nutrient conditions were 

200 improved greatly in the sandbag area. The sandbag is airtight whereas the wicker has a higher porosity 

201 and there was no protection in the control area. This difference leads to different near-surface wind 

202 velocities that pass by the restoration area [37, 38] (Fig 1). The strong wind would take away the soil 

203 water and destabilize the surface soil which makes it difficult for plant to sprout and grow. In addition, 

204 although the soil nutrients were was lower than the wetland where the TN was 4.9-12.0 g kg-1 on the 

205 Zoige Plateau [39], they were promoted greatly under wicker or sandbag amendments. The greatly 

206 increased microbial mass indicated higher microbe richness. Hence, it accelerated the litter 

207 decomposition in the soil and fed back a nutrients increasing which promoted the nitrogen content and 

208 led a lower MBC: MBN ratios [40]. The SOC: TN ratio in sandbag area also decreased to close to the 

209 level of the meadow on the Zoige Plateau (SOC: TN=11.8) [41]. Nonetheless, the SOC: TP and TN: 

210 TP ratios were far less than the ratios reported in the meadow which indicated a clear phosphorus 

211 inhibition [42]. These changes suggested that the nutrients inhibition degree was reduced, such as 

212 nitrogen inhibition was reduced, when the sand barriers were implemented. And the amendment effect 

213 of sandbag sand barrier on soil conditions was stronger than that of wicker. Moreover, soil amendments 

214 may also provide indispensable assistance during the sand dunes restoration. Except for soil nutrients 

215 regulation, bioactive fertilizer amendment may also be an effective and environmentally friendly 

216 measure to promote the microbial biomass and accelerate restoration in alpine areas [43, 44].

217 Plant interspecific association is important for revealing how species interact with each other and 
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218 adapt with the environment, and hence have important implications for optimal restoration in degraded 

219 ecosystems [45]. Species interspecific relationships or niches play a critical role in stabilizing 

220 community [30, 46]. The tighter interspecific correlation and higher niche overlap reflected a stronger 

221 plants competitive relationship when the sand barriers were conducted [47]. The population space 

222 occupancy and correlation degree was the lowest in control while highest in sandbag area. Hence, the 

223 sandbag barrier may lead to the best plant community development in sand dune restoration [37]. The 

224 interspecific association degree was enhanced when the community was improved by wicker or 

225 sandbag barriers. However, some previous studies stated that interspecific competition/association 

226 intensity reduced gradually with the plant community development [48, 49]. The plant community that 

227 developed in alpine sand dunes area was still with limited structure and minimal resource acquisition 

228 ability, thus the independence between vascular plants was strong in such barren habitat [50].

229 Plant communities in sand dunes area are sensitive and vulnerable to environment changes, 

230 indicating the orientation of plant community development as well [51], allowing for revealing 

231 quantitatively community assembly mechanism or community stability [49, 52]. Plant species survived 

232 and reproduced within different restoration areas, and the population niche and interspecific 

233 relationships changed along this abiotic gradient [53]. These changes stimulated the development of the 

234 sand dune community [49, 54, 55]. Resource variations cause populations to adopt different ecological 

235 strategies to intersect with other populations [50, 56, 57]. The E. nutans importance value improved in 

236 the sand barrier area, especially in the sandbag area. And it occupied the wider niche to compete for the 

237 soil and light resource with the similar strategies species and coexist with the different niche 

238 requirement species. For example, E. nutans-C. moorcroftii changed from greatly negative correlation 

239 to positive correlation while the negative correlation degree of E. nutans-H. bowerii was enhanced in 
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240 wicker and sandbag area. Thus, it suggested that the seeded grass regulated the relationship with other 

241 species with similar or different strategies to adapt the changed habitat and thus increase the vegetation 

242 cover. Accordingly, we also suggested that it is important to restore sand dunes by preliminarily 

243 developing a community with different ecological strategies.

244 5. Conclusions

245 The alpine sand dunes restoration by implementing the sand barriers and indigenous grass 

246 enhances community structure and improves the soil conditions. Using sandbag or wicker sand barriers 

247 to fix the active sand dunes would gain a better restoration effect than that only seeding. Moreover, 

248 sandbag sand barrier allowed for a better restoration of harsh soil conditions and plant community. We 

249 suggest that species interspecific relationships and niche breadth could assess the sand dune restoration 

250 efficiency well. And the soil amending measures including nutrient improvement, and microbial 

251 fertilizer addition may further accelerate sand dune restoration.
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