

## Title page

# Soil and vegetation conditions changes following the different sand dune restoration measures on the Zoige Plateau

Jiufu Luo<sup>1,2</sup>, Dongzhou Deng<sup>3</sup>, Li Zhang<sup>4</sup>, Xinwei Zhu<sup>4</sup>, Dechao Chen<sup>3</sup>, Jinxing Zhou<sup>1,2\*</sup>

<sup>1</sup> Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

<sup>2</sup> Jianshui Research Field Station, Beijing Forestry University, Beijing 100083, China

<sup>3</sup> Sichuan Academy of Forestry, Chengdu 610081, China

<sup>4</sup> Sichuan Aba Forestry Science and Technology Research Institute, Wenchuan 623000, China

\* Correspondence: [zjx001@bjfu.edu.cn](mailto:zjx001@bjfu.edu.cn); <http://orcid.org/0000-0003-2182-9849>

## 1    **Abstract**

2    Restoration of alpine sand dunes has been increasingly attracting the attention of ecologists due to their  
3    difficulty and importance among the mountain-river-forest-farmland-lake-grass system (referred as  
4    meta-ecosystem) restoration. Alpine sand dunes are suffered from unstable soil and lack of plants.  
5    Efficient restoration measures are vital to guide the sand dune restoration. Whether the engineering  
6    materials co-applied with seeding could achieve considerable restoration in such areas? Here, sandbag  
7    and wicker as environmental friendly materials combined with *Elymus nutans* seeding were  
8    implemented on the Zoige Plateau sand dune, comparing with the ‘control’ treatment that only seeding.  
9    We assessed the topsoil conditions by sampled the surface soil and measured the water capacity and  
10   nutrients. We also utilized interspecific relationship and population niche to analyse the plant  
11   community structure variances among different restoration measures. Results showed that the soil  
12   conditions got clearly improved in sandbag area than that in wicker area when compared with that in  
13   control area. The community in control area was the least structured, while the species showed the  
14   closest related in sandbag area. In addition, average population niche overlap showed a control (0.26)  
15   < wicker (0.32) < sandbag (0.39) ranking. Thus, we suggested that sandbag or wicker co-applied with  
16   indigenous grass seeding is a practical and quick restoration approach in alpine sand dunes, and the  
17   sandbag may surpasses the wicker. Moreover, soil amending measures including nutrient improvement,  
18   and microbial fertilizer addition may further accelerate sand dune restoration.

19    **Keywords:** interspecific relationship; niche; *Elymus nutans*; sand barrier; restoration

## 20 1. Introduction

21 The terrestrial ecosystem has experienced increasingly severe land degradation and desertification  
22 [1]. Desertification threatens the ecological safety and its restoration is one of the vital elements in the  
23 mountain-river-forest-farmland-lake-grass system (referred as meta-ecosystem) restoration [2, 3]. The  
24 long-termed complex causes (e.g., overgrazing, climate change) accelerate desertification process and  
25 the sand dunes are expanding continuously on the Zoige Plateau [4-6]. Sand dunes are generally  
26 covered by nutrient devoid sandy soil that lacks favourable properties for plant growth and is prone to  
27 wind erosion [7]. The expanded sand dunes destroy fertile land and welfare of local populations. For  
28 example, they threaten livestock productivity, society development, ecological civilization, household  
29 income or human beings health [8-10]. Hence, sand dunes restoration is crucial in ensuring the  
30 conservation and sustainable development of the Zoige Plateau and meeting aspiration for better living  
31 standards in local people.

32 Decades worth of works have been conducted on sand dunes restoration [11, 12]. Mechanical sand  
33 barriers as the classical and simplest measure have been shown to contribute to reduce sand dunes  
34 mobility [13]. Stone or straw checkerboard barriers have been utilized to fix active sand dunes along  
35 the railway in alpine sandy land, such as Baotou-Lanzhou Railway and the eastern shore of the Qinghai  
36 Lake [14]. However, the single use of types of barriers is non-optimal choice in alpine sand dune  
37 restoration. They were often buried by sand sediments due to lack of vegetation cover eventually, in  
38 addition, traditional mechanical materials were much expensive and hard to operate [13].

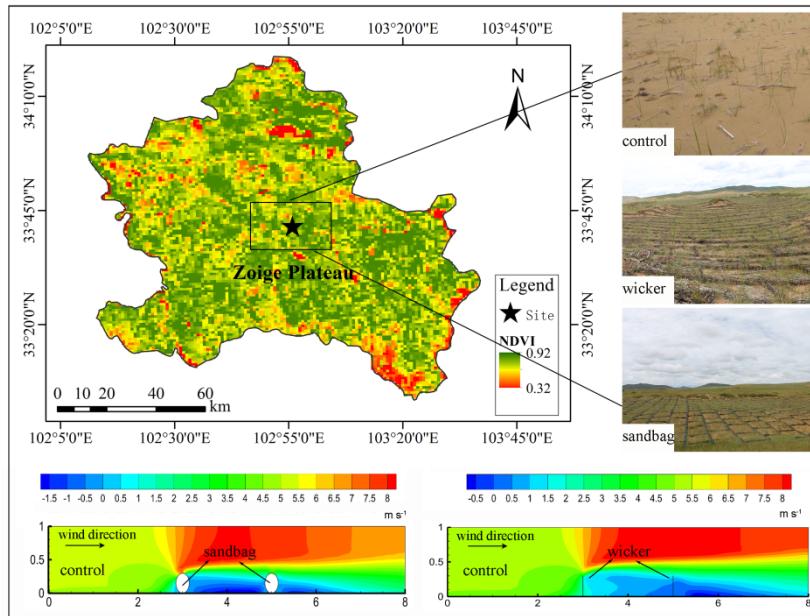
39 Vegetation restoration is an important objective during sand dune restoration [15, 16]. It has been  
40 proved to be practical in decreasing wind velocity and increasing soil nutrients in sand dune to

41 accelerate vegetation restoration [17-19]. Given the poor seed bank in active sand dunes, natural  
42 vegetation restoration is almost not feasible [20, 21], so that of indigenous seeds application is an  
43 inevitable method to improve seed bank [22, 23]. For example, marram grass (*Ammophila arenaria*)  
44 was one of an optimal species for sand dune restoration in Ille et Vilaine, France [11]. ‘Tree-screens’  
45 and ‘shelter-belt’ plantations of the Thar Desert in India were launched and achieved great ecological  
46 benefits in vegetation cover [17]. Sahara mustard (*Brassica tournefortii*) usually occupied dominated  
47 status in the drier sand dune region, and the flourishing weed also could control sand dune in the  
48 semi-arid regions of Inner Mongolia [24, 25]. In addition, Farmland constructed in the Mu Us Sandy  
49 Land has changed the barren desert to fertile farmland over ten-year restoration, providing compelling  
50 evidence of biotic approaches advantages in sand dune restoration [26]. Also, shrub-planting is an  
51 effective restoration measure to fix the sand dune in the semiarid Mu Us desert [27].

52 Although there were plenty of successful project cases of sand dunes restoration around the world  
53 previously, few of them were suitable for sand dune restoration on the alpine area. Here, we focus on  
54 two environmental friendly barrier materials (i.e., Poly Lactic Acid sandbag and *Salix paraplesia*  
55 wicker) that are easily reproducible and durable in harsh conditions. Poly Lactic Acid is hydrophilic,  
56 ultraviolet radiation resistance, and easy transportation [28], making them as optimal barrier materials  
57 in sand dune restoration on the Zoige Plateau. Meanwhile, *S. paraplesia* is widely cultivated in alpine  
58 area which makes it convenient to acquire wicker materials. These two materials combined with  
59 indigenous grass (*Elymus nutans*) were used with expectation to fix the active sand dune on the alpine  
60 sand dunes. Our objectives were compare the different restoration approaches’ effects on the alpine  
61 sand dunes and expect to provide a suitable strategy for alpine sand dune restoration.

62 **2. Materials and Methods**

63 **2.1. Study area**


64 The study area is located in Xiaman, Assi Township, on the Zoige Plateau (3,486 m asl.), which is  
65 characterized by an alpine continental monsoon climate with a pronounced winter season. The annual  
66 average temperature is 2.5°C and the average annual rainfall is 520 mm. The maximum wind speed is  
67 up to 36 m/s, with northwest prevailing winds [9]. The soil is dominated by alpine or subalpine  
68 meadow soil, with marshlands distributed throughout. Over the years, the land degradation process has  
69 increased greatly. Thus it led to types of degraded landscapes, form a large area of active sand dune.  
70 The active sand dune has caused serious threats to ecological safety.

71 **2.2. Field investigation design and sampling**

72 We established a restoration demonstration zone in a 10 ha degraded land in which active sand  
73 land occupied more than 55%. This area is a typical degraded alpine land on the Zoige Plateau. We  
74 employ sandbag and wicker as sand barrier materials combined with *Elymus nutans* (60 kg hm<sup>-2</sup>)  
75 sowing in the study area (referred as “sandbag” and “wicker”). The sand dune that only implemented  
76 sowing was set as ‘control’. Thus, three restoration measures areas consist of control, wicker, and  
77 sandbag area were organized in a randomized block design in the restoration demonstration zone. The  
78 barrier checkerboard was 2.0 m × 2.0 m × 0.3 m. (Fig 1)

79 108 quadrats were randomly investigated in three restoration areas at the third growth season after  
80 the restoration measures were implemented. Parameters of plant taxa, natural plant height, species  
81 cover and stem number were recorded. Surface soil in each quadrat was sampled by soil core, sieved (<

82 2 mm) to filter out gravel or plant roots and divided into three subsamples. One was saved in a  
83 refrigerator (4°C) for microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN)  
84 determination by the chloroform fumigation-incubation method co-applied with an N/C Analyser  
85 (multi N/C® 3100 TOC, analytikjena, Germany); one was air-dried to measure total soil organic  
86 carbon (thereafter SOC) by titrimetry, total soil nitrogen (TN), total soil phosphorus (TP), soil  
87 ammonium nitrogen (AN), soil nitric nitrogen (NN), soil available phosphorus (AP) by Smartchem  
88 Discrete Auto Analyzer (Smartchem 200, AMS/Westco, Italy); and one was used for soil moisture  
89 determination using the gravimetric method by drying at 105°C.



90  
91 **Fig 1. Demonstration area and speed flow distribution characteristics of different restoration  
92 measure on the Zoige Plateau**

### 93 **2.3 Data analysis**

94 The species importance value (*IV*) was calculated using the following equation:

95 
$$IV = \frac{\text{relative cover} + \text{relative height} + \text{relative density}}{3}$$

96 The Jaccard interspecific association ( $JJ$ ) test was conducted based on the  $2 \times 2$  contingency tables  
97 by the plant investigation data (Table 1).

98 **Table 1. Illustration of the  $2 \times 2$  contingency tables.**

|                                       | Quadrats number of species j appeared | Quadrats number of species j absent |
|---------------------------------------|---------------------------------------|-------------------------------------|
| Quadrats number of species i appeared | a                                     | b                                   |
| Quadrats number of species i absent   | c                                     | -                                   |

99 
$$JJ = \frac{a}{a + b + c}$$

100 The  $JJ$  value was classified into 4 grades: none association,  $0 \leq JJ \leq 0.25$ ; weak association,  $0.25 <$   
101  $JJ \leq 0.5$ ; middle association,  $0.5 < JJ \leq 0.75$ ; and strong association,  $0.75 < JJ \leq 1.0$  [29].

102 Furthermore, the Spearman rank correlation ( $r(i, k)$ ) was tested to assess the interspecific  
103 correlation degree.

104 
$$r(i, k) = 1 - \frac{6 \sum_{j=1}^N (x_{ij} - x_{kj})^2}{N^3 - N}$$

105 Here,  $r(i, k)$  is the correlation coefficient between species  $i$  and  $k$ ,  $x_{ij}$  and  $x_{kj}$  are the importance  
106 values of species  $i$  and  $k$  in quadrat  $j$ .

107 Additionally, niche theory has been widely used in the study of plant community ecology [30].  
108 Niche breadth and overlap are important indices to further quantify the resource utilization efficiency  
109 and competition/coexistence of different populations [31-33]. Shannon-Wiener niche breadth ( $B_i$ ) was  
110 calculated following Colwell & Futuyma [34] and The Pianka niche overlap ( $O_{ik}$ ) was calculated using  
111 the following equation [35]:

112 
$$B_i = - \sum_{j=1}^r (P_{ij} \ln P_{ij})$$

113 
$$P_{ij} = n_{ij} / N_{ij}$$

114

$$O_{ik} = \frac{\sum_{j=1}^r P_{ij} P_{kj}}{\sqrt{\left(\sum_{j=1}^r P_{ij}\right)^2 \left(\sum_{j=1}^r P_{kj}\right)^2}}$$

115 Here,  $P_{ij}$  and  $P_{kj}$  are a proportion of quadrat  $j$  among the total quadrats occupied by species  $i$  and  $k$ ;  
116  $r$  is the total number of quadrats. The  $n_{ij}$  is the importance values of species  $i$  in quadrat  $j$  and  $N_{ij} =$   
117  $\sum n_{ij}$ .

118 The soil metric and species richness data were calculated using MS Excel 2010, and statistical  
119 analyses were performed using SPSS Statistics 20.0 ( $P < 0.05$ ) (SPSS Inc., Chicago, IL, US). The soil  
120 condition graphs were run with OriginPro 2016 (OriginLab Corporation, Northampton, MA, US). The  
121 map was created with ArcGIS v10.2. The speed flow distribution characteristics were simulated by  
122 Gambit 2.4, Fluent 16.0, and Tecplot 360. The niche overlap matrix diagram was run with the 'Lattice'  
123 package in R. The Jaccard interspecific association graphs, niche overlap matrix diagrams, and field  
124 experimental site pictures were merged by Adobe Photoshop CS6 v6.0.335.0.

125 **3. Results**

126 **3.1. Plant composition and soil conditions in different  
127 restoration area**

128 We recorded 9, 12, and 10 plant species in the sandbag, wicker and control area, respectively. The  
129 vegetation cover increased by 161.99% in wicker area and 331.67% in sandbag area compared with  
130 that in control ( $P < 0.05$ ). The same species importance values varied among the different restoration  
131 area. The *E. nutans* occupied the dominant position in all restoration area, especially in the sandbag

132 area in which its importance value was up to 52.89. (Table 2)

133

134

135 **Table 2. Plant composition, importance value (IV), niche breadth (Bi), and vegetation cover (VC)**

136 **in different restoration area.**

| Sandbag    |       |      |        | Wicker     |       |      |        | Control    |       |      |        |
|------------|-------|------|--------|------------|-------|------|--------|------------|-------|------|--------|
| Species    | IV    | Bi   | VC     | Species    | IV    | Bi   | VC     | Species    | IV    | Bi   | VC     |
| <i>En.</i> | 52.89 | 1.55 |        | <i>En.</i> | 32.03 | 1.54 |        | <i>En.</i> | 39.57 | 1.55 |        |
| <i>Cm.</i> | 17.04 | 1.54 |        | <i>Ls.</i> | 19.43 | 1.48 |        | <i>Cm.</i> | 19.64 | 1.42 |        |
| <i>Ls.</i> | 10.86 | 1.50 |        | <i>Hb.</i> | 12.21 | 1.50 |        | <i>Kr.</i> | 17.77 | 1.46 |        |
| <i>Hb.</i> | 8.19  | 1.41 |        | <i>Of.</i> | 10.98 | 1.40 |        | <i>Ls.</i> | 7.48  | 1.17 |        |
| <i>Of.</i> | 7.78  | 1.39 | 19.08  | <i>Hl.</i> | 7.61  | 1.40 | 11.58  | <i>Pb.</i> | 4.38  | 0.91 | 4.42   |
| <i>Fo.</i> | 1.43  | 0.69 | ±0.77c | <i>Cm.</i> | 7.48  | 1.11 | ±0.70b | <i>Hb.</i> | 4.20  | 1.07 | ±0.16a |
| <i>Dh.</i> | 1.27  | 0.82 |        | <i>Kr.</i> | 5.52  | 1.24 |        | <i>Hl.</i> | 2.28  | 0.76 |        |
| <i>Ms.</i> | 0.31  | 0.48 |        | <i>Am.</i> | 1.27  | 0.58 |        | <i>Of.</i> | 2.03  | 0.48 |        |
| <i>Od.</i> | 0.23  | 0.30 |        | <i>Ps.</i> | 1.24  | 0.38 |        | <i>Dh.</i> | 1.82  | 0.69 |        |
|            |       |      |        | <i>Ms.</i> | 0.87  | 0.77 |        | <i>Ms.</i> | 0.82  | 0.48 |        |
|            |       |      |        | <i>Sc.</i> | 0.84  | 0.48 |        |            |       |      |        |
|            |       |      |        | <i>Ap.</i> | 0.54  | 0.48 |        |            |       |      |        |

137 Note: *En.*, *Elymus nutans*; *Cm.*, *Carex moorcroftii*; *Kr.*, *Kobresia robusta*; *Ls.*, *Ligusticum scapiforme*; *Pb.*, *Potentilla*

138 *bifurca*; *Hb.*, *Heteropappus bowerii*; *Hl.*, *Hypecoum leptocarpum*; *Of.*, *Oxytropis falcate*; *Dh.*, *Dracocephalum heterophyllum*;

139 *Ms.*, *Microula sikkimensis*; *Am.*, *Artemisia macrocephala*; *Ps.*, *Polygonum sibiricum*; *Sc.*, *Salsola collina*; *Ap.*, *Axyris prostrata*;

140 *Fo.*, *Festuca ovina*; *Od.*, *Oxytropis densa*.

141 The soil water capacity and nutrient metrics increased greatly in the area where the sand barriers

142 were implemented ( $P<0.05$ ). The atomic ratios of SOC: TN, SOC: TP, TN: TP, and MBC: MBN

143 varied in different restoration area. Comparing with the control, MBC: MBN ratios decreased a lot in

144 sandbag area and wicker area, while the SOC: TP and TN: TP ratios increased. In more detail, the

145 SOC: TN and MBC: MBN were only  $11.67 \pm 1.46$  and  $10.57 \pm 0.21$  in sandbag area, which was lower

146 than that in wicker and control areas; the MBC: MBN in sandbag area was less than one-half of that

147 in control area. The TN: TP and the SOC: TP ratios also were the highest in sandbag area while  
148 lowest in control area. (Table 3; Fig 2)

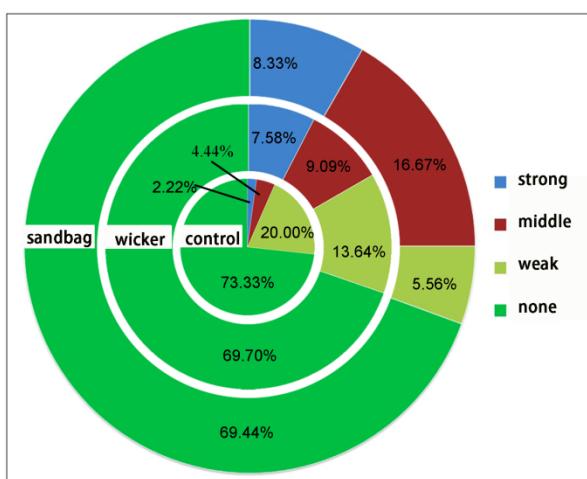
149

150 **Table 3. The soil conditions variances in different restoration area ( $P < 0.05$ ).**

|                | Moisture/ %     | TN /<br>g kg <sup>-1</sup> | TP/<br>g kg <sup>-1</sup> | AN/<br>mg kg <sup>-1</sup> | NN/<br>mg kg <sup>-1</sup> | AP/<br>mg kg <sup>-1</sup> | SOC/<br>g kg <sup>-1</sup> | MBC/<br>mg kg <sup>-1</sup> | MBN/<br>mg kg <sup>-1</sup> |
|----------------|-----------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| <b>Sandbag</b> | 4.11 a<br>±0.02 | 0.19 a<br>±0.02            | 0.30 a<br>±0.00           | 24.93 a<br>±2.04           | 7.68 a<br>±0.24            | 84.05 a<br>±0.24           | 2.19 a<br>±0.10            | 65.83 a<br>±0.31            | 6.23 a<br>±0.14             |
| <b>Wicker</b>  | 3.60 b<br>±0.02 | 0.10 b<br>±0.01            | 0.33 a<br>±0.01           | 22.19 a<br>±1.24           | 5.78 b<br>±0.50            | 73.37 b<br>±0.34           | 1.66 b<br>±0.09            | 52.37 b<br>±0.17            | 3.53 b<br>±0.14             |
| <b>Control</b> | 2.81 c<br>±0.08 | 0.06 b<br>±0.00            | 0.22 b<br>±0.02           | 13.39 b<br>±0.55           | 3.07 c<br>±0.74            | 43.80 c<br>±0.71           | 0.95 c<br>±0.03            | 15.27 c<br>±0.60            | 0.67 c<br>±0.07             |

151 Note: The different lowercase letters means significant difference in a certain soil condition ( $P < 0.05$ ).




152

153 **Fig 2. The soil nutrients atomic ratios in different restoration area. The different lowercase**  
154 **letters means significant difference in a certain pair-wise ( $P < 0.05$ ).**

### 155 **3.2. Interspecific relationship in different restoration area**

156 The summed ratio of none and weak associations were 93.33%, 83.33%, and 75.00% in control,  
157 wicker, and sandbag areas, respectively. Both of strong and middle association ratios rank was control  
158 < wicker < sandbag. The plant community was the simplest structured in the control area, and less

159 structured in wicker area compared with that in sandbag area where the species association degree was  
160 stronger. It indicated that the community stability and community development status got better in sand  
161 barriers areas (Fig 3).



162  
163 **Fig 3. The Jaccard interspecific association (JI) ratios in different restoration area.**  
164 The species Spearman rank correlation indices were mostly negative in all restoration areas. *E.*  
165 *nutans* was negatively correlated with most of plants. The positive correlation ratio was the lowest in  
166 sandbag area. In addition, the same species pair interspecific correlation changed when the sand  
167 barriers were implemented to fix the active sand land. For example, the interspecific correlation of *E.*  
168 *nutans*-*C. moorecroftii* changed from greatly negative correlation to positive correlation (-0.47 ( $P < 0.01$ )  
169 in control, -0.18 in wicker, and 0.10 in sandbag area); and the negative correlation degree of *E.*  
170 *nutans*-*H. bowerii* was enhanced in wicker and sandbag area (-0.08 in control, -0.34 ( $P < 0.05$ ) in  
171 wicker, and -0.47 ( $P < 0.01$ ) in sandbag area) (Tables 4-6).

172 **Table 4. Spearman rank correlation between species-pair in sandbag area.**

|           | <i>En</i> | <i>Cm</i> | <i>Ls</i> | <i>Hb</i> | <i>Of</i> | <i>Fo</i> | <i>Dh</i> | <i>Ms</i> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <i>Cm</i> | 0.096     |           |           |           |           |           |           |           |
| <i>Ls</i> | -0.217    | -0.149    |           |           |           |           |           |           |
| <i>Hb</i> | -0.466**  | -0.050    | -0.266    |           |           |           |           |           |
| <i>Of</i> | -0.006    | -0.489**  | -0.318    | -0.189    |           |           |           |           |

|           |          |         |          |        |        |         |        |        |  |
|-----------|----------|---------|----------|--------|--------|---------|--------|--------|--|
| <i>Fo</i> | -0.055   | 0.113   | -0.528** | 0.148  | -0.081 |         |        |        |  |
| <i>Dh</i> | -0.339*  | -0.363* | 0.629**  | -0.071 | -0.246 | -0.195  |        |        |  |
| <i>Ms</i> | -0.470** | -0.254  | -0.442** | 0.393* | 0.395* | 0.508** | -0.147 |        |  |
| <i>Od</i> | -0.108   | 0.203   | -0.265   | 0.190  | -0.084 | -0.097  | -0.118 | -0.073 |  |

173

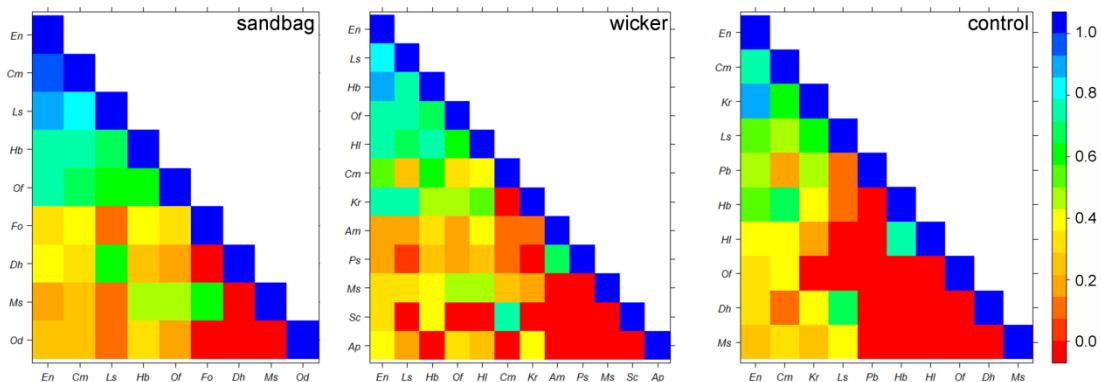
174 **Table 5. Spearman rank correlation between species-pair in wicker area.**

|           | <i>En</i> | <i>Ls</i> | <i>Hb</i> | <i>Of</i> | <i>Hl</i> | <i>Cm</i> | <i>Kr</i> | <i>Am</i> | <i>Ps</i> | <i>Ms</i> | <i>Sc</i> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <i>Ls</i> | -0.128    |           |           |           |           |           |           |           |           |           |           |
| <i>Hb</i> | -0.336*   | -0.345*   |           |           |           |           |           |           |           |           |           |
| <i>Of</i> | -0.150    | 0.225     | -0.237    |           |           |           |           |           |           |           |           |
| <i>Hl</i> | -0.269    | -0.196    | 0.005     | -0.275    |           |           |           |           |           |           |           |
| <i>Cm</i> | -0.179    | -0.689**  | 0.526**   | -0.214    | 0.053     |           |           |           |           |           |           |
| <i>Kr</i> | 0.337*    | 0.395*    | -0.488**  | -0.162    | -0.047    | -0.747**  |           |           |           |           |           |
| <i>Am</i> | -0.416*   | -0.145    | 0.195     | -0.151    | 0.304     | -0.054    | -0.147    |           |           |           |           |
| <i>Ps</i> | -0.359*   | -0.344*   | 0.180     | -0.075    | 0.242     | 0.175     | -0.279    | 0.585**   |           |           |           |
| <i>Ms</i> | -0.511*   | 0.022     | 0.143     | 0.218     | 0.153     | 0.099     | -0.119    | -0.157    | -0.134    |           |           |
|           | *         |           |           |           |           |           |           |           |           |           |           |
| <i>Sc</i> | 0.202     | -0.478**  | 0.339*    | -0.394*   | -0.394*   | 0.533**   | -0.279    | -0.106    | -0.091    | -0.134    |           |
| <i>Ap</i> | 0.363*    | -0.172    | -0.479**  | 0.196     | 0.060     | -0.243    | 0.348*    | -0.106    | -0.091    | -0.134    | -0.091    |

175 **Table 6. Spearman rank correlation between species-pair in control area.**

|           | <i>En</i> | <i>Cm</i> | <i>Kr</i> | <i>Ls</i> | <i>Pb</i> | <i>Hb</i> | <i>Hl</i> | <i>Of</i> | <i>Dh</i> |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <i>Cm</i> | -0.465**  |           |           |           |           |           |           |           |           |
| <i>Kr</i> | 0.102     | -0.614**  |           |           |           |           |           |           |           |
| <i>Ls</i> | -0.314    | -0.277    | 0.068     |           |           |           |           |           |           |
| <i>Pb</i> | -0.019    | -0.181    | 0.405*    | -0.241    |           |           |           |           |           |
| <i>Hb</i> | -0.085    | 0.405*    | -0.487**  | -0.380*   | -0.392*   |           |           |           |           |
| <i>Hl</i> | 0.118     | 0.101     | -0.455**  | -0.359*   | -0.253    | 0.701**   |           |           |           |
| <i>Of</i> | 0.278     | 0.312     | -0.436**  | -0.243    | -0.172    | -0.207    | -0.134    |           |           |
| <i>Dh</i> | -0.207    | -0.326    | 0.246     | 0.596**   | -0.228    | -0.275    | -0.178    | -0.121    |           |
| <i>Ms</i> | -0.376*   | 0.082     | 0.027     | 0.224     | -0.172    | -0.207    | -0.134    | -0.091    | -0.121    |

176 Note: \*,  $P < 0.05$ ; \*\*,  $P < 0.01$ .


177 **3.3. Niche breadth and overlap in different restoration area**

178 Population niche breadth and niche overlap analyses could effectively assess the resources

179 utilization and interspecific competition. The niche breadth ranged from 0.48 to 1.55 in control area,

180 0.38 to 1.54 in wicker area, and 0.29 to 1.55 in sandbag area. *E. nutans* had the widest niche breadth in  
181 all restoration areas. And the drought resistance plants, such as *H. bowerii*, and *C. moorcroftii* also  
182 occupied a relative wide niche breadth in all restoration areas. Furthermore, sand barriers provided a  
183 possibility for some other species' dispersal and settle down, such as *P. sibiricum*, *S. collina*, and *F.*  
184 *ovina* (Table 2).

185 The average population niche overlap indices in sandbag, wicker, and control areas were 0.39,  
186 0.32, and 0.26, respectively. Furthermore, the niche overlap indices species pair number ratio that  
187 higher than 0.50 were 33.33%, 25.76%, and 20.00% in sandbag, wicker, and control areas, respectively.  
188 The increased niche overlap indicated that the competition was stronger after the sand barriers were  
189 implemented. Moreover, there was a stronger effect of sandbag sand barriers on plant community  
190 (Figure 4).



191

192 **Figure 4** Niche overlap of all plant pairs in different restoration area

## 193 4. Discussion

194 The sandbag and wicker sand barriers co-applied with seeding amendment were both practical  
195 approaches and were better than that only seeding during alpine sand dunes restoration. The vegetation

196 and soil conditions were the best in the sandbag area and also were improved greatly in the wicker area  
197 compared with the control. In the control area, the soil was extremely droughty and poor, and the  
198 vegetation cover was also the lowest. The soil moisture and nutrients conditions are the preconditions  
199 that regulate the plant growth on the sand dune [36]. The soil moisture and nutrient conditions were  
200 improved greatly in the sandbag area. The sandbag is airtight whereas the wicker has a higher porosity  
201 and there was no protection in the control area. This difference leads to different near-surface wind  
202 velocities that pass by the restoration area [37, 38] (Fig 1). The strong wind would take away the soil  
203 water and destabilize the surface soil which makes it difficult for plant to sprout and grow. In addition,  
204 although the soil nutrients were lower than the wetland where the TN was 4.9-12.0 g kg<sup>-1</sup> on the  
205 Zoige Plateau [39], they were promoted greatly under wicker or sandbag amendments. The greatly  
206 increased microbial mass indicated higher microbe richness. Hence, it accelerated the litter  
207 decomposition in the soil and fed back a nutrients increasing which promoted the nitrogen content and  
208 led a lower MBC: MBN ratios [40]. The SOC: TN ratio in sandbag area also decreased to close to the  
209 level of the meadow on the Zoige Plateau (SOC: TN=11.8) [41]. Nonetheless, the SOC: TP and TN:  
210 TP ratios were far less than the ratios reported in the meadow which indicated a clear phosphorus  
211 inhibition [42]. These changes suggested that the nutrients inhibition degree was reduced, such as  
212 nitrogen inhibition was reduced, when the sand barriers were implemented. And the amendment effect  
213 of sandbag sand barrier on soil conditions was stronger than that of wicker. Moreover, soil amendments  
214 may also provide indispensable assistance during the sand dunes restoration. Except for soil nutrients  
215 regulation, bioactive fertilizer amendment may also be an effective and environmentally friendly  
216 measure to promote the microbial biomass and accelerate restoration in alpine areas [43, 44].  
217 Plant interspecific association is important for revealing how species interact with each other and

218 adapt with the environment, and hence have important implications for optimal restoration in degraded  
219 ecosystems [45]. Species interspecific relationships or niches play a critical role in stabilizing  
220 community [30, 46]. The tighter interspecific correlation and higher niche overlap reflected a stronger  
221 plants competitive relationship when the sand barriers were conducted [47]. The population space  
222 occupancy and correlation degree was the lowest in control while highest in sandbag area. Hence, the  
223 sandbag barrier may lead to the best plant community development in sand dune restoration [37]. The  
224 interspecific association degree was enhanced when the community was improved by wicker or  
225 sandbag barriers. However, some previous studies stated that interspecific competition/association  
226 intensity reduced gradually with the plant community development [48, 49]. The plant community that  
227 developed in alpine sand dunes area was still with limited structure and minimal resource acquisition  
228 ability, thus the independence between vascular plants was strong in such barren habitat [50].

229 Plant communities in sand dunes area are sensitive and vulnerable to environment changes,  
230 indicating the orientation of plant community development as well [51], allowing for revealing  
231 quantitatively community assembly mechanism or community stability [49, 52]. Plant species survived  
232 and reproduced within different restoration areas, and the population niche and interspecific  
233 relationships changed along this abiotic gradient [53]. These changes stimulated the development of the  
234 sand dune community [49, 54, 55]. Resource variations cause populations to adopt different ecological  
235 strategies to intersect with other populations [50, 56, 57]. The *E. nutans* importance value improved in  
236 the sand barrier area, especially in the sandbag area. And it occupied the wider niche to compete for the  
237 soil and light resource with the similar strategies species and coexist with the different niche  
238 requirement species. For example, *E. nutans*-*C. moorcroftii* changed from greatly negative correlation  
239 to positive correlation while the negative correlation degree of *E. nutans*-*H. bowerii* was enhanced in

240 wicker and sandbag area. Thus, it suggested that the seeded grass regulated the relationship with other  
241 species with similar or different strategies to adapt the changed habitat and thus increase the vegetation  
242 cover. Accordingly, we also suggested that it is important to restore sand dunes by preliminarily  
243 developing a community with different ecological strategies.

## 244 **5. Conclusions**

245 The alpine sand dunes restoration by implementing the sand barriers and indigenous grass  
246 enhances community structure and improves the soil conditions. Using sandbag or wicker sand barriers  
247 to fix the active sand dunes would gain a better restoration effect than that only seeding. Moreover,  
248 sandbag sand barrier allowed for a better restoration of harsh soil conditions and plant community. We  
249 suggest that species interspecific relationships and niche breadth could assess the sand dune restoration  
250 efficiency well. And the soil amending measures including nutrient improvement, and microbial  
251 fertilizer addition may further accelerate sand dune restoration.

## 252 **Author Contributions**

253 Conceptualization: Jinxing Zhou.  
254 Data curation: Jiufu Luo.  
255 Formal analysis: Jiufu Luo.  
256 Funding acquisition: Jinxing Zhou, Dongzhou Deng, Li Zhang.  
257 Investigation: Jiufu Luo, Dechao Chen, Xinwei Zhu.  
258 Methodology: Jiufu Luo, Dongzhou Deng, Jinxing Zhou.  
259 Project administration: Li Zhang, Dechao Chen.

260 Resources: Dongzhou Deng, Li Zhang, Dechao Chen, Xinwei Zhu.

261 Software: Jiufu Luo.

262 Supervision: Jinxing Zhou, Dongzhou Deng.

263 Validation: Jinxing Zhou, Dongzhou Deng.

264 Visualization: Jiufu Luo, Dechao Chen.

265 Writing ± original draft: Jiufu Luo.

266 Writing ± review & editing: Jinxing Zhou

## 267 Acknowledgments

268 This study was funded by the Special Fund for Forest Scientific Research in the Public Welfare (NO.

269 201504401), the National Science & Technology Pillar Program (NO. 2015BAC05B01), Sichuan

270 Province Science and Technology Support Program (NO. 2016FZ0042), and the Alpine Sand Dunes

271 Biocrusts Composition and Characteristics on the Northwest of Sichuan (NO. 2019CZZX24).

272 **Conflicts of interest:** The authors declare that they have no conflict of interest.

## 273 References

274 1. Zhao JZ, Wu G, Zhao YM, Shao GF, Kong HM, Lu Q. Strategies to combat desertification for the

275 twenty-first century in China. International Journal of Sustainable Development & World Ecology

276 2002; 9(3):292-297. DOI: 10.1080/13504500209470124

277 2. El-Salam MMA, Elhakem AH. Desertification and its effect on the erosion of vegetation in the

278 south-western region of Saudi Arabia. Environmental Monitoring Assessment 2016; 188: 164.

279 DOI: 10.1007/s10661-016-5164-z

- 280 3. Zou CX, Wang Y, Wang WL, Xu DL, Lin NF, Li WJ. Theory of  
281 mountain-river-forest-farmland-lake-grass system and ecological protection and restoration  
282 research. *Journal of Ecology and Rural Environment* 2018; 34(11): 961-967.
- 283 4. Dong ZB, Hu GY, Yan CZ, Wang WL, Lu JF. Aeolian desertification and its causes in the Zoige  
284 Plateau of China's Qinghai-Tibetan Plateau. *Environmental Earth Sciences* 2010; 59: 1731-1740.
- 285 DOI: 10.1007/s12665-009-0155-9
- 286 5. Gao JQ, Zhang XW, Lei GC, Wang GX. Soil organic carbon and its fractions in relation to  
287 degradation and restoration of wetlands on the Zoige Plateau, China. *Wetlands* 2014; 34: 235-241.  
288 DOI: 10.1007/s13157-013-0487-9
- 289 6. Yu KF, Lehmkuhl F, Falk D. Quantifying land degradation in the Zoige Basin, NE Tibetan  
290 Plateau using satellite remote sensing data. *Journal of Mountain Science* 2017; 14: 77-93. DOI:  
291 10.1007/s11629-016-3929-z
- 292 7. Breckle SW, Yair A, Vest M. Arid Dune Ecosystems. *Ecological Studies* Springer, Berlin,  
293 Heidelberg, New York. 2008; pp. 79-89.
- 294 8. Qing Y, Sun FD, Li Y, Chen WY, Li X. Analysis of soil carbon, nitrogen and phosphorus in  
295 degraded alpine wetland, Zoige, southwest China. *Acta Prataculturae Sinica* 2015; 24: 38-47.
- 296 9. Shui W, Bai JP, Jian XM, Qi XH, Su ZA, Chen Y, et al. Changes in water conservation and soil  
297 physicochemical properties during the recovery of desertified grassland in Zoige, China. *Acta  
298 Ecologica Sinica* 2017; 37: 277-285.
- 299 10. Shen ST, Zhang SJ, Fan L, Wang Q. Classification of plant functional types based on the nutrition  
300 traits: a case study on alpine meadow community in the Zoige Plateau. *Journal of Mountain  
301 Science* 2017; 14: 2003-2012. DOI: 10.1007/s11629-016-4133-x

- 302 11. Roze' F, Lemauviel S. Sand dune restoration in North Brittany, France: a 10-year monitoring
- 303 study. *Restoration Ecology* 2004; 12: 29-35. DOI: 10.1111/j.1061-2971.2004.00264.x
- 304 12. Ohsowski BM, Dunfield K, Klironomos JN, Hart M. Plant response to biochar, compost, and
- 305 mycorrhizal fungal amendments in post-mine sandpits. *Restoration Ecology* 2018; 26: 63-72. DOI:
- 306 10.1111/rec.12528
- 307 13. Xie SB, Qu JJ, Liu B, Xu XT. Advances in research on the sand hazards and its controls along the
- 308 Qinghai-Tibet Railway. *Journal of Desert Research* 2014; 34: 42-48.
- 309 14. Tian LH, Wu WY, Zhang DS, Lu RJ, Wang XQ. Characteristics of erosion and deposition of
- 310 straw checkerboard barriers in alpine sandy land. *Environmental Earth Sciences* 2015;
- 311 74(1):573-574. DOI: 10.1007/s12665-015-4059-6
- 312 15. Hu YF, Peng JJ, Yuan S, Shu XY, Jiang SL, Pu Q, et al. Influence of ecological restoration on
- 313 vegetation and soil microbiological properties in Alpine-cold semi-humid desertified land.
- 314 *Ecological Engineering* 2016; 94: 88-94. DOI: 10.1016/j.ecoleng.2016.05.061
- 315 16. Lian J, Zhao XY, Li X, Zhang TH, Wang SK, Luo YQ, et al. Detecting sustainability of
- 316 desertification reversion: vegetation trend analysis in part of the agro-pastoral transitional zone in
- 317 Inner Mongolia, China. *Sustainability* 2017; 9: 211. DOI: 10.3390/su9020211
- 318 17. Chauhan SS. Desertification control and management of land degradation in the Thar desert of
- 319 India. *Environmentalist* 2003; 23: 219-227. DOI: 10.1023/b:envr.0000017366.67642.79
- 320 18. Raji BA, Uyovbisere EO, Momodu AB. Impact of sand dune stabilization structures on soil and
- 321 yield of millet in the semi-arid region of NW Nigeria. *Environmental Monitoring and Assessment*
- 322 2004; 99: 181-196. DOI: 10.1007/s10661-004-4018-2
- 323 19. Li YQ, Chen YP, Wang XY, Niu YY, Lian J. Improvements in soil carbon and nitrogen capacities

- 324 after shrub planting to stabilize sand dunes in China's Horqin sandy land. *Sustainability* 2017; 9:
- 325 662. DOI: 10.3390/su9040662
- 326 20. Lichter J. Colonization constraints during primary succession on coastal Lake Michigan sand
- 327 dunes. *Journal of Ecology* 2000; 88: 825-839. DOI: 10.1046/j.1365-2745.2000.00503.x
- 328 21. Yan QL, Liu ZM, Zhu JJ, Luo YM, Wang HM, Jiang DM. Structure, pattern and mechanisms of
- 329 formation of seed banks in sand dune system in northeastern Inner Mongolia, China. *Plant and*
- 330 *Soil* 2005; 277: 175-184. DOI: 10.1007/s11104-005-6836-6
- 331 22. Fan B, Zhang A, Yang Y, Ma Q, Li X, Zhao C. Long-Term Effects of Xerophytic Shrub
- 332 *Haloxylon ammodendron* Plantations on Soil Properties and Vegetation Dynamics in Northwest
- 333 China. *PLoS ONE* 2016; 11(12): e0168000. DOI: 10.1371/journal.pone.0168000
- 334 23. Dietterich LH, Casper BB. Initial soil amendments still affect plant community composition after
- 335 nine years in succession on a heavy metal contaminated mountainside. *Restoration Ecology* 2017;
- 336 25: 201-210. DOI: 10.1111/rec.12423
- 337 24. Barrows CW, Allen EB, Brooks ML, Allen MF. Effects of an invasive plant on a desert sand dune
- 338 landscape. *Biological Invasions* 2009; 11: 673-686. DOI: 10.1007/s10530-008-92826
- 339 25. Masayuki N, Toshiya O, Xu B. The role of weed invasion in controlling sand dune reactivation in
- 340 abandoned fields in semi-arid Inner Mongolia, China. *Ecological Research* 1997; 12: 325-336.
- 341 DOI: 10.1007/BF02529462
- 342 26. Wang T, Zhu Z, Wu W. Sandy desertification in the north of China. *Science of China (Series D)*
- 343 2002; 45: 23-34.
- 344 27. Fan DQ, Zhang YQ, Qin SG, Wu B. Relationships between *Artemisia ordosica* communities and
- 345 environmental factors following sand-dune stabilization in the Mu Us desert, northwest China.

- 346        Journal of Forestry Research 2017; 28(1):115-124. DOI: 10.1007/s11676-016-0289-z
- 347        28. Wei YJ, Zuo XF, Wang J, Dang XH, Liu XJ. Summarization of application of mechanical sand
- 348        barrier in desertification control. Journal of Inner Mongolia Agricultural University (Natural
- 349        Science Edition) 2017; 6: 86-93.
- 350        29. Kong YY, Yu YW, Hou FJ. Interspecific associations in plant communities under yak dung
- 351        depositions in an alpine meadow. *Acta Prataculturae Sinica* 2017; 26: 44-52.
- 352        30. Levine JM, HilleRisLambers J. The importance of niches for the maintenance of species diversity.
- 353        *Nature* 2009; 461: 08251. DOI: 10.1038/nature08251
- 354        31. Anthwal S, Bhatt AB, Nautiyal BP, Anthwal A. Vegetation structure, niche width, niche overlap
- 355        and types of competition in temperate grazingland of Garhwal Himalaya, India. *Environmentalist*
- 356        2008; 28: 261-273. DOI: 10.1007/s10669-007-9137-1
- 357        32. Pontes LDS, Maire V, Schellberg J, Louault F. Grass strategies and grassland community
- 358        responses to environmental drivers: a review. *Agronomy for Sustainable Development* 2015; 35:
- 359        1297-1318. DOI: 10.1007/s13593-015-0314-1
- 360        33. Kuster TM, Wikinson A, Hill PW, Jones D, Bardgett RD. Warming alters competition for organic
- 361        and inorganic nitrogen between co-existing grassland plant species. *Plant and Soil* 2016;
- 362        406:117-129. DOI: 10.1007/s11104-016-2856-7
- 363        34. Colwell RK, Futuyma DJ. On the measurement of niche breadth and overlap. *Ecology* 1971; 52:
- 364        567-576. DOI: 10.2307/1934144
- 365        35. Pianka ER. The structure of lizard communities. *Annual Review of Ecology and Systematics* 1973;
- 366        4: 53-74. DOI: 10.1146/annurev.es.04.110173.000413
- 367        36. Yang TT, Ala M, Zhang YS, Wu JB, Wang AZ, Guan DX. Characteristics of soil moisture under

- 368 different vegetation coverage in Horqin Sandy Land, northern China. PLoS ONE, 2018; 13(6):  
369 e0198805. DOI: 10.1371/journal.pone.0198805
- 370 37. Yuan LM, Gao Y, Wang J, Yan DR, Hu SR, Zhang XY, et al. Impacts of sandbag barrier on sand  
371 flow and vegetation restoration on mobile dunes. Bulletin of Soil and Water Conservation 2014;  
372 34: 46-50.
- 373 38. Yu Y, Jia ZQ, Zhu YJ, Zhao SL, Liu HT, Li QX, et al. Root distribution of *Salix chelophila* along  
374 a chronosequence in high-cold sandland. Journal of Desert Research 2014; 34(1): 67-74. DOI:  
375 10.7522/j.issn.1000-694X.2013.00188
- 376 39. Ma K, Zhang Y, Tang SX, Liu JG. Characteristics of spatial distribution of soil total nitrogen in  
377 Zoige alpine wetland. Chinese Journal of Ecology 2016; 35: 1988-1995. DOI:  
378 10.13292/j.1000-4890.201608.010
- 379 40. Aponte C, Marañón T, García L. Microbial C, N, and P in soils of Mediterranean oak forests:  
380 influence of season, canopy cover and soil depth. Biogeochemistry 2010; 101: 77-92. DOI:  
381 10.1007/s10533-010-9418-5
- 382 41. Lin L, Zhang FW, Li YK, Han DR, Guo XW, Cao GM. The soil carbon and nitrogen storage and  
383 C/N metrological characteristics of chemistry in *Kobresia humilis* meadow in degradation  
384 succession stage. Chinese Journal of Grassland 2012; 34: 42-47.
- 385 42. Manzoni S, Trofymow JA, Jackson RB, Porporato A. Stoichiometric controls on carbon, nitrogen,  
386 and phosphorus dynamics in decomposing litter. Ecological Monographs 2010; 80: 89-106. DOI:  
387 10.1890/09-0179.1
- 388 43. Wu F, Liu CW, Chen HK, Diao ZF, Zhao S, Xie H. Use of nutrient medium technique for  
389 vegetation restoration in Karst region of Southwest China. Journal of Integrative Environmental

- 390 Sciences 2018; 15(1):135-155. DOI: 10.1080/1943815X.2018.1471725
- 391 44. de Santiago A, Recena R, Perea-Torres F, Moreno MT, Carmona E, Delgado A. Relationship of  
392 soil fertility with biochemical properties under agricultural practices aimed at controlling land  
393 degradation. *Land Degradation & Development*, 2019; DOI: 10.1002/ldr.3298
- 394 45. Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J. Spatial patterns and interspecific associations of  
395 dominant tree species in two old-growth karst forests, SW China. *Ecological Research* 2010;  
396 25:1151-1160. DOI: 10.1007/s11284-010-0740-0
- 397 46. Díaz S, Cabido M. Plant functional types and ecosystem function in relation to global change.  
398 *Journal of Vegetation Science* 1997; 8: 463-474. DOI: 10.2307/3237198
- 399 47. Odriozola I, García-Baquero G, Etxeberria A, Aldezabal A. Patterns of species relatedness created  
400 by competitive exclusion depend on species niche differences: Evidence from Iberian Atlantic  
401 grasslands. *Perspectives in Plant Ecology, Evolution and Systematics*. 2017; 28:36-46. DOI:  
402 10.1016/j.ppees.2017.07.002
- 403 48. Lou YJ, Zhao KY. Analysis of interspecific association of *Carex lasiocarpa* community in recent  
404 30-year succession in Sanjiang Plain. *Chinese Journal of Ecology* 2008; 27: 509-513.
- 405 49. Gong R, Gao Q, Wang YL. Effects of exclosure on community inter-specific relationships in a  
406 typical temperate grassland. *Journal of Plant Ecology* 2016; 40: 554-563.
- 407 50. Harpole WS, Suding KN. A test of the niche dimension hypothesis in an arid annual grassland.  
408 *Oecologia* 2011; 166: 197-205. DOI: 10.1007/s00442-010-1808-9
- 409 51. Nathan R. Long-distance dispersal of plants. *Science* 2006; 313: 786-788. DOI:  
410 10.1126/science.1124975
- 411 52. Álvarez-Yépez JC, Dovčiak M. Ontogenetic shifts in plant-plant interactions in a rare cycad within

- 412        angiosperm communities. *Oecologia* 2014; 175: 725-735. DOI: 10.1007/s00442-014-2929-3
- 413        53. Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across an
- 414        environmental gradient in coastal California. *Ecological Monographs*, 2009; 79(1), 109-126. DOI:
- 415        10.1890/07-1134.1
- 416        54. Callaway RM. Competition and facilitation: Contrasting effects of *Artemisia tridentata* on desert
- 417        vs montane pines. *Ecology* 1996; 77: 2130-2141. DOI: 10.2307/2265707
- 418        55. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, et al. Positive
- 419        interactions among alpine plants increase with stress. *Nature* 2002; 417: 844-848. DOI:
- 420        10.1038/nature00812
- 421        56. Chen YR, Yin LK. Community composition and niche change characteristics of dominant species
- 422        in the wind-breaking and sand-fixing forest, Xinjiang, China. *Journal of Plant Ecology* 2008; 32:
- 423        1126-1133.
- 424        57. Bewick S, Chisholm RA, Akcay E, Godsoe W. A stochastic biodiversity model with overlapping
- 425        niche structure. *Theoretical Ecology* 2015; 8: 81-109. DOI: 10.1007/s12080-014-0227-7