

1 The CXCL12/CXCR4 signalling axis retains neutrophils at inflammatory sites in zebrafish

2

3 Hannah M. Isles^{1,2}, Kimberly Herman^{1,2}, Anne L. Robertson^{1,3}, Catherine A. Loynes^{1,2}, Lynne
4 R. Prince², Philip M. Elks^{1,2*}, Stephen A. Renshaw^{1,2*}

5 ¹The Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN,
6 UK

7 ²Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield
8 Medical School, Beech Hill Road, Sheffield S10 2RX, UK

9 ³Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School,
10 Boston, MA 02115, USA

11 ***Corresponding Authors:**

12 Stephen A. Renshaw (s.a.renshaw@sheffield.ac.uk)

13 Philip M. Elks (p.elks@sheffield.ac.uk)

14 The Bateson Centre,

15 University of Sheffield,

16 Firth Court,

17 Western Bank,

18 Sheffield S10 2TN, UK

19

20 **Abstract**

21 The inappropriate retention of neutrophils in the lung is a major driver of the excessive tissue
22 damage characteristic of respiratory inflammatory diseases including COPD, ARDS and cystic
23 fibrosis. The molecular programmes which orchestrate neutrophil recruitment to inflammatory
24 sites through chemotactic guidance have been well studied. However, how neutrophil
25 sensitivity to these cues is modulated during inflammation resolution is not understood. The
26 identification of neutrophil reverse migration as a mechanism of inflammation resolution and
27 the ability to modulate this therapeutically has identified a new target to treat inflammatory
28 disease. Here we investigate the role of the CXCL12/CXCR4 signalling axis in modulating
29 neutrophil retention at inflammatory sites. We used an *in vivo* tissue injury model to study
30 inflammation using transgenic zebrafish larvae. Expression of *cxcl12a* and *cxcr4b* during the
31 tissue damage response was assessed using *in situ* hybridisation and analysis of RNA
32 sequencing data. CRISPR/Cas9 was used to knockdown *cxcl12a* and *cxcr4b* in zebrafish
33 larvae. The CXCR4 antagonist AMD3100 was used to block the Cxcl12/Cxcr4 signalling axis
34 pharmacologically. We identified that *cxcr4b* and *cxcl12a* are expressed at the wound site in
35 zebrafish larvae during the inflammatory response. Following tail-fin transection, removal of
36 neutrophils from inflammatory sites is significantly increased in *cxcr4b* and *cxcl12a* CRISPR
37 knockdown larvae. Pharmacological inhibition of the Cxcl12/Cxcr4 signalling axis accelerates
38 inflammation resolution, an effect caused by an increase in neutrophil reverse migration. The
39 findings of this study suggest that CXCR4/CXCL12 signalling may play an important role in
40 neutrophil retention at inflammatory sites, identifying a potential new target for the therapeutic
41 removal of neutrophils from the lung in chronic inflammatory disease.

42

43 **Keywords** Neutrophil, inflammation, CXCR4, zebrafish, retention

44

45 **Introduction**

46 The inappropriate retention of activated innate inflammatory cells at inflammatory sites is
47 major driver of chronic inflammatory diseases including asthma, COPD and rheumatoid
48 arthritis [1]. Neutrophils are the first cells recruited to the site of an inflammatory stimulus,
49 where they are potent anti-microbial effectors through the phagocytosis of foreign material,
50 generation of reactive oxygen species and the production of extracellular traps [2]–[4]. These
51 non-specific anti-microbial mechanisms promote a tissue microenvironment which is
52 unfavourable to pathogens, but at the expense of host tissue integrity [5]. Neutrophil removal
53 from inflammatory sites is therefore tightly regulated to minimise collateral tissue damage,
54 thereby preventing chronic inflammatory disease [6]. Despite the global burden of chronic
55 inflammatory diseases, there are currently no effective therapies to treat the neutrophilic
56 component of these conditions, highlighting a need to identify novel drug targets to promote
57 the successful resolution of inflammation.

58 It has been known for thirty years that neutrophils undergo apoptosis followed by efferocytosis
59 by macrophages, and this is the best characterised mechanism by which neutrophils are
60 removed from inflammatory sites [7], [8]. Although methods to both accelerate and delay
61 apoptosis have been identified [9]–[13], none of these are yet in clinical use for inflammatory
62 disease. More recently, reverse migration has been identified as a mechanism by which
63 neutrophils redistribute into the tissue or vasculature surrounding the inflammatory site, an
64 anti-inflammatory mechanism which is thought to disperse the inflammatory burden [12]–[15].
65 The mechanisms governing this newer phenomenon are not fully understood, though it is clear
66 that the capacity of neutrophils to cause host tissue damage is increased when either
67 apoptosis or reverse migration are impaired, resulting in the inappropriate retention of
68 neutrophils at the inflammatory site [16]. Understanding neutrophil reverse migration
69 represents novel therapeutic avenues to treat neutrophil mediated chronic inflammation.

70 During inflammation, neutrophils respond to complex guidance cues provided in part by
71 chemokine gradients which promote the directed migration of neutrophils from the circulation
72 and into inflamed tissues [17]. More recently, a role for chemokine signalling in modulating
73 neutrophil reverse migration has been identified [15], [18], making chemokine receptors an
74 attractive target for investigation. Computational modelling and *in vivo* studies of reverse
75 migration have shown that this process likely occurs as a result of the stochastic redistribution
76 of neutrophils following their desensitisation to local chemotactic gradients over time [12], [18],
77 [19]. In zebrafish, neutrophil reverse migration can be delayed by stabilising HIF1 α which
78 promotes neutrophil retention at inflammatory sites [13], suggesting that downstream HIF
79 signalling targets retain neutrophils at inflammatory sites. Work by our group and others has

80 shown that this retention of neutrophils at inflammatory sites is both mechanistically important
81 [13], [16], and can be manipulated therapeutically [10], [12], [18], yet the molecular
82 mechanisms remain to be elucidated.

83 CXCR4 is a G protein coupled receptor expressed by many leukocytes, which exerts its
84 biological functions by signalling through its major ligand CXCL12 (formerly known as stromal
85 derived factor 1). CXCL12/CXCR4 signalling is a key retention signal for neutrophil release
86 into the blood circulation from hematopoietic tissues, the crucial role of which is highlighted in
87 patients with warts, hypogammaglobulinaemia, infection and myelokathesis (WHIM)
88 syndrome. Gain of function WHIM mutations result in increased CXCR4 signalling, the
89 consequence of which is severe neutropenia with increased neutrophil retention in the bone
90 marrow [20].

91 There is growing evidence to support a role for CXCL12/CXCR4 in neutrophil retention in the
92 context of inflammatory disease. Tissue infiltrated neutrophils from patients with chronic
93 inflammatory lung diseases and rheumatoid arthritis have increased CXCR4 surface
94 expression [21]. Neutrophil surface expression of CXCR4 is increased after extravasation into
95 injured lungs in mice [22] and in human tissue samples, where pulmonary CXCL12 expression
96 increases during acute lung injury [23]. Additionally, the inhibition of CXCL12 using blocking
97 antibodies prevented the accumulation of neutrophils in the lung during the late stages of LPS
98 induced lung injury [22]. Based on this evidence we hypothesised that CXCL12/CXCR4
99 functions as a retention signal in the context of tissue damage, functioning to maintain active
100 neutrophils at the inflammatory site.

101 Here we present a new role for the CXCL12/CXCR4 signalling axis in the retention of
102 neutrophils at inflammatory sites and demonstrate a role for neutrophil retention signalling in
103 modulating inflammation resolution in zebrafish larvae. Using both pharmacological and
104 genetic approaches to manipulate the CXCL12/CXCR4 signalling axis, we demonstrate that
105 interruption of CXCR4 signalling accelerates inflammation resolution by increasing neutrophil
106 reverse migration. We have identified a druggable target which could be a therapeutic target
107 to remove inappropriately retained neutrophils from inflammatory sites during disease.

108

109 **Results**

110 ***cxcr4b* and *cxc12a* are expressed following tissue damage in zebrafish**

111 Zebrafish have two paralogues for CXCR4 and CXCL12, following a genome duplication event
112 in teleost evolution. The expression of *cxcr4a* and *cxcr4b* is mutually exclusive in most cell
113 lineages, indicating roles in different tissues. [24]. To determine the gene expression of *Cxcr4*
114 and *Cxcl12* during the cellular response to tissue damage in zebrafish larvae, we first
115 investigated neutrophil expression of *cxcr4* and *cxc12*. We studied published datasets
116 combining RNA sequencing of zebrafish larval neutrophils and single-cell RNA sequencing
117 data from adult zebrafish blood lineages [25], [26]. In adult zebrafish neutrophils, *cxcr4b* is
118 highly expressed by the neutrophil lineage whilst *cxcr4a* is undetectable (Figure 1A-B).
119 *Cxc12a* is expressed by a small population of adult zebrafish neutrophils, albeit far fewer than
120 *cxcr4b*, whilst *cxc12b* is expressed by very few cells (Figure 1C-D). We analysed larval stage
121 neutrophil RNA sequencing data [25], and found that fragments per kilobase million (fpkm)
122 values for *cxcr4b* were over 100-fold higher than the fpkm values for *cxcr4a* (Figure 1E),
123 confirming that *cxcr4b* is the predominantly expressed isoform in larval zebrafish neutrophils.
124 Furthermore, we confirmed that expression of *cxc12a* and *cxc12b* was low in larval
125 neutrophils (Figure 1F).

126 Zebrafish *Cxcr4b* is activated by the chemokine *Cxcl12a* [27], hence we investigated the
127 expression of *cxc12a* during the inflammatory response. To induce an inflammatory response
128 we used our well characterised tail-fin injury model of spontaneously-resolving
129 inflammation[28], where neutrophil recruitment is observed between 0-6 hours post injury (hpi)
130 and inflammation resolution occurs between 6-24hpi. Whole mount *in situ* hybridisation was
131 used to detect *cxc12a* mRNA at the wound site in 3dpf larvae following tail fin transection.
132 *Cxcl12a* mRNA expression was detected in injured larvae as early as 6hpi during the
133 recruitment phase (Figure 1G). Interestingly, *cxc12a* mRNA expression continued to increase
134 throughout the resolution phase up to 24hpi (Figure 1G) in keeping with other reports of *cxc12*
135 expression following fin injury. These findings show the expression of *cxcr4b* by neutrophils
136 and *cxc12a* at the tissue injury site during the inflammatory response in zebrafish.

137 **Genetic manipulation of the CXCL12/CXCR4 signalling axis accelerates inflammation
138 resolution**

139 After determining that *cxc12a* was expressed at the wound site in injured larvae, we next
140 investigated neutrophil responses to tissue injury in the absence of the CXCL12/CXCR4
141 signalling axis. We hypothesised that if CXCL12/CXCR4 signalling was a neutrophil retention
142 signal, inhibition of this pathway would accelerate inflammation resolution. We used
143 CRISPR/Cas9 to study the role of *Cxcl12a* and *Cxcr4b* in neutrophilic inflammation resolution

144 using the *TgBAC(mpx:GFP)i114* transgenic reporter line [28]. A crRNA targeting the pigment
145 gene tyrosinase (*tyr*) [29] was used for control injections and to allow for visual identification
146 of successful knockdown. Knockdown of *tyr* produces an albino phenotype in zebrafish larvae
147 (Supplemental Figure 1A-B) without affecting neutrophil development or the neutrophilic
148 inflammatory response (Supplemental Figure 1C-D). We generated *cxcr4b* or *cxl12a*
149 ‘crispants’ (newly generated “F0” CRISPR/Cas9-mediated mutants) and transected tail-fins at
150 2 dpf, counting neutrophils at the wound site at 4, 8 and 24 hpi (Figure 2A). Neutrophil counts
151 in *cxcr4b* crispants were significantly increased at the wound site during the neutrophil
152 recruitment phase (4hpi), consistent with enhanced release of *cxcr4b* mutant neutrophils from
153 their site of production [30] (Figure 2B). *Cxcl12a* crispants showed no difference in neutrophil
154 recruitment (Figure 2B). No significant difference in neutrophil numbers at the wound site was
155 detected between groups at 8 and 24hpi (Figure 2B). To control for the increase in early
156 neutrophil recruitment measured in *Cxcr4b* crispants, we calculated percentage inflammation
157 resolution scores in individual larvae between 4 and 8 hpi. Both *Cxcr4b* and *Cxcl12a* crispants
158 had significantly higher percentage inflammation resolution compared to control larvae (Figure
159 2C). Whole body neutrophil numbers were not affected in *cxcr4b* crispants, but were
160 significantly reduced in *cxl12a* crispants (Figure 2D). These data demonstrate that loss of
161 *Cxcl12/Cxcr4* signalling accelerates inflammation resolution in zebrafish larvae, suggesting
162 that the CXCL12/CXCR4 signalling axis is required for neutrophil retention at inflammatory
163 sites.

164 **Pharmacological inhibition of CXCR4 accelerates inflammation resolution**

165 Genetic knockdown of CXCR4 signalling causes neutrophil release from the caudal
166 haematopoietic tissue (CHT), enhancing neutrophil recruitment, confounding assessment of
167 inflammation resolution. To circumvent this, we used the CXCR4 antagonist AMD3100 to
168 block CXCR4 signalling in a time-sensitive fashion (Figure 3A). At 8hpi a significant decrease
169 in neutrophil counts at the wound site was detected in AMD3100 treated larvae (Figure 3B).
170 Percentage inflammation resolution was significantly higher in AMD3100 treated larvae
171 (Figure 3C), whilst whole body neutrophil counts were not affected by AMD3100 at 24 hours
172 post administration (Figure 3D). Together these data demonstrate that pharmacological
173 inhibition of CXCR4 in larvae which have mounted a normal response accelerates
174 inflammation resolution, further supporting a role for CXCL12/CXCR4 signalling in neutrophil
175 retention signalling at sites of tissue damage.

176 **Inhibition of CXCL12/CXCR4 signalling increases neutrophil reverse migration**

177 Two principal mechanisms of inflammation resolution have been described: neutrophil
178 apoptosis followed by efferocytosis by macrophages and reverse migration of neutrophils

179 away from inflammatory sites. We have previously proposed that neutrophil release from
180 inflammatory sites is best explained by the desensitisation of neutrophils to local chemokine
181 gradients [19]. This led us to the specific hypothesis that inhibition of CXCL12/CXCR4
182 signalling would accelerate reverse migration by accelerating neutrophil desensitisation to
183 CXCL12 gradients. To study neutrophil reverse migration, we used a well described
184 photoconversion approach to study the reverse migration of neutrophils from a wound site
185 [10], [12], [13], [31]. AMD3100 was administered to *TgBAC(mpx:GAL4-VP16)*;
186 *Tg(UAS:Kaede)i222* (referred to as mpx:kaede) larvae at 5hpi and neutrophils at the wound
187 site were photoconverted and tracked during the resolution phase (Figure 4A). Neutrophil
188 migration away from the wound site was significantly higher in larvae treated with AMD3100
189 (Figure 4B), an effect which was not due to a difference in the number of photoconverted
190 neutrophils (Figure 4C). Together these data demonstrate that inhibition of CXCL12/CXCR4
191 signalling can increase inflammation resolution by accelerating neutrophil reverse migration,
192 identifying this signalling axis as a potential therapeutic target to specifically remove
193 inflammatory neutrophils without affecting the normal recruitment of neutrophils to new
194 inflammatory or infectious lesions.

195 **Discussion**

196 A large body of evidence now exists to suggest a role for the CXCL12/CXCR4 signalling axis
197 in modulating neutrophil behaviour in chronic inflammatory disease. Aside from generation of
198 neutrophil retention signals in multiple physiological settings [32], [33], neutrophils taken from
199 patients with chronic inflammatory disease have increased CXCR4 expression, and CXCL12
200 is produced at sites of injury, including the lung [21], [22]. A specific role for the
201 CXCL12/CXCR4 signalling axis in retaining neutrophils in the CHT has recently been
202 suggested following the study of neutrophil behaviour in zebrafish *Cxcr4b* and *Cxcl12a* mutant
203 larvae [30]. Our study provides evidence that the CXCL12/CXCR4 signalling axis is important
204 in modulating neutrophil migration away from sites of inflammation, identifying a potential new
205 therapeutic target for chronic inflammatory disease.

206 Computational modelling of reverse migration previously performed by our group
207 demonstrated that neutrophil reverse migration is best described as a process of stochastic
208 redistribution of neutrophils back into the tissue rather than their active migration away from
209 the wound site [19]. These data further support our suggestion that neutrophil reverse
210 migration is initiated following desensitisation to chemokine gradients at the wound site rather
211 than their active migration away from chemorepulsive gradients (fugetaxis). Cellular desensitisation
212 to external gradients is a characteristic feature of signalling through G protein coupled
213 receptors, many of which are expressed on the surface of neutrophils [34]. A retention signal

214 generated through chemokine receptor signalling would require expression of the chemokine
215 within the inflamed tissue and the receptor on the neutrophil surface. Our analysis of RNA
216 sequencing from FACS sorted zebrafish larval neutrophils and adult single-cell RNA
217 sequencing shows that at both larval and adult stages of development, the predominantly
218 expressed isoform of CXCR4 in zebrafish neutrophils is *cxcr4b*, whilst *cxcr4a* was
219 undetectable. This is in keeping with RT-PCR performed on FACS sorted larval zebrafish
220 neutrophils [35]. Interestingly, RT-PCR performed on adult zebrafish whole kidney marrow
221 suggests that both *cxcr4b* and *cxcr4a* are expressed by neutrophils in the adult stage [35].
222 Our analysis of single-cell RNA sequencing data provides a more sensitive assay to look at
223 individual neutrophil RNA expression, therefore it is likely that zebrafish neutrophils do not
224 express *cxcr4a* in adulthood. Furthermore, we demonstrate that mRNA for the major ligand
225 for this receptor, Cxcl12a, is expressed at the wound site during inflammation. The *cxl12a*
226 expression pattern we observed in uninjured larvae was comparable to that observed by other
227 groups earlier in zebrafish development at 2dpf [35]. Expression of *cxl12a* mRNA appeared
228 to increase at the wound site throughout the time course of inflammation, in keeping with a
229 significant body of evidence that illustrates a role for CXCL12 in tissue repair [36]–[38]. It has
230 been proposed that Cxcl12a is important in providing directional guidance cues to regulate
231 endothelial cell migration during arterial morphogenesis in the regenerating fin [39].
232 Expression of *cxl12a* is detected by WISH in injured adult tail fins from 1 day post amputation
233 and persists during fin regeneration until 5 days post amputation [38].

234 The role for the CXCL12/CXCR4 signalling axis in zebrafish developmental processes has
235 been elucidated largely using genetic studies to knock down the genes encoding the CXCR4
236 and CXCL12 proteins [27], [40], [41]. The high efficiency of somatic mutation by CRISPR/Cas9
237 in injected F0 animals yields up to 99% somatic mutagenesis and biallelic gene disruption,
238 enabling direct phenotypic analysis without the requirement for raising stable F2 adults [29],
239 [42], [43]. When using CRISPR/Cas9 to disrupt *cxcr4b* and *cxl12a*, we achieved genomic
240 disruption by introducing INDELs in >90% injected F0 larvae (Supplemental Figure 2). In our
241 studies, knockdown of *cxcr4b* increased neutrophil recruitment to the wound site in crispant
242 larvae. C-terminal truncations of Cxcr4b specifically in neutrophils (such as those found in
243 WHIM syndrome patients) prevents receptor internalisation and increases sensitivity to
244 Cxcl12a gradients, thus retaining them in the caudal hematopoietic tissue (CHT)
245 inappropriately [35]. Neutrophils in WHIM zebrafish larvae are unable to respond to wound-
246 generated gradients effectively, hence neutrophil recruitment to inflammatory sites is reduced
247 in these larvae [35]. Conversely, in the Cxcr4b *odysseus* mutant where Cxcr4b signalling is
248 impaired, the number of neutrophils available to be recruited to tissue damage is increased
249 [30], thus our findings are in keeping with the F2 mutant phenotype [30]. Neutrophil recruitment

250 towards Cxcl12a was not increased in our experiments, although this could be attributed to
251 Cxcl12a larvae displaying significantly reduced whole body neutrophil counts. Inflammation
252 resolution was significantly increased in both Cxcr4b and Cxcl12a crispant larvae, suggesting
253 that genetic manipulation of both genes results in the same effect in terms of inflammation
254 resolution.

255 One of the advantages of using the zebrafish as a model to study inflammation is that chemical
256 compounds can be used to manipulate signalling pathways, where several compounds which
257 target neutrophils have been identified using this approach [9], [11], [12]. AMD3100 is a non-
258 peptide bicyclam which is able to specifically antagonize the CXCR4 receptor at three main
259 interaction residues located around the main ligand binding pocket of CXCR4 in
260 transmembrane domains IV, VI and VII. Binding of AMD3100 competitively inhibits binding of
261 CXCL12 and prevents subsequent downstream signalling [44]. AMD3100 has been used to
262 inhibit the CXCL12/CXCR4 signalling axis in zebrafish larvae, where concentrations ranging
263 from 10-30 μ M have been administered to larvae through incubation in fish water for up to 24
264 hours [45], a concentration range which we remained within for our own experiments. Our
265 results from both genetic and pharmacological manipulation of Cxcr4b and Cxcl12a
266 demonstrate that inhibition of CXCL12/CXCR4 signalling accelerates inflammation resolution.
267 We propose that AMD3100 is able to accelerate inflammation and reverse migration by
268 competitively binding the CXCR4 receptor and preventing signalling downstream, thus
269 recapitulating what would happen at a higher concentration of Cxcl12a later in the
270 inflammatory response. AMD3100 can also act as an allosteric agonist of CXCR7 [46], which
271 functions as a decoy receptor for CXCL12, with a role in cell generation of self-gradients which
272 is crucial for proper migration of primordial germ cells toward their targets in zebrafish [47].
273 Activation of CXCR7 fails to couple to G-proteins and to induce chemokine receptor mediated
274 cellular responses, so AMD3100 is unlikely to activate downstream signalling pathways [48].
275 Cxcr7 may modulate neutrophil sensitivity to Cxcl12, through its scavenging of the chemokine
276 which reduces the level of Cxcl12 in the local tissue environment [49]. However, as zebrafish
277 larval neutrophils do not express this receptor [25] (data not shown), it is unlikely that
278 scavenging through Cxcr7 is involved.

279 Reverse migration is impaired in Cxcr2 deficient zebrafish larvae where neutrophils are
280 inappropriately retained at the wound site [18]. It has been proposed that altered susceptibility
281 of neutrophils to gradients at the wound site in Cxcr2 deficient larvae drives their passive
282 migration away from the wound site. Our data are compatible with these findings, as the
283 CXCR4 and CXCR2 signalling axis is known to antagonistically regulate neutrophil retention
284 in other models [32]. It would be interesting to speculate that the combined outcome of

285 signalling through both CXCR4 and CXCR2 could modulate the reverse migration of
286 neutrophils during inflammation resolution.

287 Taken together our data demonstrate that inhibition of the CXCL12/CXCR4 signalling axis
288 drives the resolution of inflammation by increasing neutrophil reverse migration, and supports
289 the hypothesis that neutrophil desensitisation to gradients at the wound site results in their
290 reverse migration away from the wound site [18], [19]. These data add to the existing evidence
291 that neutrophil reverse migration can be targeted pharmacologically to drive the resolution of
292 inflammation.

293 **Methods**

294 Zebrafish husbandry and ethics

295 To study neutrophils during inflammation *TgBAC(mpx:EGFP)i114* (known as mpx:GFP)[28]
296 zebrafish larvae were in-crossed. To study gene expression by whole mount in situ
297 hybridisation, wildtype pigment-less *nacre*[50] larvae were in-crossed. For reverse migration
298 assays, *Tg(mpx:GAL4.vp16)sh267;Tg(UAS:Kaede)i222* (known as mpx:kaede) were in-
299 crossed. All zebrafish were raised in the Bateson Centre at the University of Sheffield in UK
300 Home Office approved aquaria and maintained following standard protocols[51]. Tanks were
301 maintained at 28°C with a continuous re-circulating water supply and a daily light/dark cycle
302 of 14/10 hours. All procedures were performed on embryos less than 5.2 dpf which were
303 therefore outside of the Animals (Scientific Procedures) Act, to standards set by the UK Home
304 Office.

305 Neutrophil specific expression of zebrafish genes

306 Gene expression was assessed using an RNA sequencing database from FACS sorted GFP
307 positive cells from 5dpf zebrafish and FPKM values for genes of interest were extracted [25]
308 (data deposited on GEO under accession number GSE78954). For single cell analysis, gene
309 expression values were extracted from the BASiCz (Blood atlas of single cells in zebrafish)
310 cloud repository [26]. Cells of the neutrophil lineage were analysed for expression of *cxcr4a*,
311 *cxcr4b*, *cxcl12a* and *cxcl12b*.

312 WISH probe synthesis

313 The WISH antisense RNA probe for *cxcl12a* was synthesised from linearised plasmid DNA
314 obtained from a plasmid vector containing the zebrafish *cxcl12a* coding sequence. Following
315 transformation and DNA purification, the plasmid was linearised by restriction digest using

316 EcoR1 (New England Biolabs (NEB), Herts, UK). The RNA probe was transcribed from
317 linearised DNA using an SP6 RNA digoxigen labelling kit (Roche). 1µg of linearised DNA was
318 incubated in a final volume of 20µl containing transcription reagents and transcription reaction
319 was performed according to standard protocols (Roche).

320 Whole mount *in situ* hybridisation

321 Nacre larvae were anaesthetised in tricaine following tail fin transection at time points indicated
322 in the figure legends alongside uninjured, age-matched controls. No more than 20 larvae were
323 transferred to 1ml Eppendorf tubes and excess liquid was removed without damaging larvae.
324 1ml of paraformaldehyde (PFA) at 4°C was added to Eppendorf tubes for the fixation step, and
325 left overnight at 4°C. Larvae were washed and transferred into 100% methanol and stored at
326 -20°C for at least 24 hours prior to use. WISH was performed using standard protocols [52]
327 using an antisense DIG labelled probe for zebrafish *cxcl12a*.

328 CRISPR/Cas9 reagents

329 Synthetic SygRNA® consisting of crRNA and tracrRNA (Merck) in combination with cas9
330 nuclease protein (Merck) was used for gene editing. Transactivating RNAs (tracrRNA) and
331 gene specific CRISPR RNAs (crRNA) were resuspended to a concentration of 20µM in
332 nuclease free water containing 10mM Tris-hcl ph8. SygRNA® complexes were assembled on
333 ice immediately before injection using a 1:1:1 ratio of crRNA:tracrRNA:Cas9 protein. Gene-
334 specific crRNAs to target *cxcr4b* and *cxl12a* were designed using the online tool CHOPCHOP
335 (<http://chopchop.cbu.uib.no/>). We used the following crRNA sequences, where the PAM site
336 is indicated in brackets: ***cxcr4b*:** CAGCTCTGACTCCGGTTCTG(GGG) ***cxl12a*:**
337 CTCTACCAGGCTGATGGGCT(TGG).

338 Microinjection of SygRNA® into embryos

339 A 1nl drop of SygRNA®:Cas9 protein complex was injected into mpx:GFP embryos at the one-
340 cell stage. Embryos were collected at the one cell stage and injected using non-filament glass
341 capillary needles (Kwik-Fil™ Borosilicate Glass Capillaries, World Precision Instruments
342 (WPI), Herts, UK). RNA was prepared in sterile Eppendorf tubes. A graticule was used to
343 measure 0.5nl droplet sizes to allow for consistency of injections. Injections were performed
344 under a dissecting microscope attached to a microinjection rig (WPI) and a final volume of 1nl
345 was injected.

346 Genotyping of crispant larvae

347 To determine the efficiency of CRISPR/Cas9 to induce site-specific mutations in injected
348 larvae, we used restriction digest assays (Supplemental figure 2). CRISPR guides were
349 designed to target sequences containing restriction digest sites, such that when indels were
350 introduced by DNA repair, the restriction site is disrupted. Genomic DNA was extracted from
351 individual larvae at 2dpf. Larvae were placed individually in 0.2ml PCR tubes in 90µl 50mM
352 NaOH and boiled at 95° for 20 minutes. 10µl Tris-HCL ph8 was added as a reaction buffer
353 and mixed thoroughly. RT-PCR using Firepol® (Solis BioDyne) was used to amplify a 235bp
354 region (for *cxcr4b*) and a 259bp region (for *cxc12a*) around the PAM site. Gene specific
355 primers were designed using the Primer 3 web tool (<http://primer3.ut.ee/>). Primer sequences
356 were as follows: ***cxcrb4_f*** *TCCCGTATACTGTAGGGAGGA* ***cxcr4b_r***
357 *TTTTTGCA****TTTGCTTTCTTG*** ***cxc12a_f*** *TTCTCTGTGGACTGTGTTGAC* ***cxc12a_r***
358 *TTCGAAAATTGACCCAAAAGT*. Restriction enzyme digests were then performed using *bs*II
359 at 55° for 2 hours (for *cxcr4b*) and *bst*Xi (New England Biolabs) at 37° for 2 hours (for *cxc12a*).
360 Products were run using gel electrophoresis on a 2% gel.

361 Inflammation assays in crispant larvae

362 To induce an inflammatory response, chorions of zebrafish larvae at 2dpf were removed using
363 sterile laboratory tweezers and larvae were anaesthetised in Tricaine (0.168 mg/ml; Sigma-
364 Aldrich) in E3 media and visualised under a dissecting microscope. Tail-fins were transected
365 consistently using a scalpel blade (5mm depth, WPI) by slicing immediately posterior to the
366 circulatory loop, ensuring the circulatory loop remained intact as previously described[28].
367 Larvae were maintained at 28°c in fresh E3 media in a 24 well plate. Neutrophils at the wound
368 site were counted at timepoints indicated in figure legends using a fluorescence stereo
369 microscope.

370 Compound treatment of larvae for inflammation resolution assays

371 To study the resolution of inflammation, neutrophils were counted at the wound site at intervals
372 during the resolution phase from 8-24 hours post injury in 2dpf mpx:GFP larvae, as indicated
373 in figure legends. Larvae were dechorionated and anaesthetised prior to injury by tail-fin
374 transection and left to recover at 28°c in fresh E3 media in petri dishes (60 larvae per plate).
375 Larvae were screened for good neutrophil recruitment (around 20 neutrophils at the wound
376 site) at 3.5hpi. AMD3100 (Sigma-aldrich) was administered to larvae at 4hpi through injection
377 into the duct of Cuvier at a final concentration of 20µM. AMD3100 was always tested alongside
378 the appropriate vehicle control. Neutrophils at the wound site were counted at 6hpi at the peak
379 of recruitment, and at 8hpi for inflammation resolution using a fluorescence stereo microscope
380 (Leica).

381 Percentage resolution calculations

382 To determine percentage resolution, experiments were performed with larvae maintained
383 separately in a 96 well plate to follow individual larvae over time. Percentage resolution was
384 calculated as ((Neutrophil counts at peak recruitment – neutrophil counts at 8hpi)/neutrophil
385 counts at peak recruitment)*100.

386 Whole body neutrophil counts

387 Whole body neutrophil counts were measured in mpx:GFP larvae at time points indicated in
388 figure legends. Larvae were mounted in 1% agarose with tricaine and a single slice image
389 was taken using a 4x NA objective lens on an Eclipse TE2000 U inverted compound
390 fluorescence microscope (Nikon UK Ltd., Kingston upon Thames, UK). A GFP-filter was used
391 at excitation of 488nm. Two images were taken per larvae, one of the head region and one of
392 the tail region. Neutrophils were counted manually from both images and combined to give a
393 whole body neutrophil count.

394 Reverse migration assay

395 Reverse migration assays were performed using larvae expressing the photoconvertible
396 protein kaede under the neutrophil specific mpx promoter: *TgBAC(mpx:GAL4-VP16)*;
397 *Tg(UAS:Kaede)i222*. At 3dpf larvae were anaesthetised and injured by tail-fin transection and
398 left to recover at 28°C. Larvae were screened for good neutrophil recruitment at 4hpi.
399 AMD3100 was administered by incubation in low melting point agarose containing tricaine at
400 5hpi in 3dpf larvae. Photoconversion of kaede labelled neutrophils at the wound site was
401 performed using an UltraVIEWPhotoKinesis™ device (Perkin Elmer and Analytical Sciences)
402 on an UltraVIEWVoX spinning disc confocal laser imaging system (Perkin Elmer). The
403 photokinesis device was calibrated using a coverslip covered in photobleachable substrate
404 (Stabilo Boss™, Berks UK). Photoconversion was performed using a 405nm laser at 40%
405 using 120 cycles, 250 pk cycles and 100ms as previously published [13]. Following calibration,
406 a region of interest was drawn at the wound site between the edge of the circulatory loop and
407 encapsulating the entirety of the wound edge. Successful photoconversion was detected
408 through loss of emission detected following excitation at 488nm, and gain of emission following
409 561nm excitation. Larvae were then transferred to an Eclipse TE2000-U inverted compound
410 fluorescence microscope with 10x NA objective lens to acquire images using an andor zyla
411 5 camera (Nikon). Time lapse imaging of neutrophil reverse migration was performed for 5
412 hours using 2.5 minute intervals using GFP and mCherry filters with 488 and 561 nm excitation

413 respectively. For quantification of reverse migration, NIS elements software was used to
414 compress z-slices into maximum intensity projections. A region of interest was drawn around
415 the region away from the wound site, as illustrated in Figure 2.6. For quantification of
416 neutrophils moving away from the wound site, a binary threshold was applied to images to
417 detect mCherry neutrophils from background noise and NIS elements software calculated the
418 number of objects detected in the ROI at each time point, providing a read out of reverse
419 migration.

420 **Author Contributions**

421 H.M.I performed all experiments with assistance from C.A.L, A.L.R and P.M.E. H.M.I and
422 K.D.H analysed data. S.A.R and P.M.E conceived the study and designed experiments. S.A.R,
423 P.M.E and L.R.P provided scientific expert knowledge. H.M.I wrote the manuscript with
424 significant input from all authors.

425 **Acknowledgements**

426 The authors would like to thank The Bateson Centre Aquarium Team at the University of
427 Sheffield for their assistance with zebrafish husbandry. Imaging work was performed at the
428 Wolfson Light Microscopy Facility, microscopy studies were supported by an MRC grant
429 (G0700091) and a Wellcome Trust grant (GR077544AIA). Thanks to Dr Felix Ellett for use of
430 zebrafish drawings for experiment schematics.

431 **Funding information and conflict of interest**

432 This work was supported by a Medical Research Council (MRC) Senior Clinical Fellowship
433 with Fellowship-Partnership Award and MRC Programme Grants to S.A.R (G0701932 and
434 MR/M004864/1) and an MRC Centre Grant (G0700091). P.M.E is funded by a Sir Henry Dale
435 Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number
436 105570/Z/14/Z).

437 The authors declare no conflict of interest.

438 **References**

439 [1] C. Nathan and A. Ding, "Nonresolving Inflammation," *Cell*, vol. 140, no. 6, pp. 871–
440 882, Mar. 2010.
441 [2] T. A. Fuchs *et al.*, "Novel cell death program leads to neutrophil extracellular traps," *J.
442 Cell Biol.*, vol. 176, no. 2, pp. 231–241, Jan. 2007.

443 [3] C. Summers, S. M. Rankin, A. M. Condliffe, N. Singh, a. M. Peters, and E. R.
444 Chilvers, "Neutrophil kinetics in health and disease," *Trends Immunol.*, vol. 31, no. 8,
445 pp. 318–324, Aug. 2010.

446 [4] M. Mittal, M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik, "Reactive Oxygen
447 Species in Inflammation and Tissue Injury," *Antioxid. Redox Signal.*, vol. 20, no. 7, pp.
448 1126–1167, Mar. 2014.

449 [5] K. L. Rock, E. Latz, F. Ontiveros, and H. Kono, "The sterile inflammatory response.,"
450 *Annu. Rev. Immunol.*, vol. 28, pp. 321–42, 2010.

451 [6] Z. Bian, Y. Guo, B. Ha, K. Zen, and Y. Liu, "Regulation of the inflammatory response:
452 enhancing neutrophil infiltration under chronic inflammatory conditions.," *J. Immunol.*,
453 vol. 188, no. 2, pp. 844–53, Jan. 2012.

454 [7] J. M. Grigg, M. Silverman, J. S. Savill, C. Sarraf, and C. Haslett, "Neutrophil apoptosis
455 and clearance from neonatal lungs," *Lancet*, vol. 338, no. 8769, pp. 720–722, Sep.
456 1991.

457 [8] G. Cox, J. Crossley, and Z. Xing, "Macrophage engulfment of apoptotic neutrophils
458 contributes to the resolution of acute pulmonary inflammation in vivo.," *Am. J. Respir.
459 Cell Mol. Biol.*, vol. 12, no. 2, pp. 232–237, Feb. 1995.

460 [9] A. E. Leitch *et al.*, "The cyclin-dependent kinase inhibitor R-roscoxitine down-
461 regulates Mcl-1 to override pro-inflammatory signalling and drive neutrophil
462 apoptosis," *Eur. J. Immunol.*, vol. 40, no. 4, pp. 1127–1138, Apr. 2010.

463 [10] C. A. Loynes *et al.*, "PGE₂ production at sites of tissue injury promotes an anti-
464 inflammatory neutrophil phenotype and determines the outcome of inflammation
465 resolution in vivo," *Sci. Adv.*, vol. 4, no. 9, p. eaar8320, Sep. 2018.

466 [11] A. L. Robertson *et al.*, "Identification of benzopyrone as a common structural feature
467 in compounds with anti-inflammatory activity in a zebrafish phenotypic screen.," *Dis.
468 Model. Mech.*, vol. 9, no. 6, pp. 621–32, 2016.

469 [12] A. L. Robertson *et al.*, "A zebrafish compound screen reveals modulation of neutrophil
470 reverse migration as an anti-inflammatory mechanism.," *Sci. Transl. Med.*, vol. 6, no.
471 225, p. 225ra29, 2014.

472 [13] P. M. Elks *et al.*, "Activation of hypoxia-inducible factor-1?? (hif-1??) delays
473 inflammation resolution by reducing neutrophil apoptosis and reverse migration in a
474 zebrafish inflammation model," *Blood*, vol. 118, no. 3, pp. 712–722, 2011.

475 [14] A. Woodfin *et al.*, "The junctional adhesion molecule JAM-C regulates polarized
476 transendothelial migration of neutrophils in vivo," *Nat. Immunol.*, vol. 12, no. 8, pp.

477 761–769, Aug. 2011.

478 [15] J. Wang, M. Hossain, A. Thanabalasuriar, M. Gunzer, C. Meininger, and P. Kubes,
479 “Visualizing the function and fate of neutrophils in sterile injury and repair,” *Science*
480 (80-.), vol. 358, no. 6359, pp. 111–116, Oct. 2017.

481 [16] A. A. R. Thompson *et al.*, “Hypoxia-inducible factor 2 α regulates key neutrophil
482 functions in humans, mice, and zebrafish.,” *Blood*, vol. 123, no. 3, pp. 366–76, Jan.
483 2014.

484 [17] K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, “Getting to the site of
485 inflammation: the leukocyte adhesion cascade updated,” *Nat. Rev. Immunol.*, vol. 7,
486 no. 9, pp. 678–689, Sep. 2007.

487 [18] D. Powell, S. Tazin, L. E. Hind, Q. Deng, D. J. Beebe, and A. Huttenlocher,
488 “Chemokine Signaling and the Regulation of Bidirectional Leukocyte Migration in
489 Interstitial Tissues.,” *Cell Rep.*, vol. 19, no. 8, pp. 1572–1585, May 2017.

490 [19] G. R. Holmes *et al.*, “Repelled from the wound, or randomly dispersed? Reverse
491 migration behaviour of neutrophils characterized by dynamic modelling.,” *J. R. Soc.
492 Interface*, vol. 9, no. 77, pp. 3229–39, Dec. 2012.

493 [20] T. Kawai and H. L. Malech, “WHIM syndrome: congenital immune deficiency
494 disease.,” *Curr. Opin. Hematol.*, vol. 16, no. 1, pp. 20–6, Jan. 2009.

495 [21] D. Hartl *et al.*, “Infiltrated neutrophils acquire novel chemokine receptor expression
496 and chemokine responsiveness in chronic inflammatory lung diseases.,” *J. Immunol.*,
497 vol. 181, no. 11, pp. 8053–67, Dec. 2008.

498 [22] M. Yamada *et al.*, “The increase in surface CXCR4 expression on lung extravascular
499 neutrophils and its effects on neutrophils during endotoxin-induced lung injury,” *Cell.
500 Mol. Immunol.*, vol. 8, no. 4, pp. 305–314, Jul. 2011.

501 [23] J. M. Petty *et al.*, “Pulmonary stromal-derived factor-1 expression and effect on
502 neutrophil recruitment during acute lung injury.,” *J. Immunol.*, vol. 178, no. 12, pp.
503 8148–57, Jun. 2007.

504 [24] S. W. Chong, A. Emelyanov, Z. Gong, and V. Korzh, “Expression pattern of two
505 zebrafish genes, cxcr4a and cxcr4b,” *Mech. Dev.*, vol. 109, no. 2, pp. 347–354, Dec.
506 2001.

507 [25] J. Rougeot *et al.*, “RNAseq profiling of leukocyte populations in zebrafish larvae
508 reveals a cxcl11 chemokine gene as a marker of macrophage polarization during
509 mycobacterial infection,” *Front. Immunol.*, vol. 10, p. 832, 2019.

510 [26] E. I. Athanasiadis, J. G. Botthof, H. Andres, L. Ferreira, P. Lio, and A. Cvejic, “Single-
511 cell RNA-sequencing uncovers transcriptional states and fate decisions in
512 haematopoiesis,” *Nat. Commun.*, vol. 8, no. 1, p. 2045, Dec. 2017.

513 [27] E. Donà *et al.*, “Directional tissue migration through a self-generated chemokine
514 gradient.,” *Nature*, vol. 503, no. 7475, pp. 285–9, 2013.

515 [28] S. A. S. Renshaw, C. A. Loynes, D. M. I. Trushell, S. Elworthy, P. W. Ingham, and M.
516 K. B. Whyte, “A transgenic zebrafish model of neutrophilic inflammation,” *Blood...*, vol.
517 108, no. 13, pp. 3976–3978, Dec. 2006.

518 [29] L.-E. Jao, S. R. Wente, and W. Chen, “Efficient multiplex biallelic zebrafish genome
519 editing using a CRISPR nuclease system,” *Proc. Natl. Acad. Sci.*, vol. 110, no. 34, pp.
520 13904–13909, Aug. 2013.

521 [30] S. Paredes-Zúñiga *et al.*, “CXCL12a/CXCR4b acts to retain neutrophils in caudal
522 hematopoietic tissue and to antagonize recruitment to an injury site in the zebrafish
523 larva,” *Immunogenetics*, vol. 69, no. 5, pp. 341–349, 2017.

524 [31] F. Ellett, P. M. Elks, A. L. Robertson, N. V. Ogryzko, and S. a. Renshaw, “Defining the
525 phenotype of neutrophils following reverse migration in zebrafish,” *J. Leukoc. Biol.*,
526 vol. 98, no. December, pp. 1–7, Dec. 2015.

527 [32] K. J. Eash, A. M. Greenbaum, P. K. Gopalan, and D. C. Link, “CXCR2 and CXCR4
528 antagonistically regulate neutrophil trafficking from murine bone marrow,” *J. Clin.
529 Invest.*, vol. 120, no. 7, pp. 2423–2431, Jul. 2010.

530 [33] B. T. Suratt *et al.*, “Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil
531 homeostasis,” *Blood*, vol. 104, no. 2, pp. 565–571, Jul. 2004.

532 [34] A. C. Magalhaes, H. Dunn, and S. S. G. Ferguson, “Regulation of GPCR activity,
533 trafficking and localization by GPCR-interacting proteins,” *Br. J. Pharmacol.*, vol. 165,
534 no. 6, pp. 1717–1736, 2012.

535 [35] K. B. Walters, J. M. Green, J. C. Surfus, S. K. Yoo, and A. Huttenlocher, “Live imaging
536 of neutrophil motility in a zebrafish model of WHIM syndrome,” *Blood*, vol. 116, no. 15,
537 pp. 2803–2811, Oct. 2010.

538 [36] J. Itou *et al.*, “Migration of cardiomyocytes is essential for heart regeneration in
539 zebrafish,” *Development*, vol. 139, no. 22, pp. 4133–4142, Nov. 2012.

540 [37] M. Bouzaffour, P. Dufourcq, V. Lecaudey, P. Haas, and S. Vriz, “Fgf and Sdf-1
541 pathways interact during zebrafish fin regeneration.,” *PLoS One*, vol. 4, no. 6, p.
542 e5824, Jun. 2009.

543 [38] P. Dufourcq and S. Vriz, "The chemokine SDF-1 regulates blastema formation during
544 zebrafish fin regeneration," *Dev. Genes Evol.*, vol. 216, no. 10, pp. 635–639, Oct.
545 2006.

546 [39] C. Xu *et al.*, "Arteries are formed by vein-derived endothelial tip cells," *Nat. Commun.*,
547 vol. 5, p. 5758, Dec. 2014.

548 [40] G. Valentin, P. Haas, and D. Gilmour, "The chemokine SDF1a coordinates tissue
549 migration through the spatially restricted activation of Cxcr7 and Cxcr4b," *Curr. Biol.*,
550 vol. 17, no. 12, pp. 1026–1031, 2007.

551 [41] P. Haas and D. Gilmour, "Chemokine Signaling Mediates Self-Organizing Tissue
552 Migration in the Zebrafish Lateral Line," *Dev. Cell*, vol. 10, no. 5, pp. 673–680, 2006.

553 [42] A. Burger *et al.*, "Maximizing mutagenesis with solubilized CRISPR-Cas9
554 ribonucleoprotein complexes," *Development*, vol. 143, no. 11, pp. 2025–2037, Jun.
555 2016.

556 [43] C. Cornet, V. Di Donato, and J. Terriente, "Combining Zebrafish and CRISPR/Cas9:
557 Toward a More Efficient Drug Discovery Pipeline.,," *Front. Pharmacol.*, vol. 9, p. 703,
558 2018.

559 [44] S. P. Fricker *et al.*, "Characterization of the molecular pharmacology of AMD3100: A
560 specific antagonist of the G-protein coupled chemokine receptor, CXCR4," *Biochem.*
561 *Pharmacol.*, vol. 72, no. 5, pp. 588–596, 2006.

562 [45] O. J. Tamplin *et al.*, "Hematopoietic stem cell arrival triggers dynamic remodeling of
563 the perivascular niche," *Cell*, vol. 160, no. 1–2, pp. 241–252, 2015.

564 [46] I. Kalatskaya, Y. A. Berchiche, S. Gravel, B. J. Limberg, J. S. Rosenbaum, and N.
565 Heveker, "AMD3100 Is a CXCR7 Ligand with Allosteric Agonist Properties," *Mol.*
566 *Pharmacol.*, vol. 75, no. 5, pp. 1240–1247, May 2009.

567 [47] B. Boldajipour *et al.*, "Control of Chemokine-Guided Cell Migration by Ligand
568 Sequestration," *Cell*, vol. 132, no. 3, pp. 463–473, Feb. 2008.

569 [48] U. Naumann *et al.*, "CXCR7 Functions as a Scavenger for CXCL12 and CXCL11,"
570 *PLoS One*, vol. 5, no. 2, p. e9175, Feb. 2010.

571 [49] J. Bussmann and E. Raz, "Chemokine-guided cell migration and motility in zebrafish
572 development," *EMBO J.*, vol. 34, no. 10, p. 1309, 2015.

573 [50] J. A. Lister, C. P. Robertson, T. Lepage, S. L. Johnson, and D. W. Raible, "nacre
574 encodes a zebrafish microphthalmia-related protein that regulates neural-crest-
575 derived pigment cell fate.,," *Development*, vol. 126, no. 17, pp. 3757–67, Sep. 1999.

576 [51] C. Nüsslein-Volhard and R. Dahm, *Zebrafish : a practical approach*. Oxford University
577 Press, 2002.

578 [52] C. Thisse and B. Thisse, “High-resolution *in situ* hybridization to whole-mount
579 zebrafish embryos.” *Nat. Protoc.*, vol. 3, no. 1, pp. 59–69, Jan. 2008.

580

581

582 **Figure legends**

583 **Figure 1. *cxcr4b* and *cxc12a* are expressed following tissue damage in zebrafish**

584 **A-D** Single-cell gene expression profiles for *cxcr4* and *cxc12* in the zebrafish blood lineage.
585 Single cell gene expression values extracted from the Sanger BASiCz zebrafish blood atlas.
586 Circles represent individual cells colour coded where red is high expression and yellow is no
587 expression. Neutrophil lineage (mpx:GFP positive) is highlighted by black dashed box and
588 expanded in (i-iv). **E-F** RNA sequencing of FACS sorted GFP positive cells from
589 *TgBAC(mpx:GFP)i114* zebrafish larvae at 5 days post fertilization. FPKM values illustrate
590 neutrophil expression of (E) *cxcr4a* and *cxcr4b* and (F) *cxc12a* and *cxc12b*. **G** Whole mount
591 *in situ* hybridization using an antisense DIG labelled RNA probe for *cxc12a* mRNA. Wildtype
592 *nacre* zebrafish larvae were injured and fixed in PFA at 6, 12 and 24 hours post injury, along
593 with uninjured age-matched control larvae. Left and middle panels show whole zebrafish
594 larvae at timepoints indicated, right panel shows tailfins of a representative experiment.
595 Quantification shows number of larvae which look like representative image from 2
596 independent experiments.

597 **Figure 2. Knockdown of *cxcr4b* using CRISPR/Cas9 accelerates inflammation
598 resolution**

599 **A** Experimental schematic of CRISPR/Cas9 experiments in 2dpf mpx:GFP larvae. **B**
600 CRISPR/Cas9-mediated knockdown of *cxcr4b* and *cxc12a* accelerates inflammation
601 resolution. Neutrophil counts at the wound site in control *tyr* crRNA injected larvae (black line),
602 *cxcr4b* crRNA injected larvae (blue line), and *cxc12a* crRNA injected larvae (pink line) at 4, 8
603 and 24hpi. Error bars shown are mean \pm SEM. Groups were analysed using an ordinary one-
604 way ANOVA and adjusted using Tukey's multi comparison test. ****p<0.001 n=36 from 3
605 independent experiments. **C** % inflammation resolution was calculated between 4-8hpi.
606 Groups were analysed using an ordinary one-way ANOVA and adjusted using Tukey's multi
607 comparison test. *p<0.04, **p<0.004. **D** Whole body neutrophil numbers were measured in
608 mpx:GFP crispant larvae at 2dpf. n=30-35 per group from 3 independent experiments. Error
609 bars shown are mean \pm SEM. Groups were analysed using an ordinary one-way ANOVA and
610 adjusted using Tukey's multi comparison test, **p<0.005.

611 **Figure 3. Inhibition of CXCR4 using AMD3100 accelerates inflammation resolution**

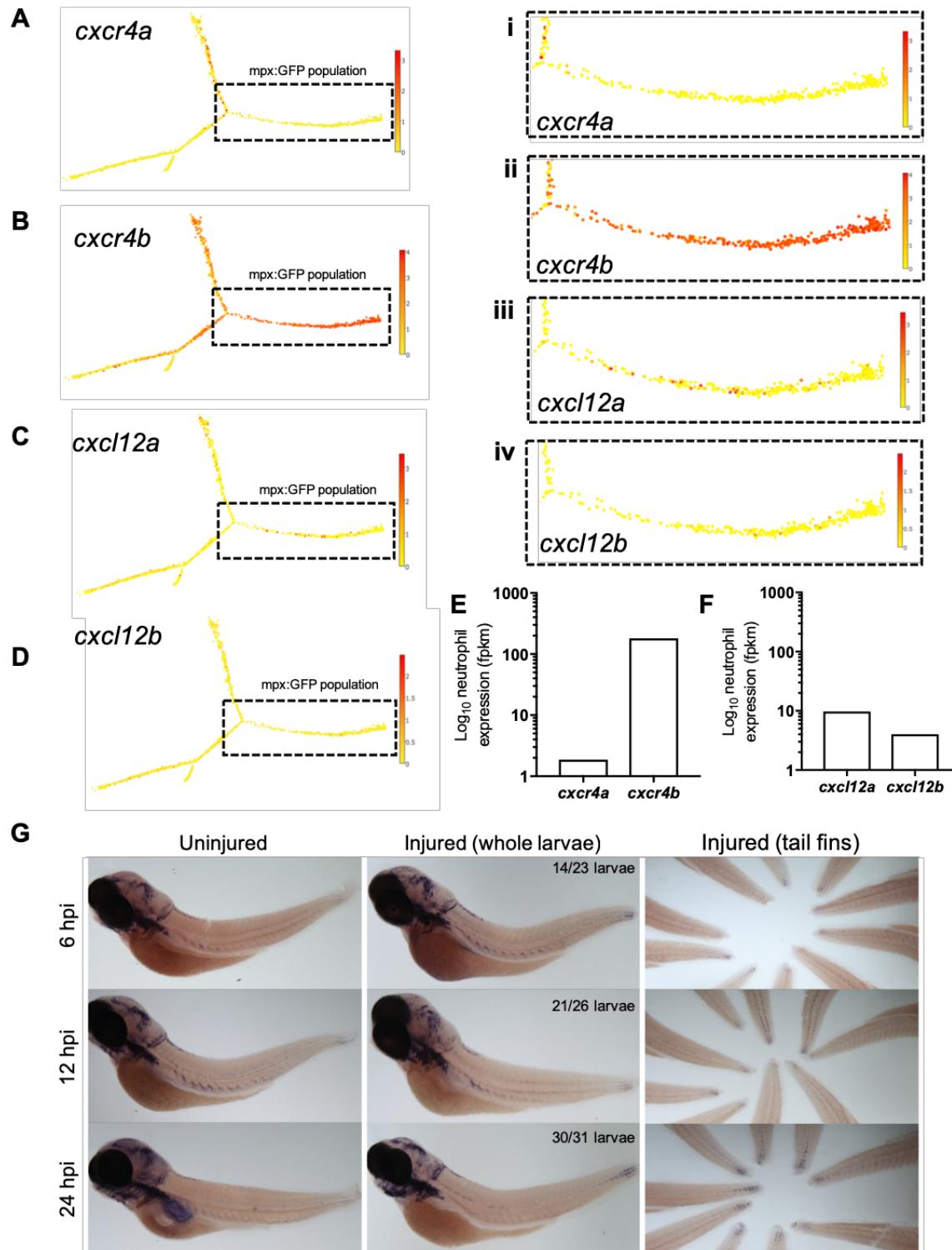
612 **A** Experimental schematic of inflammation resolution experiments with AMD3100 compound
613 treatment. **B** Number of neutrophils at the wound site in injured 2dpf mpx:GFP larvae treated

614 with AMD3100 or vehicle control at 8hpi. Groups were analysed using an unpaired t-test,
615 ***p<0.0002, n=55 larvae from 5 independent experiments. **C** % inflammation resolution for
616 larvae treated with vehicle control or AMD3100. Groups were analysed using an unpaired t-
617 test, **p<0.008 n=32 larvae from 3 independent experiments. **D** Whole body neutrophil counts
618 in 3dpf mpx:GFP larvae 24 hours post administration of AMD3100 or vehicle control. Groups
619 were analysed using an unpaired t-test, n=26 larvae from 3 independent experiments.

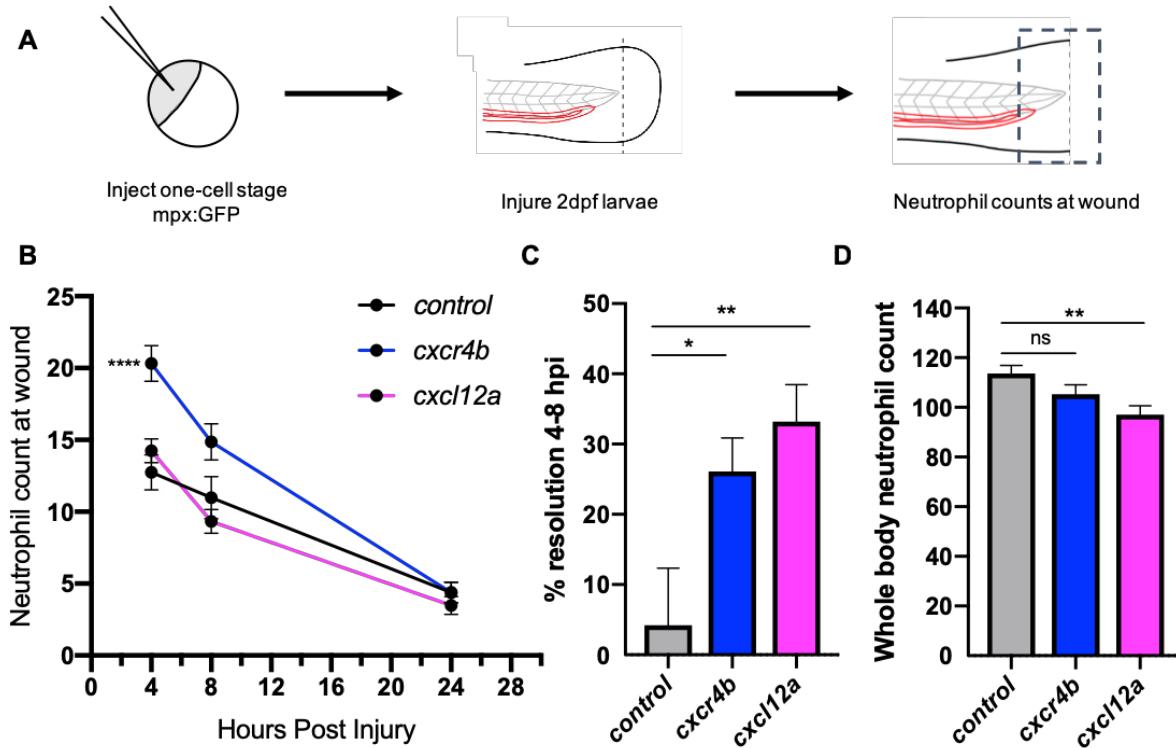
620 **Figure 4. Inhibition of CXCR4 using AMD3100 accelerates neutrophil reverse migration**

621 **A** Experimental schematic of neutrophil reverse migration assay. Tail fin transection was
622 performed on 3dpf mpx:kaede larvae. Larvae were mounted in a 1% agarose solution
623 containing AMD3100 or vehicle control at 5hpi. Neutrophils at the wound site were
624 photoconverted at 5hpi from green to red fluorescence. Time lapse imaging was performed
625 from 7-12hpi. **B** The number of neutrophils which moved away from the wound site into a
626 defined region of interest was quantified from 7-12 hours post injury in larvae treated with a
627 vehicle control (black) or AMD3100 (red). Error bars shown are SEM, line of best fit shown is
628 calculated by linear regression. P value shown is for the difference between the two slopes
629 p<0.0001, n=35 larvae from 6 independent experiments. **C** Number of neutrophils
630 photoconverted between 5-6 hours post injury in larvae treated with vehicle control or
631 AMD3100. Data shown are mean ± SEM, groups were analysed using an unpaired t-test.

632 **Supplemental Figure 1. CRISPR/Cas9 knockdown of tyrosinase does not affect**
633 **neutrophil function**

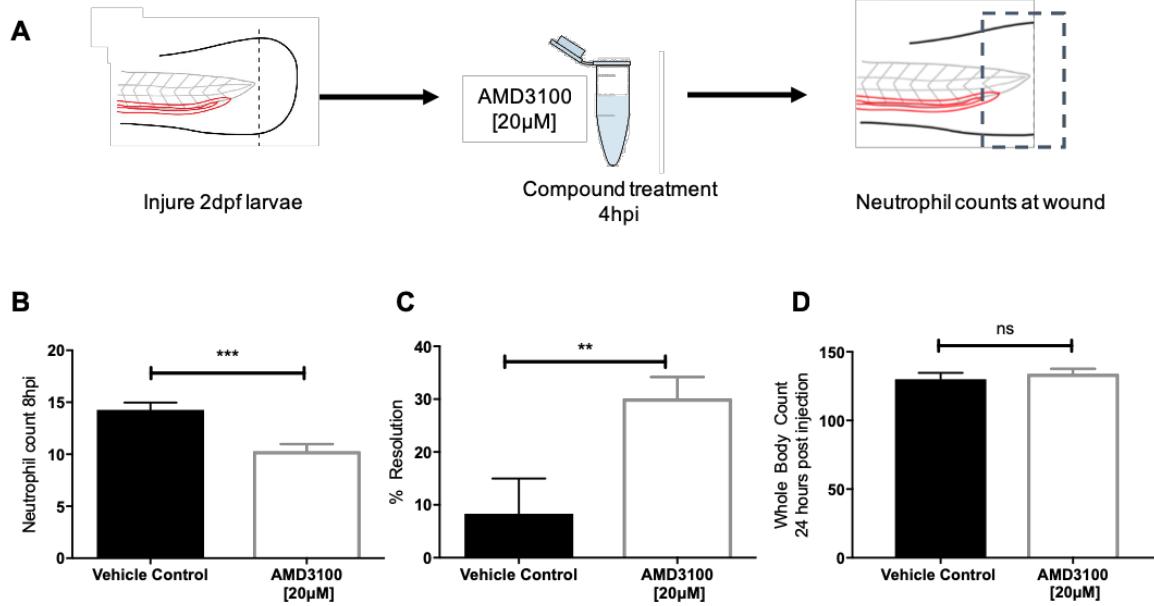

634 **A-B.** Representative images of 2dpf mpx:GFP non-injected (**A**) and *tyrosinase* (**B**) mosaic
635 pigment phenotypes. **C.** Whole body neutrophil counts in non-injected, vehicle control
636 tracrRNA + cas9 protein injected and *tyrosinase* crRNA injected larvae. **D.** Neutrophils
637 recruited to the injury site at 6hpi in 2dpf non-injected, vehicle control tracrRNA + cas9 protein
638 injected and *tyrosinase* crRNA injected larvae. (*Error bars shown are mean ± SEM. Groups*
639 *were analysed using an ordinary one-way ANOVA and adjusted using Tukeys multi*
640 *comparison test, n=30 from 3 independent repeats*).

641 **Supplemental figure 2. Genotyping of *cxcr4b* and *cxc112a* CRISPR knockdown using**
642 **restriction digest**


643 **A** Electrophoresis gel for *cxcr4b* crisprants at 2dpf. Lanes 1-6 Control *Tyr* injected larvae.
644 Lanes 1,3,5 PCR produced incubated with *bs11* restriction enzyme, lanes 2,4,6 undigested
645 PCR product. Lanes 7-19 *cxcr4b* crRNA injected larvae where PCR product has been digested

646 using bsII. **B** Electrophoresis gel for *cxc12a* crisprants at 2dpf. Lanes 1-5 Control *Tyr* injected
647 larvae. Lanes 1,3,5 Undigested PCR product, lanes 2,4 PCR produced incubated with *bstXi*
648 restriction enzyme. Lanes 6-18 *cxc12a* crRNA injected larvae where PCR product has been
649 digested using *bstXi*.

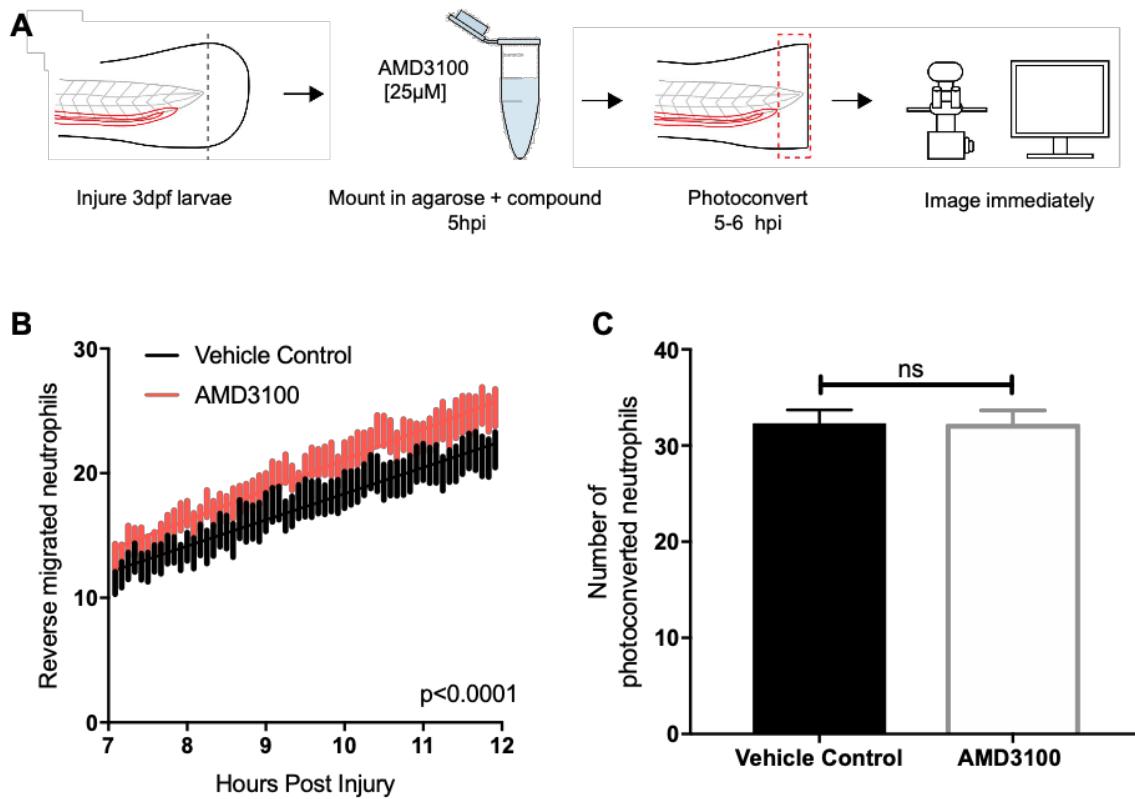
650 **Figures**


652 **Figure 1**

653

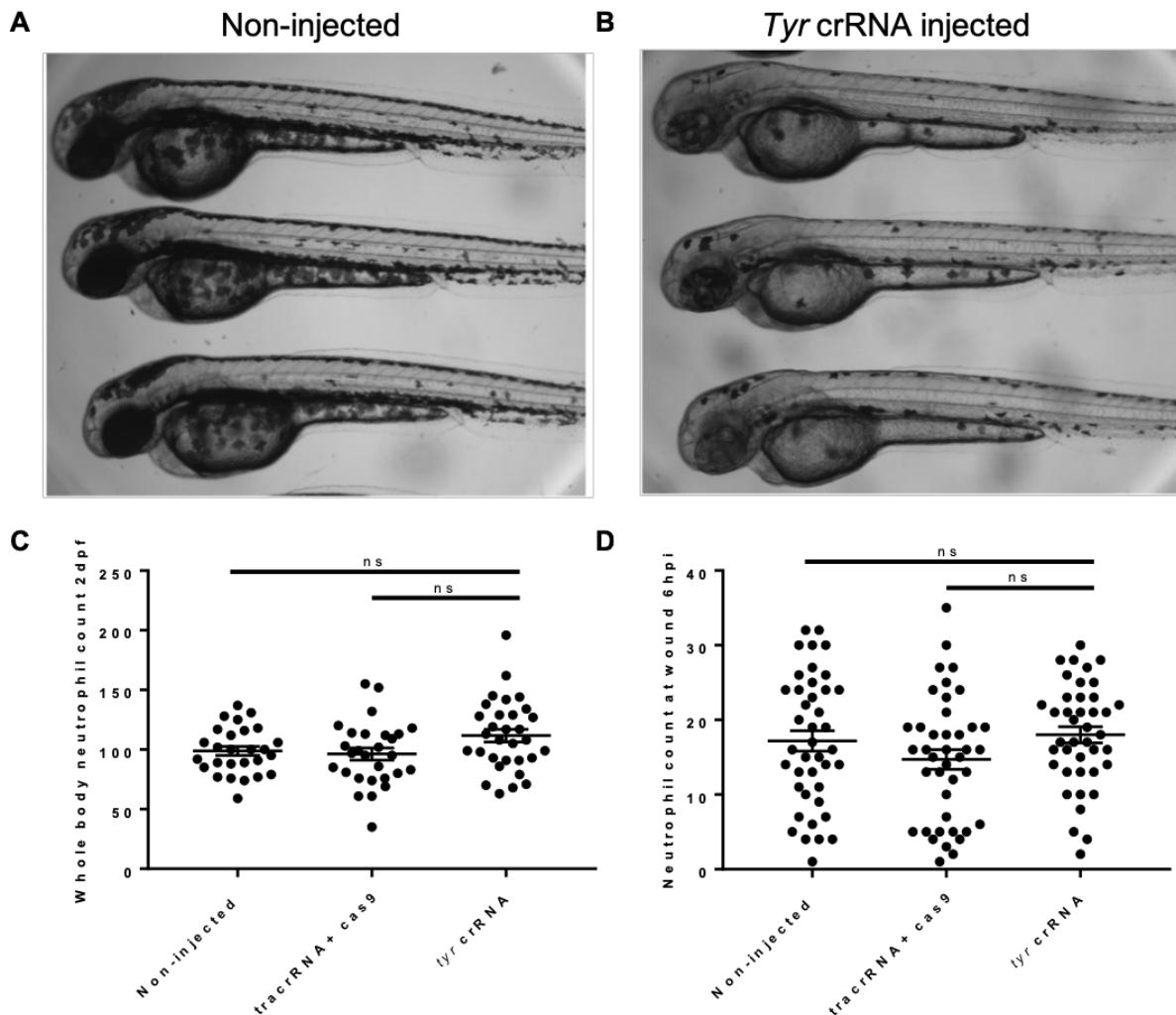
654

655 **Figure 2**

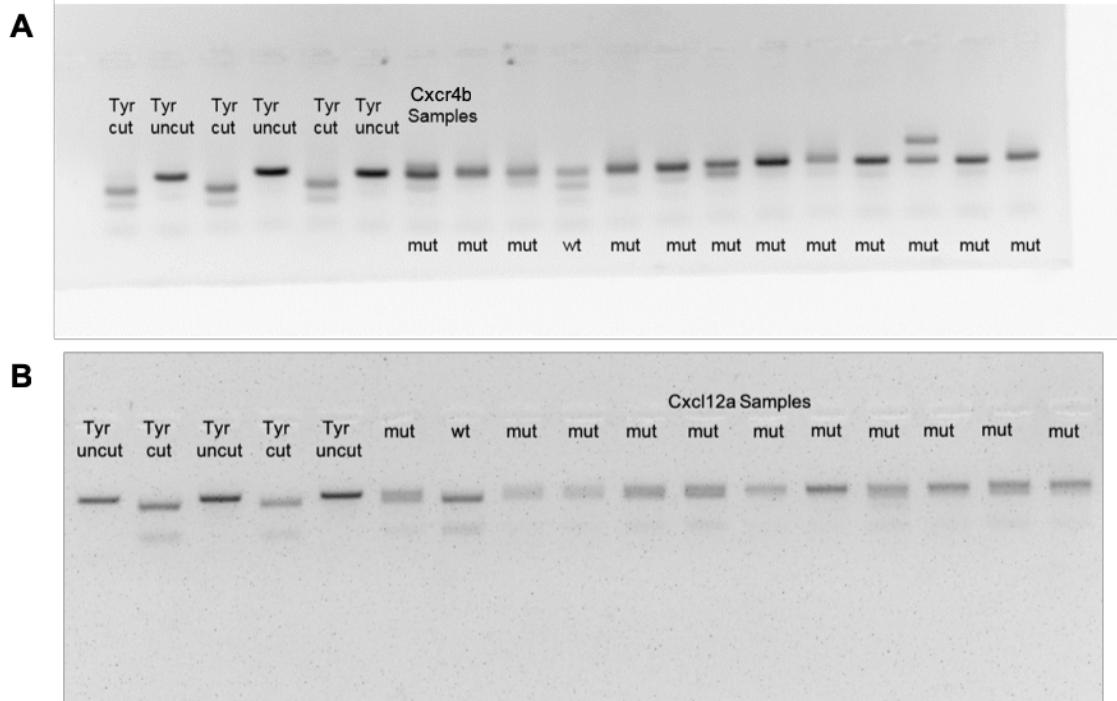

656

657

658


659 **Figure 3**

660


661

662 **Figure 4**

663

664 **Supplemental figure 1**

665

666 Supplemental figure 2