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Summary

Populations of European ash trees (Fraxinus excelsior) are being devastated by the invasive alien
fungus Hymenoscyphus fraxineus, which causes ash dieback (ADB). We sequenced whole
genomic DNA from 1250 ash trees in 31 DNA pools, each pool containing trees with the same
ADB damage status in a screening trial and from the same seed-source zone. A genome-wide
association study (GWAS) identified 3,149 single nucleotide polymorphisms (SNPs) associated
with low versus high ADB damage. Sixty-one of the 203 most significant SNPs were in, or close
to, genes with putative homologs already known to be involved in pathogen responses in other
plant species. We also used the pooled sequence data to train a genomic prediction (GP) model,
cross-validated using individual whole genome sequence data generated for 75 healthy and 75
damaged trees from a single seed source. Using the top 30% of our genomic estimated breeding
values from 200 SNPs, we could predict tree health with over 90% accuracy. We infer that ash
dieback resistance in F. excelsior is a polygenic trait that should respond well to both natural

selection and breeding, which could be accelerated using GP.
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Introduction

Fraxinus excelsior (European ash), is a broad-leaved tree species widespread in Europe, with
over 900 dependent species!?, and with high genetic diversity?. Its populations are being
severely reduced by the invasive alien fungus Hymenoscyphus fraxineus, which causes ash
dieback®. Several previous studies have shown that there is a low frequency of heritable
resistance to ADB in European ash populations®. Estimates of breeding values of mother trees
based on observed ADB damage in their progeny have an approximately normal distribution,
hinting that resistance is a polygenic trait® that would respond well to selection. However, an
associative transcriptomics study on 182 Danish ash trees found expression levels of 20 genes
associated with ADB damage scores but no genomic SNPs?. In model organisms, crops and farm
animals, analysis of genomic information has been widely used to discover candidate genes
involved in phenotypic traits, or to identify individuals with desirable breeding values’~!3. The
identification of candidate loci typically makes use of genome-wide association studies (GWAS)
whereas genomic prediction (GP) methods can be used to select individuals with high breeding
values. These methods have seldom been applied to keystone species in natural ecosystems due
to the typically high genetic variability of such species and the high cost of genome-wide
genotyping. Previous studies have demonstrated that estimation of allele frequencies by
sequencing of pooled DNA samples (pool-seq) can reduce the cost of a GWAS', but thus far
such data have not been applied to the training of GP models. Here, we applied pool-seq GWAS
and pool-seq trained GP models to European ash populations, finding a large number of SNPs

associated with ADB damage that allow us to make accurate estimates of breeding values.

Results

Genome-wide association study

For 1250 ash trees we generated average genome coverage of 2.2x per tree, within DNA pools of
30-58 trees (Table S1). Each pool contained DNA from trees from one of thirteen seed source
zones, and from trees that were either healthy or highly damaged by ADB in a mass screening
trial'® (Figure S1, Tables S2). On average 98.3% of reads per pool mapped to the ash reference

genome assembly?. After filtering read alignments for quality, coverage, indels and repeats, we
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calculated allele frequencies at 9,347,243 SNP loci. A correspondence analysis (CA), on the
major allele frequencies for all 31 pools showed a distribution reflecting the geographic origin of
the seed sources (Figure 1), in which axis 1 (summarising 10% of variation) reflected latitude
and axis 2 (summarising 9% of variation) reflected longitude. Allele frequency measures were
highly correlated in technical and biological replicates (Figure S2). In a GWAS of allele
frequencies in healthy versus ADB-damaged pools, we found 3,149 significant SNPs using a
Cochran-Mantel-Haenszel (CMH) test and a local FDR cut-off at 1x e (Table S3, Figure S3).
Imposing a more stringent cut-off of 1 x e!*, we found 203 SNP loci significantly associated

with ash dieback damage scores (Figure 2).

Seven genes contained missense variants caused by ten of these 203 SNPs (Table 1, Figure S4,
Table S5). We were able to model the proteins encoded by four of these genes (Figure 3).
Similarity searches on these seven genes suggested that four of them are already known to be
involved in stress or pathogen responses in other plant species. Gene
FRAEX38873 v2 000003260, is putatively homologous to an Arabidopsis BED finger-NBS-
LRR-type Resistance (R) gene (At5g63020)!¢ and is affected by a leucine/tryptophan variant
close to the protein’s nucleotide binding site (Figure 3a) with the tryptophan being rarer overall,
but at a higher frequency in the healthy than the damaged trees (Table S5). This R gene is located
(see Figure S4) on Contig 10122 less than 5Kb from gene FRAEX38873 v2 000003270, which
is putatively homologous to a Constitutive expresser of Pathogenesis-Related genes-5 (CPR5)-
like protein and affected by an isoleucine/serine variant, a 5° UTR start codon variant and 16
non-coding variants. This CPR5-like gene is likely to regulate disease responses via salicylic
acid signalling!”. Gene FRAEX38873 v2 000164520 is a putative F-box/kelch-repeat protein
SKIP6 homolog, which encodes a subunit of the Skp, Cullin, F-box containing (SCF) complex,
catalysing ubiquitination of proteins prior to their degradation'®. One of our candidate SNPs
encodes an arginine/glutamine substitution in this gene, with the arginine being rarer overall, but
at a higher frequency in the healthy than the damaged trees. The substitution is located close to
the gene’s F-box motif (Figure 3b) and is likely to affect binding within the SCF complex due to
the charge difference between the two amino acids. In pine trees, F-Box-SKP6 proteins have
been linked to fungal resistance!®. Gene FRAEX38873 v2 000305440, may also be involved in
ubiquitination: although the CDS hit an uncharacterised gene in olive (Table 1), the mRNA hit an

E3 ubiquitin-protein ligase. This gene contains a glycine to aspartic acid substitution.

The other three genes with missense mutations have putative homologs with functions that have
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97  not been previously linked directly to disease resistance. Gene FRAEX38873 v2 000116110 is
98  a 60S ribosomal protein L4-1 (RPL4-1) homolog, with four missense and nine synonymous
99  variants associated with ADB damage level. The amino acid positions affected are in disordered
100  regions in close proximity to one another (Figure 3d). Changes in this gene may affect the
101 efficiency of mRNA translation?. Gene FRAEX38873 v2 000346660 is a Heat Intolerant 4 like
102  protein with a phenylalanine to leucine variant. Gene FRAEX38873 v2 000180950 is a
103 homolog of Damaged DNA-Binding 2 (DBB2), which has a role in DNA repair?' and contains a
104  proline/leucine substitution within its WD40 protein binding domain (Figure 3c). This gene is
105  found on Contig 332 between two G-type lectin S-receptor-like serine/threonine-protein kinase
106 LECRKS3 genes (FRAEX38873 v2 000180940 and FRAEX38873 v2 000180960) whose
107  putative homologs are involved in brown planthopper resistance in rice??.
108
109 A further 24 genes contain significant (p < 1 x e!*) SNPs encoding variants that are transcribed
110  but not translated (Table 1) Of these, four match genes that have been previously identified as
111  involved in disease resistance in other species. Gene FRAEX38873 v2 000234590 encodes a
112 WPP domain-interacting protein 1-like, and WPP domains have been linked to viral resistance in
113 potato®’. Gene FRAEX38873 v2 000305460 encodes a PHR1-LIKE 3-like protein which may
114  play arole in immunity?* via the salicylic acid and jasmonic acid pathways?. Gene
115 FRAEX38873 v2 000013250 encodes a Membrane Attack Complex and Perforin (MACPF)
116  domain-containing Constitutively Activated cell Death (CAD) 1-like gene, which controls the
117  hypersensitive response via salicylic acid dependent defence pathways?6.
118 FRAEX38873 v2 000211580 is a Squalene monooxygenase-like gene involved in the synthesis
119  of phytosterols?’ which have a role in plant immunity?8.
120
121 Other genes involved in regulation were found to have significant (p < 1 x e!*) non-translated
122 variants. FRAEX38873 v2 000266510 is a zinc finger CCCH domain-containing protein 11-
123 like that is likely to be involved in regulation, perhaps of resistance mechanisms?’.
124 FRAEX38873 v2 000047060 is a short-chain dehydrogenase TIC 32, chloroplastic-like gene
125  that is involved in the regulation of protein import*°. FRAEX38873 v2 000074310 is putatively
126  homologous to a squamosa promoter-binding (SBP)-like protein 8 that controls stress responses
127  in Arabidopsis®'. Two genes with non-coding variants seem to affect phenology: gene
128 FRAEX38873 v2 000145630 encodes a Vernalisation Insensitive 3 (VIN3) like protein 132 and
129  gene FRAEX38873 v2 000168770 encodes a Late Flowering-like protein.
130
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Interestingly, significant non-translated variants were also found in categories of genes that had
unexpectedly shown significant missense variants. Another 60S ribosomal protein L4-1 gene,
FRAEX38873 v2 000154480 (in addition to FRAEX38873 v2 000116110, which contains
four missense variants) contains two intron variants associated with ADB damage. There are
only three loci in the ash genome reference assembly matching the Arabidopsis 60S RPL4-1
(AT3G09630) gene. Another putative DNA repair gene was also hit (in addition to
FRAEX38873 v2 000180950, which had a missense variant); gene
FRAEX38873 v2 000308800 encoding a probable DNA helicase MiniChromosome
Maintenance (MCM) 8 protein.

Six genes with putative roles in disease resistance have significant (p < 1 x e’'*) SNPs within
5Kb up- or down-stream of them and are the closest known genes to those SNPs (Table 1).
FRAEX38873 v2 000296810 matches an ankyrin repeat-containing protein NPR4-like gene; in
Arabidopsis the NPR4 gene is involved in defence against fungal pathogens and in mediation of
the salicylic acid and jasmonic acid/ethylene-activated signalling pathways>?.
FRAEX38873 v2 000190500 is a putative ethylene-responsive transcription factor ERF098-like
gene which may be involved in regulation of disease resistance pathways**. Gene
FRAEX38873 v2 000342260 is a palmitoyltransferase or protein S-acyltransferases (PATs) 8-
like gene?®, which is likely to have a role in protein trafficking and signalling; in Arabidopsis,
some PATS regulate senescence via the salicylic acid pathway3®. FRAEX38873 v2 000025560
encodes a probable xyloglucan endotransglucosylase/hydrolase protein 27 which may play a role
in extracellular defence against pathogens®’*8, FRAEX38873 v2 0000258470 encodes an F-
box/FBD/LRR-repeat protein likely to be involved in ubiquitination (see above).
FRAEX38873 v2 0000340820 is a putative dehydration-responsive element-binding protein

2C-like (DREB2C) gene which has a role in osmotic-stress signal transduction pathways>’.

The closest genes to 49 of the 203 most significant GWAS SNPs (p < 1 x e'!*) were between 5Kb
and 100Kb distant (Table S4). These included some with previous evidence of disease resistance

functions. Gene FRAEX38873 v2 000086110 is a Leucine-rich repeat receptor-like
serine/threonine-protein kinase -amylase (BAM) 3, which is involved in fungal resistance in
Arabidopsis*®®. Gene FRAEX38873 v2 000291580 is a bHLH162-like transcription factor

whose putative Arabidopsis homolog is induced by infection with the downy mildew pathogen

Hyaloperonospora arabidopsidis*'. Gene FRAEX38873 v2 000169770 is likely to be involved
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in vacuolar protein sorting which can play a role in defence responses*2. A cluster of SNPs on
contigl355 are located at approximately 13-kb from gene FRAEX38873 v2 000037990, a small
ubiquitin-like modifier (SUMO) conjugating enzyme UBC9-like gene. Inhibition of SUMO
conjugation in Arabidopsis causes increased susceptibility to fungal pathogens*}. Gene
FRAEX38873 v2 000282910 is a nitrate regulatory gene 2 (NRG2) which could mediate nitrate
signalling or mobilisation in response to pathogens**. Gene FRAEX38873 v2 000340830 is a
trichome birefringence-like (TBL) 33 gene; mutants of TBL genes in rice plants confer reduced

resistance to rice blight disease®.

Genomic prediction

From 150 individual trees sampled from NSZ 204 (Dataset B) we generated a total of 2.9Tbp in
19.5 billion reads. Each individual tree was sequenced to 22X genome coverage on average.
Quality metrics and GC content were very similar to Dataset A (Table S1). On average the
percentage of reads mapped to the reference genome assembly per sample was 98.4% and

32,443,401 SNPs were found with read depth > 9 and mapping quality > 15.

To evaluate the genomic estimated breeding values of ADB damage (GEBV), we used the pool-
seq data as a training population and the 150 NSZ 204 individuals as a test population. We
obtained highest accuracy (correlation of observed scores and GEBYV, r = 0.37; frequency of
correct allocations, f=0.68) using the top 10,000 SNPs by p-value from the GWAS, of which
9,620 SNPs had been successfully called in the test population (Figure 4). Smaller and larger
SNP-dataset sizes performed less well. With a view to using a subset of these SNP for prediction,
we reran the analysis using a subset of the 25% with the largest (absolute) estimated effect sizes
and found minimal effect on the correlation (Figure 4), again finding the best result with (25%
of) the dataset of 10,000 SNPs. Estimated effect sizes for all SNPs with models trained on 100 to
50,000 SNPs are shown in Supplementary File 1.

Using the GWAS p-values as the criterion for selecting candidate SNPs for GP was far more
effective than using a random selection from the genome, as judged by r and f'scores (Figure 4).
Despite this effect, there was not a strong association between the GWAS p-values and the effect
size estimated by the genomic prediction: only 54 of the 2500 SNPs with the largest effect size
were in the top 203 SNPs identified by the GWAS.
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In a relatively small population with large heritable effects, spurious associations between some
SNP alleles and a trait can arise. A sufficiently large number of randomly chosen SNPs will
convey all the information on the relatedness of the individuals which, in turn, can be used to
predict a trait simply because related individuals have similar trait values. To evaluate this effect,
the 150 NSZ 204 individuals were used for GP as both a training dataset and a test dataset. The
accuracy of the prediction with the top 50,000 GWAS-identified SNPs was no better than a
random selection of 50,000 SNPs (Figure S5). Given this, we re-ran GP training on the pool-seq
data with the pools from NSZ 204 (the seed source of the test population) excluded in case their
inclusion had given spurious associations that contributed to the success of the first GP. This
more stringent cross-validation showed a comparable performance to our previous GP trained on

the full pool-seq dataset (maximum r= 0.36, /= 0.67; Figure S6).

For a breeding programme for increased resistance to ash dieback, accurate prediction of the
most resistant trees is needed. We therefore examined the accuracy with which our highest
GEBVs were assigning trees correctly to the undamaged health category. For the trees with the
top 20% and 30% GEBYV scores, we obtained predictive accuracies of /> 0.9, using as few as

200 predictive SNPs (Figure 5).

Discussion

Many of the top SNP loci that we found associated with ash tree resistance to ash dieback are in,
or close to, genes with putative homologs in other species that have been previously shown to
detect pathogens, signal their presence, or regulate pathogen responses. Using SNPs identified
by the GWAS to train GP on the pool-seq data, we obtained much greater accuracy in predicting
the ADB damage score in 150 separate individuals than when we used the same number of
randomly selected SNPs. Together, these results demonstrate we can use genotype to predict
performance across different seed-sources, and that other genes that have not previously been
implicated in plant pathogen resistance, such as 60S ribosomal protein L4-1 genes and some
DNA repair genes, may be involved in resistance to ADB. None of our most significant SNPs
were in or close to genes previously identified as showing gene expression changes associated

with ADB resistance?, but we cannot exclude the possibility that our candidate SNPs may be
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controlling expression differences in these genes. The distribution of effect sizes and the
predictivity peak using 2500 SNPs suggests that F. excelsior resistance to H. fraxineus is a highly
polygenic trait and may therefore respond well to artificial and natural selection, allowing the

breeding or evolution of durable increased resistance.

The levels of accuracy which our GP reached are high, and comparable to those that are used to

46-50 12,51 52,53
, tree

inform selections in crop and livestock breeding programmes>~>°. Thus, our results
have the potential to increase the speed at which we can successfully breed ash dieback resistant

12,54,55, and

trees. A common short-coming of GP is that predictions are highly population specific
the success of GP using randomly selected SNPs when training models within the individually
sequenced trees suggests that population-specific GP can be easily made for ash. However, we
made successful predictions in the individually sequenced trees using the pool-seq trained GP
even when the pool-seq data for their seed-source provenance was not used in training the
model. This suggests we have successfully identified widespread alleles that are involved in
ADB resistance in many populations. There may well be further population-specific alleles that
our methods have not detected. This study is the first that we are aware of to use pool-seq data to
train a trans-populational GP model. The success of this approach in European ash — a
genetically variable species — suggests it may be useful in many other ecologically important

species as a cost-effective approach to successful genomic prediction of evolving traits.
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Methods

Trial design

This study is based on a Forest Research mass screening trial planted in spring 2013,
comprising 48 hectares of trials on 14 sites in southeast England as described in Stocks et al.
2017'5. Briefly, each site was planted with trees grown from seed sourced from up to 15
different provenances. These were 10 British native seed zones (NSZ 106, NSZ 107, NSZ
109, NSZ 201, NSZ 204, NSZ 302, NSZ 303, NSZ 304, NSZ 403, NSZ 405), Germany
(DEU), France (FRA), Ireland (CLARE and IRL DON), and a Breeding Seedling Orchard
(BSO) planted by Future Trees Trust (FTT) comprised of half-sibling families from “plus”

trees across Britain.
Phenotyping and sampling

In July/August 2017 fresh leaves for DNA extraction were sampled from four of the trial sites
that had heavy ash dieback damage: sites 16 (near Norwich, Norfolk), 21 (near Maidstone,
Kent), 23 (near Norwich, Norfolk) and 35 (near Tunbridge Wells, Kent). We selected healthy
trees (scores 7 on the scale of Pliura et al. °%) and trees with considerable ash dieback damage
(scores 4 and 5 on the scale of Pliura et al. °%). Initially a total of 1536 trees were sampled. Of
these 623 healthy and 627 unhealthy trees were selected for pooled sequencing with the total
number of trees for each seed source and health status described in Table S2 and Figure S1. For
individual sequencing, we selected a further 75 healthy and 75 unhealthy trees from NSZ 204

that were not included in the pools from this seed source.

DNA extraction and sequencing

Leaf samples were transported to the lab using cool boxes. Fresh Genomic DNA was extracted
from liquid nitrogen frozen leaf tissue using the DNeasy Plant Mini Kit or the DNeasy 96 Plant
Kit (Qiagen) and eluted in 70 pl of Qiagen AE buffer. Quantification of genomic DNA was
performed using the Quantus™ Fluorometer on all extractions. DNA purity quality checks were
carried out using the Thermo Scientific™ NanoDrop 2000 for nucleic acid 260/280 and 260/230
absorbance ratios. Of the total number of extractions, 1400 were selected based on DNA quantity

and quality thresholds. A minimum concentration of >20 ng/ul, OD260/280 >1.7 and total
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amount >1.0 ug of DNA was necessary for the sample to pass. Of the 1400 samples, 1250 were
separated for the pooling and sequencing procedures and will be referred to as dataset A. A
separate 150 individuals from NSZ 204, that were not included in the pools, were selected for

individual genotyping and will be referred to as dataset B.

For the pooling procedure equal amounts of DNA from each sample were pooled together based
on their initial DNA concentrations, adjusting the total volume of each sample accordingly.
Pooling was based on seed source origin and health status with two pools for each seed source,
one healthy and the other damaged. A total of 31 pools were created (Figure S1), one being a
technical replicate of the healthy trees from NSZ 204 that was made by independently repeating
all quantification, quality and pooling steps on the same 40 trees. NSZ 106 and NSZ 107 had 4
pools each as the samples were divided to maintain an average of 42 trees per pool. These
therefore provide biological replicates. Studies have shown that pools sizes as small as 12 have

provided robust and reliable population allele frequency estimates!*>’.

TruSeq DNA PCR-Free (Illumina) sequencing libraries were prepared, using 350 base pair
inserts. All sequencing was carried out using HiSeq X at Macrogen (South Korea) with 150
paired end reads with the goal of achieving a whole genome coverage (based on the estimated
genome size of the F. excelsior reference individual® of 80x per pool (2x coverage per

individual) for dataset A and 20x for dataset B.

Mapping to reference and filtering

Trimmomatic v0.38 was used for read trimming and adapter removal. Leading and trailing low
quality or N bases below a quality of 3 were removed. Reads were scanned with a 4-base wide
sliding window, cutting when the average quality per base dropped below 15 and excluding
reads below 36 bases long>®. Reads were then aligned to the reference genome for Fraxinus
excelsior, assembly version BATGO.5, using the Burrows-Wheeler Alignment Tool (BWA
MEM)*?, version 0.7.17 with default settings. The mapped reads were filtered for a mapping
quality of 20 with samtools (v1.9). On average the percentage of reads mapped to the reference
was 98.3% for dataset A and 98.4% for dataset B. For both datasets Sequence Alignment Map
(SAM) and binary version (BAM) files were created using Samtools. Indels were detected and
removed using Popoolation2® scripts (identify-indel-regions.pl and filter-sync-by-gtf.pl) that

include five flanking nucleotides on both sides of an indel. The position of repeats in the

10
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reference genome was annotated previously® using RepeatMasker v. 4.0.5 (with option -nolow)
and that information used to remove repeats from these data using the same removal script

provided by Popoolation2.

Genetic structure of provenances

Major allele frequency information was extracted from dataset A for each of the 31 populations
using a modified output of the allele frequency differences script (snp-frequency-diff.pl) from
the PoPoolation2 package. This table of major allele frequencies was imported and converted to
a genpop object and subsequently analysed using the R package adegenet’!. A Correspondence
Analysis on genpop objects was performed in order to seek a typology of populations.
Correlation between populations was calculated and plotted, for the major allele frequencies

from dataset A, using the corrplot R package®?.

Genome wide association study

For dataset A the software package PoPoolation2%’ was used to identify significant differences
between damaged and healthy trees. For this an mpileup input was generated using Samtools
followed by the creation of a file that had all the variants synchronized across the pools and
requiring a base quality of at least 20. The statistical test to detect allele frequency changes in
biological replicates was the Cochran-Mantel-Haenszel (CMH) test®®. With this test a 2x2 data
table was created for each seed source (15) with two phenotypes (healthy and damaged) and the
two major alleles for each SNP. The counts of each allele for each phenotype were treated as the
dependent variables. The parameters set for PoPoolation2, given there were 30 pools with DNA
from 1250 individuals, were: min count 15 (minimum allele count to be included), min coverage
40, max coverage 3000. False discovery rate control was performed using the R package g-
value®. We excluded contig 18264 from the reference sequence because it appears to be derived
from fungal contamination: its top BLAST hit in the GenBank nucleotide collection is to ntDNA

in a species of the fungal genus Phoma (MH047199.1), a putative fungal endophyte.

Putative functions for genes containing, or near, the pool-seq GWAS top SNPs were assigned by
obtaining the CDSs from the Ash Genome website® and using the command line NCBI Basic

Local Alignment Search Tool (BLAST+) optimized for the megablast algorithm to search the
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GenBank Nucleotide database. The top result for every BLAST search was extracted and their
predicted gene functions were used to functionally annotate the ash genes. Any search that
yielded no matches when using megablast was then repeated using the blastn algorithm and
ultimately cDNA sequences if the latter was also uninformative. Potential functional impacts for
each of the top 203 GWAS SNP loci were determined using SNPeff (v4.3T)%. A custom genome
database was built from the £ excelsior reference assembly using the SnpEff command “build”
with option “-gtf22”; a gtf file containing the annotation for all genes, as well as fasta files
containing the genome assembly, CDS and protein sequences, were used as input. Annotation of
the impact of the 203 SNPs was performed by running SnpEff on all £ excelsior genes with

default parameter settings.

Protein modelling

Proteins containing SNPs identified by SnpEff as coding for amino acid substitutions were
modelled. Protein coding sequences were taken from the predicted proteome of the BATG 0.5
reference genome® and modelled both with the amino acid(s) associated with ADB damage in
our GWAS, and with the amino acid(s) associated with healthy trees. Models were predicted
using three methods: RaptorX-Binding (http://raptorx.uchicago.edu/BindingSite/), Swiss-
modeller®® and Phyre2%’. These models were compared by manually alignment in PyMOL
v.2.0%, and only those with congruent models were taken forward, based on their Phyre2 and
RaptorX-Binding models. Potential binding sites and candidate ligands were analysed using
RaptorX-Binding and literature searches. SDF files for candidate ligands were obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov) and converted to 3d pdb files using Online
SMILES Translator and Structure File Generator (https://cactus.nci.nih.gov/translate/). Docking
with our protein models was analysed using Autodock Vina v.1.1.2% with the GUI PyRx v.0.87°.
Following docking, ligand binding site coordinates were exported as SDF files from Pyrex and
loaded into PyMOL with the corresponding protein model file for the “healthy” and “damaged”
protein models. Binding sites were then annotated and the variable residues were labelled.
Possible RNA and DNA binding sites were predicted using DRONA
(http://crdd.osdd.net/raghava/drona/links.php). The presence of signal peptides were detected
using SignalP 4.1 server and Phobius server (http://phobius.sbc.su.se/index.html); both were run
with default parameters and for Phobius the “normal prediction” method was used. The presence
of a signal peptide was confirmed only if it was predicted by both methods. Motif search

(https://www.genome.jp/tools/motif/) and ScanProsite (https://prosite.expasy.org/scanprosite/)
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were used to predict protein domains and their locations for our candidate genes.

Genomic Prediction

We trained a GP model based on the pool-seq data (Dataset A). Subsets of 100, 200, 500, 1000,
5000, 10000, 25000 and 50000 SNPs with the most significant GWAS results were selected from
Dataset A and used as a training set. Results were compared with SNP sets of the same size
drawn at random from the genome. SNPs from contig 18264 (suspected to be fungal
contamination) were excluded. We constructed a pipeline available at

https://github.research.its.qmul.ac.uk/btx330/gppool. The vector of ADB damage scores for each

pool, y, was predicted by the rrBLUP model as: y = X + &, where B is a vector of allelic effects
(treated as normally distributed random effects), and the residual variance is Var[e]. The genetic
data are encoded in the design matrix X which has a row for each pool and a column for each
SNP allele. The entry for pool p and locus / is X[p,l] = f,r - s, where f,; is the frequency of the

focal allele and u; is its mean frequency across the pools from the same seed-source as p.

The Reduced Maximum Likelihood solution to the model was obtained using the mixed.solve
function in rrBLUP v4.6"! to give estimated effect sizes (EES) for the minor and major alleles at
each SNP under consideration. Subsets of the 10 — 50,000 SNPs with the greatest EES were
used to predict GEBV for each of the 150 individuals from provenance NSZ 204. For these
individuals (dataset B) variant calling was performed using bcftools with the raw set of called
SNPs filtered using VCFtools (vcfutils) - set at minimum read depth of 10 and minimum
mapping quality 15. Filtering of loci was carried out using thresholds of >95% call rate and >5%
MAF. Samples were filtered based on a >95% call rate and <1% inbreeding coefficient. SNPs
were also filtered if they deviated significantly from Hardy-Weinberg equilibrium. GEBV was
calculated as the sum the EES and the relative frequency of each focal allele. Predictions were
repeated with seed-source NSZ 204 excluded from the training dataset to avoid spurious

correlations due to population stratification.

Test trees were assigned to high and low susceptibility groups based on their GEBV and the
accuracy of the assignment was tested using the formula: / = correct assignments/total
assignments, with correct assignments defined as those that corresponded to the observed

phenotypes. Correlation of GEBV and phenotypic classification, 7, was calculated using the
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Pearson correlation coefficient.

We also carried out genomic prediction based solely on the 150 individuals in Dataset B. A ratio
of 60/40 was used for training and testing populations and missing markers were imputed using
the function R package A.mat’? with default settings. SNPs were selected from the GWAS output
ordered by p-value. A total of 100, 500, 1000, 5000, 10000, 50000, 100000, 250000, 500000,
1000000 and 5000000 SNPs were selected from each filtered set and used for training and
testing of the GP model. The same number of SNPs were selected at random (using R) from the
fully filtered dataset and also used for training and testing the GP model. We used using the
mixed.solve function in rrTBLUP v4.6”! and Genomic Selection in R course scripts available at
http://pbgworks.org. A total of 500 iterations were run of the rrBLUP. For the randomly selected

SNPs, the 500 iterations were repeated ten times.

Data and software availability

The authors confirm that all raw or analysed data supporting this study will be distributed
promptly upon reasonable request. All trimmed reads are available at the European Nucleotide
Archive with primary accession number: PRIEB31096. The gppool pipeline developed as part of
the project to run GP trained on pool-seq data can be found at
https://github.research.its.qmul.ac.uk/btx330/gppool. All software used (Trimmomatic, BWA,
Samtools, Bcftools, VCFtools, PoPoolation2, R, Repeatmasker, SNPeft, Haploview, NCBI
BLAST, RaptorX-Binding, Swiss-modeller, Phyre2, SMILES, Autodock Vina v.1.1.2, PyRx
v.0.8, PyMOL, DRONA, SignalP 4.1 server, Phobius server, NetPhos 3.1 Server and Group-

based Prediction System (GPS)) is commercially or freely available.
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Table 1. List of ash genes likely to be affected by GWAS candidate SNPs found in the top 203
hits by p-value (with -logio(p) > 13): (1) Genes that contain one or more significant SNP loci
altering protein sequence; (2) Genes containing SNPs that are transcribed but not translated
(synonymous changes, and changes in UTRs and introns); (3) Genes that are within 5Kb of
significant SNP loci and the closest gene to those loci. The “Gene” column gives the final six
digits for the full gene names for the annotation of the ash genome?, which are in the form

FRAEX38873 v2 000######. Details of amino acid changes in missense variants can be found
in Table S5.
Contig Gene Predicted function Variant functions

1) Genes containing SNPs that affect protein sequence

Contigl10122 003260 BED finger-NBS-LRR resistance protein 1x downstream gene variant
(for model see Figure 3a) Ix missense variant

Contigl10122 003270 Protein CPR-5-like (LOC111390874), 5x 3' UTR variant
transcript variant X1, mRNA 2x 5' UTR premature start codon gain

variant

2x 5' UTR variant

1x downstream gene variant
1x intron variant

7x upstream gene variant

1x missense variant

Contig2324 116110  60S ribosomal protein L4-1 4x missense variant
(LOC111391733), mRNA (for model see 9x synonymous variant
Figure 3d)

Contig3029 164520  F-box/kelch-repeat protein SKIP6 Ix 5' UTR variant
(LOC111408673), mRNA (for model see 7x downstream gene variant
Figure 3b) Ix missense variant

Contig332 180950 Protein DAMAGED DNA-BINDING (for 1x missense variant
model see Figure 3¢)

Contig614 305440 Uncharacterized LOC111377332 Ix missense variant
(LOCI111377332), transcript variant X1, 1x synonymous variant
mRNA

Contig7698 346660 Protein HEAT INTOLERANT 4-like Ix missense variant

(LOC111409690), mRNA®

Ix upstream gene variant

2) Genes containing SNPs that are transcribed but not translated

Contig2329

116430

Uncharacterized LOC111374226
(LOC111374226), transcript variant X2,
mRNA

1x synonymous variant
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Contig2747 145630  VIN3-like protein 1 (LOC111390514), 1x synonymous variant
transcript variant X2, mRNA

Contig4397 234590 WPP domain-interacting protein 1-like 1x synonymous variant
(LOCI111407140), mRNA

Contig1096 013250 MACPF domain-containing protein CAD1- 1x 3' UTR variant
like (LOC111379406), mRNA 1x intron variant

Contigl1454 047060  Short-chain dehydrogenase TIC 32, 1x intron variant
chloroplastic-like (LOC111372928),
transcript variant X2, mRNA

Contig1589 057960  beta-taxilin (LOC111407559) 1x intron variant

Contigl1795 074310  Squamosa promoter-binding-like protein 8 Ix 3' UTR variant
(LOCI111383449), mRNA

Contig2034 094440 Regulatory-associated protein of TOR 1 Ix 3' UTR variant
(LOCI111407995), mRNA

Contig2185 105920  Uncharacterized LOC111409367 Ix 5' UTR variant
(LOCI111409367), mRNA

Contig23 114040  ATP synthase subunit O, mitochondrial-like  1x intron variant
(LOCI111411675), mRNA 3x upstream gene variant

Contig2870 154480  60S ribosomal protein L4-1 2x intron variant
(LOC111391733), mRNA®

Contig31173 168770 Protein LATE FLOWERING-like Ix 5' UTR variant
(LOCI111406993), mRNA

Contig3809 207550 receptor-like cytosolic 1x intron variant

Contig3889 211580 Squalene monooxygenase-like 1x intron variant
(LOCI111410179), mRNA

Contig4494 238810 Uncharacterized LOC111381639 Ix 3' UTR variant

Contig5196 266510 Zinc finger CCCH domain-containing 1x intron variant
protein 11-like (LOC111366362), transcript
variant X3, mRNA

Contig614 305460 Protein PHR1-LIKE 3-like 14x intron variant
(LOCI111377335), mRNA

Contig6272 308800 Probable DNA helicase MCMS 2x intron variant
(LOC111365493), transcript variant X2,
mRNA

Contig6641 319390  Uncharacterized LOC111408674 1x intron variant
(LOCI111408674), mRNA

Contig754 342270  Protein LIKE COV 2-like (LOC111397136), 2x intron variant
mRNA

Contig754 342280 Uncharacterized LOC111408663 Ix 5' UTR variant

(LOC111408663), transcript variant X5,
misc_ RNA
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Contig7698 346650 Pentatricopeptide repeat-containing protein ~ 1x 3' UTR variant
At4g39620, chloroplastic-like
(LOC111408678), transcript variant X2,
mRNA

Contig87 372350  Uncharacterized LOC111393674 3x intron variant
(LOC111393674), mRNA

Contig8942 378970  Uncharacterized LOC111377872 1x intron variant
(LOCI111377872), transcript variant X8,
mRNA

3) Genes within SKb upstream or downstream from candidate SNPs

Contig1224 025560  Probable xyloglucan Ix upstream gene variant
endotransglucosylase/hydrolase protein 28
(LOC111399252), mRNA®

Contig1506 051400 Potassium channel AKT1-like 1x downstream gene variant
(LOCI111382499), mRNA

Contig1607 059350 Low affinity sulfate Ix upstream gene variant

Contigl6137 059880 60S Ribosomal protein L30-like Ix upstream gene variant
(LOC111409078), transcript variant X1,
mRNA

Contigl168 065110  E3 ubiquitin-protein ligase RNF170-like 2X upstream gene variant
(LOC111409836), transcript variant X3,

mRNA

Contig1931 086130  Oleoyl-acyl carrier protein thioesterase 1, 2x downstream gene variant
chloroplastic-like (LOC111385815),
mRNA®

Contig2441 124500  Ent-kaurene oxidase, chloroplastic-like Ix upstream gene variant

(LOC111394477), mRNA

Contig3029 164530  Uncharacterized LOC111408676 Ix upstream gene variant
(LOC111408676), transcript variant X3, Ix intergenic region
mRNA

Contig349 190500 Ethylene-responsive transcription factor 2x downstream gene variant

ERF098-like (LOC111379140), mRNA®

Contig3945 214510 Basic Helix loop helix protein A Ix upstream gene variant
(LOCI111388546) mRNA

Contig4503 239330  Vacuolar protein sorting-associated protein  1x upstream gene variant
20 homolog 2-like (LOC111393567), 2x intergenic region
mRNA

Contig454 241210 Kinesin-like protein KIN-7K, chloroplastic =~ 1x upstream gene variant
(LOCI111375100), mRNA

Contig490 255180  Casein kinase 1-like protein HD16 Ix upstream gene variant
(LOCI111366886), mRNA
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Contig4981 258470 F-box/FBD/LRR-repeat protein Atlgl3570- 1x upstream gene variant
like (LOC111367195), transcript variant X2,
mRNA

Contig508 262070 Putative zinc transporter At3g08650 1x downstream gene variant
(LOCI111388858), mRNA

Contig558 282910 Nitrate regulatory gene2 protein-like 1x upstream gene variant
(LOCI111409481), mRNA

Contig558 282920  Uncharacterized LOC111409076 2x downstream gene variant
(LOCI111409076), mRNA Ix upstream gene variant

Contig558 282930  Uncharacterized LOC111409077 1x upstream gene variant
(LOC111409077), transcript variant X3,
mRNA

Contig592 296810  Ankyrin repeat-containing protein NPR4- 1x downstream gene variant
like (LOC111379708), mRNA

Contig6316 310310  Calmodulin-binding protein 60 A-like 2X upstream gene variant
(LOCI111368134), transcript variant X3,
mRNA

Contig7472 340820 Dehydration-responsive element-binding 5x upstream gene variant
protein 2C-like (LOC111397561), transcript
variant X1, mRNA

Contig754 342250  Ethylene-responsive transcription factor Ix upstream gene variant
ERF113-like (LOC111408666), mRNA

Contig754 342260 Protein S-acyltransferase 8-like 2X upstream gene variant
(LOCI111408665), mRNA

Contig8383 364260 Pentatricopeptide repeat-containing protein  1x upstream gene variant

At4g39620, chloroplastic-like
(LOC111408678), transcript variant X2,
mRNA
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461 Figure 1. Correspondence Analysis (CA) using major allele frequency for all 31 seed
462 source populations (including replicate). Numbers after seed source code correspond to
463 health status (1 - healthy or 2 - infected by ADB). The vertical axis represents Principal
464 Coordinate 1, which accounts for 10% of the variation and the horizontal axis represents
465 Principal Coordinate 2, which accounts for 9% of the variation.
466
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469 Figure 2. Loci associated with ash tree health status under ash dieback pressure.
470 Genome-wide association study on whole genome sequence data from pooled
471 DNA: Manbhattan plot distribution of -logio(p) values for each SNP, ordered by
472 scaffold/contig. A threshold of p =1 x e!* is shown.
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473
474

475  Figure 3. Predicted protein structures for genes containing amino acid changes associated with
476  tree health status under ADB pressure. The protein structures to the left were more common in
477  damaged trees, and those to the right were more common in healthy trees. Variant amino acids
478  are coloured in magenta and indicated with a black arrowhead. (a) Gene

479  FRAEX38873 v2 000003260, a BED finger-NBS-LRR resistance protein, where position 157
480  is a leucine (left) versus tryptophan (right) variant. Two ATP molecules are shown in orange to
481 indicate the location of nucleotide binding sites. (b) Gene FRAEX38873 v2 000164520, a F-
482  box/kelch-repeat, where position 13 is a glutamine (left) versus arginine (right) variant.

483  (c) FRAEX38873 v2 000180950, a Protein DAMAGED DNA-BINDING, where position 99 is
484  aproline (left) versus leucine (right) variant. DNA molecules are shown in orange docked at the
485  proteins’ DNA binding sites. (d) Gene FRAEX38873 v2 000116110, a 60S ribosomal protein
486  L4-1, where position 251 is an arginine (left) versus glycine (right) variant, position 285 is a
487  methionine (left) versus arginine (right) variant, position 287 is an asparagine (left) versus lysine
488  (right) variant and position 297 is a threonine (left) versus alanine (right) variant.

489
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Figure 4. Genomic prediction of health under ash dieback pressure for 150 individual ash trees,

with models trained on pooled sequencing of 1250 trees, using varying numbers of SNPs in

training and test sets. Solid lines show results for SNPs selected using the pool-seq GWAS;

dashed lines show average results using randomly selected SNPs. Left column: correlation of

genomic estimated breeding value (GEBV) with observed health status. Right column: accuracy

of health status assignment from GEBV.

22


https://doi.org/10.1101/626234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/626234; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1.0 1.0
7] [}
[ [
o o
— =
17 h7]
Los Los
k] ]
2 — 2
o —— o
[3Y — 1)
o o
(s} (s}
[ [
4 06 + 06
c c
[ [
£ - £
c c
2 2
[7] [7]
[2] [2]
< <
ks) 04 5 0.4
3 g
[ o]
g S
-] =3
8 8
< <
0.2 0.2
0 50 100 150 200 250 0 50 100 150 200 250
Number of SNPs used to calculate GEBV Number of SNPs used to calculate GEBV
498 SNPs in Training Set 1000 5000 — 10000 25000 50000

499  Figure 5. Genomic prediction accuracy of assignment of health status for the (left) top 20% and
500  (right) top 30% of test population trees by GEBYV, using 1000 to 50,000 SNPs identified by

501  GWAS in the training set and use of ten to 250 SNPs in the testing set.
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735 Supplementary Information

736
737  Supplementary Table 1. Sequencing, Quality and Mapping values for each Dataset (A and B).
Dataset A (pool-seq) Dataset B (individuals)

ftem Average Min Max Average Min Max
Read Bases 7.70E+10 7.24E+10 7.95E+10 1.95E+10 1.79E+10 1.99E+10
Reads 5.10E+08 4.79E+08 5.27E+08 1.29E+08 1.19E+08 1.32E+08
GC(%) 35.21 35.03 35.45 35.14 34.72 35.51
AT(%) 64.79 64.55 64.97 64.86 64.49 65.28
Q20(%) 96.44 94.13 97.51 97.20 96.57 97.86
Q30(%) 92.26 87.87 94.35 93.71 92.37 95.13
Mapped (%) 98.3 97.4 98.8 98.4 93.3 99.1
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Supplementary Table 2. Distribution of samples in pooled dataset (A) and

individually genotyped dataset (B) according to site and seed source.

Pooled Samples (Dataset A)

Provenances Site 16 Site 21 Site 23 Site 35 Total
DEU 28 79 107
FTT SO 9 32 34 75
IRL DON 38 10 26 74
NSZ 106 54 62 12 60 188
NSZ 107 20 80 18 50 168
NSZ 109 10 50 12 16 88
NSZ 201 11 55 4 10 80
NSZ 204 60 11 4 6 81
NSZ 302 14 32 14 39 99
NSZ 303 6 20 8 36 70
NSZ 304 14 38 8 17 77
NSZ 403 18 18 14 32 82
NSZ 405 1 17 10 33 61
Total 283 504 104 359 1250
Individual Samples (Dataset B)

Provenances Site 16 Site 21 Site 23 Site 35 Total
NSZ 204 58 51 17 24 150
Total 58 51 17 24 150
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Supplementary Table 3. Comparison of the number of significant calls for the p-
values, estimated g-values, and estimated local FDR values.

33

<le-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1
p-value 102,440 |287,612 |821,046 | 1,258,574 | 1,752,684 |2,459,337 |9,347,124
g-value 4,275 19,337 110,003 | 232,006 410,712 735,089 7,942,196
local FDR | 3,149 10,395 57,370 121,222 213,502 379,746 3,360,672
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Supplementary Table 4. List of ash genes closest to the subset of the top 203 GWAS
candidate SNPs (with -logio(p) > 13) that are over SKb from an annotated gene. Genes up
to 100Kb from SNPs are shown. The “Gene” column gives the final six digits for the full
gene names for the annotation of the ash genome!!, which are in the form
FRAEX38873 v2 000######. The column “Dist.” shows the distance of the gene from
the nearest GWAS SNP. The predicted functions are from the olive genome.

Contig Gene Dist. Predicted function Intergenic
(kb) SNPs

0091100 415 uncheiacterlzed LOC111407988 (LOC111407988),

Contig1049 mRN 1
009120 6.3  deoxyhypusine hydroxylase-B-like

Contigl355 037990 13 SUMO-conjugating enzyme UBC9-like 16

Contigl595 058210 15.2  uncharacterized LOC111407689 2
086110 31.8 leucine-rich repeat receptor-like serine/threonine-pro-

" tein kinase BAM3 (LOC111409824), mRNA
Contigl1931 5
M uncharacterized LOC111371252 (LOC111371252),

086120'7 7.6 RNA
101780 5.6  KINI17-like protein (LOC111406018),

Contig2131 1
101790 13 nuclear pore complex
110620 5.5  30S ribosomal protein

Contig2252 1
110630 16 serine/threonine-protein

Contig2793 149030  85.8 PLASMODESMATA CALLOSE-BINDING 1

Contig3029 164520  22.4 F-box/kelch-repeat protein 1
169770 10.7 Vacuolar protein sorting-associated protein 32 homo-

" log 2-like (LOC111385051), partial mRNA

Contigs135 169780 6.3 meiotic nuclear division !
169790  38.9  zinc finger CCCH domain-containing
174230 9.5  putative receptor-like

Contig3209 1
174240 23 transcription activator

Contigd611 244030 10.6  uncharacterized LOC111407689 1
282890  12.9 uncharacterized LOC111409075

Contig558 3
282910  30.2 nitrate regulatory gene2
286360  24.5 protein FREE1 (LOC111381047), mRNA

Contig5660 1
286370 6.7  protein MID1-COMPLEMENTING

Contig5792 291580 10.2  transcription factor bHLH162-like 1
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dehydration-responsive element-binding protein 2C-

O

340820°° 5.5 like LOC111397561), transcript variant X2, mRNA
Contig7472 1

340830 8.1 protein trichome birefringence-like 33

’ (LOC111397549), transcript variant X1, mRNA

Contig7762 348710  53.8 uncharacterized LOC111409249 10
Contig8949 379070 5.6  uncharacterized LOC111390873 1
Contig9242 385770 18 uncharacterized LOC111374023 1
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Supplementary Table 5. Polymorphic amino acid allele identities and frequencies at significant
GWAS loci found in the top 203 hits by p-value (with -logio(p) > 13)

Contig Gene Predicted function Major |Minor |Positionin | MAFin | MAF in
allele |allele | protein healthy | damaged
trees trees

Contigl0122 | 003260 BED finger-NBS-LRR | Leu Trp 157 0.216 0.121
resistance protein

Contigl0122 | 003270 Protein CPR-5-like Ile Ser 36 0.216 0.121

Contig2324 | 116110 60S ribosomal protein Gly Arg 251 0.285 0.382
L4-1

Contig2324 | 116110 60S ribosomal protein Arg Met 285 0.263 0.354
L4-1

Contig2324 | 116110 60S ribosomal protein Lys Asn 287 0.322 0.431
L4-1

Contig2324 | 116110 60S ribosomal protein Ala Thr 294 0.301 0.393
L4-1

Contig3029 | 164520 F-box/kelch-repeat Gln Arg 13 0.136 0.052
protein SKIP6

Contig332 180950 Protein DAMAGED Pro Leu 99 0.266 0.140
DNA-BINDING

Contig614 305440 Uncharacterized Gly Asp 1155 0.211 0.341

Contig7698 | 346660 Protein HEAT Phe Leu 12 0.123 0.064

INTOLERANT 4-like
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776 Supplementary Figure 1. Number of individuals in each pool (odd pool numbers represent
777 healthy and even numbers susceptible populations) and country of origin.
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782 Supplementary Figure 2. Circle plot of major allele frequency correlation
783 values between all 31 pools. Numbers after seed source code correspond to
784 health status (1 - healthy or 2 - damaged by ADB). Pool NSZ204:1 (with low
785 ADB damage) was technically replicated (NSZ204:1R) using the same set of
786 trees. Both pools from NSZ106 and NSZ107 were biologically replicated for
787 both high and low damage pools, using different sets of trees.
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808 Supplementary Figure 3. Pool-seq GWAS p-value density histogram with
809 line plots of the g-values and local False Discovery Rate (FDR) values versus
810 p-values. The 0 estimate is also displayed.
811
812

39


https://doi.org/10.1101/626234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/626234; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

a) b)
FRAEX38873 v2 000003260
FRAEX38873 v2 000164520 FRAEX38873 v2 000003270
25
20
- 204
% 15 4 %
Z ______________________________________________________________ '_ Z 15
g 10 ¢ g% """"""""""" R
n - 4 T 10 -
4
T T T i ;
0 10000 20000 30000 40000 50000 60000 70000 0 5000 10000 15000
Contia3029 Contig10122
FRAEX38873 v2 000305440
C) FRAEX38873 v2 000116110 d) FRAEX38873 v2 000305460
30 ’ 15 1
25 A
: z ?
0 20000 40000 60000 80000 0 ‘ 50000 100000 150000 200000 250000
Contia2324 Contia614
C) FRAEX38873 v2 000180950 f) FRAEX38873 v2 000346660
7777777777 15
2 "] N
g . g
0 20000 40000 60000 80000 100000 120000 0 2000 4000 6000 8000 10000 12000
8 1 3 Contig332 Contia7698
814
815 Supplementary Figure 4. Manhattan plots for contigs containing genes in
816 which SNPs encoding an amino acid substitution were in the top 203 pool-
817 seq GWAS candidates. All genes present on the contigs are colored and
818 those containing SNPs causing missense alterations to coding regions are
819 labelled using the same colour as the gene’s SNPs in the Manhattan plot.
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823
824 Supplementary Figure 5. Genomic prediction results using the 150
825 individually genotyped samples as both training and testing set, with 100 to 5
826 million SNPs used to train and test the rBLUP model. (A) all data filters
827 applied (mapping quality, indel and repeat removal); (B) filtered mapping
828 quality and indel removal; (C) random selection of SNPs using all data filters;
829 (D) GP allocation accuracy calculated using data with all filters applied. The
830 scale on the left hand vertical axis is for correlation, and the scale on the right
831 hand vertical axis is for accuracy.
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Supplementary Figure 6. Genomic prediction using pool-seq data for training and 150 NSZ

204 individuals for testing: dashed lines show results excluding pool-seq data from provenance

NSZ 204 (the test provenance) from the training dataset, whereas solid lines show results with

NSZ 204 included. The left column shows correlation of observed phenotype and GEBV and

the right column shows accuracy of phenotypic assignment from GEBV.
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