

1 Genomic basis of European ash tree 2 resistance to ash dieback fungus

3

4 Jonathan J. Stocks^{1,2}, Carey L. Metheringham^{1,2}, William Plumb^{1,2}, Steve J. Lee³, Laura J.
5 Kelly^{1,2}, Richard A. Nichols¹, Richard J. A. Buggs^{1,2,*}

6

7 ¹ School of Biological and Chemical Sciences, Queen Mary University of London, London, E1
8 4NS, UK

9 ² Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK

10 ³Forest Research, Northern Research Station, Roslin Midlothian, EH25 9SY, UK.

11 *Correspondence: r.buggs@kew.org

12

13

14 Summary

15

16 Populations of European ash trees (*Fraxinus excelsior*) are being devastated by the invasive alien
17 fungus *Hymenoscyphus fraxineus*, which causes ash dieback (ADB). We sequenced whole
18 genomic DNA from 1250 ash trees in 31 DNA pools, each pool containing trees with the same
19 ADB damage status in a screening trial and from the same seed-source zone. A genome-wide
20 association study (GWAS) identified 3,149 single nucleotide polymorphisms (SNPs) associated
21 with low versus high ADB damage. Sixty-one of the 203 most significant SNPs were in, or close
22 to, genes with putative homologs already known to be involved in pathogen responses in other
23 plant species. We also used the pooled sequence data to train a genomic prediction (GP) model,
24 cross-validated using individual whole genome sequence data generated for 75 healthy and 75
25 damaged trees from a single seed source. Using the top 30% of our genomic estimated breeding
26 values from 200 SNPs, we could predict tree health with over 90% accuracy. We infer that ash
27 dieback resistance in *F. excelsior* is a polygenic trait that should respond well to both natural
28 selection and breeding, which could be accelerated using GP.

29

30 **Keywords:** *Fraxinus excelsior*, ash, *Hymenoscyphus fraxineus*, ash dieback, pool-seq, Genome
31 wide association study (GWAS), Genomic Selection (GS)

32 **Introduction**

33

34 *Fraxinus excelsior* (European ash), is a broad-leaved tree species widespread in Europe, with
35 over 900 dependent species^{1,2}, and with high genetic diversity³. Its populations are being
36 severely reduced by the invasive alien fungus *Hymenoscyphus fraxineus*, which causes ash
37 dieback⁴. Several previous studies have shown that there is a low frequency of heritable
38 resistance to ADB in European ash populations⁵. Estimates of breeding values of mother trees
39 based on observed ADB damage in their progeny have an approximately normal distribution,
40 hinting that resistance is a polygenic trait⁶ that would respond well to selection. However, an
41 associative transcriptomics study on 182 Danish ash trees found expression levels of 20 genes
42 associated with ADB damage scores but no genomic SNPs³. In model organisms, crops and farm
43 animals, analysis of genomic information has been widely used to discover candidate genes
44 involved in phenotypic traits, or to identify individuals with desirable breeding values⁷⁻¹³. The
45 identification of candidate loci typically makes use of genome-wide association studies (GWAS)
46 whereas genomic prediction (GP) methods can be used to select individuals with high breeding
47 values. These methods have seldom been applied to keystone species in natural ecosystems due
48 to the typically high genetic variability of such species and the high cost of genome-wide
49 genotyping. Previous studies have demonstrated that estimation of allele frequencies by
50 sequencing of pooled DNA samples (pool-seq) can reduce the cost of a GWAS¹⁴, but thus far
51 such data have not been applied to the training of GP models. Here, we applied pool-seq GWAS
52 and pool-seq trained GP models to European ash populations, finding a large number of SNPs
53 associated with ADB damage that allow us to make accurate estimates of breeding values.

54

55 **Results**

56 **Genome-wide association study**

57

58 For 1250 ash trees we generated average genome coverage of 2.2x per tree, within DNA pools of
59 30-58 trees (Table S1). Each pool contained DNA from trees from one of thirteen seed source
60 zones, and from trees that were either healthy or highly damaged by ADB in a mass screening
61 trial¹⁵ (Figure S1, Tables S2). On average 98.3% of reads per pool mapped to the ash reference
62 genome assembly³. After filtering read alignments for quality, coverage, indels and repeats, we

63 calculated allele frequencies at 9,347,243 SNP loci. A correspondence analysis (CA), on the
64 major allele frequencies for all 31 pools showed a distribution reflecting the geographic origin of
65 the seed sources (Figure 1), in which axis 1 (summarising 10% of variation) reflected latitude
66 and axis 2 (summarising 9% of variation) reflected longitude. Allele frequency measures were
67 highly correlated in technical and biological replicates (Figure S2). In a GWAS of allele
68 frequencies in healthy versus ADB-damaged pools, we found 3,149 significant SNPs using a
69 Cochran-Mantel-Haenszel (CMH) test and a local FDR cut-off at 1×10^{-4} (Table S3, Figure S3).
70 Imposing a more stringent cut-off of 1×10^{-13} , we found 203 SNP loci significantly associated
71 with ash dieback damage scores (Figure 2).

72
73 Seven genes contained missense variants caused by ten of these 203 SNPs (Table 1, Figure S4,
74 Table S5). We were able to model the proteins encoded by four of these genes (Figure 3).
75 Similarity searches on these seven genes suggested that four of them are already known to be
76 involved in stress or pathogen responses in other plant species. Gene
77 FRAEX38873_v2_000003260, is putatively homologous to an *Arabidopsis* BED finger-NBS-
78 LRR-type Resistance (R) gene (At5g63020)¹⁶ and is affected by a leucine/tryptophan variant
79 close to the protein's nucleotide binding site (Figure 3a) with the tryptophan being rarer overall,
80 but at a higher frequency in the healthy than the damaged trees (Table S5). This R gene is located
81 (see Figure S4) on Contig 10122 less than 5Kb from gene FRAEX38873_v2_000003270, which
82 is putatively homologous to a Constitutive expresser of Pathogenesis-Related genes-5 (CPR5)-
83 like protein and affected by an isoleucine/serine variant, a 5' UTR start codon variant and 16
84 non-coding variants. This CPR5-like gene is likely to regulate disease responses via salicylic
85 acid signalling¹⁷. Gene FRAEX38873_v2_000164520 is a putative F-box/kelch-repeat protein
86 SKIP6 homolog, which encodes a subunit of the Skp, Cullin, F-box containing (SCF) complex,
87 catalysing ubiquitination of proteins prior to their degradation¹⁸. One of our candidate SNPs
88 encodes an arginine/glutamine substitution in this gene, with the arginine being rarer overall, but
89 at a higher frequency in the healthy than the damaged trees. The substitution is located close to
90 the gene's F-box motif (Figure 3b) and is likely to affect binding within the SCF complex due to
91 the charge difference between the two amino acids. In pine trees, F-Box-SKP6 proteins have
92 been linked to fungal resistance¹⁹. Gene FRAEX38873_v2_000305440, may also be involved in
93 ubiquitination: although the CDS hit an uncharacterised gene in olive (Table 1), the mRNA hit an
94 E3 ubiquitin-protein ligase. This gene contains a glycine to aspartic acid substitution.
95
96 The other three genes with missense mutations have putative homologs with functions that have

97 not been previously linked directly to disease resistance. Gene FRAEX38873_v2_000116110 is
98 a 60S ribosomal protein L4-1 (RPL4-1) homolog, with four missense and nine synonymous
99 variants associated with ADB damage level. The amino acid positions affected are in disordered
100 regions in close proximity to one another (Figure 3d). Changes in this gene may affect the
101 efficiency of mRNA translation²⁰. Gene FRAEX38873_v2_000346660 is a Heat Intolerant 4 like
102 protein with a phenylalanine to leucine variant. Gene FRAEX38873_v2_000180950 is a
103 homolog of Damaged DNA-Binding 2 (DBB2), which has a role in DNA repair²¹ and contains a
104 proline/leucine substitution within its WD40 protein binding domain (Figure 3c). This gene is
105 found on Contig 332 between two G-type lectin S-receptor-like serine/threonine-protein kinase
106 LECRK3 genes (FRAEX38873_v2_000180940 and FRAEX38873_v2_000180960) whose
107 putative homologs are involved in brown planthopper resistance in rice²².

108
109 A further 24 genes contain significant ($p < 1 \times e^{-13}$) SNPs encoding variants that are transcribed
110 but not translated (Table 1) Of these, four match genes that have been previously identified as
111 involved in disease resistance in other species. Gene FRAEX38873_v2_000234590 encodes a
112 WPP domain-interacting protein 1-like, and WPP domains have been linked to viral resistance in
113 potato²³. Gene FRAEX38873_v2_000305460 encodes a PHR1-LIKE 3-like protein which may
114 play a role in immunity²⁴ via the salicylic acid and jasmonic acid pathways²⁵. Gene
115 FRAEX38873_v2_000013250 encodes a Membrane Attack Complex and Perforin (MACPF)
116 domain-containing Constitutively Activated cell Death (CAD) 1-like gene, which controls the
117 hypersensitive response via salicylic acid dependent defence pathways²⁶.
118 FRAEX38873_v2_000211580 is a Squalene monooxygenase-like gene involved in the synthesis
119 of phytosterols²⁷ which have a role in plant immunity²⁸.

120
121 Other genes involved in regulation were found to have significant ($p < 1 \times e^{-13}$) non-translated
122 variants. FRAEX38873_v2_000266510 is a zinc finger CCCH domain-containing protein 11-
123 like that is likely to be involved in regulation, perhaps of resistance mechanisms²⁹.
124 FRAEX38873_v2_000047060 is a short-chain dehydrogenase TIC 32, chloroplastic-like gene
125 that is involved in the regulation of protein import³⁰. FRAEX38873_v2_000074310 is putatively
126 homologous to a squamosa promoter-binding (SBP)-like protein 8 that controls stress responses
127 in *Arabidopsis*³¹. Two genes with non-coding variants seem to affect phenology: gene
128 FRAEX38873_v2_000145630 encodes a Vernalisation Insensitive 3 (VIN3) like protein 1³² and
129 gene FRAEX38873_v2_000168770 encodes a Late Flowering-like protein.
130

131 Interestingly, significant non-translated variants were also found in categories of genes that had
132 unexpectedly shown significant missense variants. Another 60S ribosomal protein L4-1 gene,
133 FRAEX38873_v2_000154480 (in addition to FRAEX38873_v2_000116110, which contains
134 four missense variants) contains two intron variants associated with ADB damage. There are
135 only three loci in the ash genome reference assembly matching the *Arabidopsis* 60S RPL4-1
136 (AT3G09630) gene. Another putative DNA repair gene was also hit (in addition to
137 FRAEX38873_v2_000180950, which had a missense variant); gene
138 FRAEX38873_v2_000308800 encoding a probable DNA helicase MiniChromosome
139 Maintenance (MCM) 8 protein.

140
141 Six genes with putative roles in disease resistance have significant ($p < 1 \times 10^{-13}$) SNPs within
142 5Kb up- or down-stream of them and are the closest known genes to those SNPs (Table 1).
143 FRAEX38873_v2_000296810 matches an ankyrin repeat-containing protein NPR4-like gene; in
144 *Arabidopsis* the *NPR4* gene is involved in defence against fungal pathogens and in mediation of
145 the salicylic acid and jasmonic acid/ethylene-activated signalling pathways³³.
146 FRAEX38873_v2_000190500 is a putative ethylene-responsive transcription factor ERF098-like
147 gene which may be involved in regulation of disease resistance pathways³⁴. Gene
148 FRAEX38873_v2_000342260 is a palmitoyltransferase or protein S-acyltransferases (PATs) 8-
149 like gene³⁵, which is likely to have a role in protein trafficking and signalling; in *Arabidopsis*,
150 some PATs regulate senescence via the salicylic acid pathway³⁶. FRAEX38873_v2_000025560
151 encodes a probable xyloglucan endotransglucosylase/hydrolase protein 27 which may play a role
152 in extracellular defence against pathogens^{37,38}. FRAEX38873_v2_0000258470 encodes an F-
153 box/FBD/LRR-repeat protein likely to be involved in ubiquitination (see above).
154 FRAEX38873_v2_0000340820 is a putative dehydration-responsive element-binding protein
155 2C-like (DREB2C) gene which has a role in osmotic-stress signal transduction pathways³⁹.

156
157 The closest genes to 49 of the 203 most significant GWAS SNPs ($p < 1 \times 10^{-13}$) were between 5Kb
158 and 100Kb distant (Table S4). These included some with previous evidence of disease resistance
159 functions. Gene FRAEX38873_v2_000086110 is a Leucine-rich repeat receptor-like
160 serine/threonine-protein kinase β -amylase (BAM) 3, which is involved in fungal resistance in
161 *Arabidopsis*⁴⁰. Gene FRAEX38873_v2_000291580 is a bHLH162-like transcription factor
162 whose putative *Arabidopsis* homolog is induced by infection with the downy mildew pathogen
163 *Hyaloperonospora arabidopsis*⁴¹. Gene FRAEX38873_v2_000169770 is likely to be involved

164 in vacuolar protein sorting which can play a role in defence responses⁴². A cluster of SNPs on
165 contig1355 are located at approximately 13-kb from gene FRAEX38873_v2_000037990, a small
166 ubiquitin-like modifier (SUMO) conjugating enzyme UBC9-like gene. Inhibition of SUMO
167 conjugation in *Arabidopsis* causes increased susceptibility to fungal pathogens⁴³. Gene
168 FRAEX38873_v2_000282910 is a nitrate regulatory gene 2 (NRG2) which could mediate nitrate
169 signalling or mobilisation in response to pathogens⁴⁴. Gene FRAEX38873_v2_000340830 is a
170 trichome birefringence-like (TBL) 33 gene; mutants of TBL genes in rice plants confer reduced
171 resistance to rice blight disease⁴⁵.

172

173

174 **Genomic prediction**

175

176 From 150 individual trees sampled from NSZ 204 (Dataset B) we generated a total of 2.9Tbp in
177 19.5 billion reads. Each individual tree was sequenced to 22X genome coverage on average.
178 Quality metrics and GC content were very similar to Dataset A (Table S1). On average the
179 percentage of reads mapped to the reference genome assembly per sample was 98.4% and
180 32,443,401 SNPs were found with read depth > 9 and mapping quality > 15.

181

182 To evaluate the genomic estimated breeding values of ADB damage (GEBV), we used the pool-
183 seq data as a training population and the 150 NSZ 204 individuals as a test population. We
184 obtained highest accuracy (correlation of observed scores and GEBV, $r = 0.37$; frequency of
185 correct allocations, $f = 0.68$) using the top 10,000 SNPs by p-value from the GWAS, of which
186 9,620 SNPs had been successfully called in the test population (Figure 4). Smaller and larger
187 SNP-dataset sizes performed less well. With a view to using a subset of these SNP for prediction,
188 we reran the analysis using a subset of the 25% with the largest (absolute) estimated effect sizes
189 and found minimal effect on the correlation (Figure 4), again finding the best result with (25%
190 of) the dataset of 10,000 SNPs. Estimated effect sizes for all SNPs with models trained on 100 to
191 50,000 SNPs are shown in Supplementary File 1.

192

193 Using the GWAS p-values as the criterion for selecting candidate SNPs for GP was far more
194 effective than using a random selection from the genome, as judged by r and f scores (Figure 4).
195 Despite this effect, there was not a strong association between the GWAS p-values and the effect
196 size estimated by the genomic prediction: only 54 of the 2500 SNPs with the largest effect size
197 were in the top 203 SNPs identified by the GWAS.

198
199 In a relatively small population with large heritable effects, spurious associations between some
200 SNP alleles and a trait can arise. A sufficiently large number of randomly chosen SNPs will
201 convey all the information on the relatedness of the individuals which, in turn, can be used to
202 predict a trait simply because related individuals have similar trait values. To evaluate this effect,
203 the 150 NSZ 204 individuals were used for GP as both a training dataset and a test dataset. The
204 accuracy of the prediction with the top 50,000 GWAS-identified SNPs was no better than a
205 random selection of 50,000 SNPs (Figure S5). Given this, we re-ran GP training on the pool-seq
206 data with the pools from NSZ 204 (the seed source of the test population) excluded in case their
207 inclusion had given spurious associations that contributed to the success of the first GP. This
208 more stringent cross-validation showed a comparable performance to our previous GP trained on
209 the full pool-seq dataset (maximum $r= 0.36$, $f= 0.67$; Figure S6).

210
211 For a breeding programme for increased resistance to ash dieback, accurate prediction of the
212 most resistant trees is needed. We therefore examined the accuracy with which our highest
213 GEBVs were assigning trees correctly to the undamaged health category. For the trees with the
214 top 20% and 30% GEBV scores, we obtained predictive accuracies of $f > 0.9$, using as few as
215 200 predictive SNPs (Figure 5).

216
217

218 **Discussion**

219
220 Many of the top SNP loci that we found associated with ash tree resistance to ash dieback are in,
221 or close to, genes with putative homologs in other species that have been previously shown to
222 detect pathogens, signal their presence, or regulate pathogen responses. Using SNPs identified
223 by the GWAS to train GP on the pool-seq data, we obtained much greater accuracy in predicting
224 the ADB damage score in 150 separate individuals than when we used the same number of
225 randomly selected SNPs. Together, these results demonstrate we can use genotype to predict
226 performance across different seed-sources, and that other genes that have not previously been
227 implicated in plant pathogen resistance, such as 60S ribosomal protein L4-1 genes and some
228 DNA repair genes, may be involved in resistance to ADB. None of our most significant SNPs
229 were in or close to genes previously identified as showing gene expression changes associated
230 with ADB resistance³, but we cannot exclude the possibility that our candidate SNPs may be

231 controlling expression differences in these genes. The distribution of effect sizes and the
232 predictivity peak using 2500 SNPs suggests that *F. excelsior* resistance to *H. fraxineus* is a highly
233 polygenic trait and may therefore respond well to artificial and natural selection, allowing the
234 breeding or evolution of durable increased resistance.

235
236 The levels of accuracy which our GP reached are high, and comparable to those that are used to
237 inform selections in crop^{46–50}, tree^{12,51} and livestock breeding programmes^{52,53}. Thus, our results
238 have the potential to increase the speed at which we can successfully breed ash dieback resistant
239 trees. A common short-coming of GP is that predictions are highly population specific^{12,54,55}, and
240 the success of GP using randomly selected SNPs when training models within the individually
241 sequenced trees suggests that population-specific GP can be easily made for ash. However, we
242 made successful predictions in the individually sequenced trees using the pool-seq trained GP
243 even when the pool-seq data for their seed-source provenance was not used in training the
244 model. This suggests we have successfully identified widespread alleles that are involved in
245 ADB resistance in many populations. There may well be further population-specific alleles that
246 our methods have not detected. This study is the first that we are aware of to use pool-seq data to
247 train a trans-populational GP model. The success of this approach in European ash – a
248 genetically variable species – suggests it may be useful in many other ecologically important
249 species as a cost-effective approach to successful genomic prediction of evolving traits.

250

251 **Methods**

252

253 **Trial design**

254 This study is based on a Forest Research mass screening trial planted in spring 2013,
255 comprising 48 hectares of trials on 14 sites in southeast England as described in Stocks et al.
256 2017¹⁵. Briefly, each site was planted with trees grown from seed sourced from up to 15
257 different provenances. These were 10 British native seed zones (NSZ 106, NSZ 107, NSZ
258 109, NSZ 201, NSZ 204, NSZ 302, NSZ 303, NSZ 304, NSZ 403, NSZ 405), Germany
259 (DEU), France (FRA), Ireland (CLARE and IRL DON), and a Breeding Seedling Orchard
260 (BSO) planted by Future Trees Trust (FTT) comprised of half-sibling families from “plus”
261 trees across Britain.

262 **Phenotyping and sampling**

263 In July/August 2017 fresh leaves for DNA extraction were sampled from four of the trial sites
264 that had heavy ash dieback damage: sites 16 (near Norwich, Norfolk), 21 (near Maidstone,
265 Kent), 23 (near Norwich, Norfolk) and 35 (near Tunbridge Wells, Kent). We selected healthy
266 trees (scores 7 on the scale of Pliura *et al.*⁵⁶) and trees with considerable ash dieback damage
267 (scores 4 and 5 on the scale of Pliura *et al.*⁵⁶). Initially a total of 1536 trees were sampled. Of
268 these 623 healthy and 627 unhealthy trees were selected for pooled sequencing with the total
269 number of trees for each seed source and health status described in Table S2 and Figure S1. For
270 individual sequencing, we selected a further 75 healthy and 75 unhealthy trees from NSZ 204
271 that were not included in the pools from this seed source.

272

273 **DNA extraction and sequencing**

274

275 Leaf samples were transported to the lab using cool boxes. Fresh Genomic DNA was extracted
276 from liquid nitrogen frozen leaf tissue using the DNeasy Plant Mini Kit or the DNeasy 96 Plant
277 Kit (Qiagen) and eluted in 70 µl of Qiagen AE buffer. Quantification of genomic DNA was
278 performed using the Quantus™ Fluorometer on all extractions. DNA purity quality checks were
279 carried out using the Thermo Scientific™ NanoDrop 2000 for nucleic acid 260/280 and 260/230
280 absorbance ratios. Of the total number of extractions, 1400 were selected based on DNA quantity
281 and quality thresholds. A minimum concentration of >20 ng/µl, OD260/280 >1.7 and total

282 amount >1.0 µg of DNA was necessary for the sample to pass. Of the 1400 samples, 1250 were
283 separated for the pooling and sequencing procedures and will be referred to as dataset A. A
284 separate 150 individuals from NSZ 204, that were not included in the pools, were selected for
285 individual genotyping and will be referred to as dataset B.

286
287 For the pooling procedure equal amounts of DNA from each sample were pooled together based
288 on their initial DNA concentrations, adjusting the total volume of each sample accordingly.
289 Pooling was based on seed source origin and health status with two pools for each seed source,
290 one healthy and the other damaged. A total of 31 pools were created (Figure S1), one being a
291 technical replicate of the healthy trees from NSZ 204 that was made by independently repeating
292 all quantification, quality and pooling steps on the same 40 trees. NSZ 106 and NSZ 107 had 4
293 pools each as the samples were divided to maintain an average of 42 trees per pool. These
294 therefore provide biological replicates. Studies have shown that pools sizes as small as 12 have
295 provided robust and reliable population allele frequency estimates^{14,57}.
296

297 TruSeq DNA PCR-Free (Illumina) sequencing libraries were prepared, using 350 base pair
298 inserts. All sequencing was carried out using HiSeq X at Macrogen (South Korea) with 150
299 paired end reads with the goal of achieving a whole genome coverage (based on the estimated
300 genome size of the *F. excelsior* reference individual³ of 80x per pool (2x coverage per
301 individual) for dataset A and 20x for dataset B.
302

303 **Mapping to reference and filtering**

304

305 Trimmomatic v0.38 was used for read trimming and adapter removal. Leading and trailing low
306 quality or N bases below a quality of 3 were removed. Reads were scanned with a 4-base wide
307 sliding window, cutting when the average quality per base dropped below 15 and excluding
308 reads below 36 bases long⁵⁸. Reads were then aligned to the reference genome for *Fraxinus*
309 *excelsior*, assembly version BATG0.5, using the Burrows-Wheeler Alignment Tool (BWA
310 MEM)⁵⁹, version 0.7.17 with default settings. The mapped reads were filtered for a mapping
311 quality of 20 with samtools (v1.9). On average the percentage of reads mapped to the reference
312 was 98.3% for dataset A and 98.4% for dataset B. For both datasets Sequence Alignment Map
313 (SAM) and binary version (BAM) files were created using Samtools. Indels were detected and
314 removed using Popoolation2⁶⁰ scripts (identify-indel-regions.pl and filter-sync-by-gtf.pl) that
315 include five flanking nucleotides on both sides of an indel. The position of repeats in the

316 reference genome was annotated previously³ using RepeatMasker v. 4.0.5 (with option -nolow)
317 and that information used to remove repeats from these data using the same removal script
318 provided by PoPoolation2.

319

320 **Genetic structure of provenances**

321

322 Major allele frequency information was extracted from dataset A for each of the 31 populations
323 using a modified output of the allele frequency differences script (snp-frequency-diff.pl) from
324 the PoPoolation2 package. This table of major allele frequencies was imported and converted to
325 a genpop object and subsequently analysed using the R package adegenet⁶¹. A Correspondence
326 Analysis on genpop objects was performed in order to seek a typology of populations.

327 Correlation between populations was calculated and plotted, for the major allele frequencies
328 from dataset A, using the corrplot R package⁶².

329

330

331 **Genome wide association study**

332

333 For dataset A the software package PoPoolation2⁶⁰ was used to identify significant differences
334 between damaged and healthy trees. For this an mpileup input was generated using Samtools
335 followed by the creation of a file that had all the variants synchronized across the pools and
336 requiring a base quality of at least 20. The statistical test to detect allele frequency changes in
337 biological replicates was the Cochran-Mantel-Haenszel (CMH) test⁶³. With this test a 2x2 data
338 table was created for each seed source (15) with two phenotypes (healthy and damaged) and the
339 two major alleles for each SNP. The counts of each allele for each phenotype were treated as the
340 dependent variables. The parameters set for PoPoolation2, given there were 30 pools with DNA
341 from 1250 individuals, were: min count 15 (minimum allele count to be included), min coverage
342 40, max coverage 3000. False discovery rate control was performed using the R package q-
343 value⁶⁴. We excluded contig 18264 from the reference sequence because it appears to be derived
344 from fungal contamination: its top BLAST hit in the GenBank nucleotide collection is to nrDNA
345 in a species of the fungal genus *Phoma* (MH047199.1), a putative fungal endophyte.

346

347 Putative functions for genes containing, or near, the pool-seq GWAS top SNPs were assigned by
348 obtaining the CDSs from the Ash Genome website³ and using the command line NCBI Basic
349 Local Alignment Search Tool (BLAST+) optimized for the megablast algorithm to search the

350 GenBank Nucleotide database. The top result for every BLAST search was extracted and their
351 predicted gene functions were used to functionally annotate the ash genes. Any search that
352 yielded no matches when using megablast was then repeated using the blastn algorithm and
353 ultimately cDNA sequences if the latter was also uninformative. Potential functional impacts for
354 each of the top 203 GWAS SNP loci were determined using SNPeff (v4.3T)⁶⁵. A custom genome
355 database was built from the *F. excelsior* reference assembly using the SnpEff command “build”
356 with option “-gtf22”; a gtf file containing the annotation for all genes, as well as fasta files
357 containing the genome assembly, CDS and protein sequences, were used as input. Annotation of
358 the impact of the 203 SNPs was performed by running SnpEff on all *F. excelsior* genes with
359 default parameter settings.

360

361 **Protein modelling**

362

363 Proteins containing SNPs identified by SnpEff as coding for amino acid substitutions were
364 modelled. Protein coding sequences were taken from the predicted proteome of the BATG 0.5
365 reference genome³ and modelled both with the amino acid(s) associated with ADB damage in
366 our GWAS, and with the amino acid(s) associated with healthy trees. Models were predicted
367 using three methods: RaptorX-Binding (<http://raptorgx.uchicago.edu/BindingSite/>), Swiss-
368 modeller⁶⁶ and Phyre2⁶⁷. These models were compared by manually alignment in PyMOL
369 v.2.0⁶⁸, and only those with congruent models were taken forward, based on their Phyre2 and
370 RaptorX-Binding models. Potential binding sites and candidate ligands were analysed using
371 RaptorX-Binding and literature searches. SDF files for candidate ligands were obtained from
372 PubChem (<https://pubchem.ncbi.nlm.nih.gov>) and converted to 3d pdb files using Online
373 SMILES Translator and Structure File Generator (<https://cactus.nci.nih.gov/translate/>). Docking
374 with our protein models was analysed using Autodock Vina v.1.1.2⁶⁹ with the GUI PyRx v.0.8⁷⁰.
375 Following docking, ligand binding site coordinates were exported as SDF files from Pyrex and
376 loaded into PyMOL with the corresponding protein model file for the “healthy” and “damaged”
377 protein models. Binding sites were then annotated and the variable residues were labelled.
378 Possible RNA and DNA binding sites were predicted using DRONA
379 (<http://crdd.osdd.net/raghava/drona/links.php>). The presence of signal peptides were detected
380 using SignalP 4.1 server and Phobius server (<http://phobius.sbc.su.se/index.html>); both were run
381 with default parameters and for Phobius the “normal prediction” method was used. The presence
382 of a signal peptide was confirmed only if it was predicted by both methods. Motif search
383 (<https://www.genome.jp/tools/motif/>) and ScanProsite (<https://prosite.expasy.org/scanprosite/>)

384 were used to predict protein domains and their locations for our candidate genes.

385

386

387 Genomic Prediction

388

389 We trained a GP model based on the pool-seq data (Dataset A). Subsets of 100, 200, 500, 1000,
390 5000, 10000, 25000 and 50000 SNPs with the most significant GWAS results were selected from
391 Dataset A and used as a training set. Results were compared with SNP sets of the same size
392 drawn at random from the genome. SNPs from contig 18264 (suspected to be fungal
393 contamination) were excluded. We constructed a pipeline available at

394 <https://github.research.its.qmul.ac.uk/btx330/gppool>. The vector of ADB damage scores for each
395 pool, y , was predicted by the rrBLUP model as: $y = \mathbf{X}\beta + \varepsilon$, where β is a vector of allelic effects
396 (treated as normally distributed random effects), and the residual variance is $\text{Var}[\varepsilon]$. The genetic
397 data are encoded in the design matrix \mathbf{X} which has a row for each pool and a column for each
398 SNP allele. The entry for pool p and locus l is $\mathbf{X}[p,l] = f_{pl} - \mu_s$, where f_{pl} is the frequency of the
399 focal allele and μ_s is its mean frequency across the pools from the same seed-source as p .

400

401 The Reduced Maximum Likelihood solution to the model was obtained using the *mixed.solve*
402 function in rrBLUP v4.6⁷¹ to give estimated effect sizes (EES) for the minor and major alleles at
403 each SNP under consideration. Subsets of the 10 – 50,000 SNPs with the greatest EES were
404 used to predict GEBV for each of the 150 individuals from provenance NSZ 204. For these
405 individuals (dataset B) variant calling was performed using bcftools with the raw set of called
406 SNPs filtered using VCFtools (vcfutils) - set at minimum read depth of 10 and minimum
407 mapping quality 15. Filtering of loci was carried out using thresholds of >95% call rate and >5%
408 MAF. Samples were filtered based on a >95% call rate and <1% inbreeding coefficient. SNPs
409 were also filtered if they deviated significantly from Hardy-Weinberg equilibrium. GEBV was
410 calculated as the sum the EES and the relative frequency of each focal allele. Predictions were
411 repeated with seed-source NSZ 204 excluded from the training dataset to avoid spurious
412 correlations due to population stratification.

413

414 Test trees were assigned to high and low susceptibility groups based on their GEBV and the
415 accuracy of the assignment was tested using the formula: $f = \text{correct assignments}/\text{total}$
416 assignments, with correct assignments defined as those that corresponded to the observed
417 phenotypes. Correlation of GEBV and phenotypic classification, r , was calculated using the

418 Pearson correlation coefficient.

419

420 We also carried out genomic prediction based solely on the 150 individuals in Dataset B. A ratio
421 of 60/40 was used for training and testing populations and missing markers were imputed using
422 the function R package A.mat⁷² with default settings. SNPs were selected from the GWAS output
423 ordered by p-value. A total of 100, 500, 1000, 5000, 10000, 50000, 100000, 250000, 500000,
424 1000000 and 5000000 SNPs were selected from each filtered set and used for training and
425 testing of the GP model. The same number of SNPs were selected at random (using R) from the
426 fully filtered dataset and also used for training and testing the GP model. We used using the
427 *mixed.solve* function in rrBLUP v4.6⁷¹ and Genomic Selection in R course scripts available at
428 <http://pbgworks.org>. A total of 500 iterations were run of the rrBLUP. For the randomly selected
429 SNPs, the 500 iterations were repeated ten times.

430

431 **Data and software availability**

432 The authors confirm that all raw or analysed data supporting this study will be distributed
433 promptly upon reasonable request. All trimmed reads are available at the European Nucleotide
434 Archive with primary accession number: PRJEB31096. The gppool pipeline developed as part of
435 the project to run GP trained on pool-seq data can be found at
436 <https://github.research.its.qmul.ac.uk/btx330/gppool>. All software used (Trimmomatic, BWA,
437 Samtools, BcfTools, VCFtools, PoPoolation2, R, Repeatmasker, SNPeff, Haploview, NCBI
438 BLAST, RaptorX-Binding, Swiss-modeller, Phyre2, SMILES, Autodock Vina v.1.1.2, PyRx
439 v.0.8, PyMOL, DRONA, SignalP 4.1 server, Phobius server, NetPhos 3.1 Server and Group-
440 based Prediction System (GPS)) is commercially or freely available.

441

442 Tables

443 **Table 1.** List of ash genes likely to be affected by GWAS candidate SNPs found in the top 203
444 hits by p-value (with $-\log_{10}(p) > 13$): (1) Genes that contain one or more significant SNP loci
445 altering protein sequence; (2) Genes containing SNPs that are transcribed but not translated
446 (synonymous changes, and changes in UTRs and introns); (3) Genes that are within 5Kb of
447 significant SNP loci and the closest gene to those loci. The “Gene” column gives the final six
448 digits for the full gene names for the annotation of the ash genome³, which are in the form
449 FRAEX38873_v2_000#####. Details of amino acid changes in missense variants can be found
450 in Table S5.

451

Contig	Gene	Predicted function	Variant functions
1) Genes containing SNPs that affect protein sequence			
Contig10122	003260	BED finger-NBS-LRR resistance protein (for model see Figure 3a)	1x downstream gene variant 1x missense variant
Contig10122	003270	Protein CPR-5-like (LOC111390874), transcript variant X1, mRNA	5x 3' UTR variant 2x 5' UTR premature start codon gain variant 2x 5' UTR variant 1x downstream gene variant 1x intron variant 7x upstream gene variant 1x missense variant
2) Genes containing SNPs that are transcribed but not translated			
Contig2324	116110	60S ribosomal protein L4-1 (LOC111391733), mRNA (for model see Figure 3d)	4x missense variant 9x synonymous variant
Contig3029	164520	F-box/kelch-repeat protein SKIP6 (LOC111408673), mRNA (for model see Figure 3b)	1x 5' UTR variant 7x downstream gene variant 1x missense variant
Contig332	180950	Protein DAMAGED DNA-BINDING (for model see Figure 3c)	1x missense variant
Contig614	305440	Uncharacterized LOC111377332 (LOC111377332), transcript variant X1, mRNA	1x missense variant 1x synonymous variant
Contig7698	346660	Protein HEAT INTOLERANT 4-like (LOC111409690), mRNA ⁽³⁾	1x missense variant 1x upstream gene variant
Contig2329	116430	Uncharacterized LOC111374226 (LOC111374226), transcript variant X2, mRNA	1x synonymous variant

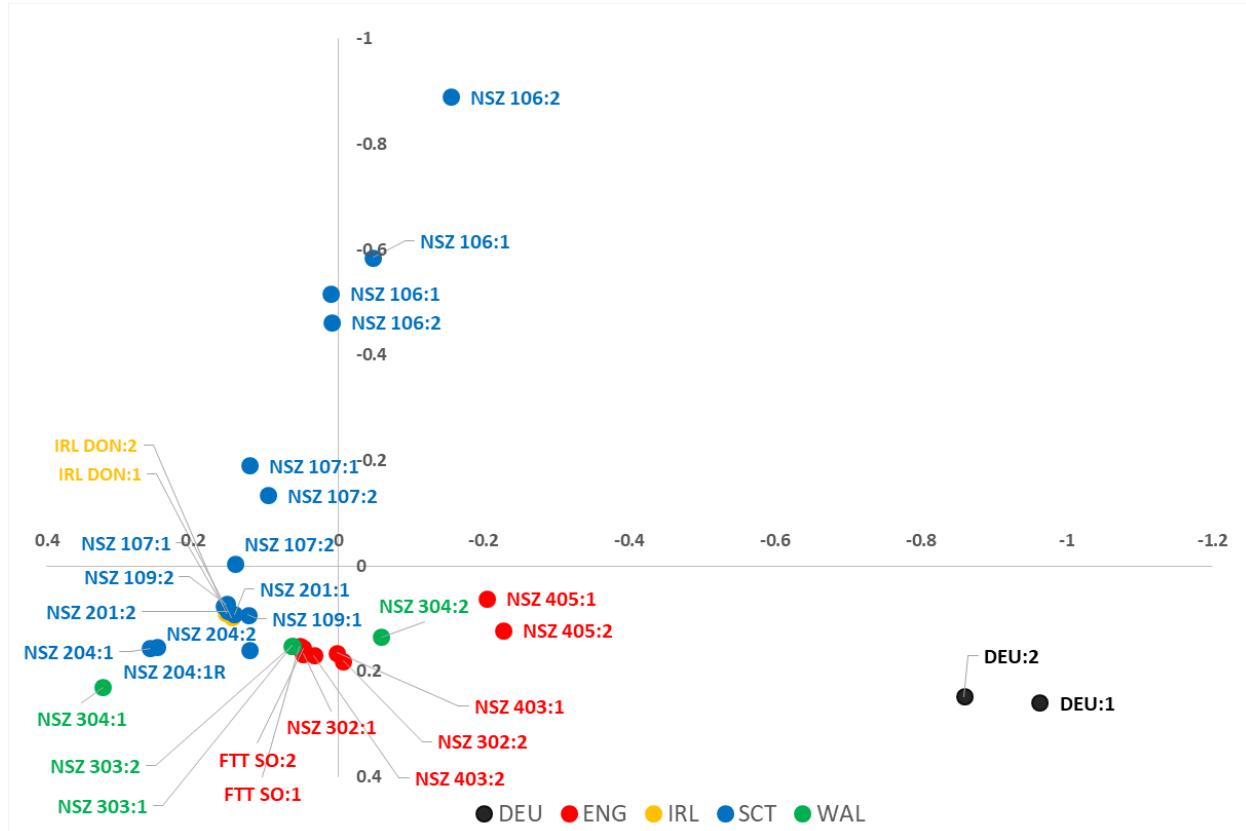
Contig2747	145630	VIN3-like protein 1 (LOC111390514), transcript variant X2, mRNA	1x synonymous variant
Contig4397	234590	WPP domain-interacting protein 1-like (LOC111407140), mRNA	1x synonymous variant
Contig1096	013250	MACPF domain-containing protein CAD1-like (LOC111379406), mRNA	1x 3' UTR variant 1x intron variant
Contig1454	047060	Short-chain dehydrogenase TIC 32, chloroplastic-like (LOC111372928), transcript variant X2, mRNA	1x intron variant
Contig1589	057960	beta-taxilin (LOC111407559)	1x intron variant
Contig1795	074310	Squamosa promoter-binding-like protein 8 (LOC111383449), mRNA	1x 3' UTR variant
Contig2034	094440	Regulatory-associated protein of TOR 1 (LOC111407995), mRNA	1x 3' UTR variant
Contig2185	105920	Uncharacterized LOC111409367 (LOC111409367), mRNA	1x 5' UTR variant
Contig23	114040	ATP synthase subunit O, mitochondrial-like (LOC111411675), mRNA	1x intron variant 3x upstream gene variant
Contig2870	154480	60S ribosomal protein L4-1 (LOC111391733), mRNA ⁽³⁾	2x intron variant
Contig31173	168770	Protein LATE FLOWERING-like (LOC111406993), mRNA	1x 5' UTR variant
Contig3809	207550	receptor-like cytosolic	1x intron variant
Contig3889	211580	Squalene monooxygenase-like (LOC111410179), mRNA	1x intron variant
Contig4494	238810	Uncharacterized LOC111381639	1x 3' UTR variant
Contig5196	266510	Zinc finger CCCH domain-containing protein 11-like (LOC111366362), transcript variant X3, mRNA	1x intron variant
Contig614	305460	Protein PHR1-LIKE 3-like (LOC111377335), mRNA	14x intron variant
Contig6272	308800	Probable DNA helicase MCM8 (LOC111365493), transcript variant X2, mRNA	2x intron variant
Contig6641	319390	Uncharacterized LOC111408674 (LOC111408674), mRNA	1x intron variant
Contig754	342270	Protein LIKE COV 2-like (LOC111397136), mRNA	2x intron variant
Contig754	342280	Uncharacterized LOC111408663 (LOC111408663), transcript variant X5, misc_RNA	1x 5' UTR variant

Contig7698	346650	Pentatricopeptide repeat-containing protein At4g39620, chloroplastic-like (LOC111408678), transcript variant X2, mRNA	1x 3' UTR variant
Contig87	372350	Uncharacterized LOC111393674 (LOC111393674), mRNA	3x intron variant
Contig8942	378970	Uncharacterized LOC111377872 (LOC111377872), transcript variant X8, mRNA	1x intron variant

3) Genes within 5Kb upstream or downstream from candidate SNPs

Contig1224	025560	Probable xyloglucan endotransglucosylase/hydrolase protein 28 (LOC111399252), mRNA ⁽³⁾	1x upstream gene variant
Contig1506	051400	Potassium channel AKT1-like (LOC111382499), mRNA	1x downstream gene variant
Contig1607	059350	Low affinity sulfate	1x upstream gene variant
Contig16137	059880	60S Ribosomal protein L30-like (LOC111409078), transcript variant X1, mRNA	1x upstream gene variant
Contig168	065110	E3 ubiquitin-protein ligase RNF170-like (LOC111409836), transcript variant X3, mRNA	2x upstream gene variant
Contig1931	086130	Oleoyl-acyl carrier protein thioesterase 1, chloroplastic-like (LOC111385815), mRNA ⁽³⁾	2x downstream gene variant
Contig2441	124500	Ent-kaurene oxidase, chloroplastic-like (LOC111394477), mRNA	1x upstream gene variant
Contig3029	164530	Uncharacterized LOC111408676 (LOC111408676), transcript variant X3, mRNA	1x upstream gene variant 1x intergenic region
Contig349	190500	Ethylene-responsive transcription factor ERF098-like (LOC111379140), mRNA ⁽³⁾	2x downstream gene variant
Contig3945	214510	Basic Helix loop helix protein A (LOC111388546) mRNA	1x upstream gene variant
Contig4503	239330	Vacuolar protein sorting-associated protein 20 homolog 2-like (LOC111393567), mRNA	1x upstream gene variant 2x intergenic region
Contig454	241210	Kinesin-like protein KIN-7K, chloroplastic (LOC111375100), mRNA	1x upstream gene variant
Contig490	255180	Casein kinase 1-like protein HD16 (LOC111366886), mRNA	1x upstream gene variant

Contig4981	258470	F-box/FBD/LRR-repeat protein At1g13570-like (LOC111367195), transcript variant X2, mRNA	1x upstream gene variant
Contig508	262070	Putative zinc transporter At3g08650 (LOC111388858), mRNA	1x downstream gene variant
Contig558	282910	Nitrate regulatory gene2 protein-like (LOC111409481), mRNA	1x upstream gene variant
Contig558	282920	Uncharacterized LOC111409076 (LOC111409076), mRNA	2x downstream gene variant 1x upstream gene variant
Contig558	282930	Uncharacterized LOC111409077 (LOC111409077), transcript variant X3, mRNA	1x upstream gene variant
Contig592	296810	Ankyrin repeat-containing protein NPR4-like (LOC111379708), mRNA	1x downstream gene variant
Contig6316	310310	Calmodulin-binding protein 60 A-like (LOC111368134), transcript variant X3, mRNA	2x upstream gene variant
Contig7472	340820	Dehydration-responsive element-binding protein 2C-like (LOC111397561), transcript variant X1, mRNA	5x upstream gene variant
Contig754	342250	Ethylene-responsive transcription factor ERF113-like (LOC111408666), mRNA	1x upstream gene variant
Contig754	342260	Protein S-acyltransferase 8-like (LOC111408665), mRNA	2x upstream gene variant
Contig8383	364260	Pentatricopeptide repeat-containing protein At4g39620, chloroplastic-like (LOC111408678), transcript variant X2, mRNA	1x upstream gene variant

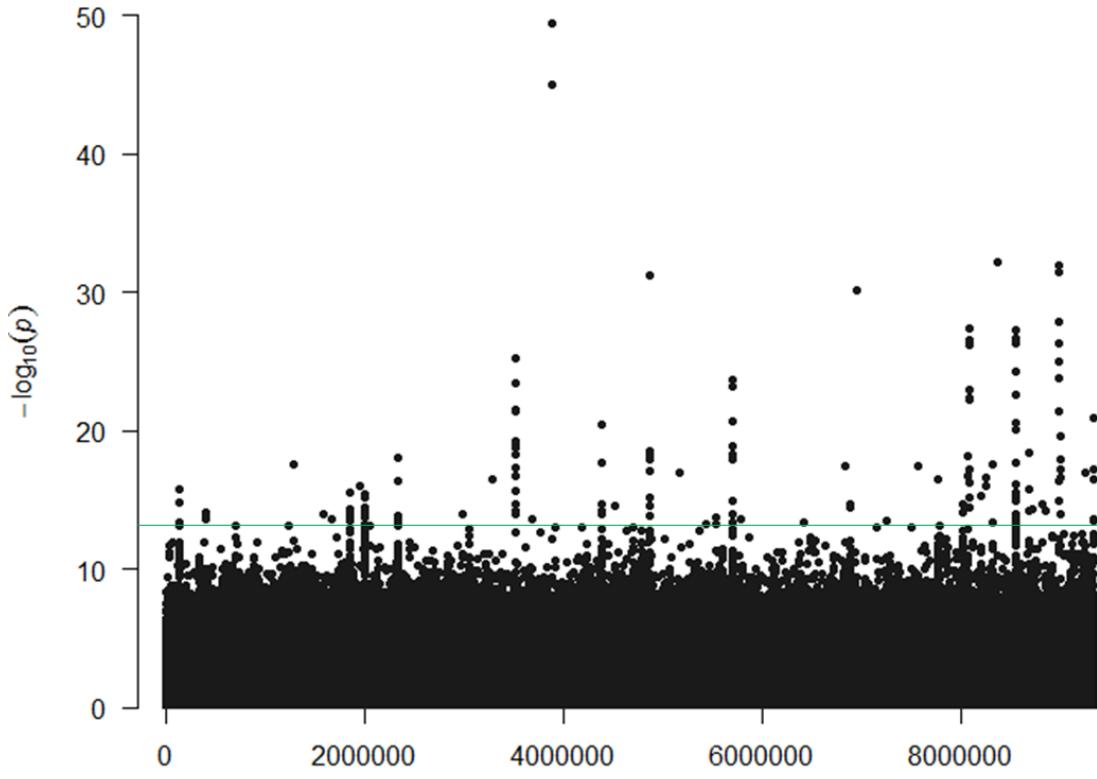

452
453
454
455

456

457 Figures

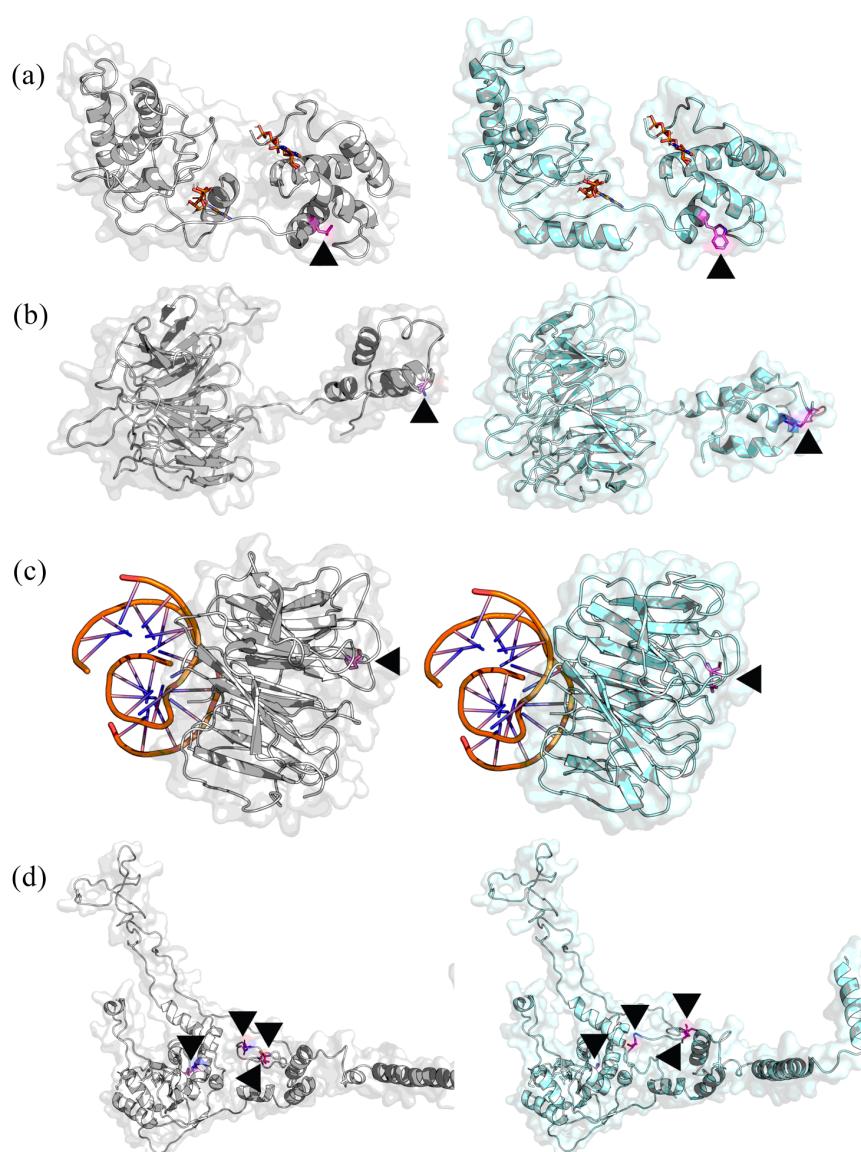
458

459

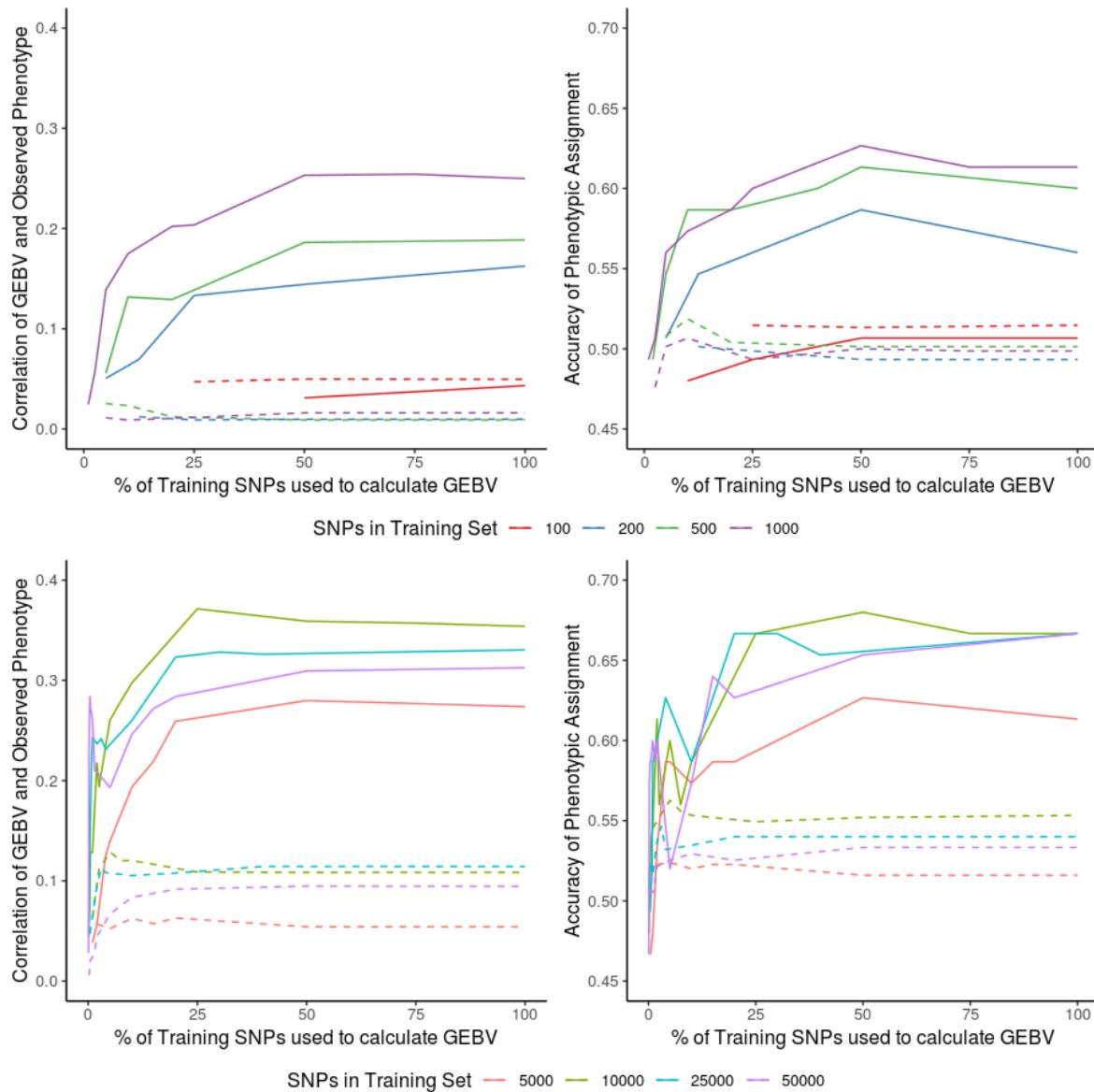


460

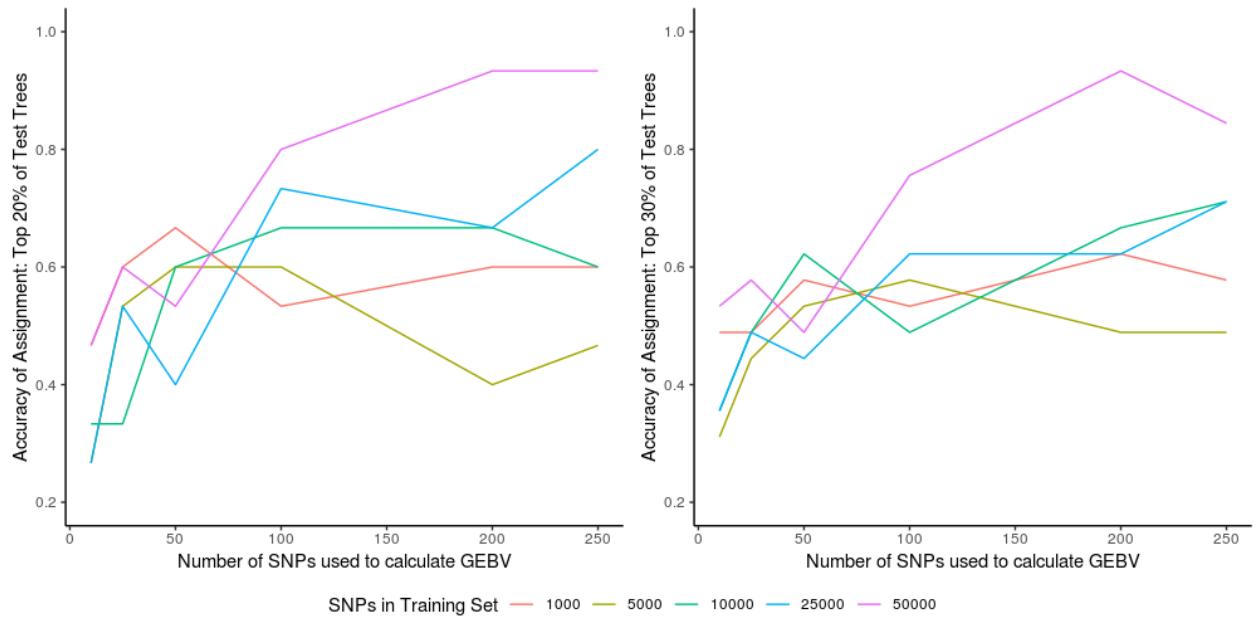
461 **Figure 1.** Correspondence Analysis (CA) using major allele frequency for all 31 seed
462 source populations (including replicate). Numbers after seed source code correspond to
463 health status (1 - healthy or 2 - infected by ADB). The vertical axis represents Principal
464 Coordinate 1, which accounts for 10% of the variation and the horizontal axis represents
465 Principal Coordinate 2, which accounts for 9% of the variation.


466

467



468


469 **Figure 2.** Loci associated with ash tree health status under ash dieback pressure.
470 Genome-wide association study on whole genome sequence data from pooled
471 DNA: Manhattan plot distribution of $-\log_{10}(p)$ values for each SNP, ordered by
472 scaffold/contig. A threshold of $p = 1 \times 10^{-13}$ is shown.

473
474
475 **Figure 3.** Predicted protein structures for genes containing amino acid changes associated with
476 tree health status under ADB pressure. The protein structures to the left were more common in
477 damaged trees, and those to the right were more common in healthy trees. Variant amino acids
478 are coloured in magenta and indicated with a black arrowhead. (a) Gene
479 FRAEX38873_v2_000003260, a BED finger-NBS-LRR resistance protein, where position 157
480 is a leucine (left) versus tryptophan (right) variant. Two ATP molecules are shown in orange to
481 indicate the location of nucleotide binding sites. (b) Gene FRAEX38873_v2_000164520, a F-
482 box/kelch-repeat, where position 13 is a glutamine (left) versus arginine (right) variant.
483 (c) FRAEX38873_v2_000180950, a Protein DAMAGED DNA-BINDING, where position 99 is
484 a proline (left) versus leucine (right) variant. DNA molecules are shown in orange docked at the
485 proteins' DNA binding sites. (d) Gene FRAEX38873_v2_000116110, a 60S ribosomal protein
486 L4-1, where position 251 is an arginine (left) versus glycine (right) variant, position 285 is a
487 methionine (left) versus arginine (right) variant, position 287 is an asparagine (left) versus lysine
488 (right) variant and position 297 is a threonine (left) versus alanine (right) variant.
489

490
491 **Figure 4.** Genomic prediction of health under ash dieback pressure for 150 individual ash trees,
492 with models trained on pooled sequencing of 1250 trees, using varying numbers of SNPs in
493 training and test sets. Solid lines show results for SNPs selected using the pool-seq GWAS;
494 dashed lines show average results using randomly selected SNPs. Left column: correlation of
495 genomic estimated breeding value (GEBV) with observed health status. Right column: accuracy
496 of health status assignment from GEBV.
497

498
499 **Figure 5.** Genomic prediction accuracy of assignment of health status for the (left) top 20% and
500 (right) top 30% of test population trees by GEBV, using 1000 to 50,000 SNPs identified by
501 GWAS in the training set and use of ten to 250 SNPs in the testing set.

502
503
504
505
506
507
508

509 Acknowledgements

510
511 This study was supported by Forest Research (FR), Queen Mary University of London (QMUL)
512 and the Royal Botanic Gardens Kew. J.J.S. is funded by a Conselho Nacional de Pesquisa e
513 Desenvolvimento (CNPq) studentship and is part of the Brazilian Scientific Mobility Program –
514 Science without Borders (SwB). S.L. and R.J.A.B. were partly funded by Living with
515 Environmental Change (LWEC) Tree Health and Plant Biosecurity Initiative - Phase 2 grant
516 BB/L012162/1 funded jointly by the BBSRC, Defra, Economic and Social Research Council,
517 Forestry Commission, NERC and the Scottish Government. FR designed and setup field trials.
518 Funding for the field trials was supplied by the Department for Environment, Food and Rural
519 Affairs (DEFRA) contract number TH032 'Rapid screening for Chalara resistance using ash
520 trees currently in commercial nurseries' with additional financial contribution from Department
521 of Agriculture, Food and the Marine, Ireland, and donation of trial trees from Maelor Forest
522 Nurseries. R. J. A. B. and L. J. K were also supported in this work by funding from the Defra
523 Future Proofing Plant Health scheme and the Erica Waltraud Albrecht Endowment Fund.
524 Sequencing was paid for by a direct grant from Defra to RBG Kew.
525

526 Author Contributions

527 J.J.S. performed the field assessments and sampling, data analysis for all the GWASs, GS for
528 dataset B and wrote the manuscript. R.J.A.B supervised field work, data analysis and
529 interpretation and wrote the manuscript. L.J.K. analysed genetic data. S.J.L designed the field
530 trials. R.A.N designed the statistical approaches. C.L.M developed and performed methods for
531 Genomic Prediction with training on pool-seq data. W.P modelled the proteins. All authors
532 reviewed the manuscript.
533

534 Declaration of Interests

535 The author(s) declare no competing financial interests.
536

537

538

539 References

540

541 1. Mitchell, R. J. *et al.* *The potential ecological impact of ash dieback in the UK.* Joint
542 *Nature Conservation Committee* (2014).

543 2. Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European ash (*Fraxinus excelsior*)
544 dieback - A conservation biology challenge. *Biological Conservation* (2013).
545 doi:10.1016/j.biocon.2012.08.026

546 3. Sollars, E. S. A. *et al.* Genome sequence and genetic diversity of European ash trees.
547 *Nature* (2017). doi:10.1038/nature20786

548 4. Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. & Sieber, T. N. *Hymenoscyphus*
549 *pseudoalbidus*, the causal agent of European ash dieback. *Mol. Plant Pathol.* (2014).
550 doi:10.1111/mpp.12073

551 5. Plumb, W. J. *et al.* The viability of a breeding programme for ash in the British Isles in the
552 face of ash dieback. *Plants People Planet* In review

553 6. Mckinney, L. V. *et al.* The ash dieback crisis: Genetic variation in resistance can prove a
554 long-term solution. *Plant Pathology* (2014). doi:10.1111/ppa.12196

555 7. Endler, L., Betancourt, A. J., Nolte, V. & Schlötterer, C. Reconciling differences in pool-
556 GWAS between populations: A case study of female abdominal pigmentation in
557 *Drosophila melanogaster*. *Genetics* **202**, 843–855 (2016).

558 8. Fontanesi, L. *et al.* Genome-wide association study for ham weight loss at first salting in
559 Italian Large White pigs: towards the genetic dissection of a key trait for dry-cured ham
560 production. *Anim. Genet.* (2017). doi:10.1111/age.12491

561 9. Zhao, Y., Mette, M. F., Gowda, M., Longin, C. F. H. & Reif, J. C. Bridging the gap
562 between marker-assisted and genomic selection of heading time and plant height in hybrid
563 wheat. *Heredity (Edinb)*. **112**, 638–645 (2014).

564 10. Hayes, B. J., Visscher, P. M. & Goddard, M. E. Increased accuracy of artificial selection
565 by using the realized relationship matrix. *Genet. Res. (Camb)*. (2009).
566 doi:10.1017/S0016672308009981

567 11. Goddard, M. E., Hayes, B. J. & Meuwissen, T. H. E. Genomic selection in livestock
568 populations. *Genet. Res. (Camb)*. (2010). doi:10.1017/S0016672310000613

569 12. Müller, B. S. F. *et al.* Genomic prediction in contrast to a genome-wide association study
570 in explaining heritable variation of complex growth traits in breeding populations of
571 Eucalyptus. *BMC Genomics* (2017). doi:10.1186/s12864-017-3920-2

572 13. Resende, J. F. R. *et al.* Accuracy of genomic selection methods in a standard data set of
573 loblolly pine (*Pinus taeda* L.). *Genetics* (2012). doi:10.1534/genetics.111.137026

574 14. Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals-mining
575 genome-wide polymorphism data without big funding. *Nat. Rev. Genet.* **15**, 749–763
576 (2014).

577 15. Stocks, J. J., Buggs, R. J. A. & Lee, S. J. A first assessment of *Fraxinus excelsior*
578 (common ash) susceptibility to *Hymenoscyphus fraxineus* (ash dieback) throughout the
579 British Isles. *Sci. Rep.* (2017). doi:10.1038/s41598-017-16706-6

580 16. Bakker, E. G. A Genome-Wide Survey of R Gene Polymorphisms in *Arabidopsis*. *PLANT*
581 *CELL ONLINE* (2006). doi:10.1105/tpc.106.042614

582 17. Meng, Z., Ruberti, C., Gong, Z. & Brandizzi, F. CPR5 modulates salicylic acid and the
583 unfolded protein response to manage tradeoffs between plant growth and stress responses.
584 *Plant J.* (2017). doi:10.1111/tpj.13397

585 18. Risseeuw, E. P. *et al.* Protein interaction analysis of SCF ubiquitin E3 ligase subunits
586 from *Arabidopsis*. *Plant J.* (2003). doi:10.1046/j.1365-313X.2003.01768.x

587 19. Baker, E. A. G. *et al.* Comparative Transcriptomics Among Four White Pine Species. *G3*
588 (2018). doi:10.1534/g3.118.200257

589 20. Kakehi, J. I. *et al.* Mutations in ribosomal proteins, RPL4 and RACK1, suppress the
590 phenotype of a thermospermine-deficient mutant of *arabidopsis thaliana*. *PLoS One*
591 (2015). doi:10.1371/journal.pone.0117309

592 21. Iovine, B., Iannella, M. L. & Bevilacqua, M. A. Damage-specific DNA binding protein 1
593 (DDB1): A protein with a wide range of functions. *International Journal of Biochemistry and Cell Biology* (2011). doi:10.1016/j.biocel.2011.09.001

595 22. Liu, Y. *et al.* A gene cluster encoding lectin receptor kinases confers broad-spectrum and
596 durable insect resistance in rice. *Nature Biotechnology* (2015). doi:10.1038/nbt.3069

597 23. Hao, W., Collier, S. M., Moffett, P. & Chai, J. Structural basis for the interaction between
598 the potato virus X resistance protein (Rx) and its cofactor ran GTPase-activating protein 2
599 (RanGAP2). *J. Biol. Chem.* (2013). doi:10.1074/jbc.M113.517417

600 24. Wang, S. *et al.* A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in
601 plant effector-triggered immunity. *Cell Host Microbe* (2014).
602 doi:10.1016/j.chom.2014.10.005

603 25. Rivas-San Vicente, M. & Plasencia, J. Salicylic acid beyond defence: Its role in plant
604 growth and development. *Journal of Experimental Botany* (2011). doi:10.1093/jxb/err031

605 26. Morita-Yamamuro, C. *et al.* The *Arabidopsis* gene CAD1 controls programmed cell death

606 in the plant immune system and encodes a protein containing a MACPF domain. *Plant*
607 *Cell Physiol.* (2005). doi:10.1093/pcp/pci095

608 27. Han, J. Y., In, J. G., Kwon, Y. S. & Choi, Y. E. Regulation of ginsenoside and phytosterol
609 biosynthesis by RNA interferences of squalene epoxidase gene in *Panax ginseng*.
610 *Phytochemistry* (2010). doi:10.1016/j.phytochem.2009.09.031

611 28. Wang, K., Senthil-Kumar, M., Ryu, C.-M., Kang, L. & Mysore, K. S. Phytosterols Play a
612 Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient
613 Efflux into the Apoplast. *PLANT Physiol.* (2012). doi:10.1104/pp.111.189217

614 29. Gupta, S. K., Rai, A. K., Kanwar, S. S. & Sharma, T. R. Comparative analysis of zinc
615 finger proteins involved in plant disease resistance. *PLoS One* (2012).
616 doi:10.1371/journal.pone.0042578

617 30. Soll, J. & Schleiff, E. Protein import into chloroplasts. *Nature Reviews Molecular Cell*
618 *Biology* (2004). doi:10.1038/nrm1333

619 31. Stief, A. *et al.* *Arabidopsis* miR156 Regulates Tolerance to Recurring Environmental
620 Stress through SPL Transcription Factors. *Plant Cell* (2014). doi:10.1105/tpc.114.123851

621 32. Michaels, S. D. & Amasino, R. M. Memories of winter : vernalization and the competence
622 to flower. *Plant, Cell Environ.* (2000). doi:10.1046/j.1365-3040.2000.00643.x

623 33. Liu, G., Holub, E. B., Alonso, J. M., Ecker, J. R. & Fobert, P. R. An *Arabidopsis* NPR1-
624 like gene, NPR4, is required for disease resistance. *Plant J.* (2005). doi:10.1111/j.1365-
625 313X.2004.02296.x

626 34. Gutterson, N. & Reuber, T. L. Regulation of disease resistance pathways by AP2/ERF
627 transcription factors. *Current Opinion in Plant Biology* (2004).
628 doi:10.1016/j.pbi.2004.04.007

629 35. Mitchell, D. A., Vasudevan, A., Linder, M. E. & Deschenes, R. J. Protein palmitoylation
630 by a family of DHHC protein S-acyltransferases. *J. Lipid Res* (2006). doi:R600007-
631 JLR200 [pii]\n10.1194/jlr.R600007-JLR200

632 36. Li, Y., Scott, R., Doughty, J., Grant, M. & Qi, B. Protein S -Acylationtransferase 14: A
633 Specific Role for Palmitoylation in Leaf Senescence in *Arabidopsis*. *Plant Physiol.*
634 (2016). doi:10.1104/pp.15.00448

635 37. Sharmin, S. *et al.* Xyloglucan endotransglycosylase/hydrolase genes from a susceptible
636 and resistant jute species show opposite expression pattern following Macrophomina
637 phaseolina infection. *Commun. Integr. Biol.* (2012). doi:10.4161/cib.21422

638 38. Okazawa, K. *et al.* Molecular cloning and cDNA sequencing of endoxyloglucan
639 transferase, a novel class of glycosyltransferase that mediates molecular grafting between

640 matrix polysaccharides in plant cell walls. *J. Biol. Chem.* (1993).

641 39. Sakuma, Y. *et al.* DNA-binding specificity of the ERF/AP2 domain of Arabidopsis
642 DREBs, transcription factors involved in dehydration- and cold-inducible gene
643 expression. *Biochem. Biophys. Res. Commun.* (2002). doi:10.1006/bbrc.2001.6299

644 40. Gkizi, D., Santos-Rufo, A., Rodríguez-Jurado, D., Paplomatas, E. J. & Tjamos, S. E. The
645 β-amylase genes: Negative regulators of disease resistance for *Verticillium dahliae*. *Plant*
646 *Pathol.* (2015). doi:10.1111/ppa.12360

647 41. Huibers, R. P., de Jong, M., Dekter, R. W. & Van den Ackerveken, G. Disease-specific
648 expression of host genes during downy mildew infection of *Arabidopsis*. *Mol. Plant.*
649 *Microbe. Interact.* (2009). doi:10.1094/MPMI-22-9-1104

650 42. Carter, C. The Vegetative Vacuole Proteome of *Arabidopsis thaliana* Reveals Predicted
651 and Unexpected Proteins. *PLANT CELL ONLINE* (2004). doi:10.1105/tpc.104.027078

652 43. Castaño-Miquel, L. *et al.* SUMOylation Inhibition Mediated by Disruption of SUMO E1-
653 E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens. *Mol. Plant*
654 (2017). doi:10.1016/j.molp.2017.01.007

655 44. Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K. & Gupta, K. J. Moving nitrogen to
656 the centre of plant defence against pathogens. *Annals of Botany* (2017).
657 doi:10.1093/aob/mcw179

658 45. Gao, Y. *et al.* Two Trichome Birefringence-Like Proteins Mediate Xylan Acetylation,
659 Which Is Essential for Leaf Blight Resistance in Rice. *Plant Physiol.* (2017).
660 doi:10.1104/pp.16.01618

661 46. Slavov, G. T. *et al.* Genome-wide association studies and prediction of 17 traits related to
662 phenology, biomass and cell wall composition in the energy grass *Miscanthus sinensis*.
663 *New Phytol.* **201**, 1227–1239 (2014).

664 47. Grinberg, N. F. *et al.* Implementation of Genomic Prediction in *Lolium perenne* (L.)
665 Breeding Populations. *Front. Plant Sci.* **7**, 1–10 (2016).

666 48. Spindel, J. *et al.* Genomic Selection and Association Mapping in Rice (*Oryza sativa*):
667 Effect of Trait Genetic Architecture, Training Population Composition, Marker Number
668 and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice
669 Breeding Lines. *PLoS Genet.* (2015). doi:10.1371/journal.pgen.1004982

670 49. Biazzi, E. *et al.* Genome-wide association mapping and genomic selection for alfalfa
671 (*Medicago sativa*) forage quality traits. *PLoS One* **12**, 1–17 (2017).

672 50. Bian, Y. & Holland, J. B. Enhancing genomic prediction with genome-wide association
673 studies in multiparental maize populations. *Heredity (Edinb)*. (2017).

674 doi:10.1038/hdy.2017.4

675 51. Resende, R. T. *et al.* Assessing the expected response to genomic selection of individuals
676 and families in Eucalyptus breeding with an additive-dominant model. *Heredity (Edinb)*.
677 (2017). doi:10.1038/hdy.2017.37

678 52. Hayes, B. J., Lewin, H. A. & Goddard, M. E. The future of livestock breeding: Genomic
679 selection for efficiency, reduced emissions intensity, and adaptation. *Trends in Genetics*
680 (2013). doi:10.1016/j.tig.2012.11.009

681 53. Pryce, J. E. & Daetwyler, H. D. Designing dairy cattle breeding schemes under genomic
682 selection: A review of international research. *Animal Production Science* (2012).
683 doi:10.1071/AN11098

684 54. Wientjes, Y. C. J., Veerkamp, R. F. & Calus, M. P. L. The effect of linkage disequilibrium
685 and family relationships on the reliability of genomic prediction. *Genetics* (2013).
686 doi:10.1534/genetics.112.146290

687 55. Clark, S. A., Hickey, J. M., Daetwyler, H. D. & van der Werf, J. H. J. The importance of
688 information on relatives for the prediction of genomic breeding values and the
689 implications for the makeup of reference data sets in livestock breeding schemes. *Genet.*
690 *Sel. Evol.* (2012). doi:10.1186/1297-9686-44-4

691 56. Alfas, P., Lygis, V., Suchockas, V. & Bartkevičius, E. Performance of twenty four
692 european *Fraxinus excelsior* populations in three lithuanian progeny trials with a special
693 emphasis on resistance to *Chalara fraxinea*. *Balt. For.* (2011).

694 57. Gautier, M. *et al.* Estimation of population allele frequencies from next-generation
695 sequencing data: Pool-versus individual-based genotyping. *Mol. Ecol.* **22**, 3766–3779
696 (2013).

697 58. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina
698 sequence data. *Bioinformatics* (2014). doi:10.1093/bioinformatics/btu170

699 59. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
700 (2013).

701 60. Kofler, R., Pandey, R. V. & Schlötterer, C. PoPoolation2: Identifying differentiation
702 between populations using sequencing of pooled DNA samples (Pool-Seq).
703 *Bioinformatics* **27**, 3435–3436 (2011).

704 61. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers.
705 *Bioinformatics* (2008). doi:10.1093/bioinformatics/btn129

706 62. Wei, T. & Simko, V. Package ‘corrplot: visualization of a correlation matrix’ (v.0.84).
707 URL <https://CRAN.R-project.org/package=corrplot> (2017).

708 63. Landis, J. R., Heyman, E. R. & Koch, G. G. Average Partial Association in Three-Way
709 Contingency Tables: A Review and Discussion of Alternative Tests. *Int. Stat. Rev. / Rev.*
710 *Int. Stat.* (1978). doi:10.2307/1402373

711 64. Storey, J. D., Bass, A. J., Dabney, A., Robinson, D. & Warnes, G. qvalue: Q-value
712 estimation for false discovery rate control. *R* (2019).

713 65. Cingolani, P. *et al.* A program for annotating and predicting the effects of single
714 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
715 strain w1118; iso-2; iso-3. *Fly (Austin)*. (2012). doi:10.4161/fly.19695

716 66. Waterhouse, A. *et al.* SWISS-MODEL: Homology modelling of protein structures and
717 complexes. *Nucleic Acids Res.* (2018). doi:10.1093/nar/gky427

718 67. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2
719 web portal for protein modeling, prediction and analysis. *Nat. Protoc.* (2015).
720 doi:10.1038/nprot.2015.053

721 68. Schrödinger, L. The PyMOL molecular graphics system, version 1.8.
722 <https://www.pymol.org/citing> (2015).

723 69. Trott oleg & Arthur J. Olson. AutoDock Vina: Improving the Speed and Accuracy of
724 Docking with a New Scoring Function, Efficient Optimization, and Multithreading. *J.*
725 *Comput. Chem.* (2010). doi:10.1002/jcc

726 70. Dallakyan, S. & Olson, A. J. Small-molecule library screening by docking with PyRx.
727 *Methods Mol. Biol.* (2015). doi:10.1007/978-1-4939-2269-7_19

728 71. Endelman, J. B. Ridge Regression and Other Kernels for Genomic Selection with R
729 Package rrBLUP. *Plant Genome J.* (2011). doi:10.3835/plantgenome2011.08.0024

730 72. Endelman, J. B. & Jannink, J.-L. Shrinkage Estimation of the Realized Relationship
731 Matrix. *Genes|Genomes|Genetics* (2012). doi:10.1534/g3.112.004259

732

733

734

735 **Supplementary Information**

736

737 **Supplementary Table 1.** Sequencing, Quality and Mapping values for each Dataset (A and B).

Item	Dataset A (pool-seq)			Dataset B (individuals)		
	Average	Min	Max	Average	Min	Max
Read Bases	7.70E+10	7.24E+10	7.95E+10	1.95E+10	1.79E+10	1.99E+10
Reads	5.10E+08	4.79E+08	5.27E+08	1.29E+08	1.19E+08	1.32E+08
GC(%)	35.21	35.03	35.45	35.14	34.72	35.51
AT(%)	64.79	64.55	64.97	64.86	64.49	65.28
Q20(%)	96.44	94.13	97.51	97.20	96.57	97.86
Q30(%)	92.26	87.87	94.35	93.71	92.37	95.13
Mapped (%)	98.3	97.4	98.8	98.4	93.3	99.1

738

739

740

741

742

743 **Supplementary Table 2.** Distribution of samples in pooled dataset (A) and
744 individually genotyped dataset (B) according to site and seed source.

Pooled Samples (Dataset A)

Provenances	Site 16	Site 21	Site 23	Site 35	Total
DEU	28	79			107
FTT SO	9	32		34	75
IRL DON	38	10		26	74
NSZ 106	54	62	12	60	188
NSZ 107	20	80	18	50	168
NSZ 109	10	50	12	16	88
NSZ 201	11	55	4	10	80
NSZ 204	60	11	4	6	81
NSZ 302	14	32	14	39	99
NSZ 303	6	20	8	36	70
NSZ 304	14	38	8	17	77
NSZ 403	18	18	14	32	82
NSZ 405	1	17	10	33	61
Total	283	504	104	359	1250

Individual Samples (Dataset B)

Provenances	Site 16	Site 21	Site 23	Site 35	Total
NSZ 204	58	51	17	24	150
Total	58	51	17	24	150

745
746
747
748
749
750

751 **Supplementary Table 3.** Comparison of the number of significant calls for the p-
752 values, estimated q-values, and estimated local FDR values.
753

	<1e-04	<0.001	<0.01	<0.025	<0.05	<0.1	<1
p-value	102,440	287,612	821,046	1,258,574	1,752,684	2,459,337	9,347,124
q-value	4,275	19,337	110,003	232,006	410,712	735,089	7,942,196
local FDR	3,149	10,395	57,370	121,222	213,502	379,746	3,360,672

754
755

756 **Supplementary Table 4.** List of ash genes closest to the subset of the top 203 GWAS
757 candidate SNPs (with $-\log_{10}(p) > 13$) that are over 5Kb from an annotated gene. Genes up
758 to 100Kb from SNPs are shown. The “Gene” column gives the final six digits for the full
759 gene names for the annotation of the ash genome¹¹, which are in the form
760 FRAEX38873_v2_000#####. The column “Dist.” shows the distance of the gene from
761 the nearest GWAS SNP. The predicted functions are from the olive genome.
762

Contig	Gene	Dist. (kb)	Predicted function	Intergenic SNPs
Contig1049	009110 ⁽¹⁾	41.5	uncharacterized LOC111407988 (LOC111407988), mRNA	1
	009120	6.3	deoxyhypusine hydroxylase-B-like	
Contig1355	037990	13	SUMO-conjugating enzyme UBC9-like	16
Contig1595	058210	15.2	uncharacterized LOC111407689	2
Contig1931	086110	31.8	leucine-rich repeat receptor-like serine/threonine-protein kinase BAM3 (LOC111409824), mRNA	5
	086120 ⁽¹⁾	7.6	uncharacterized LOC111371252 (LOC111371252), mRNA	
Contig2131	101780	5.6	KIN17-like protein (LOC111406018),	1
	101790	13	nuclear pore complex	
Contig2252	110620	5.5	30S ribosomal protein	1
	110630	16	serine/threonine-protein	
Contig2793	149030	85.8	PLASMODESMATA CALLOSE-BINDING	1
Contig3029	164520	22.4	F-box/kelch-repeat protein	1
Contig3135	169770	10.7	Vacuolar protein sorting-associated protein 32 homolog 2-like (LOC111385051), partial mRNA	1
	169780	6.3	meiotic nuclear division	
	169790	38.9	zinc finger CCCH domain-containing	
Contig3209	174230	9.5	putative receptor-like	1
	174240	23	transcription activator	
Contig4611	244030	10.6	uncharacterized LOC111407689	1
Contig558	282890	12.9	uncharacterized LOC111409075	3
	282910	30.2	nitrate regulatory gene2	
Contig5660	286360	24.5	protein FREE1 (LOC111381047), mRNA	1
	286370	6.7	protein MID1-COMPLEMENTING	
Contig5792	291580	10.2	transcription factor bHLH162-like	1

Contig7472	340820 ⁽¹⁾	5.5	dehydration-responsive element-binding protein 2C-like LOC111397561), transcript variant X2, mRNA	1
	340830	8.1	protein trichome birefringence-like 33 (LOC111397549), transcript variant X1, mRNA	
Contig7762	348710	53.8	uncharacterized LOC111409249	10
Contig8949	379070	5.6	uncharacterized LOC111390873	1
Contig9242	385770	18	uncharacterized LOC111374023	1

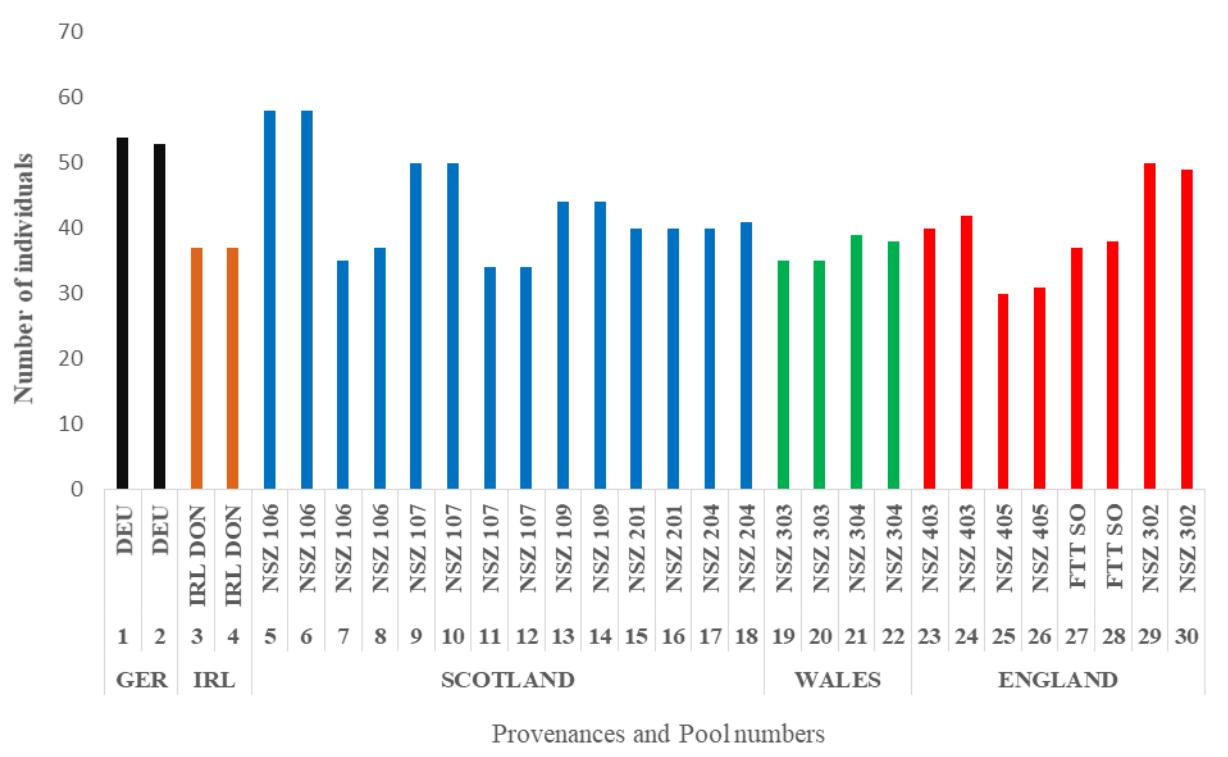
763 ¹Blastn algorithm used.

764

765

766

767


768

769 **Supplementary Table 5.** Polymorphic amino acid allele identities and frequencies at significant
770 GWAS loci found in the top 203 hits by p-value (with $-\log_{10}(p) > 13$)
771

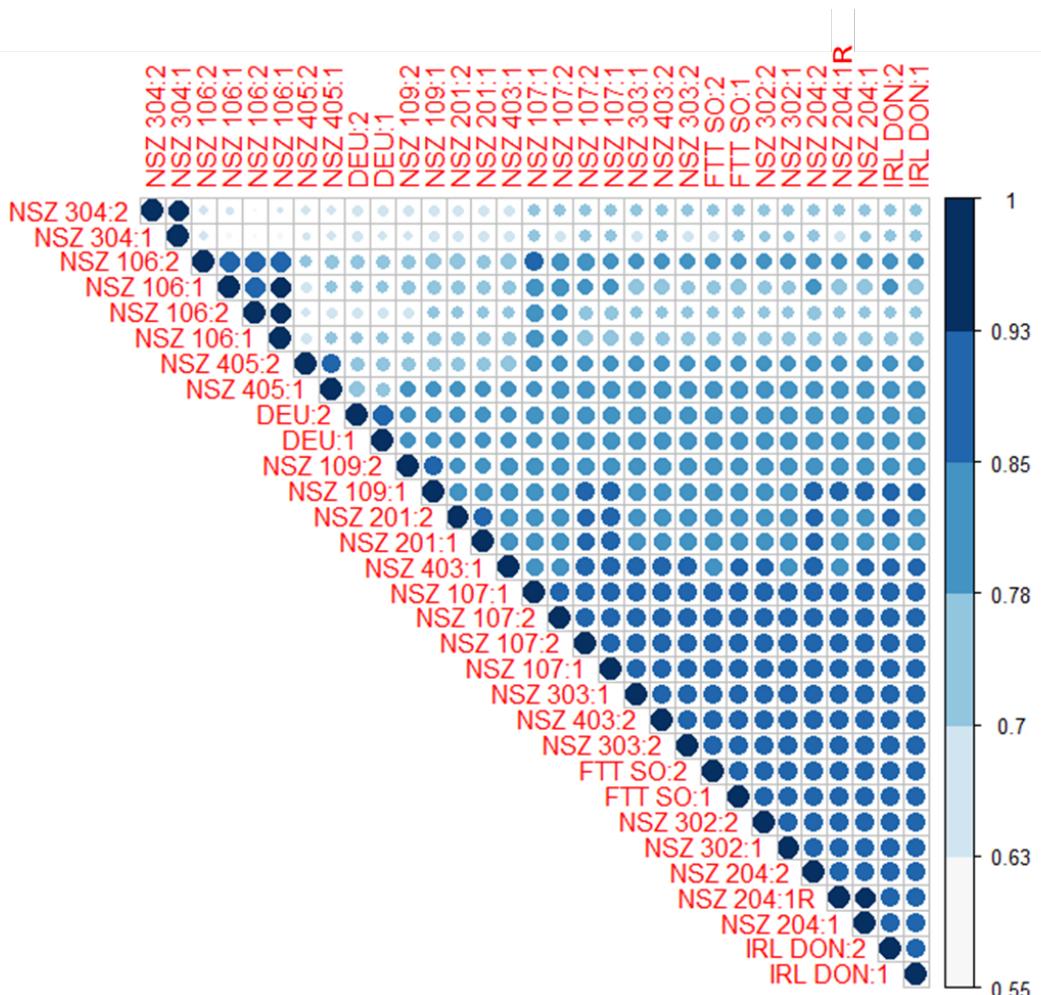
Contig	Gene	Predicted function	Major allele	Minor allele	Position in protein	MAF in healthy trees	MAF in damaged trees
Contig10122	003260	BED finger-NBS-LRR resistance protein	Leu	Trp	157	0.216	0.121
Contig10122	003270	Protein CPR-5-like	Ile	Ser	36	0.216	0.121
Contig2324	116110	60S ribosomal protein L4-1	Gly	Arg	251	0.285	0.382
Contig2324	116110	60S ribosomal protein L4-1	Arg	Met	285	0.263	0.354
Contig2324	116110	60S ribosomal protein L4-1	Lys	Asn	287	0.322	0.431
Contig2324	116110	60S ribosomal protein L4-1	Ala	Thr	294	0.301	0.393
Contig3029	164520	F-box/kelch-repeat protein SKIP6	Gln	Arg	13	0.136	0.052
Contig332	180950	Protein DAMAGED DNA-BINDING	Pro	Leu	99	0.266	0.140
Contig614	305440	Uncharacterized	Gly	Asp	1155	0.211	0.341
Contig7698	346660	Protein HEAT INTOLERANT 4-like	Phe	Leu	12	0.123	0.064

772
773

774

775

Provenances and Pool numbers


776

Supplementary Figure 1. Number of individuals in each pool (odd pool numbers represent healthy and even numbers susceptible populations) and country of origin.

777

778

779

780

781

782 **Supplementary Figure 2.** Circle plot of major allele frequency correlation
783 values between all 31 pools. Numbers after seed source code correspond to
784 health status (1 - healthy or 2 - damaged by ADB). Pool NSZ204:1 (with low
785 ADB damage) was technically replicated (NSZ204:1R) using the same set of
786 trees. Both pools from NSZ106 and NSZ107 were biologically replicated for
787 both high and low damage pools, using different sets of trees.

788

789

790

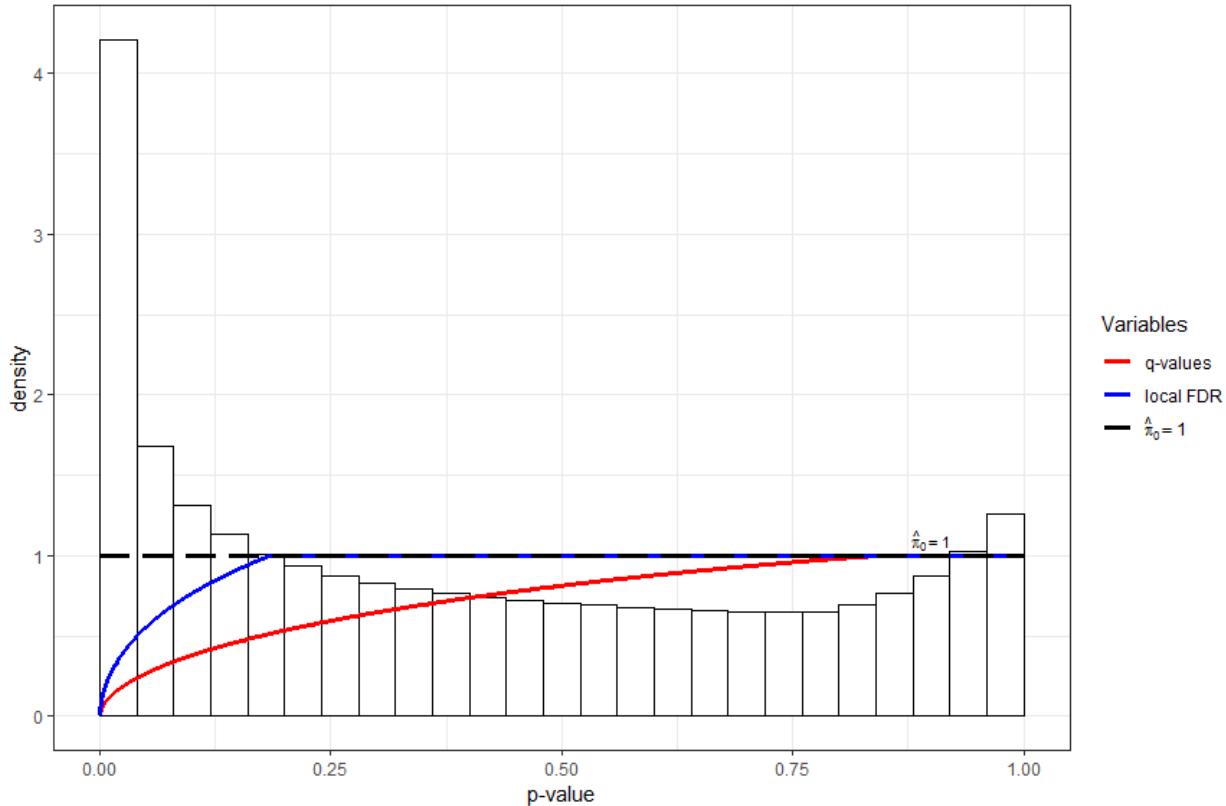
791

792

793

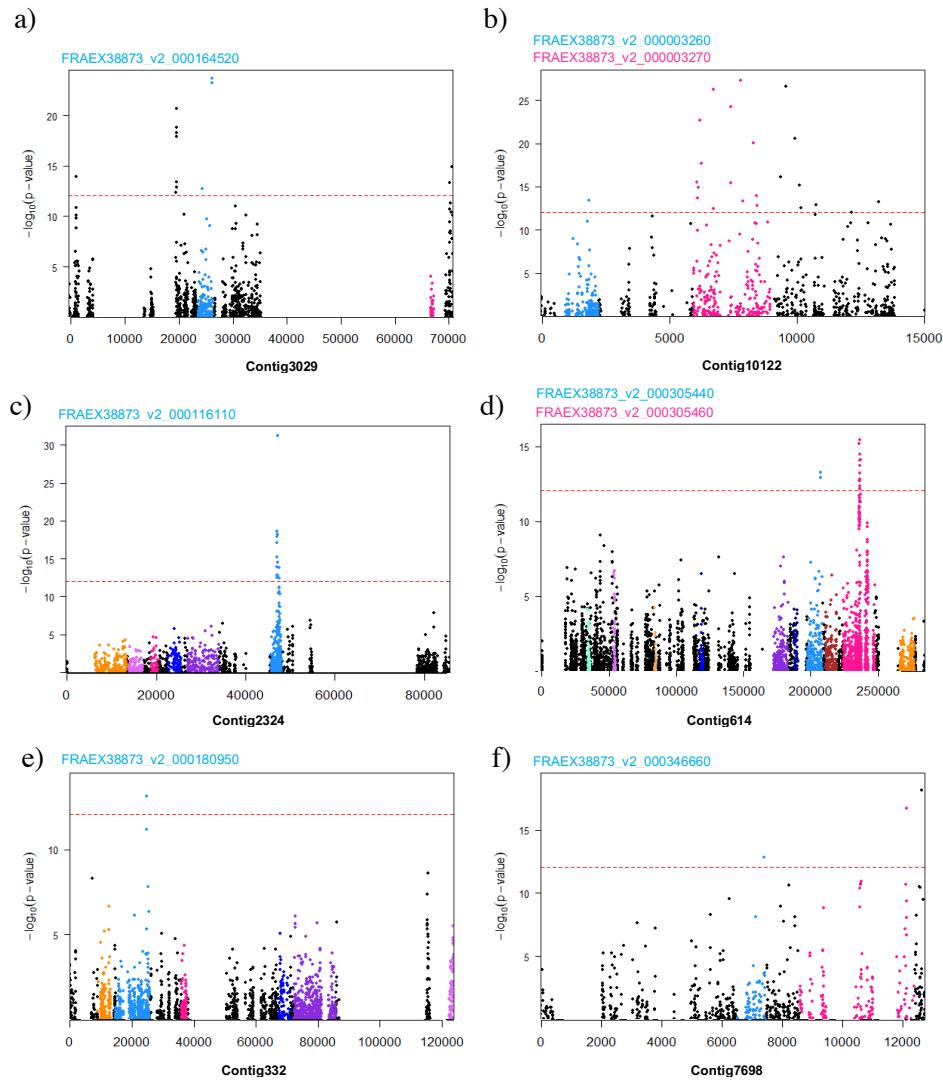
794

795

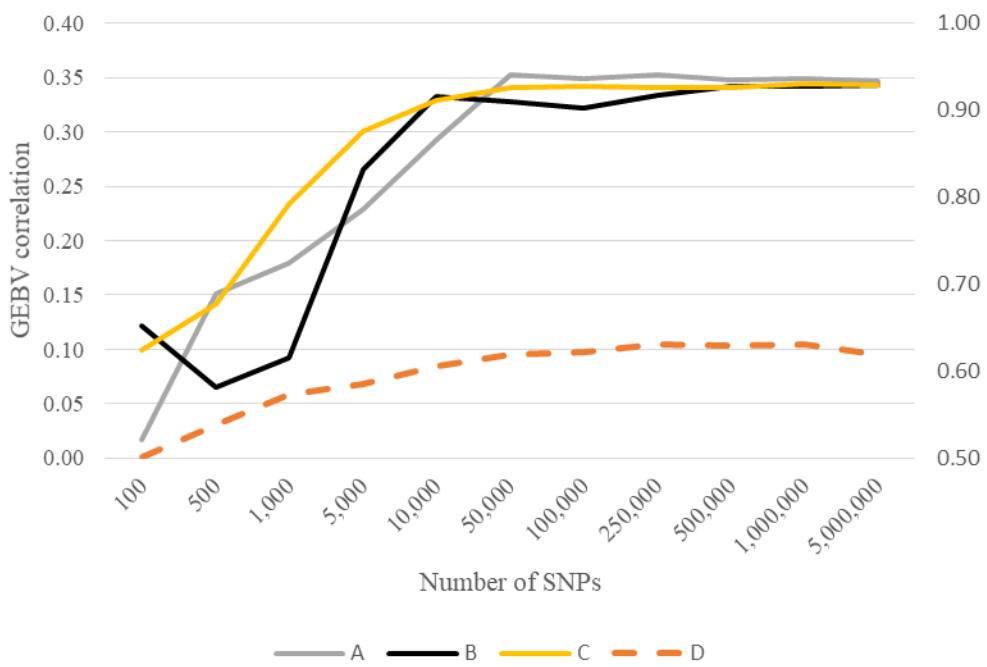

796

797

798

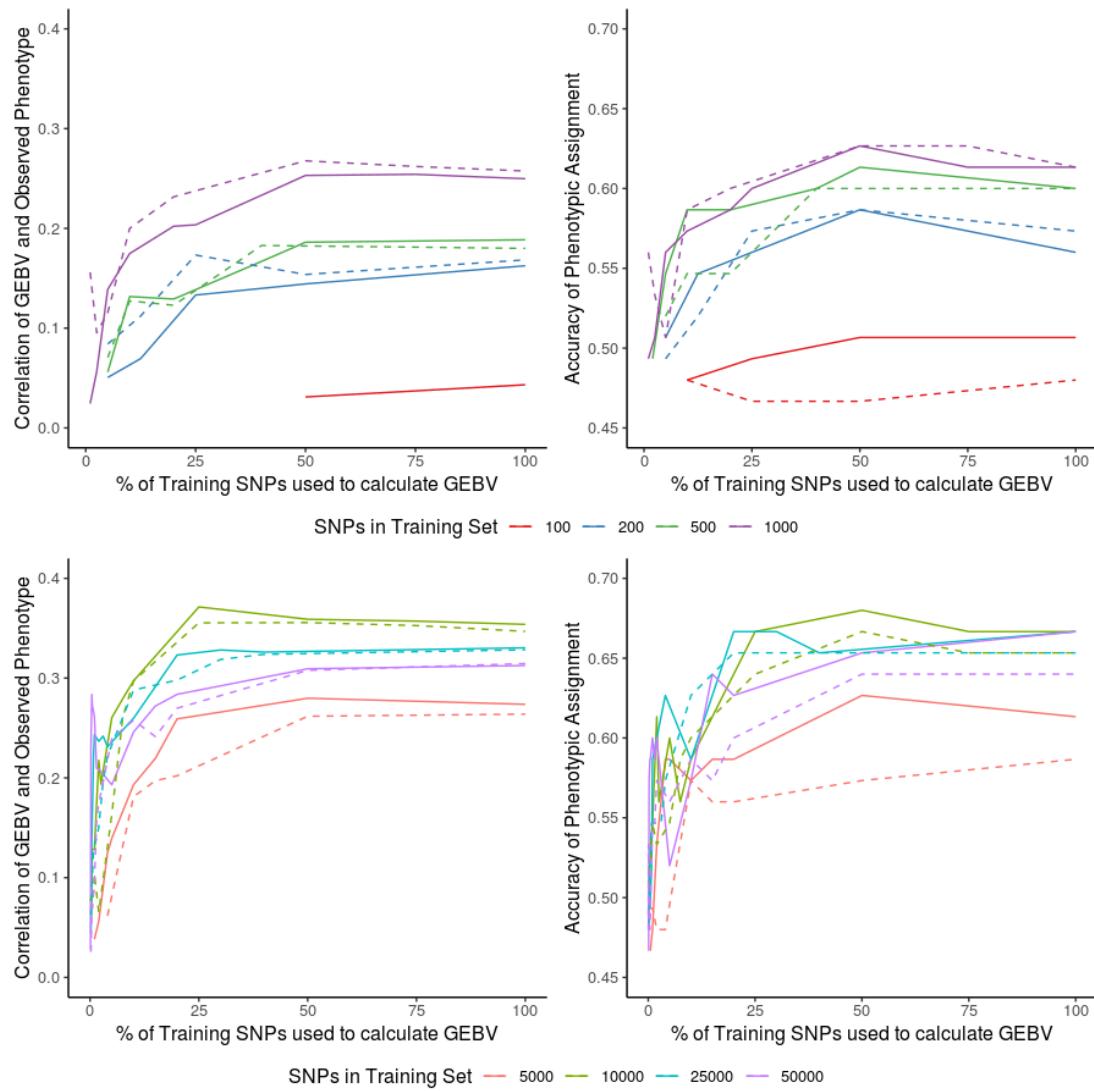

799

800
801
802
803
804
805
806


807
808
809
810
811
812

Supplementary Figure 3. Pool-seq GWAS p-value density histogram with line plots of the q-values and local False Discovery Rate (FDR) values versus p-values. The π_0 estimate is also displayed.

813
814
815
816
817
818
819
820
821
822


Supplementary Figure 4. Manhattan plots for contigs containing genes in which SNPs encoding an amino acid substitution were in the top 203 pool-seq GWAS candidates. All genes present on the contigs are colored and those containing SNPs causing missense alterations to coding regions are labelled using the same colour as the gene's SNPs in the Manhattan plot.

823

824 **Supplementary Figure 5.** Genomic prediction results using the 150
825 individually genotyped samples as both training and testing set, with 100 to 5
826 million SNPs used to train and test the rrBLUP model. (A) all data filters
827 applied (mapping quality, indel and repeat removal); (B) filtered mapping
828 quality and indel removal; (C) random selection of SNPs using all data filters;
829 (D) GP allocation accuracy calculated using data with all filters applied. The
830 scale on the left hand vertical axis is for correlation, and the scale on the right
831 hand vertical axis is for accuracy.
832

833

834

835

836 **Supplementary Figure 6.** Genomic prediction using pool-seq data for training and 150 NSZ
837 204 individuals for testing: dashed lines show results excluding pool-seq data from provenance
838 NSZ 204 (the test provenance) from the training dataset, whereas solid lines show results with
839 NSZ 204 included. The left column shows correlation of observed phenotype and GEBV and
840 the right column shows accuracy of phenotypic assignment from GEBV.

841