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 13 

Summary  14 

 15 

Populations of European ash trees (Fraxinus excelsior) are being devastated by the invasive alien 16 

fungus Hymenoscyphus fraxineus, which causes ash dieback (ADB). We sequenced whole 17 

genomic DNA from 1250 ash trees in 31 DNA pools, each pool containing trees with the same 18 

ADB damage status in a screening trial and from the same seed-source zone. A genome-wide 19 

association study (GWAS) identified 3,149 single nucleotide polymorphisms (SNPs) associated 20 

with low versus high ADB damage. Sixty-one of the 203 most significant SNPs were in, or close 21 

to, genes with putative homologs already known to be involved in pathogen responses in other 22 

plant species. We also used the pooled sequence data to train a genomic prediction (GP) model, 23 

cross-validated using individual whole genome sequence data generated for 75 healthy and 75 24 

damaged trees from a single seed source. Using the top 30% of our genomic estimated breeding 25 

values from 200 SNPs, we could predict tree health with over 90% accuracy. We infer that ash 26 

dieback resistance in F. excelsior is a polygenic trait that should respond well to both natural 27 

selection and breeding, which could be accelerated using GP. 28 

 29 

Keywords: Fraxinus excelsior, ash, Hymenoscyphus fraxineus, ash dieback, pool-seq, Genome 30 

wide association study (GWAS), Genomic Selection (GS) 31 
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Introduction  32 

 33 

Fraxinus excelsior (European ash), is a broad-leaved tree species widespread in Europe, with 34 

over 900 dependent species1,2, and with high genetic diversity3. Its populations are being 35 

severely reduced by the invasive alien fungus Hymenoscyphus fraxineus, which causes ash 36 

dieback4. Several previous studies have shown that there is a low frequency of heritable 37 

resistance to ADB in European ash populations5. Estimates of breeding values of mother trees 38 

based on observed ADB damage in their progeny have an approximately normal distribution, 39 

hinting that resistance is a polygenic trait6 that would respond well to selection. However, an 40 

associative transcriptomics study on 182 Danish ash trees found expression levels of 20 genes 41 

associated with ADB damage scores but no genomic SNPs3. In model organisms, crops and farm 42 

animals, analysis of genomic information has been widely used to discover candidate genes 43 

involved in phenotypic traits, or to identify individuals with desirable breeding values7–13.  The 44 

identification of candidate loci typically makes use of genome-wide association studies (GWAS) 45 

whereas genomic prediction (GP) methods can be used to select individuals with high breeding 46 

values. These methods have seldom been applied to keystone species in natural ecosystems due 47 

to the typically high genetic variability of such species and the high cost of genome-wide 48 

genotyping. Previous studies have demonstrated that estimation of allele frequencies by 49 

sequencing of pooled DNA samples (pool-seq) can reduce the cost of a GWAS14, but thus far 50 

such data have not been applied to the training of GP models. Here, we applied pool-seq GWAS 51 

and pool-seq trained GP models to European ash populations, finding a large number of SNPs 52 

associated with ADB damage that allow us to make accurate estimates of breeding values.   53 

 54 

Results 55 

Genome-wide association study 56 

 57 

For 1250 ash trees we generated average genome coverage of 2.2x per tree, within DNA pools of 58 

30-58 trees (Table S1). Each pool contained DNA from trees from one of thirteen seed source 59 

zones, and from trees that were either healthy or highly damaged by ADB in a mass screening 60 

trial15 (Figure S1, Tables S2). On average 98.3% of reads per pool mapped to the ash reference 61 

genome assembly3. After filtering read alignments for quality, coverage, indels and repeats, we 62 
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calculated allele frequencies at 9,347,243 SNP loci. A correspondence analysis (CA), on the 63 

major allele frequencies for all 31 pools showed a distribution reflecting the geographic origin of 64 

the seed sources (Figure 1), in which axis 1 (summarising 10% of variation) reflected latitude 65 

and axis 2 (summarising 9% of variation) reflected longitude. Allele frequency measures were 66 

highly correlated in technical and biological replicates (Figure S2). In a GWAS of allele 67 

frequencies in healthy versus ADB-damaged pools, we found 3,149 significant SNPs using a 68 

Cochran-Mantel-Haenszel (CMH) test and a local FDR cut-off at 1x e-4 (Table S3, Figure S3). 69 

Imposing a more stringent cut-off of 1 x e-13, we found 203 SNP loci significantly associated 70 

with ash dieback damage scores (Figure 2).  71 

 72 

Seven genes contained missense variants caused by ten of these 203 SNPs (Table 1, Figure S4, 73 

Table S5). We were able to model the proteins encoded by four of these genes (Figure 3).  74 

Similarity searches on these seven genes suggested that four of them are already known to be 75 

involved in stress or pathogen responses in other plant species. Gene 76 

FRAEX38873_v2_000003260, is putatively homologous to an Arabidopsis BED finger-NBS-77 

LRR-type Resistance (R) gene (At5g63020)16 and is affected by a leucine/tryptophan variant 78 

close to the protein’s nucleotide binding site (Figure 3a) with the tryptophan being rarer overall, 79 

but at a higher frequency in the healthy than the damaged trees (Table S5). This R gene is located 80 

(see Figure S4) on Contig 10122 less than 5Kb from gene FRAEX38873_v2_000003270, which 81 

is putatively homologous to a Constitutive expresser of Pathogenesis-Related genes-5 (CPR5)-82 

like protein and affected by an isoleucine/serine variant, a 5’ UTR start codon variant and 16 83 

non-coding variants. This CPR5-like gene is likely to regulate disease responses via salicylic 84 

acid signalling17. Gene FRAEX38873_v2_000164520 is a putative F-box/kelch-repeat protein 85 

SKIP6 homolog, which encodes a subunit of the Skp, Cullin, F-box containing (SCF) complex, 86 

catalysing ubiquitination of proteins prior to their degradation18. One of our candidate SNPs 87 

encodes an arginine/glutamine substitution in this gene, with the arginine being rarer overall, but 88 

at a higher frequency in the healthy than the damaged trees. The substitution is located close to 89 

the gene’s F-box motif (Figure 3b) and is likely to affect binding within the SCF complex due to 90 

the charge difference between the two amino acids. In pine trees, F-Box-SKP6 proteins have 91 

been linked to fungal resistance19. Gene FRAEX38873_v2_000305440, may also be involved in 92 

ubiquitination: although the CDS hit an uncharacterised gene in olive (Table 1), the mRNA hit an 93 

E3 ubiquitin-protein ligase. This gene contains a glycine to aspartic acid substitution. 94 

 95 

The other three genes with missense mutations have putative homologs with functions that have 96 
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not been previously linked directly to disease resistance. Gene FRAEX38873_v2_000116110 is 97 

a 60S ribosomal protein L4-1 (RPL4-1) homolog, with four missense and nine synonymous 98 

variants associated with ADB damage level. The amino acid positions affected are in disordered 99 

regions in close proximity to one another (Figure 3d). Changes in this gene may affect the 100 

efficiency of mRNA translation20. Gene FRAEX38873_v2_000346660 is a Heat Intolerant 4 like 101 

protein with a phenylalanine to leucine variant. Gene FRAEX38873_v2_000180950 is a 102 

homolog of Damaged DNA-Binding 2 (DBB2), which has a role in DNA repair21 and contains a 103 

proline/leucine substitution within its WD40 protein binding domain (Figure 3c). This gene is 104 

found on Contig 332 between two G-type lectin S-receptor-like serine/threonine-protein kinase 105 

LECRK3 genes (FRAEX38873_v2_000180940 and FRAEX38873_v2_000180960) whose 106 

putative homologs are involved in brown planthopper resistance in rice22. 107 
 108 

A further 24 genes contain significant (p < 1 x e-13) SNPs encoding variants that are transcribed 109 

but not translated (Table 1) Of these, four match genes that have been previously identified as 110 

involved in disease resistance in other species. Gene FRAEX38873_v2_000234590 encodes a 111 

WPP domain-interacting protein 1-like, and WPP domains have been linked to viral resistance in 112 

potato23. Gene FRAEX38873_v2_000305460 encodes a PHR1-LIKE 3-like protein which may 113 

play a role in immunity24 via the salicylic acid and jasmonic acid pathways25. Gene 114 

FRAEX38873_v2_000013250 encodes a Membrane Attack Complex and Perforin (MACPF) 115 

domain-containing Constitutively Activated cell Death (CAD) 1-like gene, which controls the 116 

hypersensitive response via salicylic acid dependent defence pathways26. 117 

FRAEX38873_v2_000211580 is a Squalene monooxygenase-like gene involved in the synthesis 118 

of phytosterols27 which have a role in plant immunity28.  119 

 120 

Other genes involved in regulation were found to have significant (p < 1 x e-13) non-translated 121 

variants. FRAEX38873_v2_000266510 is a zinc finger CCCH domain-containing protein 11-122 

like that is likely to be involved in regulation, perhaps of resistance mechanisms29. 123 

FRAEX38873_v2_000047060 is a short-chain dehydrogenase TIC 32, chloroplastic-like gene 124 

that is involved in the regulation of protein import30. FRAEX38873_v2_000074310 is putatively 125 

homologous to a squamosa promoter-binding (SBP)-like protein 8 that controls stress responses 126 

in Arabidopsis31. Two genes with non-coding variants seem to affect phenology: gene 127 

FRAEX38873_v2_000145630 encodes a Vernalisation Insensitive 3 (VIN3) like protein 132 and 128 

gene FRAEX38873_v2_000168770 encodes a Late Flowering-like protein. 129 

 130 
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Interestingly, significant non-translated variants were also found in categories of genes that had 131 

unexpectedly shown significant missense variants. Another 60S ribosomal protein L4-1 gene, 132 

FRAEX38873_v2_000154480 (in addition to FRAEX38873_v2_000116110, which contains 133 

four missense variants) contains two intron variants associated with ADB damage. There are 134 

only three loci in the ash genome reference assembly matching the Arabidopsis 60S RPL4-1 135 

(AT3G09630) gene. Another putative DNA repair gene was also hit (in addition to 136 

FRAEX38873_v2_000180950, which had a missense variant); gene 137 

FRAEX38873_v2_000308800 encoding a probable DNA helicase MiniChromosome 138 

Maintenance (MCM) 8 protein.  139 

 140 

Six genes with putative roles in disease resistance have significant (p < 1 x e-13) SNPs within 141 

5Kb up- or down-stream of them and are the closest known genes to those SNPs (Table 1). 142 

FRAEX38873_v2_000296810 matches an ankyrin repeat-containing protein NPR4-like gene; in 143 

Arabidopsis the NPR4 gene is involved in defence against fungal pathogens and in mediation of 144 

the salicylic acid and jasmonic acid/ethylene-activated signalling pathways33. 145 

FRAEX38873_v2_000190500 is a putative ethylene-responsive transcription factor ERF098-like 146 

gene which may be involved in regulation of disease resistance pathways34. Gene 147 

FRAEX38873_v2_000342260 is a palmitoyltransferase or protein S-acyltransferases (PATs) 8-148 

like gene35, which is likely to have a role in protein trafficking and signalling; in Arabidopsis, 149 

some PATs regulate senescence via the salicylic acid pathway36. FRAEX38873_v2_000025560 150 

encodes a probable xyloglucan endotransglucosylase/hydrolase protein 27 which may play a role 151 

in extracellular defence against pathogens37,38. FRAEX38873_v2_0000258470 encodes an F-152 

box/FBD/LRR-repeat protein likely to be involved in ubiquitination (see above). 153 

FRAEX38873_v2_0000340820 is a putative dehydration-responsive element-binding protein 154 

2C-like (DREB2C) gene which has a role in osmotic-stress signal transduction pathways39. 155 

 156 

The closest genes to 49 of the 203 most significant GWAS SNPs (p < 1 x e-13) were between 5Kb 157 

and 100Kb distant (Table S4). These included some with previous evidence of disease resistance 158 

functions. Gene FRAEX38873_v2_000086110 is a Leucine-rich repeat receptor-like 159 

serine/threonine-protein kinase β‐amylase (BAM) 3, which is involved in fungal resistance in 160 

Arabidopsis40. Gene FRAEX38873_v2_000291580 is a bHLH162-like transcription factor 161 

whose putative Arabidopsis homolog is induced by infection with the downy mildew pathogen 162 

Hyaloperonospora arabidopsidis41. Gene FRAEX38873_v2_000169770 is likely to be involved 163 
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in vacuolar protein sorting which can play a role in defence responses42. A cluster of SNPs on 164 

contig1355 are located at approximately 13-kb from gene FRAEX38873_v2_000037990, a small 165 

ubiquitin-like modifier (SUMO) conjugating enzyme UBC9-like gene. Inhibition of SUMO 166 

conjugation in Arabidopsis causes increased susceptibility to fungal pathogens43. Gene 167 

FRAEX38873_v2_000282910 is a nitrate regulatory gene 2 (NRG2) which could mediate nitrate 168 

signalling or mobilisation in response to pathogens44. Gene FRAEX38873_v2_000340830 is a 169 

trichome birefringence-like (TBL) 33 gene; mutants of TBL genes in rice plants confer reduced 170 

resistance to rice blight disease45.  171 

 172 

 173 

Genomic prediction  174 

 175 

From 150 individual trees sampled from NSZ 204 (Dataset B) we generated a total of 2.9Tbp in 176 

19.5 billion reads. Each individual tree was sequenced to 22X genome coverage on average. 177 

Quality metrics and GC content were very similar to Dataset A (Table S1). On average the 178 

percentage of reads mapped to the reference genome assembly per sample was 98.4% and 179 

32,443,401 SNPs were found with read depth > 9 and mapping quality > 15.  180 

 181 

To evaluate the genomic estimated breeding values of ADB damage (GEBV), we used the pool-182 

seq data as a training population and the 150 NSZ 204 individuals as a test population. We 183 

obtained highest accuracy (correlation of observed scores and GEBV, r =  0.37; frequency of 184 

correct allocations,  f = 0.68) using the top 10,000 SNPs by p-value from the GWAS, of which 185 

9,620 SNPs had been successfully called in the test population (Figure 4).  Smaller and larger 186 

SNP-dataset sizes performed less well. With a view to using a subset of these SNP for prediction, 187 

we reran the analysis using a subset of the 25% with the largest (absolute) estimated effect sizes 188 

and found minimal effect on the correlation (Figure 4), again finding the best result with (25% 189 

of) the dataset of 10,000 SNPs. Estimated effect sizes for all SNPs with models trained on 100 to 190 

50,000 SNPs are shown in Supplementary File 1. 191 

 192 

Using the GWAS p-values as the criterion for selecting candidate SNPs for GP was far more 193 

effective than using a random selection from the genome, as judged by r and f scores (Figure 4). 194 

Despite this effect, there was not a strong association between the GWAS p-values and the effect 195 

size estimated by the genomic prediction: only 54 of the 2500 SNPs with the largest effect size 196 

were in the top 203 SNPs identified by the GWAS.   197 
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 198 

In a relatively small population with large heritable effects, spurious associations between some 199 

SNP alleles and a trait can arise. A sufficiently large number of randomly chosen SNPs will 200 

convey all the information on the relatedness of the individuals which, in turn, can be used to 201 

predict a trait simply because related individuals have similar trait values. To evaluate this effect, 202 

the 150 NSZ 204 individuals were used for GP as both a training dataset and a test dataset. The 203 

accuracy of the prediction with the top 50,000 GWAS-identified SNPs was no better than a 204 

random selection of 50,000 SNPs (Figure S5). Given this, we re-ran GP training on the pool-seq 205 

data with the pools from NSZ 204 (the seed source of the test population) excluded in case their 206 

inclusion had given spurious associations that contributed to the success of the first GP. This 207 

more stringent cross-validation showed a comparable performance to our previous GP trained on 208 

the full pool-seq dataset (maximum r= 0.36, f= 0.67; Figure S6). 209 

 210 

For a breeding programme for increased resistance to ash dieback, accurate prediction of the 211 

most resistant trees is needed. We therefore examined the accuracy with which our highest 212 

GEBVs were assigning trees correctly to the undamaged health category. For the trees with the 213 

top 20% and 30% GEBV scores, we obtained predictive accuracies of f > 0.9, using as few as 214 

200 predictive SNPs (Figure 5).  215 

 216 

 217 

Discussion 218 

 219 

Many of the top SNP loci that we found associated with ash tree resistance to ash dieback are in, 220 

or close to, genes with putative homologs in other species that have been previously shown to 221 

detect pathogens, signal their presence, or regulate pathogen responses. Using SNPs identified 222 

by the GWAS to train GP on the pool-seq data, we obtained much greater accuracy in predicting 223 

the ADB damage score in 150 separate individuals than when we used the same number of 224 

randomly selected SNPs. Together, these results demonstrate we can use genotype to predict 225 

performance across different seed-sources, and that other genes that have not previously been 226 

implicated in plant pathogen resistance, such as 60S ribosomal protein L4-1 genes and some 227 

DNA repair genes, may be involved in resistance to ADB. None of our most significant SNPs 228 

were in or close to genes previously identified as showing gene expression changes associated 229 

with ADB resistance3, but we cannot exclude the possibility that our candidate SNPs may be 230 
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controlling expression differences in these genes. The distribution of effect sizes and the 231 

predictivity peak using 2500 SNPs suggests that F. excelsior resistance to H. fraxineus is a highly 232 

polygenic trait and may therefore respond well to artificial and natural selection, allowing the 233 

breeding or evolution of durable increased resistance. 234 

 235 

The levels of accuracy which our GP reached are high, and comparable to those that are used to 236 

inform selections in crop46–50, tree12,51 and livestock breeding programmes52,53. Thus, our results 237 

have the potential to increase the speed at which we can successfully breed ash dieback resistant 238 

trees. A common short-coming of GP is that predictions are highly population specific12,54,55, and 239 

the success of GP using randomly selected SNPs when training models within the individually 240 

sequenced trees suggests that population-specific GP can be easily made for ash. However, we 241 

made successful predictions in the individually sequenced trees using the pool-seq trained GP 242 

even when the pool-seq data for their seed-source provenance was not used in training the 243 

model. This suggests we have successfully identified widespread alleles that are involved in 244 

ADB resistance in many populations. There may well be further population-specific alleles that 245 

our methods have not detected. This study is the first that we are aware of to use pool-seq data to 246 

train a trans-populational GP model. The success of this approach in European ash – a 247 

genetically variable species – suggests it may be useful in many other ecologically important 248 

species as a cost-effective approach to successful genomic prediction of evolving traits.  249 

  250 
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Methods 251 

 252 

Trial design  253 

This study is based on a Forest Research mass screening trial planted in spring 2013, 254 

comprising 48 hectares of trials on 14 sites in southeast England as described in Stocks et al. 255 

201715. Briefly, each site was planted with trees grown from seed sourced from up to 15 256 

different provenances. These were 10 British native seed zones (NSZ 106, NSZ 107, NSZ 257 

109, NSZ 201, NSZ 204, NSZ 302, NSZ 303, NSZ 304, NSZ 403, NSZ 405), Germany 258 

(DEU), France (FRA), Ireland (CLARE and IRL DON), and a Breeding Seedling Orchard 259 

(BSO) planted by Future Trees Trust (FTT) comprised of half-sibling families from “plus” 260 

trees across Britain.  261 

Phenotyping and sampling 262 

In July/August 2017 fresh leaves for DNA extraction were sampled from four of the trial sites 263 

that had heavy ash dieback damage: sites 16 (near Norwich, Norfolk), 21 (near Maidstone, 264 

Kent), 23 (near Norwich, Norfolk) and 35 (near Tunbridge Wells, Kent). We selected healthy 265 

trees (scores 7 on the scale of Pliura et al. 56) and trees with considerable ash dieback damage 266 

(scores 4 and 5 on the scale of Pliura et al. 56). Initially a total of 1536 trees were sampled. Of 267 

these 623 healthy and 627 unhealthy trees were selected for pooled sequencing with the total 268 

number of trees for each seed source and health status described in Table S2 and Figure S1. For 269 

individual sequencing, we selected a further 75 healthy and 75 unhealthy trees from NSZ 204 270 

that were not included in the pools from this seed source.  271 

 272 

DNA extraction and sequencing 273 

 274 

Leaf samples were transported to the lab using cool boxes. Fresh Genomic DNA was extracted 275 

from liquid nitrogen frozen leaf tissue using the DNeasy Plant Mini Kit or the DNeasy 96 Plant 276 

Kit (Qiagen) and eluted in 70 μl of Qiagen AE buffer. Quantification of genomic DNA was 277 

performed using the Quantus™ Fluorometer on all extractions. DNA purity quality checks were 278 

carried out using the Thermo Scientific™ NanoDrop 2000 for nucleic acid 260/280 and 260/230 279 

absorbance ratios. Of the total number of extractions, 1400 were selected based on DNA quantity 280 

and quality thresholds. A minimum concentration of >20 ng/μl, OD260/280 >1.7 and total 281 
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amount >1.0 μg of DNA was necessary for the sample to pass. Of the 1400 samples, 1250 were 282 

separated for the pooling and sequencing procedures and will be referred to as dataset A. A 283 

separate 150 individuals from NSZ 204, that were not included in the pools, were selected for 284 

individual genotyping and will be referred to as dataset B. 285 

 286 

For the pooling procedure equal amounts of DNA from each sample were pooled together based 287 

on their initial DNA concentrations, adjusting the total volume of each sample accordingly. 288 

Pooling was based on seed source origin and health status with two pools for each seed source, 289 

one healthy and the other damaged. A total of 31 pools were created (Figure S1), one being a 290 

technical replicate of the healthy trees from NSZ 204 that was made by independently repeating 291 

all quantification, quality and pooling steps on the same 40 trees. NSZ 106 and NSZ 107 had 4 292 

pools each as the samples were divided to maintain an average of 42 trees per pool. These 293 

therefore provide biological replicates. Studies have shown that pools sizes as small as 12 have 294 

provided robust and reliable population allele frequency estimates14,57. 295 

 296 

TruSeq DNA PCR-Free (Illumina) sequencing libraries were prepared, using 350 base pair 297 

inserts. All sequencing was carried out using HiSeq X at Macrogen (South Korea) with 150 298 

paired end reads with the goal of achieving a whole genome coverage (based on the estimated 299 

genome size of the F. excelsior reference individual3 of 80x per pool (2x coverage per 300 

individual) for dataset A and 20x for dataset B. 301 

 302 

Mapping to reference and filtering 303 

 304 

Trimmomatic v0.38 was used for read trimming and adapter removal. Leading and trailing low 305 

quality or N bases below a quality of 3 were removed. Reads were scanned with a 4-base wide 306 

sliding window, cutting when the average quality per base dropped below 15 and excluding 307 

reads below 36 bases long58. Reads were then aligned to the reference genome for Fraxinus 308 

excelsior, assembly version BATG0.5, using the Burrows-Wheeler Alignment Tool (BWA 309 

MEM)59, version 0.7.17 with default settings. The mapped reads were filtered for a mapping 310 

quality of 20 with samtools (v1.9). On average the percentage of reads mapped to the reference 311 

was 98.3% for dataset A and 98.4% for dataset B. For both datasets Sequence Alignment Map 312 

(SAM) and binary version (BAM) files were created using Samtools. Indels were detected and 313 

removed using Popoolation260 scripts (identify-indel-regions.pl and filter-sync-by-gtf.pl) that 314 

include five flanking nucleotides on both sides of an indel. The position of repeats in the 315 
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reference genome was annotated previously3 using RepeatMasker v. 4.0.5 (with option -nolow) 316 

and that information used to remove repeats from these data using the same removal script 317 

provided by Popoolation2.  318 

 319 

Genetic structure of provenances 320 

 321 

Major allele frequency information was extracted from dataset A for each of the 31 populations 322 

using a modified output of the allele frequency differences script (snp-frequency-diff.pl) from 323 

the PoPoolation2 package. This table of major allele frequencies was imported and converted to 324 

a genpop object and subsequently analysed using the R package adegenet61. A Correspondence 325 

Analysis on genpop objects was performed in order to seek a typology of populations.  326 

Correlation between populations was calculated and plotted, for the major allele frequencies 327 

from dataset A, using the corrplot R package62. 328 

 329 

 330 

Genome wide association study 331 

 332 

For dataset A the software package PoPoolation260 was used to identify significant differences 333 

between damaged and healthy trees. For this an mpileup input was generated using Samtools 334 

followed by the creation of a file that had all the variants synchronized across the pools and 335 

requiring a base quality of at least 20. The statistical test to detect allele frequency changes in 336 

biological replicates was the Cochran-Mantel-Haenszel (CMH) test63. With this test a 2x2 data 337 

table was created for each seed source (15) with two phenotypes (healthy and damaged) and the 338 

two major alleles for each SNP. The counts of each allele for each phenotype were treated as the 339 

dependent variables. The parameters set for PoPoolation2, given there were 30 pools with DNA 340 

from 1250 individuals, were: min count 15 (minimum allele count to be included), min coverage 341 

40, max coverage 3000. False discovery rate control was performed using the R package q-342 

value64. We excluded contig 18264 from the reference sequence because it appears to be derived 343 

from fungal contamination: its top BLAST hit in the GenBank nucleotide collection is to nrDNA 344 

in a species of the fungal genus Phoma (MH047199.1), a putative fungal endophyte. 345 

 346 

Putative functions for genes containing, or near, the pool-seq GWAS top SNPs were assigned by 347 

obtaining the CDSs from the Ash Genome website3 and using the command line NCBI Basic 348 

Local Alignment Search Tool (BLAST+) optimized for the megablast algorithm to search the 349 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/626234doi: bioRxiv preprint 

https://doi.org/10.1101/626234
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

12 

GenBank Nucleotide database. The top result for every BLAST search was extracted and their 350 

predicted gene functions were used to functionally annotate the ash genes. Any search that 351 

yielded no matches when using megablast was then repeated using the blastn algorithm and 352 

ultimately cDNA sequences if the latter was also uninformative. Potential functional impacts for 353 

each of the top 203 GWAS SNP loci were determined using SNPeff (v4.3T)65. A custom genome 354 

database was built from the F. excelsior reference assembly using the SnpEff command “build” 355 

with option “-gtf22”; a gtf file containing the annotation for all genes, as well as fasta files 356 

containing the genome assembly, CDS and protein sequences, were used as input. Annotation of 357 

the impact of the 203 SNPs was performed by running SnpEff on all F. excelsior genes with 358 

default parameter settings. 359 

 360 

Protein modelling 361 

 362 

Proteins containing SNPs identified by SnpEff as coding for amino acid substitutions were 363 

modelled. Protein coding sequences were taken from the predicted proteome of the BATG 0.5 364 

reference genome3 and modelled both with the amino acid(s) associated with ADB damage in 365 

our GWAS, and with the amino acid(s) associated with healthy trees. Models were predicted 366 

using three methods: RaptorX-Binding (http://raptorx.uchicago.edu/BindingSite/), Swiss-367 

modeller66 and Phyre267. These models were compared by manually alignment in PyMOL 368 

v.2.068, and only those with congruent models were taken forward, based on their Phyre2 and 369 

RaptorX-Binding models. Potential binding sites and candidate ligands were analysed using 370 

RaptorX-Binding and literature searches. SDF files for candidate ligands were obtained from 371 

PubChem (https://pubchem.ncbi.nlm.nih.gov) and converted to 3d pdb files using Online 372 

SMILES Translator and Structure File Generator (https://cactus.nci.nih.gov/translate/). Docking 373 

with our protein models was analysed using Autodock Vina v.1.1.269 with the GUI PyRx v.0.870. 374 

Following docking, ligand binding site coordinates were exported as SDF files from Pyrex and 375 

loaded into PyMOL with the corresponding protein model file for the “healthy” and “damaged” 376 

protein models. Binding sites were then annotated and the variable residues were labelled. 377 

Possible RNA and DNA binding sites were predicted using DRONA 378 

(http://crdd.osdd.net/raghava/drona/links.php). The presence of signal peptides were detected 379 

using SignalP 4.1 server and Phobius server (http://phobius.sbc.su.se/index.html); both were run 380 

with default parameters and for Phobius the “normal prediction” method was used. The presence 381 

of a signal peptide was confirmed only if it was predicted by both methods. Motif search 382 

(https://www.genome.jp/tools/motif/) and ScanProsite (https://prosite.expasy.org/scanprosite/) 383 
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were used to predict protein domains and their locations for our candidate genes.   384 

 385 
 386 

Genomic Prediction 387 

 388 

We trained a GP model based on the pool-seq data (Dataset A). Subsets of 100, 200, 500, 1000, 389 

5000, 10000, 25000 and 50000 SNPs with the most significant GWAS results were selected from 390 

Dataset A and used as a training set. Results were compared with SNP sets of the same size 391 

drawn at random from the genome. SNPs from contig 18264 (suspected to be fungal 392 

contamination) were excluded. We constructed a pipeline available at 393 

https://github.research.its.qmul.ac.uk/btx330/gppool. The vector of ADB damage scores for each 394 

pool, y, was predicted by the rrBLUP model as: y = Xβ  + ε, where β is a vector of allelic effects 395 

(treated as normally distributed random effects), and the residual variance is Var[ε].  The genetic 396 

data are encoded in the design matrix X which has a row for each pool and a column for each 397 

SNP allele.  The entry for pool p and locus l is X[p,l] = fpl  - µs , where fpl  is the frequency of the 398 

focal allele and µs  is its mean frequency across the pools from the same seed-source as p.   399 

 400 

The Reduced Maximum Likelihood solution to the model was obtained using the mixed.solve 401 

function in rrBLUP v4.671 to give estimated effect sizes (EES) for the minor and major alleles at 402 

each SNP under consideration.  Subsets of the 10 – 50,000 SNPs with the greatest EES were 403 

used to predict GEBV for each of the 150 individuals from provenance NSZ 204. For these 404 

individuals (dataset B) variant calling was performed using bcftools with the raw set of called 405 

SNPs filtered using VCFtools (vcfutils) - set at minimum read depth of 10 and minimum 406 

mapping quality 15. Filtering of loci was carried out using thresholds of >95% call rate and >5% 407 

MAF. Samples were filtered based on a >95% call rate and <1% inbreeding coefficient. SNPs 408 

were also filtered if they deviated significantly from Hardy-Weinberg equilibrium. GEBV was 409 

calculated as the sum the EES and the relative frequency of each focal allele. Predictions were 410 

repeated with seed-source NSZ 204 excluded from the training dataset to avoid spurious 411 

correlations due to population stratification.  412 

 413 

Test trees were assigned to high and low susceptibility groups based on their GEBV and the 414 

accuracy of the assignment was tested using the formula: f  = correct assignments/total 415 

assignments, with correct assignments defined as those that corresponded to the observed 416 

phenotypes. Correlation of GEBV and phenotypic classification, r, was calculated using the 417 
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Pearson correlation coefficient.    418 

 419 

We also carried out genomic prediction based solely on the 150 individuals in Dataset B. A ratio 420 

of 60/40 was used for training and testing populations and missing markers were imputed using 421 

the function R package A.mat72 with default settings. SNPs were selected from the GWAS output 422 

ordered by p-value. A total of 100, 500, 1000, 5000, 10000, 50000, 100000, 250000, 500000, 423 

1000000 and 5000000 SNPs were selected from each filtered set and used for training and 424 

testing of the GP model. The same number of SNPs were selected at random (using R) from the 425 

fully filtered dataset and also used for training and testing the GP model. We used using the 426 

mixed.solve function in rrBLUP v4.671 and Genomic Selection in R course scripts available at 427 

http://pbgworks.org. A total of 500 iterations were run of the rrBLUP. For the randomly selected 428 

SNPs, the 500 iterations were repeated ten times.   429 

 430 

Data and software availability  431 

The authors confirm that all raw or analysed data supporting this study will be distributed 432 

promptly upon reasonable request. All trimmed reads are available at the European Nucleotide 433 

Archive with primary accession number: PRJEB31096. The gppool pipeline developed as part of 434 

the project to run GP trained on pool-seq data can be found at 435 

https://github.research.its.qmul.ac.uk/btx330/gppool. All software used (Trimmomatic, BWA, 436 

Samtools, Bcftools, VCFtools, PoPoolation2, R, Repeatmasker, SNPeff, Haploview, NCBI 437 

BLAST, RaptorX-Binding, Swiss-modeller, Phyre2, SMILES, Autodock Vina v.1.1.2, PyRx 438 

v.0.8, PyMOL, DRONA, SignalP 4.1 server, Phobius server, NetPhos 3.1 Server and Group-439 

based Prediction System (GPS)) is commercially or freely available.  440 
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 441 

Tables 442 

Table 1. List of ash genes likely to be affected by GWAS candidate SNPs found in the top 203 443 
hits by p-value (with -log10(p) > 13): (1) Genes that contain one or more significant SNP loci 444 
altering protein sequence; (2) Genes containing SNPs that are transcribed but not translated 445 
(synonymous changes, and changes in UTRs and introns); (3) Genes that are within 5Kb of 446 
significant SNP loci and the closest gene to those loci. The “Gene” column gives the final six 447 
digits for the full gene names for the annotation of the ash genome3, which are in the form 448 
FRAEX38873_v2_000######. Details of amino acid changes in missense variants can be found 449 
in Table S5. 450 

 451 

Contig Gene Predicted function Variant functions 

1) Genes containing SNPs that affect protein sequence 

Contig10122 003260 BED finger-NBS-LRR resistance protein 
(for model see Figure 3a) 

1x downstream gene variant 
1x missense variant  

Contig10122 003270 Protein CPR-5-like (LOC111390874), 
transcript variant X1, mRNA 

5x 3' UTR variant 
2x 5' UTR premature start codon gain 
variant 
2x 5' UTR variant 
1x downstream gene variant 
1x intron variant 
7x upstream gene variant 
1x missense variant  

Contig2324 116110 60S ribosomal protein L4-1 
(LOC111391733), mRNA (for model see 
Figure 3d) 

4x missense variant   
9x synonymous variant 

Contig3029 164520 F-box/kelch-repeat protein SKIP6 
(LOC111408673), mRNA (for model see 
Figure 3b) 

1x 5' UTR variant 
7x downstream gene variant 
1x missense variant  

Contig332 180950 Protein DAMAGED DNA-BINDING (for 
model see Figure 3c) 

1x missense variant  

Contig614 305440 Uncharacterized LOC111377332 
(LOC111377332), transcript variant X1, 
mRNA 

1x missense variant  
1x synonymous variant 

Contig7698 346660 Protein HEAT INTOLERANT 4-like 
(LOC111409690), mRNA(3) 

1x missense variant  
1x upstream gene variant 

2) Genes containing SNPs that are transcribed but not translated  

Contig2329 116430 Uncharacterized LOC111374226 
(LOC111374226), transcript variant X2, 
mRNA 

1x synonymous variant 
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Contig2747 145630 VIN3-like protein 1 (LOC111390514), 
transcript variant X2, mRNA 

1x synonymous variant 

Contig4397 234590 WPP domain-interacting protein 1-like 
(LOC111407140), mRNA  

1x synonymous variant 

Contig1096 013250 MACPF domain-containing protein CAD1-
like (LOC111379406), mRNA 

1x 3' UTR variant 
1x intron variant 

Contig1454 047060 Short-chain dehydrogenase TIC 32, 
chloroplastic-like (LOC111372928), 
transcript variant X2, mRNA 

1x intron variant 

Contig1589 057960 beta-taxilin (LOC111407559) 1x intron variant 

Contig1795 074310 Squamosa promoter-binding-like protein 8 
(LOC111383449), mRNA 

1x 3' UTR variant 

Contig2034 094440 Regulatory-associated protein of TOR 1 
(LOC111407995), mRNA 

1x 3' UTR variant 

Contig2185 105920 Uncharacterized LOC111409367 
(LOC111409367), mRNA 

1x 5' UTR variant 

Contig23 114040 ATP synthase subunit O, mitochondrial-like 
(LOC111411675), mRNA 

1x intron variant 
3x upstream gene variant 

Contig2870 154480 60S ribosomal protein L4-1 
(LOC111391733), mRNA(3) 

2x intron variant 

Contig31173 168770 Protein LATE FLOWERING-like 
(LOC111406993), mRNA 

1x 5' UTR variant 

Contig3809 207550 receptor-like cytosolic 1x intron variant 

Contig3889 211580 Squalene monooxygenase-like 
(LOC111410179), mRNA 

1x intron variant 

Contig4494 238810 Uncharacterized LOC111381639 1x 3' UTR variant 

Contig5196 266510 Zinc finger CCCH domain-containing 
protein 11-like (LOC111366362), transcript 
variant X3, mRNA 

1x intron variant 

Contig614 305460 Protein PHR1-LIKE 3-like 
(LOC111377335), mRNA 

14x intron variant 

Contig6272 308800 Probable DNA helicase MCM8 
(LOC111365493), transcript variant X2, 
mRNA 

2x intron variant 

Contig6641 319390 Uncharacterized LOC111408674 
(LOC111408674), mRNA 

1x intron variant 

Contig754 342270 Protein LIKE COV 2-like (LOC111397136), 
mRNA 

2x intron variant 

Contig754 342280 Uncharacterized LOC111408663 
(LOC111408663), transcript variant X5, 
misc_RNA 

1x 5' UTR variant 
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Contig7698 346650 Pentatricopeptide repeat-containing protein 
At4g39620, chloroplastic-like 
(LOC111408678), transcript variant X2, 
mRNA 

1x 3' UTR variant 

Contig87 372350 Uncharacterized LOC111393674 
(LOC111393674), mRNA 

3x intron variant 

Contig8942 378970 Uncharacterized LOC111377872 
(LOC111377872), transcript variant X8, 
mRNA 

1x intron variant 

3) Genes within 5Kb upstream or downstream from candidate SNPs 

Contig1224 025560 Probable xyloglucan 
endotransglucosylase/hydrolase protein 28 
(LOC111399252), mRNA(3) 

1x upstream gene variant 

Contig1506 051400 Potassium channel AKT1-like 
(LOC111382499), mRNA 

1x downstream gene variant 

Contig1607 059350 Low affinity sulfate 1x upstream gene variant 

Contig16137 059880 60S Ribosomal protein L30-like 
(LOC111409078), transcript variant X1, 
mRNA 

1x upstream gene variant 

Contig168 065110 E3 ubiquitin-protein ligase RNF170-like 
(LOC111409836), transcript variant X3, 
mRNA 

2x upstream gene variant 

Contig1931 086130  Oleoyl-acyl carrier protein thioesterase 1, 
chloroplastic-like (LOC111385815), 
mRNA(3) 

2x downstream gene variant 

Contig2441 124500 Ent-kaurene oxidase, chloroplastic-like 
(LOC111394477), mRNA 

1x upstream gene variant 

Contig3029 164530  Uncharacterized LOC111408676 
(LOC111408676), transcript variant X3, 
mRNA  

1x upstream gene variant 
1x intergenic region 

Contig349 190500 Ethylene-responsive transcription factor 
ERF098-like (LOC111379140), mRNA(3) 

2x downstream gene variant 

Contig3945 214510 Basic Helix loop helix protein A 
(LOC111388546) mRNA 

1x upstream gene variant 

Contig4503 239330 Vacuolar protein sorting-associated protein 
20 homolog 2-like (LOC111393567), 
mRNA 

1x upstream gene variant 
2x intergenic region 

Contig454 241210 Kinesin-like protein KIN-7K, chloroplastic 
(LOC111375100), mRNA 

1x upstream gene variant 

Contig490 255180 Casein kinase 1-like protein HD16 
(LOC111366886), mRNA 

1x upstream gene variant 
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Contig4981 258470 F-box/FBD/LRR-repeat protein At1g13570-
like (LOC111367195), transcript variant X2, 
mRNA 

1x upstream gene variant 

Contig508 262070 Putative zinc transporter At3g08650 
(LOC111388858), mRNA 

1x downstream gene variant 

Contig558 282910 Nitrate regulatory gene2 protein-like 
(LOC111409481), mRNA 

1x upstream gene variant 

Contig558 282920 Uncharacterized LOC111409076 
(LOC111409076), mRNA 

2x downstream gene variant 
1x upstream gene variant 

Contig558 282930 Uncharacterized LOC111409077 
(LOC111409077), transcript variant X3, 
mRNA 

1x upstream gene variant 

Contig592 296810 Ankyrin repeat-containing protein NPR4-
like (LOC111379708), mRNA 

1x downstream gene variant 

Contig6316 310310 Calmodulin-binding protein 60 A-like 
(LOC111368134), transcript variant X3, 
mRNA 

2x upstream gene variant 

Contig7472 340820  Dehydration-responsive element-binding 
protein 2C-like (LOC111397561), transcript 
variant X1, mRNA  

5x upstream gene variant 

Contig754 342250 Ethylene-responsive transcription factor 
ERF113-like (LOC111408666), mRNA 

1x upstream gene variant 

Contig754 342260 Protein S-acyltransferase 8-like 
(LOC111408665), mRNA 

2x upstream gene variant 

Contig8383 364260 Pentatricopeptide repeat-containing protein 
At4g39620, chloroplastic-like 
(LOC111408678), transcript variant X2, 
mRNA 

1x upstream gene variant 

 452 
 453 
 454 

  455 
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 456 

Figures 457 
 458 
 459 

 460 
Figure 1. Correspondence Analysis (CA) using major allele frequency for all 31 seed 461 

source populations (including replicate). Numbers after seed source code correspond to 462 

health status (1 - healthy or 2 - infected by ADB). The vertical axis represents Principal 463 

Coordinate 1, which accounts for 10% of the variation and the horizontal axis represents 464 

Principal Coordinate 2, which accounts for 9% of the variation. 465 

  466 
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 467 

 468 

Figure 2. Loci associated with ash tree health status under ash dieback pressure. 469 

Genome-wide association study on whole genome sequence data from pooled 470 

DNA: Manhattan plot distribution of -log10(p) values for each SNP, ordered by 471 

scaffold/contig. A threshold of p = 1 x e-13 is shown. 472 
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 473 
 474 
Figure 3.  Predicted protein structures for genes containing amino acid changes associated with 475 
tree health status under ADB pressure. The protein structures to the left were more common in 476 
damaged trees, and those to the right were more common in healthy trees. Variant amino acids 477 
are coloured in magenta and indicated with a black arrowhead. (a) Gene 478 
FRAEX38873_v2_000003260, a BED finger-NBS-LRR resistance protein, where position 157 479 
is a leucine (left) versus tryptophan (right) variant. Two ATP molecules are shown in orange to 480 
indicate the location of nucleotide binding sites. (b) Gene FRAEX38873_v2_000164520, a F-481 
box/kelch-repeat, where position 13 is a glutamine (left) versus arginine (right) variant. 482 
(c) FRAEX38873_v2_000180950, a Protein DAMAGED DNA-BINDING, where position 99 is 483 
a proline (left) versus leucine (right) variant. DNA molecules are shown in orange docked at the 484 
proteins’ DNA binding sites. (d) Gene FRAEX38873_v2_000116110, a 60S ribosomal protein 485 
L4-1, where position 251 is an arginine (left) versus glycine (right) variant, position 285 is a 486 
methionine (left) versus arginine (right) variant, position 287 is an asparagine (left) versus lysine 487 
(right) variant and position 297 is a threonine (left) versus alanine (right) variant.  488 
  489 
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 490 
Figure 4. Genomic prediction of health under ash dieback pressure for 150 individual ash trees, 491 

with models trained on pooled sequencing of 1250 trees, using varying numbers of SNPs in 492 

training and test sets. Solid lines show results for SNPs selected using the pool-seq GWAS; 493 

dashed lines show average results using randomly selected SNPs. Left column: correlation of 494 

genomic estimated breeding value (GEBV) with observed health status. Right column: accuracy 495 

of health status assignment from GEBV.  496 

 497 
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 498 
Figure 5. Genomic prediction accuracy of assignment of health status for the (left) top 20% and 499 

(right) top 30% of test population trees by GEBV, using 1000 to 50,000 SNPs identified by 500 

GWAS in the training set and use of ten to 250 SNPs in the testing set.  501 

 502 

 503 

 504 
 505 
 506 
 507 

  508 
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Supplementary Information 735 

 736 

Supplementary Table 1. Sequencing, Quality and Mapping values for each Dataset (A and B). 737 

Item 
Dataset A (pool-seq) Dataset B (individuals) 

Average Min Max Average Min Max 

Read Bases 7.70E+10 7.24E+10 7.95E+10 1.95E+10 1.79E+10 1.99E+10 

Reads 5.10E+08 4.79E+08 5.27E+08 1.29E+08 1.19E+08 1.32E+08 

GC(%) 35.21 35.03 35.45 35.14 34.72 35.51 

AT(%) 64.79 64.55 64.97 64.86 64.49 65.28 

Q20(%) 96.44 94.13 97.51 97.20 96.57 97.86 

Q30(%) 92.26 87.87 94.35 93.71 92.37 95.13 

Mapped (%) 98.3 97.4 98.8 98.4 93.3 99.1 
 738 
 739 

 740 

 741 

  742 
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Supplementary Table 2. Distribution of samples in pooled dataset (A) and 743 

individually genotyped dataset (B) according to site and seed source. 744 

Pooled Samples (Dataset A)     

Provenances Site 16 Site 21 Site 23 Site 35 Total 

DEU 28 79   107 

FTT SO 9 32  34 75 

IRL DON 38 10  26 74 

NSZ 106 54 62 12 60 188 

NSZ 107 20 80 18 50 168 

NSZ 109 10 50 12 16 88 

NSZ 201 11 55 4 10 80 

NSZ 204 60 11 4 6 81 

NSZ 302 14 32 14 39 99 

NSZ 303 6 20 8 36 70 

NSZ 304 14 38 8 17 77 

NSZ 403 18 18 14 32 82 

NSZ 405 1 17 10 33 61 

Total 283 504 104 359 1250 

Individual Samples (Dataset B)     

Provenances Site 16 Site 21 Site 23 Site 35 Total 

NSZ 204 58 51 17 24 150 

Total 58 51 17 24 150 
 745 
 746 

 747 

 748 

 749 
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Supplementary Table 3. Comparison of the number of significant calls for the p-751 
values, estimated q-values, and estimated local FDR values. 752 
 753 

 <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1 

p-value 102,440 287,612 821,046 1,258,574 1,752,684 2,459,337 9,347,124 

q-value 4,275 19,337 110,003 232,006 410,712 735,089 7,942,196 

local FDR 3,149 10,395 57,370 121,222 213,502 379,746 3,360,672 
 754 

  755 
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Supplementary Table 4. List of ash genes closest to the subset of the top 203 GWAS 756 
candidate SNPs (with -log10(p) > 13) that are over 5Kb from an annotated gene. Genes up 757 
to 100Kb from SNPs are shown. The “Gene” column gives the final six digits for the full 758 
gene names for the annotation of the ash genome11, which are in the form 759 
FRAEX38873_v2_000######. The column “Dist.” shows the distance of the gene from 760 
the nearest GWAS SNP. The predicted functions are from the olive genome. 761 
 762 

Contig Gene Dist. 
(kb) 

Predicted function Intergenic 
SNPs 

Contig1049 
009110(1) 41.5 uncharacterized LOC111407988 (LOC111407988), 

mRNA 1 
009120 6.3 deoxyhypusine hydroxylase-B-like  

Contig1355 037990 13 SUMO-conjugating enzyme UBC9-like  16 

Contig1595 058210 15.2 uncharacterized LOC111407689  2 

Contig1931 
086110 31.8 leucine-rich repeat receptor-like serine/threonine-pro-

tein kinase BAM3 (LOC111409824), mRNA 
5 

086120(1) 7.6 uncharacterized LOC111371252 (LOC111371252), 
mRNA 

Contig2131 
101780 5.6 KIN17-like protein (LOC111406018),  

1 
101790 13 nuclear pore complex  

Contig2252 
110620 5.5 30S ribosomal protein  

1 
110630 16 serine/threonine-protein  

Contig2793 149030 85.8 PLASMODESMATA CALLOSE-BINDING  1 

Contig3029 164520 22.4 F-box/kelch-repeat protein  1 

Contig3135 

169770 10.7 Vacuolar protein sorting-associated protein 32 homo-
log 2-like (LOC111385051), partial mRNA 

1 169780 6.3 meiotic nuclear division  

169790 38.9 zinc finger CCCH domain-containing  

Contig3209 
174230 9.5 putative receptor-like  

1 
174240 23 transcription activator  

Contig4611 244030 10.6 uncharacterized LOC111407689  1 

Contig558 
282890 12.9 uncharacterized LOC111409075  

3 
282910 30.2 nitrate regulatory gene2  

Contig5660 
286360 24.5 protein FREE1 (LOC111381047), mRNA 

1 
286370 6.7 protein MID1-COMPLEMENTING  

Contig5792 291580 10.2 transcription factor bHLH162-like 1 
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Contig7472 
340820(1) 5.5 dehydration-responsive element-binding protein 2C-

like LOC111397561), transcript variant X2, mRNA 
1 

340830 8.1 protein trichome birefringence-like 33 
(LOC111397549), transcript variant X1, mRNA 

Contig7762 348710 53.8 uncharacterized LOC111409249  10 

Contig8949 379070 5.6 uncharacterized LOC111390873  1 

Contig9242 385770 18 uncharacterized LOC111374023  1 
1Blastn algorithm used. 763 

 764 
 765 
 766 
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Supplementary Table 5. Polymorphic amino acid allele identities and frequencies at significant 769 
GWAS loci found in the top 203 hits by p-value (with -log10(p) > 13)  770 
 771 

Contig Gene Predicted function Major 
allele 

Minor 
allele 

Position in 
protein 

MAF in 
healthy 
trees 

MAF in 
damaged 
trees 

Contig10122 003260 BED finger-NBS-LRR 
resistance protein  

Leu Trp 157 0.216 0.121 

Contig10122 003270 Protein CPR-5-like  Ile Ser 36 0.216 0.121 

Contig2324 116110  60S ribosomal protein 
L4-1  

Gly Arg 251 0.285 0.382 

Contig2324 116110  60S ribosomal protein 
L4-1  

Arg Met 285 0.263 0.354 

Contig2324 116110  60S ribosomal protein 
L4-1  

Lys Asn 287 0.322 0.431 

Contig2324 116110  60S ribosomal protein 
L4-1  

Ala Thr 294 0.301 0.393 

Contig3029 164520  F-box/kelch-repeat 
protein SKIP6  

Gln Arg 13 0.136 0.052 

Contig332 180950  Protein DAMAGED 
DNA-BINDING  

Pro Leu 99 0.266 0.140 

Contig614 305440 Uncharacterized  Gly Asp 1155 0.211 0.341 

Contig7698 346660  Protein HEAT 
INTOLERANT 4-like  

Phe Leu 12 0.123 0.064 
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 775 
Supplementary Figure 1. Number of individuals in each pool (odd pool numbers represent 776 

healthy and even numbers susceptible populations) and country of origin. 777 
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 779 

 780 
 781 

Supplementary Figure 2. Circle plot of major allele frequency correlation 782 
values between all 31 pools. Numbers after seed source code correspond to 783 
health status (1 - healthy or 2 - damaged by ADB). Pool NSZ204:1 (with low 784 
ADB damage) was technically replicated (NSZ204:1R) using the same set of 785 
trees. Both pools from NSZ106 and NSZ107 were biologically replicated for 786 
both high and low damage pools, using different sets of trees.  787 
 788 
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 800 
 801 
 802 
 803 
 804 
 805 
 806 

 807 
Supplementary Figure 3. Pool-seq GWAS p-value density histogram with 808 
line plots of the q-values and local False Discovery Rate (FDR) values versus 809 
p-values. The π0 estimate is also displayed. 810 
 811 
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 813 
 814 

Supplementary Figure 4. Manhattan plots for contigs containing genes in 815 
which SNPs encoding an amino acid substitution were in the top 203 pool-816 
seq GWAS candidates. All genes present on the contigs are colored and 817 
those containing SNPs causing missense alterations to coding regions are 818 
labelled using the same colour as the gene’s SNPs in the Manhattan plot. 819 
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 823 
Supplementary Figure 5. Genomic prediction results using the 150 824 
individually genotyped samples as both training and testing set, with 100 to 5 825 
million SNPs used to train and test the rrBLUP model. (A) all data filters 826 
applied (mapping quality, indel and repeat removal); (B) filtered mapping 827 
quality and indel removal; (C) random selection of SNPs using all data filters; 828 
(D) GP allocation accuracy calculated using data with all filters applied. The 829 
scale on the left hand vertical axis is for correlation, and the scale on the right 830 
hand vertical axis is for accuracy.  831 
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 833 

 834 
 835 

Supplementary Figure 6. Genomic prediction using pool-seq data for training and 150 NSZ 836 

204 individuals for testing: dashed lines show results excluding pool-seq data from provenance 837 

NSZ 204 (the test provenance) from the training dataset, whereas solid lines show results with 838 

NSZ 204 included. The left column shows correlation of observed phenotype and GEBV and  839 

the right column shows accuracy of phenotypic assignment from GEBV. 840 
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