

1 **From single nuclei to whole genome assemblies**

2 **Author information**

3 Merce Montoliu-Nerin, Department of Ecology and Genetics, Evolutionary Biology,

4 Uppsala University, Sweden

5 Marisol Sánchez-García, Department of Ecology and Genetics, Evolutionary Biology,

6 Uppsala University, Sweden

7 Claudia Bergin, Department of Cell and Molecular biology, Uppsala University, and

8 Microbial Single Cell Genomics Facility, Science for Life Laboratory, Sweden

9 Manfred Grabherr, Department of Medical Biochemistry and Microbiology, Uppsala

10 University, Sweden

11 Barbara Ellis, Department of Ecology and Genetics, Evolutionary Biology, Uppsala

12 University, Sweden

13 Verena Esther Kutschera, Science for Life Laboratory Solna and Department of

14 Biochemistry and Biophysics, Stockholm university, Sweden

15 Marcin Kierczak, Department of Cell and Molecular biology, Uppsala University,

16 Sweden

17 Hanna Johannesson, Department of Organismal Biology, Systematics biology,

18 Uppsala University, Sweden

19 *Anna Rosling, Department of Ecology and Genetics, Evolutionary Biology, Uppsala

20 University, Sweden

21

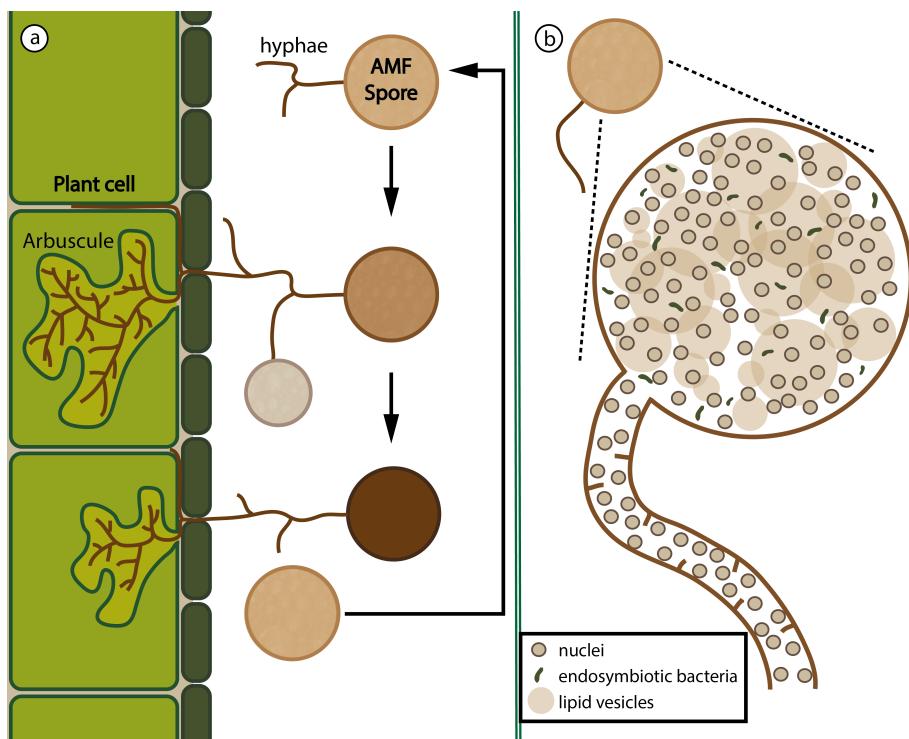
22 **Summary**

23 A large proportion of Earth's biodiversity constitutes organisms that cannot be

24 cultured, have cryptic life-cycles and/or live submerged within their substrates¹⁻⁴.

25 Genomic data are key to unravel both their identity and function⁵. The development

26 of metagenomic methods^{6,7} and the advent of single cell sequencing⁸⁻¹⁰ have
27 revolutionized the study of life and function of cryptic organisms by upending the
28 need for large and pure biological material, and allowing generation of genomic data
29 from complex or limited environmental samples. Genome assemblies from
30 metagenomic data have so far been restricted to organisms with small genomes, such
31 as bacteria¹¹, archaea¹² and certain eukaryotes¹³. On the other hand, single cell
32 technologies have allowed the targeting of unicellular organisms, attaining a better
33 resolution than metagenomics^{8,9,14-16}, moreover, it has allowed the genomic study of
34 cells from complex organisms one cell at a time^{17,18}. However, single cell genomics
35 are not easily applied to multicellular organisms formed by consortia of diverse taxa,
36 and the generation of specific workflows for sequencing and data analysis is needed
37 to expand genomic research to the entire tree of life, including sponges¹⁹, lichens^{3,20},
38 intracellular parasites^{21,22}, and plant endophytes^{23,24}. Among the most important plant
39 endophytes are the obligate mutualistic symbionts, arbuscular mycorrhizal (AM)
40 fungi, that pose an additional challenge with their multinucleate coenocytic mycelia²⁵.
41 Here, the development of a novel single nuclei sequencing and assembly workflow is
42 reported. This workflow allows, for the first time, the generation of reference genome
43 assemblies from large scale, unbiased sorted, and sequenced AM fungal nuclei
44 circumventing tedious, and often impossible, culturing efforts. This method opens
45 infinite possibilities for studies of evolution and adaptation in these important plant
46 symbionts and demonstrates that reference genomes can be generated from complex
47 non-model organisms by isolating only a handful of their nuclei.


48

49

50

51 **Main text**

52 AM fungi is a group of diverse obligate symbionts that have colonized root cells and
53 formed mycelial networks in soil since plants first colonized land^{25–27}. Their entire
54 life-cycle is completed underground and they propagate with multinuclear asexual
55 spores²⁷ (Figure 1). Genomic research on AM fungi has been hampered by technical
56 challenges involving isolation and culturing, and accordingly, few species have been
57 successfully sequenced. To date, the reference genomes of only few species that can
58 be grown in axenic culture, *i.e.*, *Rhizophagus irregularis*, *R. clarus*, *R. diaphanus*, *R.*
59 *cerebriforme*, *Gigaspora rosea* and *Diversispora epigaea*, have been published^{28–33}.

66 terminations, bud off upon maturity and remain in dormant state until the cycle starts
67 again, while the first spore dies and the fungi retracts from the plant cell. b) Schematic
68 representation of a spore, containing nuclei, lipid vesicles and endosymbiotic bacteria.
69 The hyphae have very reduced compartmentalization with incomplete septa and
70 nuclei appear to move freely.

71 A method was developed in which genomic fungal DNA can be obtained, free of
72 plant and microbial DNA, directly from individual nuclei of multinucleate spores. In
73 brief, spores from a trap culture fungal strain of *Claroideoglomus clarodeum/C.*
74 *luteum* (SA101) were obtained from the INVAM pot culture collection. An initial trial
75 to sort AM nuclei was carried out using pools of spores in order to assess the optimal
76 settings. Cleaned spores were crushed vigorously, and the solution was stained and
77 analyzed by Fluorescence-Activated Cell Sorting (FACS), recording level of
78 fluorescence as a measure of DNA content, and light scattering as proxy for size and
79 particle granularity (Figure 2 a-h). A distinct cloud of particles was observed above
80 the background in the scatter plot (Figure 2h, inside the blue box) which, after
81 microscopy and PCR verification tests with fungal and bacterial specific primers, was
82 confirmed to consist of intact biological structures containing mostly fungal DNA
83 (Figure S1-S3, Table S1). Hence, we concluded that these particles were fungal nuclei
84 and restricted future sorting to this window. Thereafter, individual nuclei from a
85 single spore of the same strain were sorted into wells of a 96-well plate (Figure S4,
86 Table S2) and whole genome amplified (WGA) using multiple displacement
87 amplification (MDA; Figure 2 i-j). The amplified DNA was scored for pure fungal
88 origin by parallel amplification of rDNA barcode regions for both fungi and bacteria
89 (Figure 2k, Figure S5). Twenty-four amplified nuclei samples, confirmed to contain
90 only fungi (Figure S4, Table S3, S4), were sequenced with Illumina HiSeq X (Figure

91 21). Further, the MinION Nanopore-based sequencing device (Oxford Nanopore
92 Technologies, ONT, UK) was used to obtain long read sequences for amplified DNA
93 from multiple (5-100) nuclei separated from a pool of 30 spores of the same strain
94 (Figure 2 i-k, m).

95

96 Figure 2. From a soil sample to AM fungal genome assemblies. a) Whole inoculum
97 from the culture collection INVAM is blended with water and (b) poured into a set of
98 sieves, the material stuck in the 38 μm sieve is placed into a (c) tube that contains a
99 solution of 60% sucrose, then centrifuged for 1 min. The supernatant is again run
100 through a 38 μm sieve and washed with water. d) The sieve content is placed in a
101 Petri dish for the spores to be manually picked using a glass pipette. e) After cleaning
102 the spores with ddH₂O, these are placed one-by-one into tubes and crushed with a
103 pestle. f) The DNA from a broken spore is stained with SYBR Green, giving a strong
104 fluorescent signal for the nuclei, and lighter for the background, organelles and
105 microbes. g) The stained spore content is loaded on the FACS, in which the sample
106 moves inside a constant flow of buffer and crosses a laser beam. An excitation laser
107 of 488-nm and 530/40 band pass filter was used for the SYBR Green fluorescence
108 detection. In addition scattered light, forward scatter (FSC) and side scatter (SSC)
109 were used as proxy for size and granularity to identify the nuclei. h) The signals can
110 be interpreted in a scatter-plot, and particles of a selected cloud (e.g., R1, blue-box)
111 can be sorted individually or pooled (i) into individual wells of a 96-well plate by
112 directing them with a charge. j) The content of each well is whole genome amplified
113 using MDA. k) The amplified products are tested for fungi and bacteria by PCR
114 screening with specific rDNA primers for fungi and bacteria. The products confirmed
115 to be from fungal nuclei are sequenced with l) Illumina HiSeqX, for single nuclei; and
116 m) Oxford Nanopore, for pools of nuclei. To produce assembly 1, Illumina reads are
117 assembled separately for individual nuclei using MaSuRCA³⁴ (n). To produce
118 assembly 2, reads are normalized for individual nuclei and assembled with SPADES³⁵
119 (o). For assembly 3 reads from all nuclei are combined before normalization and then
120 assembled with SPADES³⁵ (q). Individual nuclei assemblies from method 1 and 2 are

121 assembled together using Lingon³⁶ (p). Nanopore data is assembled with Canu³⁷ (r),
122 polished with Pilon³⁸ using the Illumina raw-reads and used to scaffold the three
123 generated assemblies using Chromosemble, of Satsuma³⁹ (s).

124

125 Three customized assembly workflows were developed in order to evaluate assembly
126 quality in the light of coverage bias introduced by WGA, which is the biggest
127 challenge when assembling sequence data from amplified single nuclei. The MDA
128 method, however, has an advantage over PCR-based methods in that it produces
129 longer fragments of DNA with a lower error rate, and that the coverage bias is
130 random^{40,41}.

131 For the first two assembly workflows individual nuclei assemblies were generated and
132 subsequently combined to generate a consensus assembly using the workflow
133 manager Lingon³⁶ (Figure 2p), which consists of a motif-distance based long
134 sequence overlap finder that merge sequences based on mutual maximal overlaps. In
135 the first assembly workflow, raw Illumina reads were assembled using MaSuRCA³⁴
136 (Figure 2n) resulting in 24 assemblies, ranging in size from 14 to 69 Mbp (Tables S5).

137 In order to overcome MDA generated differences in coverage across the genome the
138 second assembly workflow normalized raw reads to maximum 100X before assembly
139 using SPADES³⁵ (Figure 2o), generating 24 assemblies ranging in size from 11 to 50
140 Mbp (Table S5). A third assembly was created using SPADES³⁵ after combining raw
141 reads from 24 nuclei followed by normalization to 100X (Figure 2q). One full
142 assembly with 24 nuclei was generated from each workflow and subsequently
143 scaffolded with a Nanopore assembly built with Canu³⁷ (Figure 2r-s). To test for the
144 effect of increasing number of assembled nuclei in the three methods, random
145 combinations with different number of nuclei were assembled with the three assembly

146 workflows. Multiple replicate assemblies were performed for different random
147 combinations of two to twelve nuclei and one random combination for 13-23 nuclei.
148 BUSCO⁴², assembly size and N50 was used to compare these to full and single nuclei
149 assemblies.

150

151 **Results**

152 The different assembly workflows resulted in assemblies that vary in sizes,
153 fragmentation and completeness (Table 1). Based on BUSCO analyses, workflow 3
154 generates the most complete assembly, with 89% for assembly 3n, compared to 2n at
155 80%, and 1n at 78% (Table 1). Of the core single copy genes identified by BUSCO,
156 few were fragmented or duplicated in assembly 3n indicating that the set of 14,600
157 predicted genes is likely to be complete and a close representation of the genetic
158 diversity in this strain (Table 1). This number is lower than the number of genes
159 found in other sequenced AM fungi such as *R. irregularis*²⁸ and *R. clarus*³¹, also
160 lower than those predicted in assemblies 1n and 2n (Table 1). Interestingly, assembly
161 3n is considerably smaller (70.8 Mb) than the other full assemblies (92.4 Mb and
162 130.4 Mb for assembly 1n and 2n respectively), and markedly smaller than the
163 average estimated genome size of 119 Mb based on SGA-PreQC⁴³. The smaller size
164 of 3n can be attributed to repeat sequences (20.6 Mb) that are captured, to a lesser
165 extent, compared to the other assembly workflows (41.3 - 58.6 Mb). Specifically,
166 normalization is expected to disproportionately reduce high coverage genomic
167 sequences such as repeat elements, and collapsing those regions when assembling.
168 Note that this effect of normalization is eluded in assembly workflow 2, in which
169 nuclei are normalized and assembled individually; repetitive regions will collapse but
170 in different parts of the genome, ending up represented in the final assembly when

171 combined. In contrast, workflow 1 is based on non-normalized reads. Due to uneven
172 coverage, this workflow assembles less of the genome (an average of 55% of the raw
173 reads align to the individual nuclei assemblies, as opposed to 96% of the reads
174 mapping to the normalized individual nuclei assemblies (Table S5)) but generate
175 contigs well supported by high coverage. Combining these incomplete assemblies
176 from single nuclei using Lingon, generates an accurate assembly 1 comparable to
177 assembly 3 with a better representation of repeats (Table 1).

178 Combinations of increasing number (1-24) of random nuclei were produced for all the
179 assembly workflows in order to evaluate the number of nuclei needed to produce a
180 good final assembly. As shown in figure 3, single nuclei assemblies are most
181 complete when using normalized workflows (2 and 3), with an average of 40%
182 BUSCO estimated completeness. Interestingly, there is an increasing number of gene
183 duplications among the complete genes as more single nuclei assemblies are
184 combined for method 2 compared to method 1 (Figure 3a-b). Higher amount of gene
185 duplications was confirmed by locating known single copy genes in all assemblies
186 (Table S6). The duplications in workflow 2 are likely generated because read
187 normalization allows for assembly of regions with low coverage that are prone to
188 errors and prevents contigs from being properly assembled by the workflow manager
189 Lingon.

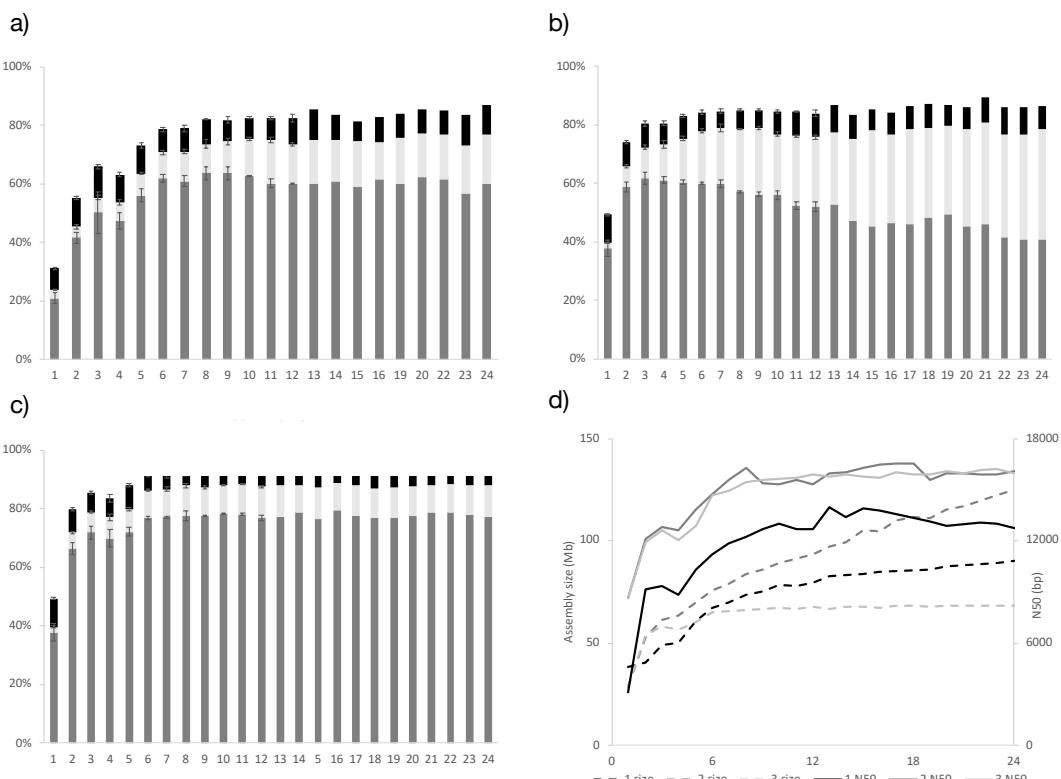
190

191 **Discussion**

192 Methodological challenges in assembling genomes from amplified single nuclei or
193 cells can be elevated by careful analysis of generated assemblies. Combining and
194 normalizing reads (workflow 3) from only 6 individually sequenced nuclei can
195 already generate a high coverage genome assembly. From this assembly, good quality

196 data of single copy genes are obtained, ideally suited for phylogenomic studies.
197 Assembly workflow 1 on the other hand is better suited to characterize repeat
198 elements in the genome since these are better represented in assemblies of non-
199 normalized data. With this method a high-quality genome can be assembled using
200 seven individually amplified and sequenced nuclei (Figure 3). Comparative genetic
201 analysis of single nuclei is best done using assemblies from workflow 2. However,
202 single nuclei assemblies based on normalized reads should not be assembled into
203 consensus assemblies since variable quality of contigs make them prone to
204 duplication.

205 To conclude, sequence data from single cell sequencing presents itself as challenging,
206 but as shown here, with the right combination of methods adapted to the data, *de novo*
207 genome references can be generated, opening the door for an expansion in genomic
208 and phylogenomic research in organisms like AM fungi, that have, for too long,
209 evaded large scale genome sequencing efforts due to too methodological limitations
210 stemming from their complicated biology. Useful genomic information can be
211 generated from a handful of single nuclei greatly improving our ability to study
212 multicellular eukaryotes with complex life stages. The assembly method of choice
213 will ultimately depend on the research questions asked and the kind of data needed or
214 available.


215

216 Table 1. Comparative assessment of the 3 assembly workflows.

Assembly		Size (Mb)	# Contigs	N50	Largest contig (Mb)	GC (%)	BUSCO (%) ^a	# Genes (Mb)	Repeats (Mb)
1	Raw reads	90.16	11077	12714	94.39	27.01	C: 77 F: 10	18068 (49.42)	40.39
1n	+ Nanopore	92.38	3899	37258	176.652	27.91	C: 78 F: 9	16680 (69.54)	41.32
2	Normalized to 100x	124.96	21934	16055	155.09	28.07	C: 79 F: 8	24930 (69.79)	57.77

2n	+ Nanopore	130.41	4632	60974	338.42	28.07	C: 80 F: 7	22618 (105.48)	58.57
3	Combined, normalized to 100x	68.31	11259	15947	199.90	28.08	C: 88 F: 4	15882 (43.73)	21.71
3n	+ Nanopore	70.81	3883	33135	220.22	28.08	C: 89 F: 3	14662 (55.44)	20.64

217 ^aBUSCO results in % of complete genes (C) or fragmented (F).

218

219 Figure 3

220 Summary statistics for different number of assembled nuclei (1-24) using three
221 different assembly workflows. BUSCO estimates of completeness for a) workflow 1:
222 raw reads of individual nuclei assembled using Masurca, consensus assembly using
223 Lingon b) workflow 2: normalised reads of individual nuclei assembled using
224 SPADES, consensus assembly using Lingon and c) workflow 3: reads from individual
225 nuclei are pooled and normalised before assembling with SPADES. Percentage of
226 single copy core genes detected as single copy (S: grey), duplicated (D: light grey) or
227 fragmented (F: black). Average of 3-6 replicate assemblies up to 12 nuclei with error

228 bars indicating SEM. In d) assembly size (dashed lines) and N50 (solid lines) for the
229 there methods 1 (black), 2 (grey) and 3 (light grey).

230

231 **Methods**

232 **Fungal strain and spore extraction**

233 *C. claroideum/C. luteum* (SA101) was obtained as whole inoculum from the
234 International culture collection of (vesicular) arbuscular mycorrhizal fungi (INVAM)
235 at West Virginia University, Morgantown, WV, USA. Soil (10-30 ml) was blended
236 with 3 to 4 pulses using a blender half-filled with water (500 ml). The mix was
237 filtered through a set of sieves (1 mm/500 μm /38 μm x 200 mm diameter, (VWR,
238 Sweden). The content of the last sieve was transferred into a falcon tube containing 20
239 ml of 60% sucrose solution, and centrifuged for 1 minute at 2500-3000 rpm. The
240 supernatant was poured into a small sieve (50 mm diameter) of 38 μm and the sucrose
241 was washed with water. The contents were poured onto a petri dish for better
242 visualization under the stereomicroscope. Spores were transferred individually or in
243 groups to an Eppendorf tube using modified glass pipettes with reduced tip diameter
244 and subsequently cleaned by adding and removing ddH₂O five times. The step-by-
245 step protocol can be found in the OSF Repository for the project⁴⁴.

246 **Nuclei extraction and sorting**

247 After spore extraction from soil, individual spores were placed in 30 μl ddH₂O in 1.5
248 ml Eppendorf tubes. One tube with 15 spores was used to establish the sorting
249 window. An amount of 50 μl 1x PBS was added to each tube before crushing the
250 spores using a sterile pestle. DNA was stained by adding 1 μl of 200x SYBR Green I
251 Nucleic Acid stain (InvitrogenTM, Thermo Fisher Scientific, MA, USA) and the
252 sample was incubated for 20-50 min in the dark. More 1x PBS was added to increase

253 the volume to 100-200 μ l before putting the sample on the FACS. The sorting was
254 performed with a MoFloTM Astrios EQ sorter (Beckman Coulter, USA) using a 488
255 nm laser for excitation, 70 μ m nozzle, sheath pressure of 60 psi, and 0.1 μ m filtered
256 1x PBS as sheath fluid. The sorter was triggered on forward scatter (FSC) at a
257 threshold of 0.03% and sort regions were set on SYBR Green I fluorescence (488-
258 530/40) over side scatter (SSC). The samples were sorted in enrich mode with a drop
259 envelope of 1 at 700 to 1200 events per second. Thus, if a particle fitting within the
260 sorting window passes by the laser together with another particle, these would be
261 discarded. Particles from region R1, assumed to be nuclei (Figure S4), were sorted
262 individually into 96 well plates containing 1 μ l 1x PBS/well, groups of 5 particles
263 were collected for positive control, and empty wells were kept as negative control
264 (Table S2).

265 **Whole Genome Amplification**

266 Sorted nuclei were lysed and neutralized followed by whole genome amplification
267 using Phi29 and MDA as described by Rinke et al., 2014⁴⁵. In short, the cells were
268 incubated in an alkaline solution (buffer DLB and DTT, Qiagen, Germany) for 5 min
269 at room temperature, followed by 10 min on ice. Lysis reactions were neutralized by
270 adding 1 μ L neutralization buffer (stop solution, Qiagen, Germany). Both, the alkaline
271 lysis solution as well as the neutralization buffer were UV treated with 2 Joule in a
272 Biolinker. MDA was performed using the RepliPHITMPhi29 Reagent set (RH031110,
273 Epicenter, WI USA) at 30°C for 16 h in 15 μ l reaction volumes with a final
274 concentration of 1x reaction buffer, 0.4 mM dNTPs, 10 mM DTT, 5% DMSO, 50 μ M
275 hexamers with 3'- phosphorothioate modifications (IDT Integrated DNA
276 Technologies, Iowa USA), 40 U Phi 29 enzyme; 0.5 μ M SYTO13® (InvitrogenTM,
277 Thermo Fisher Scientific, MA, USA) and water. All reagents except SYTO13 were

278 UV decontaminated with 3 Joule in a UV crosslinker as described in Rinke et al.,
279 2014⁴⁵ 12 µl of MDA mix were then added to each well.

280 The whole genome amplification was monitored in real time by detection of SYTO13
281 fluorescence every 15 minutes for 16 h using a Chromo4 real-time PCR instrument
282 (Bio-Rad, USA) or a FLUOstar®Omega plate reader (BMG Labtech, Germany). The
283 single amplified genome DNA was stored at -20°C for short-term, and transferred to -
284 80°C for long-term storage.

285 **Selecting single amplified nuclei for sequencing**

286 MDA products were diluted to approximately 5 ng/µl (40x) and screened for the
287 presence of fungal and bacterial ribosomal genes using PCR. Reaction mixtures were
288 made as described above, using the fungal-specific primers ITS9⁴⁶ and ITS4. The
289 PCR protocol had an initial denaturing step of 10 min at 95°C, followed by 35 cycles
290 of 30 s at 95°C, 30 s at 58°C, and 50 s at 72°C for the fungi PCR. For the bacteria-
291 specific 341F/805R⁴⁷ primer pairs a different reaction mixture was used containing
292 10x Standard Taq Reaction buffer (Qiagen), 2 mM MgCl2, 0.2 mM deoxynucleoside
293 triphosphates (dNTPs), a 0.2 µM concentration of each primer, and 1 U Taq DNA
294 polymerase (Qiagen). A positive control of DNA extracted from commercially
295 available *Agaricus bisporus* provided by Dr. Ylva Strid, UU, was included, and
296 ddH2O as negative control. The bacterial PCR protocol consisted on an initial step of
297 5 min at 95°C, followed by 30 cycles of 30 s at 95°C, 30 s at 58°C, and 50 s at 72°C
298 for the bacteria PCR before a final elongation step of 7 min at 72°C. Bacteria PCR
299 included a positive control of DNA extracted from Legionella provided by Tiscar
300 Graells, Universitat Autónoma de Barcelona (UAB), Spain, and ddH2O as negative
301 control. The reaction was performed with a 2720 Thermocycler of Applied
302 Biosystems (USA). The presence of amplification products was verified by gel

303 electrophoresis by separation on a 2% agarose gel run for 35 min at 110V (fungi) and
304 70V (bacteria) including a Thermo Scientific GeneRuler 100 bp DNA Ladder. (Figure
305 S5), and the samples were identified as fungi positive, bacteria positive, fungi +
306 bacteria positive or failed/empty (Table S3). From the samples that scored positive for
307 presence of fungi, 24 undiluted samples were selected for sequencing and the DNA
308 amount was measured using Qubit (Brand, country) after addition of 30 μ l ddH₂O
309 (Table S4).

310 **Sequencing of single amplified nuclei**

311 From the 24 selected samples, around 800 ng of DNA was transferred to sequencing
312 plates. Library preparation and sequencing was performed by the SNP&SEQ
313 Technology Platform in Uppsala at the National Genomics Infrastructure (NGI)
314 Sweden and Science for Life Laboratory. For each sample, an individual library was
315 prepared using the TruSeq Nano DNA Library Prep Kit. The sequencing was
316 performed by doing a cluster generation and 150 cycles paired-end sequencing of the
317 24 libraries in 1 lane using the HiSeq X system and v2.5 sequencing chemistry
318 (Illumina Inc., USA). Read data were delivered to us as fastq.

319 **Spore sorting for Nanopore sequencing**

320 Spores were picked in groups of 30 with the help of a P10 and P100 pipette, then
321 washed 5x in nuclease-free water and transferred to Eppendorf tubes in 30 μ L
322 nuclease-free water. For the FACS sorting, spores were crushed, then 30 μ l 1x PBS
323 was added to the tube along with 1 μ l of 200x SYBR Green for staining the DNA (20-
324 50 mins). Sample volume was increased to 200 μ l with 1x PBS before loading on the
325 FACS. Pools of 5 and 100 nuclei were sorted into either individual 1.5 ml Eppendorf
326 tubes or into multi-well plates. The above-described WGA protocol was run, and the
327 presence of fungal DNA in the samples was verified by PCR on diluted samples of

328 amplified pooled nuclei before selecting fungi positive samples for library
329 preparation. PCR reaction mixtures contained 10x Standard Taq Reaction buffer
330 (Qiagen), 2 mM MgCl₂, 0.2 mM deoxynucleoside triphosphates (dNTPs), a 0.2 µM
331 concentration of each primer, and 1 U Taq DNA polymerase (Qiagen). The fungal-
332 specific ITS1F/ITS4 and bacteria-specific 341F/805R primer pairs were used for each
333 sample in two independent PCR reactions. The PCR protocol included an initial
334 denaturing step of 5 min at 95°C, followed by either 35 cycles of 30 s at 95°C, 30 s at
335 55°C, and 50 s at 72°C for the fungi PCR or by 30 cycles of 30 s at 95°C, 30 s at
336 58°C, and 50 s at 72°C for the bacteria PCR before a final elongation step of 7 min at
337 72°C. The reaction was performed with a 2720 Thermocycler of Applied Biosystems
338 (USA). Amplification products were visualized and documented by gel
339 electrophoresis as described above.

340 Libraries were prepared by following the “Premium Whole Genome Amplification”
341 protocol (version WAL_9030_v108_revJ_26Jan2017, Oxford Nanopore
342 Technologies [ONT], Oxford, United Kingdom) in combination with the Ligation
343 Sequencing Kit 1D (SQK-LSK108, ONT) with the following modifications: (a) an
344 alternative WGA method was used (Qiagen Single Cell Kit instead of the Midi Kit);
345 (b) samples were diluted to a 50 µl volume following WGA and quantified with a
346 Qubit fluorometer (brand, country). Amounts of 1 - 2.5 µg DNA were then used for
347 preparing individual libraries, starting with the first bead cleaning step explained in
348 the whole genome amplification section. At the end of this step, samples were eluted
349 in 19 µl nuclease-free water instead of 100 µl. 1 µl of the eluted sample was used for
350 DNA quantification (Qubit fluorometer) while another 1 µl was used to measure
351 DNA quality with Nanodrop (ND 2000); (c) no size selection and intentional shearing
352 was performed to achieve read length as long as possible; (d) 17 µl amplified DNA

353 was added to the T7 endonuclease treatment; (e) an extended end-prep reaction was
354 performed by incubating the samples for 30-30 mins at both 20°C and 65°C; (f)
355 adapter ligation was allowed for 25-30 mins instead of 10; (g) elution buffer in the
356 final step was incubated for 15 minutes instead of 10; (h) the loaded library contained
357 no additional water but 14.5 µl DNA library instead of 12 µl. Additionally, flicking
358 was used to mix reactions instead of pipetting to prevent DNA fragmentation. Further,
359 eluates were removed and retained in a stepwise fashion (i.e. in multiple aliquots)
360 after every cleaning step to assure that no beads were brought forward with the DNA
361 into the next library preparation step. In general, by extending clean-up-, ligation- and
362 elution steps the quality of the library and thus pore occupancy during sequencing
363 could be improved.

364 A total of 3 libraries on 3 separate ONT MinION R9.4 flow cells (FLO-MIN106)
365 were sequenced using live base-calling and the standard 48 h sequencing protocol
366 (NC_48Hr_sequencing_FLO-MIN106_LSK-108_plus_Basecaller). One library was
367 run on a fresh flow cell with ~1400 single pores available for sequencing in the
368 beginning of the run. This 48 h run provided 1,686,715 reads. As for the other two
369 libraries, previously used and washed flow cells were re-used with only a fraction of
370 sequencing pores being functional (402 vs. 256 pores), thus the acquired data were
371 much lower (100,000 and 106,000 reads respectively).

372 **Computational analysis, assembly and annotation**

373 The quality of the Illumina reads was assessed with FastQC⁴⁸. Genome size
374 estimation was done for each paired raw-reads from individual nuclei with SGA-
375 PreQC⁴⁹. Contamination was assessed with Kraken⁵⁰ in some of the raw-reads. CG
376 content was computed using the NBIS-UtilityCode⁵¹ toolbox.

377 Assembly workflow 1: Individual assemblies for each of the 24 nuclei was done using
378 MaSuRCA³⁴ using default options. The resulting assemblies were iteratively merged
379 using Lingon³⁶, which computed overlaps based on the spacing of sequence motifs
380 (CATG, CTAG, GTAC, GATC, TATA, ATAT, and GC), and merged contigs based
381 on pairwise maximal extensions. Each motif was iterated over ten times. Three
382 versions of the assembly were generated when contigs smaller than <500, <1000 and
383 <2000 were removed from the individual assemblies prior to Lingon.

384 Assembly workflow 2: Each set of reads was normalized using bbnorm of BBMap⁵²
385 v. 38.08 with a target average depth of 100x. Normalized data were assembled
386 individually into 24 assemblies using SPADES³⁵, and a consensus assembly was
387 generated with Lingon³⁶, with the same sequence motifs as for assembly 1.

388 Assembly workflow 3: The 24 datasets were combined and normalized with bbnorm
389 of BBMap⁵² v. 38.08 with a target average depth of 100x, and posteriorly assembled
390 using SPADES³⁵.

391 Nanopore assembly: Nanopore reads were assembled using Canu³⁷ v.1.7-86da76b,
392 this specific beta version made it possible to assemble a difficult dataset like ours,
393 with highly uneven coverage across the genome. An assembly was created using
394 default settings together with the known information (genomeSize=117m -Nanopore-
395 raw). The resulting individual assembly was polished with three rounds of Pilon³⁸
396 v.1.22 using the raw Illumina reads from the 24 nuclei mapped with Bowtie2⁵³.
397 The contigs of the final assemblies from single nuclei were scaffolded with the
398 Nanopore assembly using Chromosemble from the Satsuma package³⁹.

399

400 **Comparative assembly analysis**

401 A quantitative assessment of the assemblies was done with Quast⁵⁴ v.4.5.4 and a
402 contamination check with Kraken⁵⁰ v1.0. In addition, a BUSCO⁴² analysis was done
403 to assess completeness of the genome. The BUSCO lineage set used was fungi_odb9
404 and the species set was rhizopus_oryzae. (Figure 3, Figure S

405 Raw-reads were mapped to the individual assemblies of method 1 and 2 (Table S5)
406 with Bowtie2⁵³ v. 2.3.3.1 using the default settings.

407 Two genes, known to be single copy genes in fungal genomes, as elongation factor 1-
408 alpha (EF1-alpha) and the largest subunit of RNA polymerase II (RPB1), were
409 searched for in the genome assemblies to test for possible duplications generated by
410 the assembly methods. Sequences belonging to *C. claroideum* were used to find the
411 sequences with BLASTn⁵⁵ (Table S6). Genebank sequences: EF1-alpha GQ205008.1,
412 RPB1 HG316018.1.

413 **Genome annotation**

414 Repeats and transposable elements (TEs) were *de novo* predicted in every assembly
415 using RepeatModeler⁵⁶ v1.0.8. The repeat library from RepeatModeler was used to
416 mask the genome assembly using RepeatMasker⁵⁷ v4.0.7. The classification reports
417 can be found in the OSF Repository⁴⁴.

418 Protein coding genes were *de novo* predicted from the repeat-masked scaffolded
419 genome assembly with GeneMark-ES⁵⁸ v4.33. GeneMark-ES uses unsupervised self-
420 training and an algorithm that is optimized for fungal gene organization. To guide the
421 gene predictions, we aligned UniProt/Swiss-Prot⁵⁹ protein sequences (downloaded 8
422 May 2018) to the repeat-masked genome assembly using MAKER⁶⁰ v3.01.1-beta and
423 provided the genomic locations of the protein alignments to GeneMark-ES. The
424 previously published transcriptomic data from *C. claroideum*⁶¹ was not used to due to
425 the low mapping success of the reads to the assembly (25%), which could be related

426 to the low BUSCO statistics shown in the study⁶¹, and that could have negatively
427 affected the annotation quality.

428 Protein and gene names were assigned to the gene predictions using a BLASTx⁵⁵
429 v2.6.0 search of predicted mRNAs against the UniProt/Swiss-Prot⁵⁹ database with
430 default e-value parameters (1x10-5). The ANNotation Information Extractor, Annie⁶²,
431 was used to extract BLAST matches and to reconcile them with the gene predictions.

432

433 Sequences, assemblies and annotation can be found in the BioProject: PRJNA528883

434

435 **References**

- 436 1. James, T. Y. & Berbee, M. L. No jacket required - new fungal lineage defies
437 dress code: Recently described zoosporic fungi lack a cell wall during trophic
438 phase. *BioEssays* (2012). doi:10.1002/bies.201100110
- 439 2. Rosling, A. *et al.* Archaeorhizomycetes: Unearthing an ancient class of
440 ubiquitous soil fungi. *Science* (2011). doi:10.1126/science.1206958
- 441 3. Spribille, T. *et al.* Basidiomycete yeasts in the cortex of ascomycete
442 macrolichens. *Science* (2016). doi:10.1126/science.aaf8287
- 443 4. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity.
444 *Proc. Natl. Acad. Sci.* (2016). doi:10.1073/pnas.1521291113
- 445 5. Hug, L. A. *et al.* A new view of the tree of life. *Nat. Microbiol.* 1, (2016).
446 doi:10.1038/nmicrobiol.2016.48
- 447 6. Tyson, G. W. *et al.* Community structure and metabolism through
448 reconstruction of microbial genomes from the environment. *Nature* (2004).
449 doi:10.1038/nature02340
- 450 7. Saw, J. H. *et al.* Exploring microbial dark matter to resolve the deep archaeal

451 ancestry of eukaryotes. *Philos. Trans. R. Soc. B Biol. Sci.* (2015).

452 doi:10.1098/rstb.2014.0328

453 8. Raghunathan, A. *et al.* Genomic DNA amplification from a single bacterium.

454 *Appl. Environ. Microbiol.* (2005). doi:10.1128/AEM.71.6.3342-3347.2005

455 9. Yoon, H. S. *et al.* Single-cell genomics reveals organismal interactions in

456 uncultivated marine protists. *Science* (2011). doi:10.1126/science.1203163

457 10. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: Current

458 state of the science. *Nature Reviews Genetics* (2016). doi:10.1038/nrg.2015.16

459 11. Hug, L. A. *et al.* Critical biogeochemical functions in the subsurface are

460 associated with bacteria from new phyla and little studied lineages. *Environ.*

461 *Microbiol.* (2016). doi:10.1111/1462-2920.12930

462 12. Zaremba-Niedzwiedzka, K. *et al.* Asgard archaea illuminate the origin of

463 eukaryotic cellular complexity. *Nature* 541, 353–358 (2017).

464 doi:10.1038/nature21031

465 13. West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F.

466 Genome-reconstruction for eukaryotes from complex natural microbial

467 communities. *Genome Res.* (2018). doi:10.1101/gr.228429.117

468 14. Rinke, C. *et al.* Insights into the phylogeny and coding potential of microbial

469 dark matter. *Nature* (2013). doi:10.1038/nature12352

470 15. Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell

471 sequencing. *Nature Methods* (2017). doi:10.1038/nmeth.4469

472 16. Ahrendt, S. R. *et al.* Leveraging single-cell genomics to expand the fungal tree

473 of life. *Nat. Microbiol.* (2018). doi:10.1038/s41564-018-0261-0

474 17. Rantalainen, M. Application of single-cell sequencing in human cancer. *Brief.*

475 *Funct. Genomics* (2017). doi:10.1093/bfgp/elx036

476 18. Yuan, Y., Lee, H. T., Hu, H., Scheben, A. & Edwards, D. Single-cell genomic
477 analysis in plants. *Genes* (2018). doi:10.3390/genes9010050

478 19. Srivastava, M. *et al.* The *Amphimedon queenslandica* genome and the
479 evolution of animal complexity. *Nature* (2010). doi:10.1038/nature09201

480 20. Tuovinen, V. *et al.* Two Basidiomycete fungi in the cortex of wolf lichens.
481 *Curr. Biol.* (2019). doi:10.1016/j.cub.2018.12.022

482 21. Cuomo, C. A. *et al.* Microsporidian genome analysis reveals evolutionary
483 strategies for obligate intracellular growth. *Genome Res.* (2012).
484 doi:10.1101/gr.142802.112

485 22. Gardner, M. J. *et al.* Genome sequence of the human malaria parasite
486 *Plasmodium falciparum*. *Nature* (2002). doi:10.1038/nature01097

487 23. Tan, X. *et al.* Diversity and bioactive potential of culturable fungal endophytes
488 of *Dysosma versipellis*; A rare medicinal plant endemic to China. *Sci. Rep.*
489 (2018). doi:10.1038/s41598-018-24313-2

490 24. Kaul, S., Sharma, T. & K. Dhar, M. “Omics” tools for better understanding the
491 plant–endophyte interactions. *Front. Plant Sci.* (2016).
492 doi:10.3389/fpls.2016.00955

493 25. Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses.
494 *Nature Reviews Microbiology* (2008). doi:10.1038/nrmicro1987

495 26. Humphreys, C. P. *et al.* Mutualistic mycorrhiza-like symbiosis in the most
496 ancient group of land plants. *Nat. Commun.* (2010). doi:10.1038/ncomms1105

497 27. Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus
498 interactions in mycorrhizal symbiosis. *Nat. Commun.* 1, 48 (2010).
499 doi:10.1038/ncomms1046

500 28. Tisserant, E. *et al.* Genome of an arbuscular mycorrhizal fungus provides

501 insight into the oldest plant symbiosis. *Proc. Natl. Acad. Sci.* 110, 20117–
502 20122 (2013). doi:10.1073/pnas.1313452110

503 29. Lin, K. *et al.* Single Nucleus genome sequencing reveals high similarity among
504 nuclei of an endomycorrhizal fungus. *PLoS Genet.* 10, (2014).
505 doi:10.1371/journal.pgen.1004078

506 30. Chen, E. C. H. *et al.* High intraspecific genome diversity in the model
507 arbuscular mycorrhizal symbiont *Rhizophagus irregularis*. *New Phytol.* (2018).
508 doi:10.1111/nph.14989

509 31. Kobayashi, Y. *et al.* The genome of *Rhizophagus clarus* HR1 reveals a
510 common genetic basis for auxotrophy among arbuscular mycorrhizal fungi.
511 *BMC Genomics* (2018). doi:10.1186/s12864-018-4853-0

512 32. Sun, X. *et al.* Genome and evolution of the arbuscular mycorrhizal fungus
513 *Diversispora epigaea* (formerly *Glomus versiforme*) and its bacterial
514 endosymbionts. *New Phytol.* (2018). doi:10.1111/nph.15472

515 33. Morin, E. *et al.* Comparative genomics of *Rhizophagus irregularis*,
516 *R. cerebriforme*, *R. diaphanus* and *Gigaspora rosea* highlights specific genetic
517 features in Glomeromycotina. *New Phytol.* (2019). doi:10.1111/nph.15687

518 34. Zimin, A. V. *et al.* The MaSuRCA genome assembler. *Bioinformatics* (2013).
519 doi:10.1093/bioinformatics/btt476

520 35. Bankevich, A. *et al.* SPAdes: A new genome assembly algorithm and its
521 applications to single-cell sequencing. *J. Comput. Biol.* (2012).
522 doi:10.1089/cmb.2012.0021

523 36. Grabherr, M. G. Lingon: A d-mer based genome assembly pipeline. (2018).

524 37. Koren, S. *et al.* Canu: Scalable and accurate long-read assembly via adaptive κ -
525 mer weighting and repeat separation. *Genome Res.* (2017).

526 doi:10.1101/gr.215087.116

527 38. Walker, B. J. *et al.* Pilon: An integrated tool for comprehensive microbial
528 variant detection and genome assembly improvement. *PLoS One* (2014).
529 doi:10.1371/journal.pone.0112963

530 39. Grabherr, M. G. *et al.* Genome-wide synteny through highly sensitive sequence
531 alignment: Satsuma. *Bioinformatics* (2010). doi:10.1093/bioinformatics/btq102

532 40. Spits, C. *et al.* Whole-genome multiple displacement amplification from single
533 cells. *Nat. Protoc.* (2006). doi:10.1038/nprot.2006.326

534 41. Dean, F. B. *et al.* Comprehensive human genome amplification using multiple
535 displacement amplification. *Proc. Natl. Acad. Sci.* (2002).
536 doi:10.1073/pnas.082089499

537 42. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov,
538 E. M. BUSCO: Assessing genome assembly and annotation completeness with
539 single-copy orthologs. *Bioinformatics* (2015).
540 doi:10.1093/bioinformatics/btv351

541 43. Simpson, J. T. Exploring genome characteristics and sequence quality without
542 a reference. *Bioinformatics* (2014). doi:10.1093/bioinformatics/btu023

543 44. Montoliu-Nerin, M. OSF Repository - From Single Nuclei To Whole Genome
544 Assemblies. (2018). Available at: <https://osf.io/yvwur/>.

545 45. Rinke, C. *et al.* Obtaining genomes from uncultivated environmental
546 microorganisms using FACS-based single-cell genomics. *Nat. Protoc.* (2014).
547 doi:10.1038/nprot.2014.067

548 46. Ihrmark, K. *et al.* New primers to amplify the fungal ITS2 region - evaluation
549 by 454-sequencing of artificial and natural communities. *FEMS Microbiol.*
550 *Ecol.* (2012). doi:10.1111/j.1574-6941.2012.01437.x

551 47. Herlemann, D. P. R. *et al.* Transitions in bacterial communities along the 2000
552 km salinity gradient of the Baltic Sea. *ISME J.* (2011).
553 doi:10.1038/ismej.2011.41

554 48. Andrews, S. FastQC: A quality control tool for high throughput sequence data.
555 <Http://Www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/> (2010).
556 doi:citeulike-article-id:11583827

557 49. Simpson, J. SGA-PreQC. (2013). Available at:
558 <https://github.com/jtssga/wiki/preqc>. (Accessed: 26th November 2017)

559 50. Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence
560 classification using exact alignments. *Genome Biol.* (2014). doi:10.1186/gb-
561 2014-15-3-r46

562 51. Grabherr, M. G. NBIS-UtilityCode. Available at:
563 <https://github.com/NBISweden/NBIS-UtilityCode>. (Accessed: 16th September
564 2018)

565 52. Bushnell, B. BBMap short read aligner. *Joint Genome Institute, department of*
566 *energy* (2014). doi:10.1016/j.avsg.2010.03.022

567 53. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.
568 *Nat. Methods* (2012). doi:10.1038/nmeth.1923

569 54. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality
570 assessment tool for genome assemblies. *Bioinformatics* (2013).
571 doi:10.1093/bioinformatics/btt086

572 55. Camacho, C. *et al.* BLAST+: Architecture and applications. *BMC*
573 *Bioinformatics* (2009). doi:10.1186/1471-2105-10-421

574 56. Smit, A. & Hubley, R. RepeatModeler Open-1.0.

575 57. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0.

576 58. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. & Borodovsky, M.

577 Gene prediction in novel fungal genomes using an ab initio algorithm with

578 unsupervised training. *Genome Res.* (2008). doi:10.1101/gr.081612.108

579 59. Bateman, A. *et al.* UniProt: The universal protein knowledgebase. *Nucleic*

580 *Acids Res.* (2017). doi:10.1093/nar/gkw1099

581 60. Cantarel, B. L. *et al.* MAKER: An easy-to-use annotation pipeline designed for

582 emerging model organism genomes. *Genome Res.* (2008).

583 doi:10.1101/gr.6743907

584 61. Beaudet, D. *et al.* Ultra-low input transcriptomics reveal the spore functional

585 content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal

586 fungi. *DNA Res.* (2018). doi:10.1093/dnares/dsx051

587 62. Tate, R., Hall, B., DeRego, T. & Geib, S. Annie: the ANNnotation Information

588 Extractor (Version 1.0). (2014). Available at:

589 <http://genomeannotation.github.io/annie>. (Accessed: 16th September 2018)

590 63. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for

591 basidiomycetes - application to the identification of mycorrhizae and rusts.

592 *Mol. Ecol.* (1993). doi:10.1111/j.1365-294X.1993.tb00005.x

593 64. Bowers, R. M. *et al.* Corrigendum: Minimum information about a single

594 amplified genome (MISAG) and a metagenome-assembled genome (MIMAG)

595 of bacteria and archaea (Nature Biotechnology (2017) 35 (725-731) DOI:

596 10.1038/nbt.3893). *Nature Biotechnology* (2018). doi:10.1038/nbt0718-660a

597

598 **Acknowledgments**

599 We thank, J. Bever and S. Bertilsson for scientific discussions, Y. Strid and M.

600 Zakiyah for assistance in the lab, J. Morton and W. Wheeler at INVAM culture

601 collection, and funding from ERC (678792). Sequencing was performed by the
602 SNP&SEQ Technology Platform at NGI Sweden and SciLife Laboratory, Uppsala,
603 supported by the VR and the KAW. Computations were performed on resources
604 provided by SNIC through UPPMAX.

605 **Author contributions**

606 AR initiated the project and developed the method together with MMN and HJ. MSG
607 helped develop the bioinformatic analysis. CB was in charge of the single nuclei
608 facility and did the MDA, BE was in charge of the Nanopore sequencing. MG
609 designed Lingon and helped with analysis together with MK. VK was in charge of the
610 annotation. MMN was responsible for the project and wrote the manuscript with AR
611 and HJ, with input from all the authors.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629