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Abstract

There is a long-standing interest in understanding host-parasite coevolutionary
dynamics and associated fitness effects. Increasing amounts of genomic data for both
interacting species offer a promising source to identify candidate loci and to infer the
main parameters of the past coevolutionary history. However, so far no method exists to
do so. By coupling a gene-for-gene model with coalescent simulations, we first show that
three types of biological cost, resistance, infectivity and infection, define the allele
frequencies at the internal equilibrium point of the coevolution model, which in return
determine the strength of the selective signatures signatures at host and parasite loci.
We apply an Approximate Bayesian Computation (ABC) approach on simulated
datasets to infer these costs by jointly integrating host and parasite polymorphism data
at the coevolving loci. To control for the effect of genetic drift on coevolutionary
dynamics, we assume that 10 or 30 repetitions are available from controlled experiments
or several natural populations. We study two scenarios: 1) the cost of infection and
population sizes (host and parasite) are unknown while costs of infectivity and
resistance are known, and 2) all three costs are unknown while populations sizes are
known. Using the ABC model choice procedure, we show that for both scenarios, we
can distinguish with high accuracy pairs of loci from host and parasite under
coevolution from neutrally evolving loci, though the statistical power decreases with
higher cost of infection. The accuracy of parameter inference is also very high under
both scenarios especially when using both host and parasite data because parasite
polymorphism data do inform on host costs and vice-versa. As the false positive rate to
detect genes under coevolution is small, we suggest to use our method to identify host
and parasite candidate loci for further functional studies.

Author summary

It is of importance for agriculture and medicine to understand host-parasite antagonistic
coevolutionary dynamics and the deleterious associated fitness effects, as well as to
reveal the genes underpinning these interactions. The increasing amount of genomic
data for hosts and parasites offer a promising source to identify such candidate loci, but
also to use statistical inference methods to reconstruct the past coevolutionary history.
In our study we attempt to draw inference of the past coevolutionary history at key
host and parasites loci using sequence data from several individuals and across several
experimental replicates. We demonstrate that using a Bayesian statistical method, it is
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possible to estimate the parameters driving the interaction of hosts and parasites at
these loci for thousands of generations. The main parameter that can be estimated is
the fitness loss by hosts upon infection. Our method and results can be applied to
experimental coevolution data with sequences at the key candidate loci providing
enough repetitions and large enough population sizes. As a proof of principle, our
results open the door to reconstruct past coevolutionary dynamics using sequence data
of interacting species.

Introduction

Host-parasite coevolution is an ubiquitous process and has been demonstrated in
terrestrial [1], limnological [2] and marine environments [3]. It describes the process of
parasites and hosts exerting reciprocal selective pressures on one another. Therefore,
coevolutionary dynamics are expected to substantially interact with and shape neutral
nucleotide diversity linked to the coevolving sites. The latter can be single or multiple
SNPs in coding or non-coding parts of genes [4L|5], insertions/deletions 6] or distributed
across a gene network [7]. Accordingly, the polymorphism patterns at the coevolving
loci, referred to as the genetic signatures, are expected to be distinct from loci not
involved into the coevolutionary interaction. Therefore, host and parasite genomic data
are valuable source to identify loci under coevolution and to infer their past
coevolutionary history.

On the one hand, signatures of positive selection which are characterized by lower
genetic diversity compared to the genome-wide average and increased levels in linkage
disequilibrium [§] are expected to arise under so called arms-race dynamics [9,[10]. In
arms race dynamics, frequencies of new beneficial alleles (such as new resistance or
infectivity alleles) arising by de novo mutations increase towards fixation in both
interacting partners. Accordingly, alleles are short lived and recurrently replaced and
thus, allelic polymorphism is only transient [9,10]. On the other hand, signatures of
balancing selection characterized by higher than average diversity [11] are expected to
be the result of so called trench-warfare dynamics (also referred to as Red Queen
dynamics) [6,9]. In this type of dynamics, several alleles are stably maintained over
large time periods in both coevolving species. Hereby, allele frequencies either converge
towards a stable equilbrium or they fluctuate persistently over time. Based on these
classic expectations, genomic studies have unravelled positive and balancing selection
signatures at various resistance genes [4-6}/12H16] and effector genes [17,/18].

An additional difficulty for coevolutionary analyses, is that there is a continuum
between arms-race and trench-warfare dynamics and the dynamics are in fact strongly
affected by the type and strength of various forms of selection (negative indirect
frequency dependent selection, negative direct frequency dependent selection,
overdominant selection) and their interplay with genetic drift [19}/20] and

mutation [21L22]. In other words, the expectations above are probably too simple to be
accurately applicable as the effect of genetic drift and mutation affecting the outcome of
coevolutionary dynamics is ignored [19-21].

Under negative frequency-dependent selection (nFDS) the fitness of a particular allele is
either inversely proportional to its own frequency (direct, ndFDS) or allele frequencies
in the interacting partner (indirect, niFDS) [23,/24]. Overdominant selection or some
form of ndFDS are a necessary but not always sufficient condition for trench-warfare

dynamics to take place in single locus host-parasite coevolutionary interactions [21}24].

But even with some form of ndFDS acting, arms-race dynamics can take place if either
the strength of ndFDS compared to niFDS is weak or genetic drift is causing random
loss of alleles.

The exact nature of the dynamics, such as the equilibrium frequencies of alleles and the
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period and amplitude of coevolutionary cycles, is further affected by the way host and
parasite genotypes interact at the molecular level and the fitness costs associated with
the coevolutionary interaction. The interaction at the molecular level is captured by the
infection matrix which stores the specificity and level of infection in all possible pairwise
interactions between host and parasite genotypes [25]. One well studied type of
interaction is the gene-for-gene (GFG) interaction which presents one endpoint of a
continuum of infection matrices [26,27]. GFG-interactions are characterized by one
universally infective parasite genotype and one universally susceptible host type and for
example have been found in the Flax- Melampsora lini system [2§].

A fitness cost which has been shown to crucially affect the coevolutionary dynamics is
the loss in host fitness due to infection [191/24]. In addition, costs of resistance such as
reduced competitive ability or fertility in absence of the parasite [29H31] and costs of
infectivity such as reduced spore production of infective pathogens [32] can further alter
the dynamics. These costs also determine the equilibrium frequencies of the
coevolutionary system [33.[34] at which one or several alleles are maintained or around
which allele frequencies cycle. An important result from previous theoretical
investigations [33l34] is that the equilibrium frequencies in the parasite population
depend on the parasite fitness costs (cost of infectivity) and vice versa (cost of
resistance and cost of infection).

Given this continuum of coevolutionary dynamics, it is necessary to gain a deeper and
refined understanding on how the interaction between allele frequency dynamics at the
coevolving loci, genetic drift and mutation shapes the resulting genetic signatures at the
coevolutionary loci and linked neutral sites. This is an important step for the
development and application of methods designed to draw inference on the
coevolutionary history. A previous study has investigated this link for two distinct
coevolutionary models [19]. Focusing on a small set of summary statistics, the
signatures at the coevolving loci cannot be necessarily distinguished from neutrality
when considering host or parasite data in isolation. Moreover, the strength of
coevolutionary signatures depends on the host and parasite population sizes and varies
with changing costs of infection, resistance and infectivity [19).

The first aim of the present paper is to extend this approach [19] by including additional
summary statistics in order to get a more refined understanding of the resulting genetic
signatures. Based on this extended set of summary statistics, our major aim is to jointly
infer several of the above mentioned parameters as a proof-of-principle by using an
Approximate Bayesian Computation approach [35H37]. We base our inference on
average summary statistics from r = 10 and r = 30 repeatedly simulated coevolutionary
histories. We test this approach on two different scenarios. In scenario 1, we aim to infer
simultaneously the cost of infection (s), the host population size (Ny) and the parasite
population size (Np) assuming that we know the true cost of resistance (cp) and the
true cost of infectivity (cp). This scenario mimics systems where experimental measures
of the costs of resistance or infectivity have been performed [32,38] and thus, these
parameters can be assumed as known. In scenario 2, our goal is to infer simultaneously
the cost of infection (s), the cost of infectivity (cp) and the cost of resistance (cg) that
the true host (N ) and parasite population sizes (Np) are known. Scenario 2 is
motivated by the assumption that an independent estimate of the effective population
size can be obtained by using full-genome data of loci unlinked to the coevolutionary
locus. For each scenario we perform the ABC model choice to distinguish
coevolutionary from neutral loci and subsequently infer the model parameters.
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Results

Link between coevolutionary dynamics and sequence data

Previous work has dealt with understanding the coevolutionary dynamics under the
chosen coevolution model [24] and the resulting genetic signatures [19]. We provide a
short summary of these results here to help the reader to gain an intuition regarding the
ABC results. A classic coevolutionary cycle in this Gene-For-Gene model consists of

four phases (see [24,53]):
1. The frequency of RES hosts increases when INF-parasites are in low frequency.

2. As a response to the increasing frequency of RES-host the frequency of
INF-parasites increases very quickly and the parasite population reaches almost
fixation for the INF-allele.

3. This results in a decrease of the frequency of RES-hosts due to the cost of
resistance.

4. Once RES-hosts are in low frequency the frequency of ninf-parasites increases
due to the cost of infectivity.

Depending on the combination of cost of infection (s), cost of resistance (cg) and
infectivity (cp) the model either exhibits trench-warfare dynamics or arms-race
dynamics. Trench-warfare dynamics mainly take place for small to intermediate costs of
infection. the dynamics switch to arms-race for high costs of infection 7
irrespective of ¢y and cp When arms-race dynamics take place the parasite population
always exhibits fixation of the INF-allele. The speed of the subsequent fixation of the
res-allele in the host depends on the cost of resistance (cy) and is faster for higher costs
of resistance (cg).

The internal equilibrium frequencies under trench-warfare dynamics are affected as
follows. The frequency of RES-hosts mainly increases with increasing cost of infectivity
(cp) (S2 Figa+b vs. c+d), increases very slightly with increasing cost of
infection (s) and remains almost unaffected by changing costs of resistance (cgy) (52 |
a-+c vs. b+d). The opposite is true for the parasite. Here, the equilibrium
frequency of the infective (INF')-parasite rises mainly with increasing cost of infection
(s) (S2 Fig)). Higher costs of resistance (cg) decrease the equilibrium frequency of
INF-parasites (S2 Figla+c vs. b+d) for a given value of s. In contrast to the
host, the equilibrium frequencies in the parasite are almost unaffected by changes in the
cost of infectivity (cp).

The changes in equilibrium frequencies with changing cost of infection (s), cost of
resistance (cy) and changing cost of infectivity (cp) are reflected by the resulting
genetic signatures at the coevolving loci (S9 Fig). We summarize the genetic signatures
of coevolution chiefly as the behaviour of Tajima’s D under selective sweeps and

balancing selection (S9 FigllS3 Fig)) is well known. Generally, the strongest signatures of

balancing selection, indicated by high Tajima’s D values, can be observed when the
equilibrium frequencies of INF-parasites or RES-hosts are close to 0.5 (see
. The strength of the signatures declines the further the equilibrium frequencies
move away from 0.5.

The genetic signature in the parasite changes strongly with changing cost of infection
(s), irrespectively of cy and cp (S9 Fig). Further, the resulting genetic signatures in the
parasites for a given cost of infection s are distinguishable for different costs of resistance
but not for different costs of infectivity. The genetic signature in the host is mainly
indicative about the cost of infectivity (cp), a cost which is affecting the parasite fitness,
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whereas the signature in the parasite is mainly informative about the costs of resistance
(cur) and infection (s), parameters with a direct fitness effect on the host (S9 Fig)).
The qualitative changes of the genetic signatures for changing costs of infection remain
similar even when population sizes differ in both interacting partners (S3 Fig)). However,
their strength is affected by the population sizes.

Inference of coevolutionary dynamics from polymorphism data
Scenario 1

Model choice Under scenario 1 and r» = 30, the model choice procedure is suited to
distinguish a coevolutionary model in which the cost of infection (s), host population
size (Ng) and parasite population size (Np) are unknown from a neutral model where
the host and parasite population size are unknown. The cross-validation reveals (values
for r = 10 in brackets) that 482 (441) out of 500 coevolution simulations are correctly
identified, while 18 (59) are misclassified as neutrally evolving pairs of loci, yielding a
FNR of 3.6% (respectively 11.8%). In addition, 498 (495) neutral simulated pairs of loci
are correctly identified as evolving neutrally, yielding a FPR of 0.4% (respectively 1%
for r = 10) (see . When analysing results for the PODs the accuracy of

model choice is very high for low costs of infection but becomes worst when s > 0.6 (Fig
. It is apparent from Fig|2| that for Tajima’s D and PMD all PODs with
intermediate to high s are in the cloud of neutral simulations (see for r = 10).
For high values of s, dynamics are indeed switching to arms-race generating fast
recurrent selective sweeps. Hence, the values of these statistics become similar to
neutral expectations under small host and parasite population sizes.

Parameter estimation Our results indicate that it is possible to jointly infer the
cost of infection (s), the host population size (Np) and the parasite population size
(Np) using polymorphism data from the host and parasite (Fig . Generally,
the accuracy of inference mainly depends on 1) the true value of the cost of infection
and the 2) the type of polymorphism data being used (host and parasite together, only
host or only parasite).

Inferences of the cost of infection and of the population sizes are the most accurate if
both host and parasite polymorphism data are used (Fig . Using only parasite
polymorphism data is also quite accurate for inferring small to intermediate values of
the cost of infection (s < 0.6) (Fig [3| c+f) where trench-warfare dynamics take place. In
contrast, using only host polymorphism data shows markedly less accuracy in the same
parameter range (Fig b+e). Overall the inference results become less accurate when
decreasing the number of repetitions to r = 10 (S8 Fig]).

Scenario 2

Model choice Under scenario 2 and r = 30, model choice is suited to discriminate
between coevolution and neutral evolution. Out of the 500 coevolution validation
simulations 470 (417 for r = 10) are correctly classified as coevolving pairs of loci
whereas 30 (83) are classified as neutrally evolving pairs, yielding a FNR of 6%
(respectively 16.6% for r = 10). In addition, 489 (495 for r = 10) neutral simulated pairs
of loci are correctly identified as evolving neutrally, yielding a FPR of 2.2% (respectively
1% for r = 10) (see[S10 Fig} [S11 Fig). When analysing results for the PODs the
accuracy of model choice is very high under higher cost of infectivity (cp = 0.3). For a
lower value of cp = 0.1, the model choice becomes less accurate when s increases,
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especially when cy = 0.1 (Fig . As for scenario 1, it is also apparent from Fig 5| that
some PODs are found within the cloud of neutral simulations (see for r = 10).
For high values of s, dynamics are indeed switching to arms-race generating fast
recurrent selective sweeps. Note however, the interesting case of cy = ¢p = 0.1 which
displays the worst accuracy for high values of s. This is explained by very fast recurrent
selective sweeps along with very fast coevolutionary cycles due to the combination of
high cost of resistance and low cost of infectivity. Note that such fast cycles affect more
strongly other statistics (in particular the nucleotide diversity) than the three we
present in Figure 5 (Tajima’s D host and parasite and PMD), thus highlighting the
need to include a larger number of summary statistics in the ABC procedure.

Parameter estimation As for scenario 1, the accuracy of inference for scenario 2 is
best if data from both the host and the parasite are available @ However, inference of
the cost of infection s is less accurate compared to scenario 1. The most accurate
inference results are obtained for intermediate costs of infection. This is due to the fact
that signatures in the host and the parasite are differentially affected by the various
costs .

Inference of the cost of resistance (cg) works reasonably well if polymorphism data only
from the parasite are available. However, this comes at the cost of less accurate
inference of the cost of infection (s) as both parameters are affecting the equilibrium
frequency in the parasite (S2 Fig| Fig[6). This effect is especially pronounced when the
cost of infection (s) is low and only the information from the parasite polymorphism
data are available (see Fig[6] c+f). The inference of the cost of infectivity (cp) is

reasonably accurate if polymorphism data only from the host are available (Fig |§| h+q).

This is due to the fact that the cost of infectivity (cp) mainly affects the equilibrium
frequency in the host but not in the parasite (S2 Fig)). Therefore, inference of this
parameter does not work if only parasite polymorphism data are available (Fig |§| i+r).

Discussion

In the present study we explicit a link between coevolutionary dynamics (S2 Fig)), the
resulting genetic signatures and the subsequent amount of information
which can be extracted from genetic signatures at the coevolving loci (Fig|3] Fig @
Our results indicate that under trench-warfare dynamics the allele frequencies at the
non-trivial internal equilibrium point affect the strength of genetic signatures at the
coevolving loci in both, the host and parasite. Furthermore, pairs of coevolving loci are
well discriminated from pairs of neutral loci by ABC model choice (Fig|l] Fig
, while the accuracy decreases for higher costs of infection. We further show as
a proof of principle that it is possible to infer the parameters underlying the
coevolutionary interaction from polymorphism data at the loci under coevolution if some

relevant parameters such as diverse costs (Fig|3]) or population sizes (Fig @ are known.

The inference is accurate if polymorphism data from both the host and the parasite are
available from at least ten repetitions of the coevolutionary history (S8 Figj [S14 Fig)).

Coevolutionary dynamics and inference

As already shown in [19] there is a continuum of genetic signatures which can arise at
the loci under coevolution. This contrasts to the often postulated dichotomy that
arms-race dynamics result in strong selective sweep signatures and trench-warfare
dynamics in strong balancing selection signatures.

In general, the strength of the selective signatures under trench-warfare dynamics is a
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result of the internal equilibrium frequencies, the fluctuations around these equilbrium
frequencies, the amount of genetic drift in both partners and the proximity of these
equilibrium frequencies to the fixation boundaries. When equilibrium frequencies are
close to boundaries, alleles can be easily lost by drift and thus, arms-race dynamics take
place although trench-warfare dynamics would be predicted based on the deterministic
model.

The strong link between equilibrium frequencies under trench-warfare dynamics and
resulting genetic signatures can be explained in terms of the underlying approximated
structured coalescent tree with two alleles in each species (RES and res for the host and
INF and ninf for the parasite). This model is analogous to a two-demes model with
gene flow [43]. When the frequencies of both allles are fairly similar they have equal
contributions to the sample, and the underlying coalescent tree is well balanced.

Accordingly, we observe an excess of intermediate frequency variants in the SFS ( [11]).

As the equilibrium frequencies move away from 0.5, the average sample configuration
changes and the coalescent tree becomes less balanced (see[S1 Fig). Therefore, the
number of SNPs at intermediate frequencies drops and Tajima’s D decreases .
This link can be also observed when we modify our model to more realistic but complex
models by either a) extending the model to more than two parasite generations per host
generation (Model B, [S15 Fig| [S17 Fig| a+b) or b) allowing for allo-infections at rate
1 — 4 in the second parasite generation within host generation g (Model C,
)

There are three sources of stochasticity affecting the polymorphism data at the
coevolutionary loci: 1) The effect of genetic drift on the allele frequency trajectory
under coevolution, 2) the stochasticity in the coalescent process for a given allele
frequency trajectory and 3) the stochasticity in the neutral mutation process on top of
the coalescent process. As the first type of stochasticity affects the 'population’ sizes of
the functional alleles in the host (in the parasite) over time, it also has a subsequent
effect on the other two sources of stochasticity. Using data from several repetitions
allows to better handle and to average out the effect of genetic drift on the variability of
the allele frequency path and its subsequent effect on the observed summary statistics.
Therefore we use the average of the summary statistics over several repetitions of the
same coevolutionary history (i.e. r frequency paths) in our ABC. In future, repeated
data could be for example obtained from microcosm experiments such as performed
by [54L55]). Using data from repeated experiments is one possible attempt to deal with
the variability in allele frequency trajectories. The availability of data from several
independent populations or time-samples might be possible alternatives. Time samples
offer a partially detailed view on changes in allele frequencies and accordingly, can help
to better capture the coevolutionary dynamics.

Accuracy of inference

We first perform a model choice procedure for each scenario to assess the possibility to
distinguish pairs of loci which are coevolving from pairs evolving independently from
one another (in our case neutrally in each species). We envision that the gene dataset
can be divided into two categories of genes in hosts and parasites: pairs of candidate
loci possibly under coevolution, and pairs of other randomly selected genes. For
example, the candidates can be resistance genes in the host plant [4H6},/12-16] and the
corresponding predicted effectors in the parasite [17,/18]. The second category can be
composed of genes involved in processes such as housekeeping, abiotic stress responses
or photosynthesis in plants, and housekeeping genes and/or degrading enzymes with
non-specific activities in parasites.
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It is encouraging that our results show very good accuracy and low False Positive rates.

Interestingly, the model choice accuracy is very good for low values of the infection
parameter s, and thus we are more likely to identify pairs of loci which are coevolving
under trench-warfare than under arms race dynamics. We show thus that in contrast to
the somehow pessimistic view in [19] based on few statistics, extending the number of
summary statistics does help to distinguish neutral from coevolving loci.

Regarding parameter inference, we show that estimations of parameters governing
the coevolutionary dynamics is possible if they substantially shift the equilibrium
frequencies and/or the dynamics and thus, the resulting genetic signatures. However,
equilibrium frequencies can be shifted along the same axis by different parameter
combinations. In such circumstances, it is only possible to infer a compound parameter
if there is no a priori information on any of the parameters available. This
identifiability problem is illustrated by the inference results for scenario 2 especially
when only parasite polymorphism data are available (Fig |§[) Here, both the cost of
infection (s) and the cost of resistance (cg) are overestimated. If however some
parameter values are a priori known from experiments such as the cost of resistance in
scenario 1, the other parameters (here the cost of infection) can be inferred conditional
on this information. Whenever the parameters of interest have different effects on the
equilibrium frequencies in the host and parasite, inference of both parameters is
possible. This explains why inferences are usually the most accurate when host and
parasite statistics are jointly used.

Our approach of jointly using host and parasite information is in line with recent
method developments [56({58] which also show the value of analysing hosts and parasite
in a joint framework. These mentioned methods can be promising complementary
approaches to our ABC in order to identify candidate loci.

Scope, implications and applications of the presented approach

Based on the genetic signatures found for our two model extensions [24], we
suggest that our findings are generally valid and are not restricted to the coevolution
GFG model used in the main text. We acknowledge that we assume the most simple
type of coevolutionary interaction possible. However, understanding possible links
between dynamics, signatures and resulting accuracy of inference for this simple
scenario is a useful starting point to develop further inference methods where several
major loci 7] or quantitative traits [39] are involved. In addition, our approach should
be applicable to several pairs of host and parasite coevolving loci as long as the
coevolutionary dynamics are driven by few major loci without any epistatic and/or
pleiotropic effect. These pairs could for example involve resistance genes from a single
host species, each co-evolving independently with effectors from different parasite
species (bacteria, fungi, ...). If quantitative traits |7/39] are involved into coevolution we
expect the signatures to be weaker than in our model (see theory on polygenic selection
and polymorphism signatures, [59]).

For many host-parasite models (including the one used here) it has been shown that
the equilibrium frequencies in the host are substantially or exclusively affected by
fitness penalties applying to the parasite and vice-versa [24}33|34]. Thus generally
speaking, the strength of genetic signatures in either species are presumably most
indicative about processes affecting the coevolving partner. We therefore speculate, that
the balancing selection signatures which have been found at R-genes in Arabidopsis
thaliana |6L[12] |13], Solanum sp. |4l[5,14], Phaseolus vulgaris [60], Capsella [61], are

indicative about the selective pressure in the coevolving parasite or parasite community.

Conversely, the long term maintenance of strains in Pseudomonas syringae [62] could
reflect fitness costs in Arabidopsis thaliana.
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A final complication for analysis is the lack of recombination in genomes of
microparasites such as viruses or bacteria. Phylogenetic methods exist to study the
evolution of these parasites with very short generation time, and can allow to define
groups of individuals or populations which could be used in inference methods such as
ours or in co-GWAs [5658,/63]. Note also that several methods have been developed to
draw inference of the epidemiological parameters based on parasite sequence data

(e.g. [64]). However, such methods study only short term epidemiological dynamics
within few years, ignoring the effect of coevolution and Genotype (host) x Genotype
(parasite) interactions. By contrast, our method intends to infer the parameters of long
term coevolutionary dynamics driven by GxG interactions.

Additional demographic changes

An important assumption of our model is the absence of intra-locus recombination at
the coevolutionary loci. Nevertheless, recombination does occur along the genomes of
the host and the parasite, so that the coevolutionary loci evolve independently from
other unlinked loci (for example on different chromosomes).

In such circumstances, it is possible to estimate past population size fluctuations based
on whole-genome data of both species. Population size changes in host-parasite
coevolution can be either independent of the coevolutionary interaction or arise as an
immediate result of coevolutionary interaction, e.g. from epidemiological feedback or
any other form of eco-evolutionary feedback. Independently of the particular source,
demographic changes always affect all loci in the genome simultaneously. The genomic
resolution of the latter type of population size changes has been shown to depend on the
amplitude and time-scales of the population size fluctuations [65]. These authors have
demonstrated that populations size fluctuations only leave a signature in the
genome-wide parasite site frequency spectrum if they happen at a slow enough time
scale. Irrespective of whether the demographic changes can be resolved from
genome-wide data, the resulting genetic signatures at the coevolving loci will be always
the result of underlying allele frequency path which is always confined to a 2d-plane for
a bi-allelic locus. Further studies should therefore focus on the specific effect of
eco-evolutionary feedback on the variability of the allele frequency path and the

resulting effect of the population size changes on mutation supply at the coevolving loci.

Doing so will help to refine our understanding how much information can be likely
inferred under such circumstances.

Conclusion

We investigated here a link between coevolutionary dynamics and resulting genetic
signatures and quantify the amount of information available in polymorphism data from
the coevolving loci. Although, we started from a very simple coevolutionary interaction
we show that model-based inference is possible. With growing availability of highly
resolved genome data, even of non-model species, it is important to gain a differentiated
and deep understanding of the continuum of possible links between coevolutionary
dynamics without or with eco-evolutionary feedbacks and their effect on polymorphism
data. Such thorough understanding is the basis for devising appropriate sampling
schemes, for using optimal combinations of diverse sources of information and for
developing model-based refined inference methods. Our results and the suitability of the
ABC approach open the door to further develop inference of past coevolutionary history
based on genome-wide data of hosts and parasites from natural populations or
controlled experiments. Lastly, as the false positive rate to detect genes under
coevolution is smaller than 2.5% (r = 30) under the model choice procedure, our
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method can be used as a starting point to identify host and parasite candidate loci for
further functional studies.

Materials and methods

General outline of the approach

Approximate Bayesian computation (ABC) is an inference method which can be used in
situations where likelihood calculations are intractable, as is the case for the
coevolutionary models [39]. The principle of ABC methods is to perform a large amount
of simulations covering the parameter space for each of several possible models which
are expected to reflect the past evolutionary history of the population(s) of concern and
thus having given rise to the observed data. These values of the different parameters of
each model are drawn from prior distributions based on current knowledge. The
observed data and each simulation are summarised by the same set of summary
statistics to reduce their dimensionality. In a rejection step the best set of simulations,
i.e. the simulations with the smallest distance to the summary statistics of the observed
data, can be selected. Based on this retained simulations a model choice can be applied
to obtain a posterior probability for each competing model. Under the model with the
highest posterior probability, an additional regression step can be used to generate the
posterior distribution of each parameter. In this paper we do not use real observed
sequence data, but study the power of our approach using so-called pseudo-observed
datasets.

In more detail the workflow in our paper is as follows:

1. We compare a model of coevolution between a single host and single parasite
locus to a neutral model of independently evolving (non-interacting) pairs of host
and parasite loci. Under each model, we simulate polymorphism data for n = 50
haploid host individuals and n = 50 haploid parasite individuals.

2. We simulate r replicates of these data corresponding to repeating r-times the
coevolutionary history. Such repetitions can be obtained in controlled laboratory
set-ups using for example microcosm/chemostat experiments with several
replicates, or from several independent natural populations of the same
host-parasite system with similar environmental conditions.

3. We summarise the obtained SNP data by a set of 17 statistics for each of the r—
replicates.

4. We calculate the mean for each of the 17 statistics across the r-replicates. These
average values are used as summary statistics in the ABC. Therefore, one set of r
replicates defines a given pseudo-observed dataset (POD).

5. We first perform a model choice between the coevolution model and the neutral
model based on our PODs. For each POD, we select the 1% closest simulations
based on the set of summary statistics. Based on these retained simulations we
compute the posterior probability of both models.

6. In a second step, we estimate the posterior distribution of the coevolutionary
parameters for the PODs. We apply a post-sampling adjustment (regression)
based on the 1% best simulations under the coevolutionary model.

Simulation of SNP data at the coevolutionary loci

SNP data at the coevolutionary loci are simulated by using a forward-backward
approach as outlined in [19].
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Forward in time coevolution model 430
We model coevolution between a single haploid host and a single haploid parasite 431
species. The coevolutionary interaction in both species is driven by a single bi-allelic e
functional site (SNP, indel, ...). This functional site is located in the coevolutionary 433

locus which encompasses several other neutral sites. Hosts are either resistant (RES) or
susceptible (res) and parasites are either non-infective (ninf) or infective (INF'). Thus, s

the model follows a gene-for-gene interaction with the following infection matrix: 436
ninf INF
RES 0 1
res ( 1 1 ) (1)

A l-entry in the infection matrix indicates that the parasite is able to infect the host 4
and a 0-entry indicates that the host is fully resistant towards the parasite. We denote 43
the frequency of resistant hosts (susceptible hosts) by R (r) and the frequency of 430
infective parasite (non-infective parasites) by a (A). The coevolution model is based on w0
the polycyclic auto-infection model in [24]. This population genetics model (sensu [40]) sa

assumes host and parasite population sizes to be constant regardless of the disease a2
prevalence and is based on non-overlapping host and parasite generations. As such it is s
probably most suited to describe plant-parasite or invertebrate-parasite systems. 444

Polycyclic diseases are characterized by more than one infection cycle per season. For s
simplicity, the model is based on T" = 2 infection cycles per discrete host generation g s

each caused by a single discrete parasite generation t (¢ € {1,2}). An auto-infection e
refers to an infection where a parasite re-infects the host individual on which it was aa8
produced. Therefore, resistant (R,) and susceptible hosts (r,) which are infected by 249
infective parasites (ag4,1) in the first infection cycle (¢ = 1) stay infected by infective 450
parasites in the second infection cycle (¢t = 2). This causes a fitness reduction s; = s 451

(cost of infection). The same applies to susceptible host (r,) infected by non-infective 42
parasites (A, 1) in the first infection cycle (¢ = 1). Resistant host which are attacked by s
non-infective parasites in the first infection cycle (¢ = 1) resist infection. In the second s

infection cycle (¢t = 2), this fraction of resistant hosts (R, - Ag 1) either receives a 455
non-infective parasite (A 2) resulting in no fitness loss or an infective parasite (aq,2) 456
resulting in a reduced cost of infection sy = s/2. Host resistance comes at cost cg (cost sz
of resistance) and infectivity in the parasite comes at cost cp (cost of infectivity). 458
The allele frequencies of resistant hosts (Rg), susceptible hosts (r4), non-infective 459
parasites (Ay ;) and infective parasites (a4¢) are given by the following recursive 460
equations: a61
ag,1-(1—cp)
9.2 = ag,1 - (1fcp)+A971 "Tg (2&)
Ggt11 = (1 —cp)-[Rg(Agrag2 +ag1) +rgag,1] (2b)
Y (1 —cp)-[Rg(Agrag2 +ag1) +rgag1] +1gAg1
Ryi1 = Ry (1 —cu)[Ag14g2 + Ag1ag,2(1 = s2) +ag1(1 = s1)] (20)

Rg-(1—cu)[Ag1Ag,2 + Agag2(l —s2) +ag,1(1 —s1) +74(1 —51)]

with Agy =1—a4 and ry =1 — R,. The equilibrium frequencies a, R |24] at the 462

internal, non-trivial equilibrium point are approximately given by: 463
P + 51— /(52 +51)2 —4s2(s1 — cpr)
2s2(1 —cm)
. cp
R ————
2—cp—a (3)

2cp - s2-(1—cp)
52(3 —4dcy — 2Cp(l — CH)) —s1 + \/(52 =+ 51)2 — 482(81 — CH)

Q

464

October 10, 2019 11


https://doi.org/10.1101/625301
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625301; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-ND 4.0 International license.

In the forward part, we obtain the frequencies of the different alleles at the
beginning of each discrete host generation g in three steps:

1. Using the discrete-time gene-for-gene coevolution model from Eq , we compute
the expected allele frequencies in the next generation (under the infinite
population size assumption).

2. Genetic drift is incorporated by performing a binomial sampling based on the
frequency of the RES-allele (INF-allele) after selection (Eq (2)) and the finite and
fixed haploid host population size Ny (parasite population size Np) as in [19)
(see [41]) .

3. Recurrent allele mutations take place and change genotypes from RES to res at
rate Ugtor Or Tes to RES at rate p1or in the host and from ninf to INF at rate
tntor and from INF to ninf at rate prion in the parasite. Henceforward, such
mutations are referred to as functional mutations. In the reminder of this
manuscript we set all functional mutation rates to

URtor = fintol = HrtorR = MIton = 107° (for a discussion on these values
see [19[41]).

Repeating this procedure for g,,q, host generations, we obtain the so called frequency
path, which summarizes the allele frequencies at both loci forward in time.

Backward in time coalescent

To obtain polymorphism data at the coevolutionary loci we combine the obtained
frequency paths which include genetic drift and recurrent mutations with coalescent
simulations separately for the host and the parasite. The host and parasite frequency
paths are used separately as input for a modified version of msms [19,42], after scaling
time appropriately in units of the respective population sizes (for more information see
. Based on the allele frequency in a species at present, a coalescent tree is build
backward in time using msms. A sample of size ng (np) is drawn at random from the

host (parasite) population consisting of RES and res-alleles (ninf and INF-alleles) |19).

The tree shape and length are conditioned on the changes in allele frequencies, including
fixation or loss [19]. To clarify the forward - backward correspondence, let us describe
the case of recurrent selective sweeps in the parasite population. In a monomorphic
parasite population of allele INF, a functional mutation with rate ps,, can reintroduce
forward in time a mutant ninf. This allele reaches fixation and the population is then
monomorphic for allele ninf. Backward in time, this is equivalent, in msms, to the
decrease of the ninf allele population size until only one last individual exhibits this
allele. This last ninf coalescent lineage then migrates to the population of allele INF.
The forward frequency path and the backward msms simulations are thus coupled for
the re-introduction of new alleles due to functional mutations in analogy to gene flow in
a structured coalescent with two demes [43].

The forward in time coevolution model is run for gm.x = max(3Ngy,3Np) generations
assuming small initial frequency of RES (Rp = 0.2) and INF (ao = 0.2) alleles. The
length of simulation time was previously found to be sufficient to observe signatures of
selective sweeps and balancing selection in host or parasite [19]. In msms, the backward
simulations conditioned on the frequency paths are run for the same amount of time. If
after g generations, several coalescent lineages remain and/or the most recent common
ancestor of both functional alleles has not been reached, a neutral Kingman coalescent
process is built until a common ancestor of all remaining lineages is found. Note that
that in this last temporal phase of the simulation, i.e. older than g generations in the
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past, the functional alleles in hosts (RES and res) and in parasites (INF and ninf) have
the same fitness (and are exchangeable within species). We therefore simulate a
coevolution history of g generations.

We set the sample size to ny = 50 for the host (np = 50 for the parasite) which are
adequate to capture balancing selection if one of the allele occurs in low frequency at
the present time of sampling [19]. For both species we assume realistically a locus of
length 2500 bp without recombination and a per site neutral mutation rate of 1077,
Accordingly, the neutral population mutation rate is 8 = 2 - Ny - 2500 - 107 for the
host (p =2+ Np -2500 - 10~7 for the parasite) defining the number of mutations found
on the host and parasite coalescent trees (and in the polymorphism data).

Calculating statistics for the SNP-data

For each msms-output we calculate eight statistics for each species which are based on
the site frequency spectrum (SFS) of the respective coevolving locus (Tab. . We only
use statistics based on the unfolded site frequency spectrum (SFS), as it can be hard to
obtain unbiased haplotype statistics depending on the sequence method. In addition to
these 16 statistics we calculate the (Pairwise Manhattan Distance) which is based on
comparing the host and parasite site frequency spectra (see .

Additional coevolutionary models tested

Additionally, we study two extensions, B and C of the model from Eq (Model A),
in order to check for the generality of our results. In model B, we extend the described
model to include more than two parasite (T' > 2) generations per host generation g (see
. In model C, we keep T' = 2 but allow for allo-infection to take place at rate

(1 — %) in the second parasite generation (¢ = 2) within host generation g (see|S1 File)).

Based on the equations (S1 File|), we generate forward in time simulations with genetic
drift and functional mutations (as described above) and the expected coevolutionary
signatures at the coevolving loci. We study how the values of the different statistics

obtained under these two more realistic but complex models differ from those of the
main model from Eq .

ABC inference

In the following section, we lay out the two scenarios to be investigated, the simulations
for obtaining the PODs, and the prior distributions for the coevolutionary and neutral
models. Finally, the ABC model choice and parameter estimation procedures are
described.

Inference scenarios

We focus on two scenarios. In scenario 1, we aim to infer the cost of infection (s), the
host population size (Ng) and the parasite population size (Np). Therefore, the cost of
resistance (cy) and the cost of infectivity (cp) are assumed to be known. In scenario 2
the goal is to infer the cost of infection (s), the cost of resistance (cy) and the cost of
infectivity (cp), assuming that the host (Ny) and parasite (Np) population sizes are
known.

Generating pseudo-observed data sets

Each pseudo-observed datasets (PODs) is composed of r = 30 repetitions of the
coevolutionary history under a particular combination of parameters (s, cp, cy) while
fixing the haploid population sizes to Ny = Np = 10,000 and the population mutation
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rates to 0 = 0p = 5.

For scenario 1, we simulate PODs for values of cost of infection (s) ranging from

s =10.15 to s = 0.85 (in steps of size 0.05) while fixing the cost of resistance to

cg = 0.05 and the cost of infectivity to cp = 0.1. For each value of s, 30 independent
PODs are simulated.

For scenario 2, we generate PODs for the 60 possible combinations of ¢y € {0.05,0.1},
cp € {0.1,0.3} and s from 0.15 to 0.85 (in steps of size 0.05). For each of these
combinations, 15 PODs are generated.

ABC sampling: priors of the coevolutionary model

For both scenarios, between 95,000 and 100,000 datasets are generated from the
coevolutionary model based on the following priors (defined with the ABCsampler from
ABCtoolbox, Version 1.0, [50]).

In scenario 1, defined with ¢y = 0.05 and cp = 0.1, the cost of infection is drawn from a
uniform prior such that s ~ #£(0.1,0.9), and the host and parasite population sizes are
drawn for log uniform distributions such that Ny ~ U(log(2,000),log(40,000)) and
Np ~ U(log(2,000),log(40,000)). The population mutation rates are calculated as

61 = 2Np - 25000 - 10~" and 6p = 2Np - 25000 - 107 (see Tab. [2).

In scenario 2, defined by Ny = Np = 10,000 and 8y = 6p = 5, the cost of infection is
drawn from a uniform distribution such that s ~ 2(0.1,0.9), and the cost of resistance
and infectivity from uniform distributions such that cgy ~ £(0.01,0.35) and

cp ~U(0.01,0.35) (see Tab. [3).

ABC sampling: priors of the neutral model

As for the coevolution model, we obtain between 95,000 and 100,000 data sets for a
corresponding neutral model for each scenario. This neutral simulations are generated
by coalescent simulations with msms [42] for a non-recombining host and parasite locus
with the same length (2500bp) as in the coevolutionary model. To mimic data obtained
from the same repeated evolutionary history, we generate r = 30 repetitions of the
neutral coalescent process. For each replicate we calculate the same 17 statistics as
under the coevolution model which are defined in Tab.[I] The summary values used in
the ABC consist of the average over the r replicates for each statistic.

Under scenario 1, the neutral simulations are based on priors for the host and parasite
population sizes drawn from log uniform distributions (Ng ~ U(log(2,000), log(40,000))
and Np ~ U(log(2,000),l0og(40,000))). The population mutation rates are calculated as
0r = 2Np - 25000 - 107 and 6p = 2Np - 25000 - 107,

Under scenario 2, we simulate datasets for constant host and parasite population sizes
(Ng = Np = 10,000) and thus the population mutation rates are gy = 0p = 5.

ABC model choice

The ABC model choice procedure is used to test whether a pair of coevolving loci can
be discriminated from pairs of neutral loci based on our set of summary statistics and
within the range of priors for our outlined scenarios. To find genes under coevolution, we
wish to access the False Positive (FPR) and the False Negative (FNR) rate. These rates
are also referred to as the confusion matrix in the ABC literature. Under the hypothesis
that two genes (one from the host and one from the parasite) are coevolving, the FPR is
the percentage of pairs of truly neutral loci which have a higher posterior probability in
support of the coevolution model rather than the neutral model. Thus, these loci would
be incorrectly identified as coevolving although in fact they are not. On the other hand,
the FNR is defined as the percentage of truly coevolving pairs of loci which have a
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higher posterior probability in support of the neutral model (rather than the coevolving

model). These loci would be considered as neutral although they are in fact coevolving.

To access the FPR and FNR, we first perform a leave-one-out cross-validation running
the function cv4postr of the abc r-package (version 2.1, [51]) for each scenario 1 and 2.
The cross-validation is based on the rejection algorithm as follows. Under a given
scenario (1 or 2), a dataset called validation simulation, is chosen at random from one of
the two models (coevolution or neutral). All summary statistics are standardised by
their median absolute deviation for all simulations. Based on these normalised summary
statistics the Euclidean distance between the summary statistics of the validation
simulation and all other simulations from both models is calculated. The one percent of
the simulations with the smallest Euclidean distance to the validation simulation are
retained and all other simulations are rejected [51]. Based on these retained simulations,
the posterior probability for each of the two models is calculated for this given
validation simulation. This procedure is repeated for 500 validation simulations for each
model within each scenario. The FDR and FNR are thus computed for each scenario.
Model choice was also performed for each of the PODs to investigate the effect of
specific coevolutionary parameters on the accuracy of model choice. For each scenario
we used the same settings and simulations for the coevolution model and the neutral
model as for the cross-validation. For each POD we retain the 1% best simulations and
report the posterior probability for the coevolution model.

ABC parameter estimation

The inference of the coevolution model parameters is obtained using the ABCestimator
within the ABCtoolbox (Version 1.0, [50]). We retain the 1,000 simulations with the
smallest Euclidean distance (without summary statistics normalisation) to the
respective POD (rejection step). The standard ABCestimator applies a Gaussian kernel
smoothing for each parameter (width of Dirac peak set to 0.01) followed by a post
sampling adjustment via a general linear model [50/52]. We report the median of the
posterior marginal density distribution for each parameter. For each POD we perform
the parameter estimation based on a) host and parasite summary statistics, b) host
summary statistics only and ¢) parasite summary statistics only.
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Fig 1. Posterior probability in support of the coevolution model (against a
neutral model) for scenario 1. Results shown for 30 repetitions and 30 PODs per
value of the cost of infection (s). Results for single PODs are shown as dots. Model
choice distinguishing a coevolution model with unknown costs of infection (s), host
population size (Ng) and parasite population size (Np) from a neutral model with
unknown host and parasite population sizes. Note that for these points we added some
jitter to the x-values in order to increase the readability of the plots.
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Fig 2. Pairwise Manhattan distance and A Tajima’s D (host-parasite) for
the PODs under scenario 1 compared to simulations under a neutral model.
Pairwise Manhattan distance (x-axis) and the difference between Tajima’s D of the host
and of the parasite (y-axis) for the PODs used for inference in Scenario 1 and the
100,000 neutral simulations run for this scenario. Under the neutral model, host and
parasite population sizes vary. Simulations under the neutral model are shown as grey
open circles, and a bivariate normal kernel estimation has been applied to obtain a
probability density of the summary statistic combinations. The PODs for scenario 1 are
shown as diamonds and are coloured coded based on the true cost of infection (s).
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Fig 3. Parameter estimations under scenario 1. Median of the posterior
distribution (y-axis) for the cost of infection s (top, a-c), host population size (Ng)
(middle, d-f) and parasite population size (Np) (bottom, g-i) when inference is based on
host and parasite summary statistics (left), only host summary statistics (middle) or
only parasite summary statistics (right). The median of the posterior distribution (after
post-rejection adjustment) is plotted for each POD. The true cost of infection for each
POD is shown on the x-axis.
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Fig 4. Posterior probability in support of the coevolution model (against a
neutral model) for scenario 2. Results are shown for » = 30 and 15 PODs per
boxplot. The posterior density in support of the coevolution model (y-axis) is shown for
PODs with varying cost of infection (s). The different panels reflect the combination of
cy and cp for the respective PODs (left: ¢y = 0.05, right: ¢y = 0.1, top: ¢p = 0.1,
bottom: ¢p = 0.3 ). Model choice has been run to distinguish a coevolution model with
unknown costs of infection (s), cost of resistance (cg) and cost of infectivity (c¢p) from a
neutral model with constant host and parasite population size (Ng = Np = 10,000).
Results for single PODs are shown as dots and jitter added to the x-values to increase
the readability.
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Fig 5. Pairwise Manhattan distance and A Tajima’s D (host-parasite) for
the PODs under scenario 2 compared to simulations under a neutral model.
Pairwise Manhattan distance (x-axis) and the difference between Tajima’s D of the host
and of the parasite (y-axis) for the PODs used for inference in Scenario 2 and 100,000
neutral simulations. Simulations under the neutral model are shown as grey open circles.
A bivariate normal kernel estimation has been applied to obtain a probability density of
the different summary statistic combinations. The PODs for scenario 2 are shown in
color. Colors reflect the true cost of infection (s) for a particular POD (see legend) and
shapes indicate the combination of ¢y and c¢p (diamonds: ¢y = 0.05, cp = 0.1; circles:
cg = 0.05, ¢cp = 0.3; crosses: ¢y = 0.01, ¢cp = 0.1; stars: ¢y = 0.1, cp = 0.3) for the
respective POD.
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Table 1. SNP statistics calculated.

Table 2. Settings ABC scenario 1. Settings for the ABC simulations under

Name reference
number of segregating sites S | [44]

Ow 44
nucleotide diversity 7 45
Tajimas’ D [46]

Fu and Li’s D [47]

Fu and Li’s F [47]

On 48]
Hprime [49]

PMD

scenario 1.
Coevolution model Neutral model

Ny | ~ U(log(2000),10g(40000)) | ~ U(log(2000),1log(40000))
Np | ~ U(log(2000),log(40000)) | ~ U(log(2000),1log(40000))
On 2 Ny -2500- 1077 2Ny -2500-10~7

Op 2-Np-2500-10~7 2-Np-2500-10~7
ng 50 50

np 50 50

s ~ 1(0.1,0.9) -

cp 0.10 -

CH 0.05 -

Table 3. Settings ABC scenario 2. Settings for the ABC simulations under

scenario 2.

Coevolution model | Neutral model
Ny 10,000 10,000
Np 10,000 10,000
O 5 5
Op 5 5
ng 50 50
np 50 50
S ~ 1(0.10,0.90) -
cp ~ U(0.01,0.35) -
cH ~ U(0.01,0.35) -
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S1 Fig. Coevolution dynamics in infinite population size, finite population
size and site frequency spectra for Model A. Influence of the cost of infection (s)
on the coevolutionary dynamics and genetic signatures in Model A. The subfigures
show the allele frequency trajectory in infinite population size (a-f, A-F), one exemplary
allele frequency path in finite population size which takes genetic drift and functional
mutations into account (d-f, D-F), the average unfolded host site frequency spectrum of
r = 200 repetitions (I-VI) and the average unfolded parasite site frequency spectrum of
r = 200 repetitions (VII-XII). In subfigures a-1 each dot represents the frequency of
resistant (RES) hosts (x-axis) and infective (INF') parasites (y-axis) at the beginning of
a single host generation g. The same information is displayed in a slightly different way
in subfigures A-L. Here, the frequencies of resistant (RES) hosts (light grey) and
infective (INF') parasites (dark grey) (y-axis) are plotted over time (x-axis). Costs are
fixed to ¢y = 0.05, cp = 0.1. The results in finite population size are plotted for

Ny = Np = 10,000, trior = tntol = riorR = f1ton = 107°. The site frequency spectra
are shown for 0p = 0y =5 and ng = np = 50.
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S2 Fig. Deterministic equilibrium frequencies model A. Deterministic
equilibrium frequencies for model A for different combinations of cost of resistance
cg = (0.05, 0.1) (columns), cost of infectivity ¢p = (0.1, 0.3) (rows) and cost of
infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of the squares). Only parameter
combinations with trench-warfare dynamics are shown. Centres of the dots represent
the stable equilbrium frequencies obtained by simulating numerically the recursion
equations Eq for 30,000 generations starting with an initial frequency of Ry = 0.2
resistant hosts and ag = 0.2 infective parasites. Heads of the arrows represent the
equilibrium frequencies based on Eq which slightly differ from the numerical
computations due to analytical approximations.
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S4 Fig. Cross-validation model choice scenario 1 for r = 30 repetitions.
Leave-on-out cross-validation result for distinguishing the coevolution model with
unknown costs of infection (s), host population size (Ng) and parasite population size
(Np) from a neutral model with a unknown host and parasite population sizes.
Cross-validation results are shown for 7 = 30 and are based on 500 randomly chosen
ABC-simulations for each model.
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S5 Fig. Cross-validation model choice scenario 1 for r = 10 repetitions.
Leave-on-out cross-validation result for distinguishing the coevolution model with
unknown costs of infection (s), host population size (Ng) and parasite population size
(Np) from a neutral model with unknown host and parasite population sizes.
Cross-validation results are shown for 7 = 10 and are based on 500 randomly chosen
ABC-simulations for each model.
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1% best simulations retained
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Cost of infection

S6 Fig. Model choice results for PODs from scenario 1 for r = 10
repetitions. Model choice results for scenario 1 for » = 10. Model choice has been run
to distinguish a coevolution model with unknown costs of infection (s), host population
size (Ng) and parasite population size (Np) from a neutral model with unknown host
and parasite population sizes. Model choice is shown for r = 30 repetitions and based
on the 1% simulations having the closest summary statistics to those of the PODs. The
posterior probability in support of the coevolution model (y-axis) is shown for PODs
with different costs of infection (s) (30 PODs for each s). Results for single PODs are
shown as dots. Note that for these points we added some jitter to the x-values in order
to increase the readability of the plots.
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S7 Fig. Pairwise Manhattan distance and A Tajima’s D (host-parasite) for
the PODs under scenario 1 compared to simulations under a neutral model
for r = 10. Pairwise Manhattan distance (x-axis) and the difference between Tajima’s
D of the host and of the parasite (y-axis) for the PODs used for inference in Scenario 1
and the 100,000 neutral simulations run for this scenario. Under the neutral model, host
and parasite population sizes vary. Simulations under the neutral model are shown as
grey open circles, and a bivariate normal kernel estimation has been applied to obtain a
probability density of the summary statistic combinations. The PODs for scenario 1 are
shown as diamonds and are coloured coded based on the true cost of infection (s).
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S9 Fig. Tajima’s D model A for different costs of infection, resistance and

infectivity. Tajima’s D (y-axis) for model A for various cost of infection s (x-axis).

The results are shown for different combinations of ¢p (cp = 0.1 top, cp = 0.3 bottom)
and cy (cg = 0.05 left, cy = 0.1 right). The mean and standard error of Tajima’s D of

the parasite population (dark grey) and of the host population (light grey) are plotted
for » = 200 repetitions. The dashed-dotted line shows the expected value of Tajima’s D
in a Wright-Fisher population with constant population size. Tajima’s << 0 is an
indicator of selective sweeps Tajima’s D >> 0 is an indicator of balancing selection.
The other parameters are fixed to: Ny = Np = 10,000, ng = np =50, g = 0p = 5,

HRtor = HrtoR = MUntol = HIton = 107°.

October 10, 2019

36,14



https://doi.org/10.1101/625301
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625301; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Confusion matrix: leave-one-out cross validation

Rejection, tolerance: 0.01

500

400
Py 300
5 Model
g_ B coevolution
[ [ neutral
L 200

100 Confusion matrix

‘coevolution neutral
0
coevolution neutral
Model

S10 Fig. S10 Fig. Cross-validation model choice scenario 2 for r = 30
repetitions. Leave-on-out cross-validation result for distinguishing the coevolution
model with unknown costs of infection (s), cost of resistance (cg) and cost of infectivity
(Np) from a neutral model constant host and parasite population sizes

(Ng = Np =10,000). Cross-validation results are shown for » = 30 and are based on
500 randomly chosen ABC-simulations for each model.
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S11 Fig. Cross-validation model choice scenario 2 for r = 10 repetitions.
Leave-on-out cross-validation result for distinguishing the coevolution model with
unknown costs of infection (s), cost of resistance (cg) and cost of infectivity (Np) from
a neutral model constant host and parasite population sizes (Ng = Np = 10, 000).
Cross-validation results are shown for 7 = 10 and are based on 500 randomly chosen
ABC-simulations for each model.

October 10, 2019

38/[44


https://doi.org/10.1101/625301
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625301; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Posterior probability coevolution model

1.00

0.75-

0.50-

0.25-

0.00
1.00

0.75-

0.50-

1% best simulations retained

cy=0.05 cy=0.1
———mm——~ ————————m .
ST reageg %i
FREE

0.25-

0.00-

S12 Fig.
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Cost of infection (s)

Posterior probability in support of the coevolution model
(against a neutral model) for scenario 2. Results are shown for » = 10 and 15
PODs per boxplot. The posterior density in support of the coevolution model (y-axis) is
shown for PODs with varying cost of infection (s). The different panels reflect the
combination of ¢y and ¢p for the respective PODs (left: ¢y = 0.05, right: ¢y = 0.1,
top: ¢p = 0.1, bottom: ¢p = 0.3 ). Model choice has been run to distinguish a
coevolution model with unknown costs of infection (s), cost of resistance (cy) and cost
of infectivity (cp) from a neutral model with constant host and parasite population size
(Ng = Np = 10,000). Results for single PODs are shown as dots and jitter added to
the x-values to increase the readability.
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S13 Fig. Pairwise Manhattan distance and A Tajima’s D (host-parasite)
for the PODs under scenario 2 compared to simulations under a neutral
model for r = 10. Pairwise Manhattan distance (x-axis) and the difference between
Tajima’s D of the host and of the parasite (y-axis) for the PODs used for inference in
Scenario 2 and 100,000 neutral simulations. Simulations under the neutral model are
shown as grey open circles. A bivariate normal kernel estimation has been applied to
obtain a probability density of the different summary statistic combinations. The PODs
for scenario 2 are shown in color. Colors reflect the true cost of infection (s) for a
particular POD (see legend) and shapes indicate the combination of ¢y and cp
(diamonds: ¢y = 0.05, ¢cp = 0.1; circles: ¢y = 0.05, cp = 0.3; crosses: ¢y = 0.01,

cp = 0.1; stars: ¢y = 0.1, ¢p = 0.3) for the respective POD.
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S15 Fig. Equilibrium frequencies Model B. Deterministic equilibrium

frequencies for Model B for a) T' = 5 parasite generations (left) and b) T = 10 parasite
generations (right) per host generation. The equilibrium frequencies for different
combinations of cost of resistance cy = (0.05, 0.1) (columns), cost of infectivity

cp = (0.1, 0.3) (rows) and cost of infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of
the squares) are shown. Only combinations with trench-warfare dynamics are shown.
Centres of the squares represent the equilbrium frequencies obtained by simulating
numerically the recursion equations in for gimaz = 30,000 host generations
starting with an initial frequency of Ry = 0.2 resistant hosts and ag = 0.2 infective
parasites.
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S16 Fig. Equilibrium frequencies model C. Deterministic equilibrium
frequencies for Model C (auto-allo-infection model) with T' = 2 parasite generations
per host generation and 1 = 0.95. The equilibrium frequencies for different
combinations of cost of resistance ¢y = (0.05, 0.1) (columns), cost of infectivity

cp = (0.1, 0.3) (rows) and cost of infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of
the squares) are shown. Only combinations which result in trench-warfare dynamics are
plotted. Centres of the squares represent the equilbrium frequencies obtained by
simulating numerically the recursion equations in for gmas = 30,000 host
generations starting with an initial frequency of Ry = 0.2 resistant hosts and ag = 0.2
infective parasites. Heads of the arrows represent the equilibrium frequencies based on
Eq (3) which corresponds to the case ¢ =1 [24].
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Model B for T=5 and T=10
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S17 Fig. Tajima’s D and pairwise manhattan distance Model B and C.
Mean and standard error of Tajima’s D (a+c) and pairwise manhattan distance (PMD)
(b+d) for various costs of infection s (x-axis) and r = 200 repetitions. Results for
Model B (pure autoinfection model with T'=5 and T' = 10) are shown at the top,
results for Model C (auto-allo-infection model with ¢ = 0.95) are shown at the
bottom. The other parameters are fixed to: ¢y = 0.05 and c¢p = 0.1. Initial frequencies
Ry and ag in a and b are chosen randomly from a uniform distribution between 0 and 1
while Ry = ag = 0.2 in ¢ and d.

S1 File. Additional information on coevolutionary models.

S2 File. Details Pairwise Manhattan Distance (PMD).
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