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1 Section of Population Genetics, TUM School of Life Sciences Weihenstephan,
Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany

*hanna.maerkle@tum.de

Abstract

There is a long-standing interest in understanding host-parasite coevolutionary
dynamics and associated fitness effects. Increasing amounts of genomic data for both
interacting species offer a promising source to identify candidate loci and to infer the
main parameters of the past coevolutionary history. However, so far no method exists to
do so. By coupling a gene-for-gene model with coalescent simulations, we first show that
three types of biological cost, resistance, infectivity and infection, define the allele
frequencies at the internal equilibrium point of the coevolution model, which in return
determine the strength of the selective signatures signatures at host and parasite loci.
We apply an Approximate Bayesian Computation (ABC) approach on simulated
datasets to infer these costs by jointly integrating host and parasite polymorphism data
at the coevolving loci. To control for the effect of genetic drift on coevolutionary
dynamics, we assume that 10 or 30 repetitions are available from controlled experiments
or several natural populations. We study two scenarios: 1) the cost of infection and
population sizes (host and parasite) are unknown while costs of infectivity and
resistance are known, and 2) all three costs are unknown while populations sizes are
known. Using the ABC model choice procedure, we show that for both scenarios, we
can distinguish with high accuracy pairs of loci from host and parasite under
coevolution from neutrally evolving loci, though the statistical power decreases with
higher cost of infection. The accuracy of parameter inference is also very high under
both scenarios especially when using both host and parasite data because parasite
polymorphism data do inform on host costs and vice-versa. As the false positive rate to
detect genes under coevolution is small, we suggest to use our method to identify host
and parasite candidate loci for further functional studies.

Author summary

It is of importance for agriculture and medicine to understand host-parasite antagonistic
coevolutionary dynamics and the deleterious associated fitness effects, as well as to
reveal the genes underpinning these interactions. The increasing amount of genomic
data for hosts and parasites offer a promising source to identify such candidate loci, but
also to use statistical inference methods to reconstruct the past coevolutionary history.
In our study we attempt to draw inference of the past coevolutionary history at key
host and parasites loci using sequence data from several individuals and across several
experimental replicates. We demonstrate that using a Bayesian statistical method, it is
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possible to estimate the parameters driving the interaction of hosts and parasites at
these loci for thousands of generations. The main parameter that can be estimated is
the fitness loss by hosts upon infection. Our method and results can be applied to
experimental coevolution data with sequences at the key candidate loci providing
enough repetitions and large enough population sizes. As a proof of principle, our
results open the door to reconstruct past coevolutionary dynamics using sequence data
of interacting species.

Introduction 1

Host-parasite coevolution is an ubiquitous process and has been demonstrated in 2

terrestrial [1], limnological [2] and marine environments [3]. It describes the process of 3

parasites and hosts exerting reciprocal selective pressures on one another. Therefore, 4

coevolutionary dynamics are expected to substantially interact with and shape neutral 5

nucleotide diversity linked to the coevolving sites. The latter can be single or multiple 6

SNPs in coding or non-coding parts of genes [4, 5], insertions/deletions [6] or distributed 7

across a gene network [7]. Accordingly, the polymorphism patterns at the coevolving 8

loci, referred to as the genetic signatures, are expected to be distinct from loci not 9

involved into the coevolutionary interaction. Therefore, host and parasite genomic data 10

are valuable source to identify loci under coevolution and to infer their past 11

coevolutionary history. 12

On the one hand, signatures of positive selection which are characterized by lower 13

genetic diversity compared to the genome-wide average and increased levels in linkage 14

disequilibrium [8] are expected to arise under so called arms-race dynamics [9, 10]. In 15

arms race dynamics, frequencies of new beneficial alleles (such as new resistance or 16

infectivity alleles) arising by de novo mutations increase towards fixation in both 17

interacting partners. Accordingly, alleles are short lived and recurrently replaced and 18

thus, allelic polymorphism is only transient [9, 10]. On the other hand, signatures of 19

balancing selection characterized by higher than average diversity [11] are expected to 20

be the result of so called trench-warfare dynamics (also referred to as Red Queen 21

dynamics) [6, 9]. In this type of dynamics, several alleles are stably maintained over 22

large time periods in both coevolving species. Hereby, allele frequencies either converge 23

towards a stable equilbrium or they fluctuate persistently over time. Based on these 24

classic expectations, genomic studies have unravelled positive and balancing selection 25

signatures at various resistance genes [4–6,12–16] and effector genes [17,18]. 26

An additional difficulty for coevolutionary analyses, is that there is a continuum 27

between arms-race and trench-warfare dynamics and the dynamics are in fact strongly 28

affected by the type and strength of various forms of selection (negative indirect 29

frequency dependent selection, negative direct frequency dependent selection, 30

overdominant selection) and their interplay with genetic drift [19, 20] and 31

mutation [21,22]. In other words, the expectations above are probably too simple to be 32

accurately applicable as the effect of genetic drift and mutation affecting the outcome of 33

coevolutionary dynamics is ignored [19–21]. 34

Under negative frequency-dependent selection (nFDS) the fitness of a particular allele is 35

either inversely proportional to its own frequency (direct, ndFDS) or allele frequencies 36

in the interacting partner (indirect, niFDS) [23,24]. Overdominant selection or some 37

form of ndFDS are a necessary but not always sufficient condition for trench-warfare 38

dynamics to take place in single locus host-parasite coevolutionary interactions [21,24]. 39

But even with some form of ndFDS acting, arms-race dynamics can take place if either 40

the strength of ndFDS compared to niFDS is weak or genetic drift is causing random 41

loss of alleles. 42

The exact nature of the dynamics, such as the equilibrium frequencies of alleles and the 43

October 10, 2019 2/44

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/625301doi: bioRxiv preprint 

https://doi.org/10.1101/625301
http://creativecommons.org/licenses/by-nd/4.0/


period and amplitude of coevolutionary cycles, is further affected by the way host and 44

parasite genotypes interact at the molecular level and the fitness costs associated with 45

the coevolutionary interaction. The interaction at the molecular level is captured by the 46

infection matrix which stores the specificity and level of infection in all possible pairwise 47

interactions between host and parasite genotypes [25]. One well studied type of 48

interaction is the gene-for-gene (GFG) interaction which presents one endpoint of a 49

continuum of infection matrices [26,27]. GFG-interactions are characterized by one 50

universally infective parasite genotype and one universally susceptible host type and for 51

example have been found in the Flax-Melampsora lini system [28]. 52

A fitness cost which has been shown to crucially affect the coevolutionary dynamics is 53

the loss in host fitness due to infection [19,24]. In addition, costs of resistance such as 54

reduced competitive ability or fertility in absence of the parasite [29–31] and costs of 55

infectivity such as reduced spore production of infective pathogens [32] can further alter 56

the dynamics. These costs also determine the equilibrium frequencies of the 57

coevolutionary system [33,34] at which one or several alleles are maintained or around 58

which allele frequencies cycle. An important result from previous theoretical 59

investigations [33,34] is that the equilibrium frequencies in the parasite population 60

depend on the parasite fitness costs (cost of infectivity) and vice versa (cost of 61

resistance and cost of infection). 62

Given this continuum of coevolutionary dynamics, it is necessary to gain a deeper and 63

refined understanding on how the interaction between allele frequency dynamics at the 64

coevolving loci, genetic drift and mutation shapes the resulting genetic signatures at the 65

coevolutionary loci and linked neutral sites. This is an important step for the 66

development and application of methods designed to draw inference on the 67

coevolutionary history. A previous study has investigated this link for two distinct 68

coevolutionary models [19]. Focusing on a small set of summary statistics, the 69

signatures at the coevolving loci cannot be necessarily distinguished from neutrality 70

when considering host or parasite data in isolation. Moreover, the strength of 71

coevolutionary signatures depends on the host and parasite population sizes and varies 72

with changing costs of infection, resistance and infectivity [19]. 73

The first aim of the present paper is to extend this approach [19] by including additional 74

summary statistics in order to get a more refined understanding of the resulting genetic 75

signatures. Based on this extended set of summary statistics, our major aim is to jointly 76

infer several of the above mentioned parameters as a proof-of-principle by using an 77

Approximate Bayesian Computation approach [35–37]. We base our inference on 78

average summary statistics from r = 10 and r = 30 repeatedly simulated coevolutionary 79

histories. We test this approach on two different scenarios. In scenario 1, we aim to infer 80

simultaneously the cost of infection (s), the host population size (NH) and the parasite 81

population size (NP ) assuming that we know the true cost of resistance (cH) and the 82

true cost of infectivity (cP ). This scenario mimics systems where experimental measures 83

of the costs of resistance or infectivity have been performed [32,38] and thus, these 84

parameters can be assumed as known. In scenario 2, our goal is to infer simultaneously 85

the cost of infection (s), the cost of infectivity (cP ) and the cost of resistance (cH) that 86

the true host (NH) and parasite population sizes (NP ) are known. Scenario 2 is 87

motivated by the assumption that an independent estimate of the effective population 88

size can be obtained by using full-genome data of loci unlinked to the coevolutionary 89

locus. For each scenario we perform the ABC model choice to distinguish 90

coevolutionary from neutral loci and subsequently infer the model parameters. 91
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Results 92

Link between coevolutionary dynamics and sequence data 93

Previous work has dealt with understanding the coevolutionary dynamics under the 94

chosen coevolution model [24] and the resulting genetic signatures [19]. We provide a 95

short summary of these results here to help the reader to gain an intuition regarding the 96

ABC results. A classic coevolutionary cycle in this Gene-For-Gene model consists of 97

four phases (see S1 Fig, [24,53]): 98

1. The frequency of RES hosts increases when INF -parasites are in low frequency. 99

2. As a response to the increasing frequency of RES -host the frequency of 100

INF -parasites increases very quickly and the parasite population reaches almost 101

fixation for the INF -allele. 102

3. This results in a decrease of the frequency of RES -hosts due to the cost of 103

resistance. 104

4. Once RES -hosts are in low frequency the frequency of ninf -parasites increases 105

due to the cost of infectivity. 106

Depending on the combination of cost of infection (s), cost of resistance (cH) and 107

infectivity (cP ) the model either exhibits trench-warfare dynamics or arms-race 108

dynamics. Trench-warfare dynamics mainly take place for small to intermediate costs of 109

infection. the dynamics switch to arms-race for high costs of infection (S1 Fig, S2 Fig), 110

irrespective of cH and cP When arms-race dynamics take place the parasite population 111

always exhibits fixation of the INF -allele. The speed of the subsequent fixation of the 112

res-allele in the host depends on the cost of resistance (cH) and is faster for higher costs 113

of resistance (cH). 114

The internal equilibrium frequencies under trench-warfare dynamics are affected as 115

follows. The frequency of RES -hosts mainly increases with increasing cost of infectivity 116

(cP ) (S2 Fig a+b vs. S2 Fig c+d), increases very slightly with increasing cost of 117

infection (s) and remains almost unaffected by changing costs of resistance (cH) (S2 118

Fig a+c vs. S2 Fig b+d). The opposite is true for the parasite. Here, the equilibrium 119

frequency of the infective (INF )-parasite rises mainly with increasing cost of infection 120

(s) (S2 Fig). Higher costs of resistance (cH) decrease the equilibrium frequency of 121

INF -parasites (S2 Fig a+c vs. S2 Fig b+d) for a given value of s. In contrast to the 122

host, the equilibrium frequencies in the parasite are almost unaffected by changes in the 123

cost of infectivity (cP ). 124

125

The changes in equilibrium frequencies with changing cost of infection (s), cost of 126

resistance (cH) and changing cost of infectivity (cP ) are reflected by the resulting 127

genetic signatures at the coevolving loci (S9 Fig). We summarize the genetic signatures 128

of coevolution chiefly as the behaviour of Tajima’s D under selective sweeps and 129

balancing selection (S9 Fig,S3 Fig) is well known. Generally, the strongest signatures of 130

balancing selection, indicated by high Tajima’s D values, can be observed when the 131

equilibrium frequencies of INF -parasites or RES -hosts are close to 0.5 (see S2 Fig, S9 132

Fig). The strength of the signatures declines the further the equilibrium frequencies 133

move away from 0.5. 134

The genetic signature in the parasite changes strongly with changing cost of infection 135

(s), irrespectively of cH and cP (S9 Fig). Further, the resulting genetic signatures in the 136

parasites for a given cost of infection s are distinguishable for different costs of resistance 137

but not for different costs of infectivity. The genetic signature in the host is mainly 138

indicative about the cost of infectivity (cP ), a cost which is affecting the parasite fitness, 139
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whereas the signature in the parasite is mainly informative about the costs of resistance 140

(cH) and infection (s), parameters with a direct fitness effect on the host (S9 Fig). 141

The qualitative changes of the genetic signatures for changing costs of infection remain 142

similar even when population sizes differ in both interacting partners (S3 Fig). However, 143

their strength is affected by the population sizes. 144

145

Inference of coevolutionary dynamics from polymorphism data 146

Scenario 1 147

Model choice Under scenario 1 and r = 30, the model choice procedure is suited to 148

distinguish a coevolutionary model in which the cost of infection (s), host population 149

size (NH) and parasite population size (NP ) are unknown from a neutral model where 150

the host and parasite population size are unknown. The cross-validation reveals (values 151

for r = 10 in brackets) that 482 (441) out of 500 coevolution simulations are correctly 152

identified, while 18 (59) are misclassified as neutrally evolving pairs of loci, yielding a 153

FNR of 3.6% (respectively 11.8%). In addition, 498 (495) neutral simulated pairs of loci 154

are correctly identified as evolving neutrally, yielding a FPR of 0.4% (respectively 1% 155

for r = 10) (see S4 Fig, S5 Fig). When analysing results for the PODs the accuracy of 156

model choice is very high for low costs of infection but becomes worst when s > 0.6 (Fig 157

1, S6 Fig). It is apparent from Fig 2 that for Tajima’s D and PMD all PODs with 158

intermediate to high s are in the cloud of neutral simulations (see S7 Fig for r = 10). 159

For high values of s, dynamics are indeed switching to arms-race generating fast 160

recurrent selective sweeps. Hence, the values of these statistics become similar to 161

neutral expectations under small host and parasite population sizes. 162

Parameter estimation Our results indicate that it is possible to jointly infer the 163

cost of infection (s), the host population size (NH) and the parasite population size 164

(NP ) using polymorphism data from the host and parasite (Fig 3, S8 Fig). Generally, 165

the accuracy of inference mainly depends on 1) the true value of the cost of infection 166

and the 2) the type of polymorphism data being used (host and parasite together, only 167

host or only parasite). 168

Inferences of the cost of infection and of the population sizes are the most accurate if 169

both host and parasite polymorphism data are used (Fig 3, S8 Fig). Using only parasite 170

polymorphism data is also quite accurate for inferring small to intermediate values of 171

the cost of infection (s < 0.6) (Fig 3 c+f) where trench-warfare dynamics take place. In 172

contrast, using only host polymorphism data shows markedly less accuracy in the same 173

parameter range (Fig 3 b+e). Overall the inference results become less accurate when 174

decreasing the number of repetitions to r = 10 (S8 Fig). 175

176

Scenario 2 177

Model choice Under scenario 2 and r = 30, model choice is suited to discriminate 178

between coevolution and neutral evolution. Out of the 500 coevolution validation 179

simulations 470 (417 for r = 10) are correctly classified as coevolving pairs of loci 180

whereas 30 (83) are classified as neutrally evolving pairs, yielding a FNR of 6% 181

(respectively 16.6% for r = 10). In addition, 489 (495 for r = 10) neutral simulated pairs 182

of loci are correctly identified as evolving neutrally, yielding a FPR of 2.2% (respectively 183

1% for r = 10) (see S10 Fig, S11 Fig). When analysing results for the PODs the 184

accuracy of model choice is very high under higher cost of infectivity (cP = 0.3). For a 185

lower value of cP = 0.1, the model choice becomes less accurate when s increases, 186
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especially when cH = 0.1 (Fig 4). As for scenario 1, it is also apparent from Fig 5 that 187

some PODs are found within the cloud of neutral simulations (see S13 Fig for r = 10). 188

For high values of s, dynamics are indeed switching to arms-race generating fast 189

recurrent selective sweeps. Note however, the interesting case of cH = cP = 0.1 which 190

displays the worst accuracy for high values of s. This is explained by very fast recurrent 191

selective sweeps along with very fast coevolutionary cycles due to the combination of 192

high cost of resistance and low cost of infectivity. Note that such fast cycles affect more 193

strongly other statistics (in particular the nucleotide diversity) than the three we 194

present in Figure 5 (Tajima’s D host and parasite and PMD), thus highlighting the 195

need to include a larger number of summary statistics in the ABC procedure. 196

Parameter estimation As for scenario 1, the accuracy of inference for scenario 2 is 197

best if data from both the host and the parasite are available (6). However, inference of 198

the cost of infection s is less accurate compared to scenario 1. The most accurate 199

inference results are obtained for intermediate costs of infection. This is due to the fact 200

that signatures in the host and the parasite are differentially affected by the various 201

costs (S9 Fig). 202

Inference of the cost of resistance (cH) works reasonably well if polymorphism data only 203

from the parasite are available. However, this comes at the cost of less accurate 204

inference of the cost of infection (s) as both parameters are affecting the equilibrium 205

frequency in the parasite (S2 Fig, Fig 6). This effect is especially pronounced when the 206

cost of infection (s) is low and only the information from the parasite polymorphism 207

data are available (see Fig 6 c+f). The inference of the cost of infectivity (cP ) is 208

reasonably accurate if polymorphism data only from the host are available (Fig 6 h+q). 209

This is due to the fact that the cost of infectivity (cP ) mainly affects the equilibrium 210

frequency in the host but not in the parasite (S2 Fig). Therefore, inference of this 211

parameter does not work if only parasite polymorphism data are available (Fig 6 i+r). 212

Discussion 213

In the present study we explicit a link between coevolutionary dynamics (S2 Fig), the 214

resulting genetic signatures (S9 Fig, S3 Fig) and the subsequent amount of information 215

which can be extracted from genetic signatures at the coevolving loci (Fig 3, Fig 6). 216

Our results indicate that under trench-warfare dynamics the allele frequencies at the 217

non-trivial internal equilibrium point affect the strength of genetic signatures at the 218

coevolving loci in both, the host and parasite. Furthermore, pairs of coevolving loci are 219

well discriminated from pairs of neutral loci by ABC model choice (Fig 1, Fig 2, S6 Fig, 220

S12 Fig), while the accuracy decreases for higher costs of infection. We further show as 221

a proof of principle that it is possible to infer the parameters underlying the 222

coevolutionary interaction from polymorphism data at the loci under coevolution if some 223

relevant parameters such as diverse costs (Fig 3) or population sizes (Fig 6) are known. 224

The inference is accurate if polymorphism data from both the host and the parasite are 225

available from at least ten repetitions of the coevolutionary history (S8 Fig, S14 Fig). 226

227

Coevolutionary dynamics and inference 228

As already shown in [19] there is a continuum of genetic signatures which can arise at 229

the loci under coevolution. This contrasts to the often postulated dichotomy that 230

arms-race dynamics result in strong selective sweep signatures and trench-warfare 231

dynamics in strong balancing selection signatures. 232

In general, the strength of the selective signatures under trench-warfare dynamics is a 233
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result of the internal equilibrium frequencies, the fluctuations around these equilbrium 234

frequencies, the amount of genetic drift in both partners and the proximity of these 235

equilibrium frequencies to the fixation boundaries. When equilibrium frequencies are 236

close to boundaries, alleles can be easily lost by drift and thus, arms-race dynamics take 237

place although trench-warfare dynamics would be predicted based on the deterministic 238

model. 239

240

The strong link between equilibrium frequencies under trench-warfare dynamics and 241

resulting genetic signatures can be explained in terms of the underlying approximated 242

structured coalescent tree with two alleles in each species (RES and res for the host and 243

INF and ninf for the parasite). This model is analogous to a two-demes model with 244

gene flow [43]. When the frequencies of both allles are fairly similar they have equal 245

contributions to the sample, and the underlying coalescent tree is well balanced. 246

Accordingly, we observe an excess of intermediate frequency variants in the SFS ( [11]). 247

As the equilibrium frequencies move away from 0.5, the average sample configuration 248

changes and the coalescent tree becomes less balanced (see S1 Fig). Therefore, the 249

number of SNPs at intermediate frequencies drops and Tajima’s D decreases (S9 Fig). 250

This link can be also observed when we modify our model to more realistic but complex 251

models by either a) extending the model to more than two parasite generations per host 252

generation (Model B, S15 Fig, S17 Fig a+b) or b) allowing for allo-infections at rate 253

1− ψ in the second parasite generation within host generation g (Model C, S16 Fig, 254

S17 Fig c+d). 255

There are three sources of stochasticity affecting the polymorphism data at the 256

coevolutionary loci: 1) The effect of genetic drift on the allele frequency trajectory 257

under coevolution, 2) the stochasticity in the coalescent process for a given allele 258

frequency trajectory and 3) the stochasticity in the neutral mutation process on top of 259

the coalescent process. As the first type of stochasticity affects the ’population’ sizes of 260

the functional alleles in the host (in the parasite) over time, it also has a subsequent 261

effect on the other two sources of stochasticity. Using data from several repetitions 262

allows to better handle and to average out the effect of genetic drift on the variability of 263

the allele frequency path and its subsequent effect on the observed summary statistics. 264

Therefore we use the average of the summary statistics over several repetitions of the 265

same coevolutionary history (i.e. r frequency paths) in our ABC. In future, repeated 266

data could be for example obtained from microcosm experiments such as performed 267

by [54,55]). Using data from repeated experiments is one possible attempt to deal with 268

the variability in allele frequency trajectories. The availability of data from several 269

independent populations or time-samples might be possible alternatives. Time samples 270

offer a partially detailed view on changes in allele frequencies and accordingly, can help 271

to better capture the coevolutionary dynamics. 272

273

Accuracy of inference 274

We first perform a model choice procedure for each scenario to assess the possibility to 275

distinguish pairs of loci which are coevolving from pairs evolving independently from 276

one another (in our case neutrally in each species). We envision that the gene dataset 277

can be divided into two categories of genes in hosts and parasites: pairs of candidate 278

loci possibly under coevolution, and pairs of other randomly selected genes. For 279

example, the candidates can be resistance genes in the host plant [4–6,12–16] and the 280

corresponding predicted effectors in the parasite [17,18]. The second category can be 281

composed of genes involved in processes such as housekeeping, abiotic stress responses 282

or photosynthesis in plants, and housekeeping genes and/or degrading enzymes with 283

non-specific activities in parasites. 284
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It is encouraging that our results show very good accuracy and low False Positive rates. 285

Interestingly, the model choice accuracy is very good for low values of the infection 286

parameter s, and thus we are more likely to identify pairs of loci which are coevolving 287

under trench-warfare than under arms race dynamics. We show thus that in contrast to 288

the somehow pessimistic view in [19] based on few statistics, extending the number of 289

summary statistics does help to distinguish neutral from coevolving loci. 290

Regarding parameter inference, we show that estimations of parameters governing 291

the coevolutionary dynamics is possible if they substantially shift the equilibrium 292

frequencies and/or the dynamics and thus, the resulting genetic signatures. However, 293

equilibrium frequencies can be shifted along the same axis by different parameter 294

combinations. In such circumstances, it is only possible to infer a compound parameter 295

if there is no a priori information on any of the parameters available. This 296

identifiability problem is illustrated by the inference results for scenario 2 especially 297

when only parasite polymorphism data are available (Fig 6). Here, both the cost of 298

infection (s) and the cost of resistance (cH) are overestimated. If however some 299

parameter values are a priori known from experiments such as the cost of resistance in 300

scenario 1, the other parameters (here the cost of infection) can be inferred conditional 301

on this information. Whenever the parameters of interest have different effects on the 302

equilibrium frequencies in the host and parasite, inference of both parameters is 303

possible. This explains why inferences are usually the most accurate when host and 304

parasite statistics are jointly used. 305

Our approach of jointly using host and parasite information is in line with recent 306

method developments [56–58] which also show the value of analysing hosts and parasite 307

in a joint framework. These mentioned methods can be promising complementary 308

approaches to our ABC in order to identify candidate loci. 309

Scope, implications and applications of the presented approach 310

Based on the genetic signatures found for our two model extensions (S17 Fig) [24], we 311

suggest that our findings are generally valid and are not restricted to the coevolution 312

GFG model used in the main text. We acknowledge that we assume the most simple 313

type of coevolutionary interaction possible. However, understanding possible links 314

between dynamics, signatures and resulting accuracy of inference for this simple 315

scenario is a useful starting point to develop further inference methods where several 316

major loci [7] or quantitative traits [39] are involved. In addition, our approach should 317

be applicable to several pairs of host and parasite coevolving loci as long as the 318

coevolutionary dynamics are driven by few major loci without any epistatic and/or 319

pleiotropic effect. These pairs could for example involve resistance genes from a single 320

host species, each co-evolving independently with effectors from different parasite 321

species (bacteria, fungi, ...). If quantitative traits [7,39] are involved into coevolution we 322

expect the signatures to be weaker than in our model (see theory on polygenic selection 323

and polymorphism signatures, [59]). 324

325

For many host-parasite models (including the one used here) it has been shown that 326

the equilibrium frequencies in the host are substantially or exclusively affected by 327

fitness penalties applying to the parasite and vice-versa [24,33,34]. Thus generally 328

speaking, the strength of genetic signatures in either species are presumably most 329

indicative about processes affecting the coevolving partner. We therefore speculate, that 330

the balancing selection signatures which have been found at R-genes in Arabidopsis 331

thaliana [6, 12] [13], Solanum sp. [4, 5, 14], Phaseolus vulgaris [60], Capsella [61], are 332

indicative about the selective pressure in the coevolving parasite or parasite community. 333

Conversely, the long term maintenance of strains in Pseudomonas syringae [62] could 334

reflect fitness costs in Arabidopsis thaliana. 335
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A final complication for analysis is the lack of recombination in genomes of 336

microparasites such as viruses or bacteria. Phylogenetic methods exist to study the 337

evolution of these parasites with very short generation time, and can allow to define 338

groups of individuals or populations which could be used in inference methods such as 339

ours or in co-GWAs [56–58,63]. Note also that several methods have been developed to 340

draw inference of the epidemiological parameters based on parasite sequence data 341

(e.g. [64]). However, such methods study only short term epidemiological dynamics 342

within few years, ignoring the effect of coevolution and Genotype (host) x Genotype 343

(parasite) interactions. By contrast, our method intends to infer the parameters of long 344

term coevolutionary dynamics driven by GxG interactions. 345

Additional demographic changes 346

An important assumption of our model is the absence of intra-locus recombination at 347

the coevolutionary loci. Nevertheless, recombination does occur along the genomes of 348

the host and the parasite, so that the coevolutionary loci evolve independently from 349

other unlinked loci (for example on different chromosomes). 350

In such circumstances, it is possible to estimate past population size fluctuations based 351

on whole-genome data of both species. Population size changes in host-parasite 352

coevolution can be either independent of the coevolutionary interaction or arise as an 353

immediate result of coevolutionary interaction, e.g. from epidemiological feedback or 354

any other form of eco-evolutionary feedback. Independently of the particular source, 355

demographic changes always affect all loci in the genome simultaneously. The genomic 356

resolution of the latter type of population size changes has been shown to depend on the 357

amplitude and time-scales of the population size fluctuations [65]. These authors have 358

demonstrated that populations size fluctuations only leave a signature in the 359

genome-wide parasite site frequency spectrum if they happen at a slow enough time 360

scale. Irrespective of whether the demographic changes can be resolved from 361

genome-wide data, the resulting genetic signatures at the coevolving loci will be always 362

the result of underlying allele frequency path which is always confined to a 2d-plane for 363

a bi-allelic locus. Further studies should therefore focus on the specific effect of 364

eco-evolutionary feedback on the variability of the allele frequency path and the 365

resulting effect of the population size changes on mutation supply at the coevolving loci. 366

Doing so will help to refine our understanding how much information can be likely 367

inferred under such circumstances. 368

369

Conclusion 370

We investigated here a link between coevolutionary dynamics and resulting genetic 371

signatures and quantify the amount of information available in polymorphism data from 372

the coevolving loci. Although, we started from a very simple coevolutionary interaction 373

we show that model-based inference is possible. With growing availability of highly 374

resolved genome data, even of non-model species, it is important to gain a differentiated 375

and deep understanding of the continuum of possible links between coevolutionary 376

dynamics without or with eco-evolutionary feedbacks and their effect on polymorphism 377

data. Such thorough understanding is the basis for devising appropriate sampling 378

schemes, for using optimal combinations of diverse sources of information and for 379

developing model-based refined inference methods. Our results and the suitability of the 380

ABC approach open the door to further develop inference of past coevolutionary history 381

based on genome-wide data of hosts and parasites from natural populations or 382

controlled experiments. Lastly, as the false positive rate to detect genes under 383

coevolution is smaller than 2.5% (r = 30) under the model choice procedure, our 384
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method can be used as a starting point to identify host and parasite candidate loci for 385

further functional studies. 386

Materials and methods 387

General outline of the approach 388

Approximate Bayesian computation (ABC) is an inference method which can be used in 389

situations where likelihood calculations are intractable, as is the case for the 390

coevolutionary models [39]. The principle of ABC methods is to perform a large amount 391

of simulations covering the parameter space for each of several possible models which 392

are expected to reflect the past evolutionary history of the population(s) of concern and 393

thus having given rise to the observed data. These values of the different parameters of 394

each model are drawn from prior distributions based on current knowledge. The 395

observed data and each simulation are summarised by the same set of summary 396

statistics to reduce their dimensionality. In a rejection step the best set of simulations, 397

i.e. the simulations with the smallest distance to the summary statistics of the observed 398

data, can be selected. Based on this retained simulations a model choice can be applied 399

to obtain a posterior probability for each competing model. Under the model with the 400

highest posterior probability, an additional regression step can be used to generate the 401

posterior distribution of each parameter. In this paper we do not use real observed 402

sequence data, but study the power of our approach using so-called pseudo-observed 403

datasets. 404

In more detail the workflow in our paper is as follows: 405

1. We compare a model of coevolution between a single host and single parasite 406

locus to a neutral model of independently evolving (non-interacting) pairs of host 407

and parasite loci. Under each model, we simulate polymorphism data for n = 50 408

haploid host individuals and n = 50 haploid parasite individuals. 409

2. We simulate r replicates of these data corresponding to repeating r-times the 410

coevolutionary history. Such repetitions can be obtained in controlled laboratory 411

set-ups using for example microcosm/chemostat experiments with several 412

replicates, or from several independent natural populations of the same 413

host-parasite system with similar environmental conditions. 414

3. We summarise the obtained SNP data by a set of 17 statistics for each of the r− 415

replicates. 416

4. We calculate the mean for each of the 17 statistics across the r-replicates. These 417

average values are used as summary statistics in the ABC. Therefore, one set of r 418

replicates defines a given pseudo-observed dataset (POD). 419

5. We first perform a model choice between the coevolution model and the neutral 420

model based on our PODs. For each POD, we select the 1% closest simulations 421

based on the set of summary statistics. Based on these retained simulations we 422

compute the posterior probability of both models. 423

6. In a second step, we estimate the posterior distribution of the coevolutionary 424

parameters for the PODs. We apply a post-sampling adjustment (regression) 425

based on the 1% best simulations under the coevolutionary model. 426

Simulation of SNP data at the coevolutionary loci 427

SNP data at the coevolutionary loci are simulated by using a forward-backward 428

approach as outlined in [19]. 429
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Forward in time coevolution model 430

We model coevolution between a single haploid host and a single haploid parasite 431

species. The coevolutionary interaction in both species is driven by a single bi-allelic 432

functional site (SNP, indel, ...). This functional site is located in the coevolutionary 433

locus which encompasses several other neutral sites. Hosts are either resistant (RES ) or 434

susceptible (res) and parasites are either non-infective (ninf ) or infective (INF ). Thus, 435

the model follows a gene-for-gene interaction with the following infection matrix: 436

(ninf INF

RES 0 1
res 1 1

)
. (1)

A 1-entry in the infection matrix indicates that the parasite is able to infect the host 437

and a 0-entry indicates that the host is fully resistant towards the parasite. We denote 438

the frequency of resistant hosts (susceptible hosts) by R (r) and the frequency of 439

infective parasite (non-infective parasites) by a (A). The coevolution model is based on 440

the polycyclic auto-infection model in [24]. This population genetics model (sensu [40]) 441

assumes host and parasite population sizes to be constant regardless of the disease 442

prevalence and is based on non-overlapping host and parasite generations. As such it is 443

probably most suited to describe plant-parasite or invertebrate-parasite systems. 444

Polycyclic diseases are characterized by more than one infection cycle per season. For 445

simplicity, the model is based on T = 2 infection cycles per discrete host generation g 446

each caused by a single discrete parasite generation t (t ∈ {1, 2}). An auto-infection 447

refers to an infection where a parasite re-infects the host individual on which it was 448

produced. Therefore, resistant (Rg) and susceptible hosts (rg) which are infected by 449

infective parasites (ag,1) in the first infection cycle (t = 1) stay infected by infective 450

parasites in the second infection cycle (t = 2). This causes a fitness reduction s1 = s 451

(cost of infection). The same applies to susceptible host (rg) infected by non-infective 452

parasites (Ag,1) in the first infection cycle (t = 1). Resistant host which are attacked by 453

non-infective parasites in the first infection cycle (t = 1) resist infection. In the second 454

infection cycle (t = 2), this fraction of resistant hosts (Rg ·Ag,1) either receives a 455

non-infective parasite (Ag,2) resulting in no fitness loss or an infective parasite (ag,2) 456

resulting in a reduced cost of infection s2 = s/2. Host resistance comes at cost cH (cost 457

of resistance) and infectivity in the parasite comes at cost cP (cost of infectivity). 458

The allele frequencies of resistant hosts (Rg), susceptible hosts (rg), non-infective 459

parasites (Ag,t) and infective parasites (ag,t) are given by the following recursive 460

equations: 461

ag,2 =
ag,1 · (1− cP )

ag,1 · (1− cP ) +Ag,1 · rg
(2a)

ag+1,1 =
(1− cP ) · [Rg (Ag,1ag,2 + ag,1) + rgag,1]

(1− cP ) · [Rg (Ag,1ag,2 + ag,1) + rgag,1] + rgAg,1
(2b)

Rg+1 =
Rg · (1− cH) [Ag,1Ag,2 +Ag,1ag,2(1− s2) + ag,1(1− s1)]

Rg · (1− cH) [Ag,1Ag,2 +Ag,1ag,2(1− s2) + ag,1(1− s1) + rg(1− s1)]
(2c)

with Ag,t = 1− ag,t and rg = 1−Rg. The equilibrium frequencies â, R̂ [24] at the 462

internal, non-trivial equilibrium point are approximately given by: 463

â ≈
s2 + s1 −

√
(s2 + s1)2 − 4s2(s1 − cH)

2s2(1− cH)

R̂ ≈
cP

2− cP − â

≈
2cP · s2 · (1− cH)

s2(3− 4cH − 2cP (1− cH))− s1 +
√

(s2 + s1)2 − 4s2(s1 − cH)

(3)

464
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In the forward part, we obtain the frequencies of the different alleles at the 465

beginning of each discrete host generation g in three steps: 466

1. Using the discrete-time gene-for-gene coevolution model from Eq (2), we compute 467

the expected allele frequencies in the next generation (under the infinite 468

population size assumption). 469

2. Genetic drift is incorporated by performing a binomial sampling based on the 470

frequency of the RES -allele (INF -allele) after selection (Eq (2)) and the finite and 471

fixed haploid host population size NH (parasite population size NP ) as in [19] 472

(see [41]) . 473

3. Recurrent allele mutations take place and change genotypes from RES to res at 474

rate µRtor or res to RES at rate µrtoR in the host and from ninf to INF at rate 475

µntoI and from INF to ninf at rate µIton in the parasite. Henceforward, such 476

mutations are referred to as functional mutations. In the reminder of this 477

manuscript we set all functional mutation rates to 478

µRtor = µntoI = µrtoR = µIton = 10−5 (for a discussion on these values 479

see [19,41]). 480

Repeating this procedure for gmax host generations, we obtain the so called frequency 481

path, which summarizes the allele frequencies at both loci forward in time. 482

483

Backward in time coalescent 484

To obtain polymorphism data at the coevolutionary loci we combine the obtained 485

frequency paths which include genetic drift and recurrent mutations with coalescent 486

simulations separately for the host and the parasite. The host and parasite frequency 487

paths are used separately as input for a modified version of msms [19,42], after scaling 488

time appropriately in units of the respective population sizes (for more information see 489

S1 File). Based on the allele frequency in a species at present, a coalescent tree is build 490

backward in time using msms. A sample of size nH (nP ) is drawn at random from the 491

host (parasite) population consisting of RES and res-alleles (ninf and INF -alleles) [19]. 492

The tree shape and length are conditioned on the changes in allele frequencies, including 493

fixation or loss [19]. To clarify the forward - backward correspondence, let us describe 494

the case of recurrent selective sweeps in the parasite population. In a monomorphic 495

parasite population of allele INF, a functional mutation with rate µIton can reintroduce 496

forward in time a mutant ninf. This allele reaches fixation and the population is then 497

monomorphic for allele ninf. Backward in time, this is equivalent, in msms, to the 498

decrease of the ninf allele population size until only one last individual exhibits this 499

allele. This last ninf coalescent lineage then migrates to the population of allele INF. 500

The forward frequency path and the backward msms simulations are thus coupled for 501

the re-introduction of new alleles due to functional mutations in analogy to gene flow in 502

a structured coalescent with two demes [43]. 503

The forward in time coevolution model is run for gmax = max(3NH , 3NP ) generations 504

assuming small initial frequency of RES (R0 = 0.2) and INF (a0 = 0.2) alleles. The 505

length of simulation time was previously found to be sufficient to observe signatures of 506

selective sweeps and balancing selection in host or parasite [19]. In msms, the backward 507

simulations conditioned on the frequency paths are run for the same amount of time. If 508

after g generations, several coalescent lineages remain and/or the most recent common 509

ancestor of both functional alleles has not been reached, a neutral Kingman coalescent 510

process is built until a common ancestor of all remaining lineages is found. Note that 511

that in this last temporal phase of the simulation, i.e. older than g generations in the 512
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past, the functional alleles in hosts (RES and res) and in parasites (INF and ninf ) have 513

the same fitness (and are exchangeable within species). We therefore simulate a 514

coevolution history of g generations. 515

We set the sample size to nH = 50 for the host (nP = 50 for the parasite) which are 516

adequate to capture balancing selection if one of the allele occurs in low frequency at 517

the present time of sampling [19]. For both species we assume realistically a locus of 518

length 2500 bp without recombination and a per site neutral mutation rate of 10−7. 519

Accordingly, the neutral population mutation rate is θH = 2 ·NH · 2500 · 10−7 for the 520

host (θP = 2 ·NP · 2500 · 10−7 for the parasite) defining the number of mutations found 521

on the host and parasite coalescent trees (and in the polymorphism data). 522

Calculating statistics for the SNP-data 523

For each msms-output we calculate eight statistics for each species which are based on 524

the site frequency spectrum (SFS) of the respective coevolving locus (Tab. 1). We only 525

use statistics based on the unfolded site frequency spectrum (SFS), as it can be hard to 526

obtain unbiased haplotype statistics depending on the sequence method. In addition to 527

these 16 statistics we calculate the (Pairwise Manhattan Distance) which is based on 528

comparing the host and parasite site frequency spectra (see S2 File). 529

Additional coevolutionary models tested 530

Additionally, we study two extensions, B and C of the model from Eq (2) (Model A), 531

in order to check for the generality of our results. In model B, we extend the described 532

model to include more than two parasite (T > 2) generations per host generation g (see 533

S1 File). In model C, we keep T = 2 but allow for allo-infection to take place at rate 534

(1− ψ) in the second parasite generation (t = 2) within host generation g (see S1 File). 535

Based on the equations (S1 File), we generate forward in time simulations with genetic 536

drift and functional mutations (as described above) and the expected coevolutionary 537

signatures at the coevolving loci. We study how the values of the different statistics 538

obtained under these two more realistic but complex models differ from those of the 539

main model from Eq (2). 540

ABC inference 541

In the following section, we lay out the two scenarios to be investigated, the simulations 542

for obtaining the PODs, and the prior distributions for the coevolutionary and neutral 543

models. Finally, the ABC model choice and parameter estimation procedures are 544

described. 545

Inference scenarios 546

We focus on two scenarios. In scenario 1, we aim to infer the cost of infection (s), the 547

host population size (NH) and the parasite population size (NP ). Therefore, the cost of 548

resistance (cH) and the cost of infectivity (cP ) are assumed to be known. In scenario 2 549

the goal is to infer the cost of infection (s), the cost of resistance (cH) and the cost of 550

infectivity (cP ), assuming that the host (NH) and parasite (NP ) population sizes are 551

known. 552

Generating pseudo-observed data sets 553

Each pseudo-observed datasets (PODs) is composed of r = 30 repetitions of the 554

coevolutionary history under a particular combination of parameters (s, cP , cH) while 555

fixing the haploid population sizes to NH = NP = 10, 000 and the population mutation 556
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rates to θH = θP = 5. 557

For scenario 1, we simulate PODs for values of cost of infection (s) ranging from 558

s = 0.15 to s = 0.85 (in steps of size 0.05) while fixing the cost of resistance to 559

cH = 0.05 and the cost of infectivity to cP = 0.1. For each value of s, 30 independent 560

PODs are simulated. 561

For scenario 2, we generate PODs for the 60 possible combinations of cH ∈ {0.05, 0.1}, 562

cP ∈ {0.1, 0.3} and s from 0.15 to 0.85 (in steps of size 0.05). For each of these 563

combinations, 15 PODs are generated. 564

ABC sampling: priors of the coevolutionary model 565

For both scenarios, between 95, 000 and 100, 000 datasets are generated from the 566

coevolutionary model based on the following priors (defined with the ABCsampler from 567

ABCtoolbox, Version 1.0, [50]). 568

In scenario 1, defined with cH = 0.05 and cP = 0.1, the cost of infection is drawn from a 569

uniform prior such that s ∼ U(0.1, 0.9), and the host and parasite population sizes are 570

drawn for log uniform distributions such that NH ∼ U(log(2, 000), log(40, 000)) and 571

NP ∼ U(log(2, 000), log(40, 000)). The population mutation rates are calculated as 572

θH = 2NH · 25000 · 10−7 and θP = 2NP · 25000 · 10−7 (see Tab. 2). 573

In scenario 2, defined by NH = NP = 10, 000 and θH = θP = 5, the cost of infection is 574

drawn from a uniform distribution such that s ∼ U(0.1, 0.9), and the cost of resistance 575

and infectivity from uniform distributions such that cH ∼ U(0.01, 0.35) and 576

cP ∼ U(0.01, 0.35) (see Tab. 3). 577

ABC sampling: priors of the neutral model 578

As for the coevolution model, we obtain between 95, 000 and 100, 000 data sets for a 579

corresponding neutral model for each scenario. This neutral simulations are generated 580

by coalescent simulations with msms [42] for a non-recombining host and parasite locus 581

with the same length (2500bp) as in the coevolutionary model. To mimic data obtained 582

from the same repeated evolutionary history, we generate r = 30 repetitions of the 583

neutral coalescent process. For each replicate we calculate the same 17 statistics as 584

under the coevolution model which are defined in Tab. 1. The summary values used in 585

the ABC consist of the average over the r replicates for each statistic. 586

Under scenario 1, the neutral simulations are based on priors for the host and parasite 587

population sizes drawn from log uniform distributions (NH ∼ U(log(2, 000), log(40, 000)) 588

and NP ∼ U(log(2, 000), log(40, 000))). The population mutation rates are calculated as 589

θH = 2NH · 25000 · 10−7 and θP = 2NP · 25000 · 10−7. 590

Under scenario 2, we simulate datasets for constant host and parasite population sizes 591

(NH = NP = 10, 000) and thus the population mutation rates are θH = θP = 5. 592

ABC model choice 593

The ABC model choice procedure is used to test whether a pair of coevolving loci can 594

be discriminated from pairs of neutral loci based on our set of summary statistics and 595

within the range of priors for our outlined scenarios. To find genes under coevolution, we 596

wish to access the False Positive (FPR) and the False Negative (FNR) rate. These rates 597

are also referred to as the confusion matrix in the ABC literature. Under the hypothesis 598

that two genes (one from the host and one from the parasite) are coevolving, the FPR is 599

the percentage of pairs of truly neutral loci which have a higher posterior probability in 600

support of the coevolution model rather than the neutral model. Thus, these loci would 601

be incorrectly identified as coevolving although in fact they are not. On the other hand, 602

the FNR is defined as the percentage of truly coevolving pairs of loci which have a 603
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higher posterior probability in support of the neutral model (rather than the coevolving 604

model). These loci would be considered as neutral although they are in fact coevolving. 605

To access the FPR and FNR, we first perform a leave-one-out cross-validation running 606

the function cv4postr of the abc r-package (version 2.1, [51]) for each scenario 1 and 2. 607

The cross-validation is based on the rejection algorithm as follows. Under a given 608

scenario (1 or 2), a dataset called validation simulation, is chosen at random from one of 609

the two models (coevolution or neutral). All summary statistics are standardised by 610

their median absolute deviation for all simulations. Based on these normalised summary 611

statistics the Euclidean distance between the summary statistics of the validation 612

simulation and all other simulations from both models is calculated. The one percent of 613

the simulations with the smallest Euclidean distance to the validation simulation are 614

retained and all other simulations are rejected [51]. Based on these retained simulations, 615

the posterior probability for each of the two models is calculated for this given 616

validation simulation. This procedure is repeated for 500 validation simulations for each 617

model within each scenario. The FDR and FNR are thus computed for each scenario. 618

Model choice was also performed for each of the PODs to investigate the effect of 619

specific coevolutionary parameters on the accuracy of model choice. For each scenario 620

we used the same settings and simulations for the coevolution model and the neutral 621

model as for the cross-validation. For each POD we retain the 1% best simulations and 622

report the posterior probability for the coevolution model. 623

ABC parameter estimation 624

The inference of the coevolution model parameters is obtained using the ABCestimator 625

within the ABCtoolbox (Version 1.0, [50]). We retain the 1,000 simulations with the 626

smallest Euclidean distance (without summary statistics normalisation) to the 627

respective POD (rejection step). The standard ABCestimator applies a Gaussian kernel 628

smoothing for each parameter (width of Dirac peak set to 0.01) followed by a post 629

sampling adjustment via a general linear model [50,52]. We report the median of the 630

posterior marginal density distribution for each parameter. For each POD we perform 631

the parameter estimation based on a) host and parasite summary statistics, b) host 632

summary statistics only and c) parasite summary statistics only. 633
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Figures and tables

Fig 1. Posterior probability in support of the coevolution model (against a
neutral model) for scenario 1. Results shown for 30 repetitions and 30 PODs per
value of the cost of infection (s). Results for single PODs are shown as dots. Model
choice distinguishing a coevolution model with unknown costs of infection (s), host
population size (NH) and parasite population size (NP ) from a neutral model with
unknown host and parasite population sizes. Note that for these points we added some
jitter to the x-values in order to increase the readability of the plots.
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Fig 2. Pairwise Manhattan distance and ∆ Tajima’s D (host-parasite) for
the PODs under scenario 1 compared to simulations under a neutral model.
Pairwise Manhattan distance (x-axis) and the difference between Tajima’s D of the host
and of the parasite (y-axis) for the PODs used for inference in Scenario 1 and the
100,000 neutral simulations run for this scenario. Under the neutral model, host and
parasite population sizes vary. Simulations under the neutral model are shown as grey
open circles, and a bivariate normal kernel estimation has been applied to obtain a
probability density of the summary statistic combinations. The PODs for scenario 1 are
shown as diamonds and are coloured coded based on the true cost of infection (s).
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Fig 3. Parameter estimations under scenario 1. Median of the posterior
distribution (y-axis) for the cost of infection s (top, a-c), host population size (NH)
(middle, d-f) and parasite population size (NP ) (bottom, g-i) when inference is based on
host and parasite summary statistics (left), only host summary statistics (middle) or
only parasite summary statistics (right). The median of the posterior distribution (after
post-rejection adjustment) is plotted for each POD. The true cost of infection for each
POD is shown on the x-axis.
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Fig 4. Posterior probability in support of the coevolution model (against a
neutral model) for scenario 2. Results are shown for r = 30 and 15 PODs per
boxplot. The posterior density in support of the coevolution model (y-axis) is shown for
PODs with varying cost of infection (s). The different panels reflect the combination of
cH and cP for the respective PODs (left: cH = 0.05, right: cH = 0.1, top: cP = 0.1,
bottom: cP = 0.3 ). Model choice has been run to distinguish a coevolution model with
unknown costs of infection (s), cost of resistance (cH) and cost of infectivity (cP ) from a
neutral model with constant host and parasite population size (NH = NP = 10, 000).
Results for single PODs are shown as dots and jitter added to the x-values to increase
the readability.
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Fig 5. Pairwise Manhattan distance and ∆ Tajima’s D (host-parasite) for
the PODs under scenario 2 compared to simulations under a neutral model.
Pairwise Manhattan distance (x-axis) and the difference between Tajima’s D of the host
and of the parasite (y-axis) for the PODs used for inference in Scenario 2 and 100,000
neutral simulations. Simulations under the neutral model are shown as grey open circles.
A bivariate normal kernel estimation has been applied to obtain a probability density of
the different summary statistic combinations. The PODs for scenario 2 are shown in
color. Colors reflect the true cost of infection (s) for a particular POD (see legend) and
shapes indicate the combination of cH and cP (diamonds: cH = 0.05, cP = 0.1; circles:
cH = 0.05, cP = 0.3; crosses: cH = 0.01, cP = 0.1; stars: cH = 0.1, cP = 0.3) for the
respective POD.
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Table 1. SNP statistics calculated.

Name reference

number of segregating sites S [44]
θW [44]
nucleotide diversity π [45]
Tajimas’ D [46]
Fu and Li’s D [47]
Fu and Li’s F [47]
θH [48]
Hprime [49]
PMD

Table 2. Settings ABC scenario 1. Settings for the ABC simulations under
scenario 1.

Coevolution model Neutral model

NH ∼ U(log(2000), log(40000)) ∼ U(log(2000), log(40000))
NP ∼ U(log(2000), log(40000)) ∼ U(log(2000), log(40000))
θH 2 ·NH · 2500 · 10−7 2 ·NH · 2500 · 10−7

θP 2 ·NP · 2500 · 10−7 2 ·NP · 2500 · 10−7

nH 50 50
nP 50 50
s ∼ U(0.1, 0.9) –
cP 0.10 –
cH 0.05 –

Table 3. Settings ABC scenario 2. Settings for the ABC simulations under
scenario 2.

Coevolution model Neutral model

NH 10,000 10,000
NP 10,000 10,000
θH 5 5
θP 5 5
nH 50 50
nP 50 50
s ∼ U(0.10, 0.90) –
cP ∼ U(0.01, 0.35) –
cH ∼ U(0.01, 0.35) –
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Supporting information

S1 Fig. Coevolution dynamics in infinite population size, finite population
size and site frequency spectra for Model A. Influence of the cost of infection (s)
on the coevolutionary dynamics and genetic signatures in Model A. The subfigures
show the allele frequency trajectory in infinite population size (a-f, A-F), one exemplary
allele frequency path in finite population size which takes genetic drift and functional
mutations into account (d-f, D-F), the average unfolded host site frequency spectrum of
r = 200 repetitions (I-VI) and the average unfolded parasite site frequency spectrum of
r = 200 repetitions (VII-XII). In subfigures a-l each dot represents the frequency of
resistant (RES ) hosts (x-axis) and infective (INF ) parasites (y-axis) at the beginning of
a single host generation g. The same information is displayed in a slightly different way
in subfigures A-L. Here, the frequencies of resistant (RES ) hosts (light grey) and
infective (INF ) parasites (dark grey) (y-axis) are plotted over time (x-axis). Costs are
fixed to cH = 0.05, cP = 0.1. The results in finite population size are plotted for
NH = NP = 10, 000, µRtor = µntoI = µrtoR = µIton = 10−5. The site frequency spectra
are shown for θP = θH = 5 and nH = nP = 50.
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S2 Fig. Deterministic equilibrium frequencies model A. Deterministic
equilibrium frequencies for model A for different combinations of cost of resistance
cH = (0.05, 0.1) (columns), cost of infectivity cP = (0.1, 0. 3) (rows) and cost of
infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of the squares). Only parameter
combinations with trench-warfare dynamics are shown. Centres of the dots represent
the stable equilbrium frequencies obtained by simulating numerically the recursion
equations Eq (2) for 30,000 generations starting with an initial frequency of R0 = 0.2
resistant hosts and a0 = 0.2 infective parasites. Heads of the arrows represent the
equilibrium frequencies based on Eq (3) which slightly differ from the numerical
computations due to analytical approximations.
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S4 Fig. Cross-validation model choice scenario 1 for r = 30 repetitions.
Leave-on-out cross-validation result for distinguishing the coevolution model with
unknown costs of infection (s), host population size (NH) and parasite population size
(NP ) from a neutral model with a unknown host and parasite population sizes.
Cross-validation results are shown for r = 30 and are based on 500 randomly chosen
ABC-simulations for each model.
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S5 Fig. Cross-validation model choice scenario 1 for r = 10 repetitions.
Leave-on-out cross-validation result for distinguishing the coevolution model with
unknown costs of infection (s), host population size (NH) and parasite population size
(NP ) from a neutral model with unknown host and parasite population sizes.
Cross-validation results are shown for r = 10 and are based on 500 randomly chosen
ABC-simulations for each model.
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S6 Fig. Model choice results for PODs from scenario 1 for r = 10
repetitions. Model choice results for scenario 1 for r = 10. Model choice has been run
to distinguish a coevolution model with unknown costs of infection (s), host population
size (NH) and parasite population size (NP ) from a neutral model with unknown host
and parasite population sizes. Model choice is shown for r = 30 repetitions and based
on the 1% simulations having the closest summary statistics to those of the PODs. The
posterior probability in support of the coevolution model (y-axis) is shown for PODs
with different costs of infection (s) (30 PODs for each s). Results for single PODs are
shown as dots. Note that for these points we added some jitter to the x-values in order
to increase the readability of the plots.
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S7 Fig. Pairwise Manhattan distance and ∆ Tajima’s D (host-parasite) for
the PODs under scenario 1 compared to simulations under a neutral model
for r = 10. Pairwise Manhattan distance (x-axis) and the difference between Tajima’s
D of the host and of the parasite (y-axis) for the PODs used for inference in Scenario 1
and the 100,000 neutral simulations run for this scenario. Under the neutral model, host
and parasite population sizes vary. Simulations under the neutral model are shown as
grey open circles, and a bivariate normal kernel estimation has been applied to obtain a
probability density of the summary statistic combinations. The PODs for scenario 1 are
shown as diamonds and are coloured coded based on the true cost of infection (s).
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S9 Fig. Tajima’s D model A for different costs of infection, resistance and
infectivity. Tajima’s D (y-axis) for model A for various cost of infection s (x-axis).
The results are shown for different combinations of cP (cP = 0.1 top, cP = 0.3 bottom)
and cH (cH = 0.05 left, cH = 0.1 right). The mean and standard error of Tajima’s D of
the parasite population (dark grey) and of the host population (light grey) are plotted
for r = 200 repetitions. The dashed-dotted line shows the expected value of Tajima’s D
in a Wright-Fisher population with constant population size. Tajima’s << 0 is an
indicator of selective sweeps Tajima’s D >> 0 is an indicator of balancing selection.
The other parameters are fixed to: NH = NP = 10, 000, nH = nP = 50, θH = θP = 5,
µRtor = µrtoR = µntoI = µIton = 10−5.
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S10 Fig. S10 Fig. Cross-validation model choice scenario 2 for r = 30
repetitions. Leave-on-out cross-validation result for distinguishing the coevolution
model with unknown costs of infection (s), cost of resistance (cH) and cost of infectivity
(NP ) from a neutral model constant host and parasite population sizes
(NH = NP = 10, 000). Cross-validation results are shown for r = 30 and are based on
500 randomly chosen ABC-simulations for each model.
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S11 Fig. Cross-validation model choice scenario 2 for r = 10 repetitions.
Leave-on-out cross-validation result for distinguishing the coevolution model with
unknown costs of infection (s), cost of resistance (cH) and cost of infectivity (NP ) from
a neutral model constant host and parasite population sizes (NH = NP = 10, 000).
Cross-validation results are shown for r = 10 and are based on 500 randomly chosen
ABC-simulations for each model.
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S12 Fig. Posterior probability in support of the coevolution model
(against a neutral model) for scenario 2. Results are shown for r = 10 and 15
PODs per boxplot. The posterior density in support of the coevolution model (y-axis) is
shown for PODs with varying cost of infection (s). The different panels reflect the
combination of cH and cP for the respective PODs (left: cH = 0.05, right: cH = 0.1,
top: cP = 0.1, bottom: cP = 0.3 ). Model choice has been run to distinguish a
coevolution model with unknown costs of infection (s), cost of resistance (cH) and cost
of infectivity (cP ) from a neutral model with constant host and parasite population size
(NH = NP = 10, 000). Results for single PODs are shown as dots and jitter added to
the x-values to increase the readability.
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S13 Fig. Pairwise Manhattan distance and ∆ Tajima’s D (host-parasite)
for the PODs under scenario 2 compared to simulations under a neutral
model for r = 10. Pairwise Manhattan distance (x-axis) and the difference between
Tajima’s D of the host and of the parasite (y-axis) for the PODs used for inference in
Scenario 2 and 100,000 neutral simulations. Simulations under the neutral model are
shown as grey open circles. A bivariate normal kernel estimation has been applied to
obtain a probability density of the different summary statistic combinations. The PODs
for scenario 2 are shown in color. Colors reflect the true cost of infection (s) for a
particular POD (see legend) and shapes indicate the combination of cH and cP
(diamonds: cH = 0.05, cP = 0.1; circles: cH = 0.05, cP = 0.3; crosses: cH = 0.01,
cP = 0.1; stars: cH = 0.1, cP = 0.3) for the respective POD.

October 10, 2019 40/44

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/625301doi: bioRxiv preprint 

https://doi.org/10.1101/625301
http://creativecommons.org/licenses/by-nd/4.0/


S
1
4
F
ig
.

In
fe
re

n
c
e
re

su
lt
s
S
c
e
n
a
ri
o
2
fo
r
r

=
1
0
.

M
ed

ia
n

of
th

e
p

os
te

ri
or

d
is

tr
ib

u
ti

on
(y

-a
x
is

)
fo

r
th

e
co

st
of

in
fe

ct
io

n
s

(t
op

,
a-

c)
,

co
st

of
re

si
st

an
ce

(c
H

)
(m

id
d

le
,

d
-f

)
an

d
co

st
of

in
fe

ct
iv

it
y

(c
P

)
(b

ot
to

m
,

g-
i)

w
h

en
in

fe
re

n
ce

is
b

as
ed

on
h
os

t
an

d
p
ar

as
it

e
su

m
m

ar
y

st
at

is
ti

cs
(l

ef
t)

,
on

ly
h

os
t

su
m

m
ar

y
st

at
is

ti
cs

(m
id

d
le

)
or

on
ly

p
ar

as
it

e
su

m
m

ar
y

st
at

is
ti

cs
(r

ig
h
t)

fo
r

sc
en

ar
io

2.
T

h
e

m
ed

ia
n

of
th

e
p

os
te

ri
or

d
is

tr
ib

u
ti

o
n

(a
ft

er
p

os
t-

re
je

ct
io

n
ad

ju
st

m
en

t)
is

p
lo

tt
ed

fo
r

ea
ch

P
O

D
in

sc
en

ar
io

2.
T

h
e

tr
u

e
co

st
of

in
fe

ct
io

n
fo

r
ea

ch
P

O
D

is
sh

ow
n

on
th

e
x
-a

x
is

.

October 10, 2019 41/44

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/625301doi: bioRxiv preprint 

https://doi.org/10.1101/625301
http://creativecommons.org/licenses/by-nd/4.0/


S15 Fig. Equilibrium frequencies Model B. Deterministic equilibrium
frequencies for Model B for a) T = 5 parasite generations (left) and b) T = 10 parasite
generations (right) per host generation. The equilibrium frequencies for different
combinations of cost of resistance cH = (0.05, 0.1) (columns), cost of infectivity
cP = (0.1, 0. 3) (rows) and cost of infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of
the squares) are shown. Only combinations with trench-warfare dynamics are shown.
Centres of the squares represent the equilbrium frequencies obtained by simulating
numerically the recursion equations in S1 File for gmax = 30, 000 host generations
starting with an initial frequency of R0 = 0.2 resistant hosts and a0 = 0.2 infective
parasites.
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S16 Fig. Equilibrium frequencies model C. Deterministic equilibrium
frequencies for Model C (auto-allo-infection model) with T = 2 parasite generations
per host generation and ψ = 0.95. The equilibrium frequencies for different
combinations of cost of resistance cH = (0.05, 0.1) (columns), cost of infectivity
cP = (0.1, 0. 3) (rows) and cost of infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of
the squares) are shown. Only combinations which result in trench-warfare dynamics are
plotted. Centres of the squares represent the equilbrium frequencies obtained by
simulating numerically the recursion equations in S1 File for gmax = 30, 000 host
generations starting with an initial frequency of R0 = 0.2 resistant hosts and a0 = 0.2
infective parasites. Heads of the arrows represent the equilibrium frequencies based on
Eq (3) which corresponds to the case ψ = 1 [24].
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S17 Fig. Tajima’s D and pairwise manhattan distance Model B and C.
Mean and standard error of Tajima’s D (a+c) and pairwise manhattan distance (PMD)
(b+d) for various costs of infection s (x-axis) and r = 200 repetitions. Results for
Model B (pure autoinfection model with T = 5 and T = 10) are shown at the top,
results for Model C (auto-allo-infection model with ψ = 0.95) are shown at the
bottom. The other parameters are fixed to: cH = 0.05 and cP = 0.1. Initial frequencies
R0 and a0 in a and b are chosen randomly from a uniform distribution between 0 and 1
while R0 = a0 = 0.2 in c and d.

S1 File. Additional information on coevolutionary models.

S2 File. Details Pairwise Manhattan Distance (PMD).
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