

1 **Maternal biomarker patterns for metabolism and inflammation in pregnancy are**
2 **influenced by multiple micronutrient supplementation and associated with childrens's**
3 **biomarker patterns and nutritional status at 9-12 years of age in Lombok, Indonesia**

4

5 Lidwina Priliani¹, Sukma Oktavianti¹, Elizabeth L. Prado^{2,3}, Safarina G. Malik^{1#*}, Anuraj H.
6 Shankar^{2#*}

7

8 ¹ Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher
9 Education, Jakarta 10430, Indonesia.

10 ² Summit Institute of Development, Mataram, Lombok, West Nusa Tenggara 83231,
11 Indonesia; Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology,
12 Jakarta, Indonesia.

13 ³ University California at Davis, Department of Nutrition, Davis, CA 95616-5270, USA.

14 [#] Both senior authors contributed equally to this work

15

16 * Corresponding authors:

17 Email: shankar.anuraj@gmail.com

18 Email: ina@eijkman.go.id

19

20 Short title: Maternal biomarker patterns associate with children's biomarker patterns and
21 nutritional status

22

23

24

25

26 Abstract

27 Maternal nutritional status influences fetal development and long-term risk for adult
28 non-communicable diseases. The underlying mechanisms of these long-term effects remain
29 poorly understood. We examined whether maternal biomarkers for metabolism and
30 inflammation during pregnancy were associated with child biomarkers in the
31 Supplementation with Multiple Micronutrients Intervention Trial (SUMMIT,
32 ISRCTN34151616) in Lombok, Indonesia wherein archived blood specimens and relevant
33 data were available from pregnant women and their children 9-12 years after birth. Forty-four
34 mother-child dyads comprising 132 specimens were analyzed by multiplex microbead
35 immunoassays to quantify vitamin D-binding protein (D), adiponectin (A), retinol-binding
36 protein 4 (R), C-reactive protein (C), and leptin (L). Principal component analysis (PCA)
37 revealed distinct variance patterns, i.e. principal components (PC), for baseline pregnancy
38 bp.pc1.D↓A↓R↓ and bp.pc2.C↓L↑; combined follow-up and post-partum dp-
39 pp.pc1.D↑↓A↑R↑↓L↓ and dp-pp.pc2.A↑C↑L↑; and children ch.pc1.D↑R↑C↑ and
40 ch.pc2.D↓A↑L↑. Maternal multiple micronutrient (MMN) supplementation modified the
41 association between baseline maternal bp.pc2.C↓L↑ and post-supplementation maternal dp-
42 pp.pc2.A↑C↑L↑ ($p=0.022$). Significant associations were found between maternal dp-
43 pp.pc2.A↑C↑L↑ and increased child's ch.pc1.D↑R↑C↑ ($p=0.036$), and decreased child's
44 BMI z-score (BMIZ) ($p=0.022$); and between maternal dp-pp.pc1.D↑↓A↑R↑↓L↓ and
45 increased child's BMIZ ($p=0.036$). Child's ch.pc1.D↑R↑C↑ was associated with decreased
46 birth weight ($p=0.036$), and increased child's BMIZ ($p=0.002$); and ch.pc2.D↓A↑L↑ was
47 associated with increased child's BMIZ ($p=0.005$), decreased maternal height ($p=0.030$) and
48 girls ($p=0.002$). Elevated adiponectin and leptin pattern in pregnancy was associated with
49 increased C-reactive protein and vitamin A and D binding proteins pattern in children,

50 suggesting biomarkers acting in concert may be more important than single biomarker
51 effects. Patterns in pregnancy proximal to birth were more associated with child status, and
52 child patterns were most frequently associated with child status, particularly child BMI.
53 Although MMN supplementation and certain maternal biomarker patterns have effects on
54 metabolism and inflammation in pregnancy and in the child, nevertheless, nutrition
55 conditions after birth may have a greater impact.

56

57 Keywords: biomarkers, PCA, pregnancy, BMI z-score, VDBP, adiponectin, RBP4, CRP,
58 leptin

59

60

61

62

63

64

65

66

67

68

69

70 INTRODUCTION

71 Emerging epidemiological evidence has shown that the risk for non-communicable
72 diseases (NCDs) during childhood or as an adult is mediated in part by maternal nutrition in
73 pregnancy and fetal growth [1–3]. Studies in animal models indicate that alterations in
74 nutritional, metabolic, immune and hormonal milieu *in-utero* profoundly affect long-term
75 health of the offspring, including increased risk for NCDs such as diabetes, obesity or
76 cardiovascular disease [4,5]. Knowledge of the underlying mechanisms of these effects
77 remains limited, although evidence is growing for the pivotal roles of metabolism-related
78 hormones and inflammatory mediators [6,7].

79 Adipocytokines, including leptin, adiponectin and retinol binding protein 4 (RBP4),
80 play an important role in regulating metabolism, energy homoeostasis and inflammatory
81 responses [8–11]. Leptin is involved in body weight control by acting on the satiety center in
82 the hypothalamus [12]. Leptin also acts during pre-natal development by promoting fetal
83 growth and regulating fetal adipose tissue development [13]. Adiponectin plays a role in the
84 catabolism of fatty acids and carbohydrates, improvement of insulin sensitivity and reduction
85 of inflammation [14]. RBP4, previously thought to act as a specific transport protein for
86 retinol, has been added to the family of adipocytokines given its involvement in obesity-
87 induced insulin resistance [15]. Increased concentrations of both leptin and RBP4 have been
88 associated with increased body mass index (BMI) [16,17], while adiponectin concentration
89 was negatively associated with BMI [18]. The concentrations of these adipocytokines during
90 pregnancy have also been associated with adverse pregnancy conditions, including
91 gestational diabetes, preeclampsia and intrauterine growth restriction (IUGR) [19–22]. A
92 previous study reported that maternal leptin and adiponectin concentrations were correlated
93 with fetal leptin and adiponectin concentrations [23].

94 Inflammatory markers have been associated with increased risk of cardiovascular
95 disease [24]. Specifically, higher C-reactive protein (CRP) concentrations in pregnant women
96 were associated with increased risks for preterm birth and low birth weight (LBW) newborns
97 [25,26], and higher BMI in children [27]. Vitamin D binding protein (VDBP), previously
98 known as a transport protein for vitamin D and as a regulator of vitamin D metabolism [28],
99 has recently been shown to mediate inflammation and macrophage activation [29]. Maternal
100 vitamin D status was reported to have an impact on birth weight and offspring immunity
101 [30,31].

102 Multiple dietary factors, including micronutrients, have been reported to modulate
103 leptin, adiponectin, RBP4, CRP and VDBP concentrations [32–37]. Maternal expression
104 patterns for these biomarkers may be associated with expression patterns in their children. To
105 examine these relationships, we studied mother-child dyads from the Supplementation with
106 Multiple Micronutrients Intervention Trial (SUMMIT) in Lombok, Indonesia wherein blood
107 specimens and the relevant data were available from pregnancy and children 9-12 years after
108 birth. SUMMIT was a randomized trial comparing maternal multiple micronutrients (MMN)
109 supplementation with iron and folic acid (IFA), and showed that maternal MMN reduced
110 early infant mortality and LBW [38], and noted multiple risk factors for poor fetal
111 development [39]. A follow-up study of children at 9-12 years of age indicated long term
112 effects on child cognitive development. We hypothesized that in this cohort: 1. Maternal
113 nutritional status is associated with maternal biomarkers; 2. Maternal supplementation
114 influenced maternal biomarkers; 3. Maternal biomarkers are associated with child
115 biomarkers; 4. Child biomarkers are associated with child health outcomes (Fig1).

116

Fig 1. Conceptual framework.

118

119 MATERIALS AND METHODS

120 Samples

121 We selected 414 plasma samples from the SUMMIT mothers and their children. The
122 SUMMIT (ISRCTN34151616) was approved by the National Institute of Health Research
123 and Development of the Ministry of Health of Indonesia, the Provincial Planning Department
124 of Nusa Tenggara Barat Province, and the Johns Hopkins Joint Committee on Clinical
125 Investigation, Baltimore, USA; the follow up study was approved by the University of
126 Mataram Ethical Research Committee as a certified Institutional Review Board of the
127 National Institute of Health Research and Development of the Ministry of Health of
128 Indonesia; the current study of SUMMIT archived materials was also approved by the
129 Eijkman Institute Research Ethics Commission no. 73/2015). Plasma specimens from
130 pregnant women were collected at enrolment before supplementation (baseline) and follow-
131 up specimens at one of four subsequent time points: one month after enrolment, 36 weeks of
132 gestation, one week post-partum, and 12 weeks post-partum (post-supplementation) [40].
133 From these 414 samples, we further selected 44 maternal plasma at baseline, consisting of 22
134 samples each of the MMN and the IFA groups, based on a priority list of participants with
135 complete data for other variables collected at multiple time points [40]. Maternal plasma
136 samples from the same participants collected post-supplementation consisted of 18 samples
137 collected during pregnancy (9 samples each of the MMN and the IFA groups), and 26
138 samples collected postpartum (13 samples each of the MMN and the IFA groups). A total of
139 44 plasma samples of the children from the aforementioned 44 mothers were selected (Fig 2).
140 Total plasma specimens tested in this study were 132. Maternal nutritional status was
141 characterized by mid-upper arm circumference (MUAC), maternal height and maternal
142 hemoglobin (Hb). Children's condition was characterized by BMI-for-age z-score (BMIZ),

143 based on World Health Organization norms [41], systolic blood pressure (SBP), and diastolic
144 blood pressure (DBP). Maternal and child biomarkers were determined by VDBP,
145 adiponectin, RBP4, CRP and leptin concentrations.

146

147 **Fig 2. Samples assessment flow chart.** IFA= iron folic acid. MMN = multiple
148 micronutrients. 44 paired maternal-children plasma were selected based on a priority list of
149 participants with complete data for other variables collected at multiple time points.

150

151 **Multiplex immunoassay**

152 Quantifications of leptin, adiponectin, RBP4, CRP and VDBP were conducted using
153 Luminex® Magnetic Screening Assays (Catalogue number LXSAHM-8, R&D System,
154 Minneapolis, MN, USA) following the manufacturer's instructions. Briefly, diluted plasma
155 samples were incubated with antibody-coated microspheres, followed by biotinylated
156 detection antibody. Proteins were detected by incubation with phycoerythrin-labeled
157 streptavidin. The bead immuno-complexes were read using MagPix CCD Imager (Luminex,
158 Austin, TX, USA). The instrument was set as follows: events/bead: 50, sample size: 50 μ l.
159 Biomarkers concentrations were calculated based on the median fluorescence intensity
160 (MFI), of each duplicate sample.

161

162 **Statistical analysis**

163 Data normality was tested by performing the Shapiro Wilk test. Biomarkers
164 concentrations were log-transformed to normalize the data distribution. Normally distributed
165 variables were presented as mean (\pm standard deviation). Non-normally distributed variables
166 were presented as median (interquartile range). Principal component analysis (PCA) was
167 performed to reduce the five biomarkers into a smaller set of principal components that

168 accounted for most of the variance. We retained the components with eigenvalues of 1 or
169 greater. Factor loadings greater than 0.40 were used to identify biomarkers that loaded on
170 each component, as this threshold value can be used for a structure or pattern coefficient for
171 interpretative purposes. A value of 0.40 would imply that the observed variable shares more
172 than 15% of its variance ($0.40^2 = 0.16$) with the component [42].

173 The principal component (PC) scores from PCA were obtained from each group of
174 samples (baseline, post-supplementation, and child). For multiple linear regression analysis,
175 we combined the post-supplementation PC scores from samples collected during pregnancy
176 and postpartum. Multiple linear regression analysis was performed to determine the
177 associations of (1) maternal PC scores at baseline with maternal nutritional status (association
178 1), (2) maternal PC scores at baseline with post-supplementation (association 2), (3) maternal
179 PC scores at each time point with child PC scores (association 3), and (4) PC scores of each
180 group of samples with child health outcomes (association 4). Analysis for association 1
181 (association between maternal PC scores at baseline and maternal nutritional status)
182 employed a regression model with maternal PC at baseline as the outcome and maternal
183 nutritional status such as maternal hemoglobin at baseline, maternal height, and maternal
184 mid-upper arm circumference (MUAC). Analysis for association 2 (association between
185 maternal PC scores at baseline and post-supplementation) employed a regression model with
186 maternal PC at post-supplementation as the outcome and maternal PC at baseline as the
187 predictive variable, adjusting for maternal hemoglobin at baseline, maternal height, maternal
188 mid-upper arm circumference (MUAC), type of supplement (MMN or IFA), baseline to post-
189 supplementation intervals, and timing of post-supplementation (pregnancy or postpartum).
190 We also analyzed the interaction between maternal PC at baseline and type of
191 supplementation with the maternal PC at post-supplementation. The regression models for
192 association 3 (association between children and maternal PC scores) included children's PC

193 scores as the outcome variable, while maternal PC at baseline and post-supplementation were
194 used as the predictive variables with adjustment for maternal hemoglobin at baseline,
195 maternal height, maternal MUAC, birth weight, child's gender (boy or girl), type of
196 supplement (MMN or IFA), and timing of post-supplementation (pregnancy or postpartum).
197 Association 4 (children health outcome associations with maternal and children PC scores)
198 was analyzed by regression models which included BMIZ, systolic blood pressure (SBP), and
199 diastolic blood pressure (DBP) of the children as the outcome variables and maternal and
200 child PC scores as the predictive variables. These models included adjustment for maternal
201 hemoglobin at baseline, maternal height, maternal MUAC, birth weight, child's gender (boy
202 or girl), type of supplement (MMN or IFA), and timing of post-supplementation (pregnancy
203 or postpartum), and an additional adjustment for BMIZ for SBP and DBP regression models.
204 All regression analyses were performed using R-Project for Statistical Computing version
205 3.4.0, and replicated in some cases with SAS 9.4. The *p*-values of less than 0.05 were
206 considered significant.

207

208 **RESULTS**

209 **Baseline characteristics of subjects**

210 The baseline characteristics of mother and child pairs were collected previously during
211 the SUMMIT and its follow up studies, as shown in Table 1. Pregnant mothers who received
212 MMN supplementation had similar characteristics to the ones receiving IFA supplementation.
213 The characteristics of the children whose mothers received MMN or IFA supplementation
214 were similar.

215 **Table 1. Baseline characteristics of mother and child pairs.**

Variables	MMN (N = 22)	IFA (N = 22)
Mothers		
Age (years) ¶	25.0 (20.0-26.5)	25.5 (20.5-30.0)
Parity (number of births) ‡		
0	8 (36)	5 (23)
≥ 1	14 (64)	17 (77)
Height (cm) ¶	151.4 (149.3-153.6)	149.8 (148.7-152.6)
Mid-upper arm circumference (mm) ¶	239.5 (228.2-253.0)	245.0 (230.2-253.1)
Haemoglobin at enrolment (g/dL) ¶	11.1 (10.3-12.0)	11.3 (10.4-11.9)
Gestational age at enrolment (weeks) ¶	16.5 (9.5-24.1)	14.6 (12.3-18.7)
Children		
Gender (M/F)	13/9	10/12
BMI-for-age z-scores †	-0.7 (±1)	-0.8 (±1.1)
Systolic blood pressure (mmHg) †	110.0 (±11.3)	104.4 (±7.8)
Diastolic blood pressure (mmHg) †	65.0 (±9.8)	63.4 (±5.3)
Birth weight (g) ¶	3300 (2925-3500)	3000 (2825-3450)
Gestational age at birth (weeks) ¶	39.1 (36.9-40.1)	39.6 (38.1-40.9)

216 ¶: median (interquartile range). †: mean (±standard deviation). ‡: n (percentage). MMN:
217 multiple micronutrients supplement. IFA: iron and folic acid supplement.

218

219 **Reduction of biomarkers data by Principal Component Analysis
220 (PCA)**

221 From each PCA (maternal baseline, post-supplementation ,child), the first two
222 components were retained for further analyses if they had eigenvalues of greater than one.
223 For maternal PCA, percentages of total variance explained by the first two PCs were 60%
224 (PC1 = 39.5%, PC2 = 20.5%) for the baseline group, 77.6% (PC1 = 52.1%, PC2 = 25.5%) for
225 post-supplementation during pregnancy group, and 60.5% (PC1 = 36.9%, PC2 = 23.6%) for
226 post-supplementation postpartum group. For child group, the first two PC explained 63.2%
227 (PC1 = 40.0%, PC2 = 23.2%) of the total variance (Table 2). Each sample group had
228 distinctive components patterns based on biomarker loadings. For the maternal baseline
229 group (bp), PC1 consisted of lower VDBP (D), adiponectin (A) and RBP4 (R), while the PC2
230 consisted of lower CRP (C) and higher leptin (L), resulting in the variance pattern
231 bp.pc1.D↓A↓R↓ and bp.pc2.C↓L↑. The PC1 of post-supplementation during pregnancy
232 group (dp) was comprised of higher VDBP, adiponectin and RBP4 (dp.pc1.D↑A↑R↑), and
233 PC2 was comprised of higher adiponectin and leptin (dp.pc2.A↑L↑). For post-
234 supplementation postpartum group (pp), PC1 was characterized by lower VDBP, RBP4 and
235 leptin (pp.pc1.D↓R↓L↓), and PC2 by higher adiponectin, CRP and leptin (pp.pc2.A↑C↑L↑).
236 The child (ch) PC1 consisted of higher VDBP, RBP4 and CRP (ch.pc1.D↑R↑C↑), while the
237 PC2 consisted of lower VDBP, and higher adiponectin and leptin (ch.pc2.D↓A↑L↑).

238 **Table 2. Principal component analysis results**

	Post-		Post-		Children			
	Baseline		supplementation		supplementation at			
	(N=44)	supplementation during pregnancy	(N=18)	post-partum	(N=26)	(N=44)		
	PC1	PC2	PC1	PC2	PC1	PC2	PC1	PC2
Eigenvalues	1.974	1.026	2.607	1.277	1.846	1.181	1.997	1.163

% variance		1	2	3	4	5	6	7	8
accounted for		39.484	20.518	52.134	25.540	36.927	23.620	39.950	23.268
Loadings									
Log VDBP		-0.407	0.056	0.586	-0.057	-0.585	0.170	0.464	-0.529
Log Adiponectin		-0.569	-0.222	0.427	0.533	0.310	0.536	0.157	0.609
Log RBP4		-0.519	0.368	0.496	0.303	-0.609	-0.077	0.600	0.086
Log CRP		-0.390	-0.679	0.389	-0.397	0.111	0.689	0.497	-0.226
Log Leptin		-0.299	0.592	-0.280	0.680	-0.422	0.452	0.391	0.540

239 PC: principal component. VDBP: vitamin D binding protein. RBP4: retinol binding protein.

240 CRP: C-reactive protein. In bold: loadings >0.40 that were used for further observed variable
241 construction [42].

242

243 Association between baseline maternal PC and maternal 244 nutritional status

We analyzed the association between baseline maternal PC and maternal nutrition status including maternal hemoglobin at baseline, maternal height, and maternal MUAC. We found that maternal MUAC was significantly associated with baseline maternal PC1 bp.pc1.D↓A↓R↓ ($\beta = -0.019, p = 0.030$) (Table 3). Individual maternal biomarkers analysis with maternal nutritional status is presented in S1 Table.

250 **Table 3. Association between maternal biomarker PC at baseline and maternal**
251 **nutritional status**

	bp.pc1.D↓A↓R↓ (n=44)				bp.pc2.C↓L↑ (n=44)			
	Unadjusted		Adjusted		Unadjusted		Adjusted	
	β	p	β	p	β	p	β	p

Hb at baseline	0.005	0.975	0.036	0.835	0.162	0.148	0.065	0.617
Height (cm)	-0.075	0.263	-0.053	0.4	-0.008	0.865	-0.016	0.732
MUAC (mm)	-0.017	0.036	-0.02	0.025	0.013	0.023	0.012	0.068
Gestational age (weeks)	-0.043	0.146	-0.052	0.095	-0.014	0.499	-0.001	0.964

252 PC: principal component; bp.pc1.D↓A↓R↓: baseline maternal PC1; bp.pc2.C↓L↑: baseline
253 maternal PC2; D: vitamin D binding protein; A: adiponectin; R: retinol binding protein 4; C:
254 C-reactive protein; L: leptin; ↓: decrease; ↑: increase; β: coefficient of regression; Hb:
255 hemoglobin; MUAC: mid-upper arm circumference. The model used for adjusted regression:
256 baseline maternal PC ~ maternal Hb at baseline + maternal height + maternal MUAC at
257 baseline. Significant *p* values <0.05.

258

259 **Association of maternal biomarkers at baseline and post- 260 supplementation**

261 Linear regression results for the associations between maternal biomarker PC scores at
262 baseline and at post-supplementation are presented in Table 4. We found that the baseline
263 maternal PC2 bp.pc2.C↓L↑ was significantly associated with the combined post-
264 supplementation maternal PC1 dp-pp.pc1.D↑↓A↑R↑↓L↓ ($\beta = -0.518$, $p = 0.022$). The
265 baseline maternal PC1 bp.pc1.D↓A↓R↓ was significantly associated with the post-
266 supplementation maternal PC2 dp-pp.pc2.A↑C↑L↑ ($\beta = -0.315$, $p = 0.028$) (Table 4).
267 Furthermore, we tested the interaction between maternal PC at baseline and supplementation
268 type with maternal PC at post supplementation. We found that the interaction between MMN
269 supplementation and baseline maternal PC2 bp.pc2.C↓L↑ was significantly associated with
270 post-supplementation maternal PC2 dp-pp.pc2.A↑C↑L↑ ($p = 0.022$) (Figure 3A). Individual
271 analysis of maternal baseline and post-supplementation biomarkers is shown in S2 Table.

272

273 **Table 4. Association between maternal biomarker PC at baseline and post-**
274 **supplementation**

	dp-pp.pc1.D↑↓A↑R↑↓L↓ (n=44)				dp-pp.pc2.A↑C↑L↑ (n=44)			
	Unadjusted		Adjusted		Unadjusted		Adjusted	
	β	<i>p</i>	β	<i>p</i>	β	<i>p</i>	β	<i>p</i>
bp.pc1.D↓A↓R↓	-0.269	0.088	-0.29	0.083	-0.284	0.015	-0.315	0.028
bp.pc2.C↓L↑	-0.516	0.016	-0.518	0.022	0.084	0.616	0.066	0.719
Hb at baseline (g/dL)	-0.241	0.132	-0.132	0.421	0.062	0.61	0.042	0.762
Height (cm)	-0.07	0.312	-0.111	0.1	-0.015	0.772	-0.026	0.646
MUAC (mm)	-0.011	0.204	-0.003	0.731	0.009	0.166	0.001	0.889
MMN supplementation	0.648	0.14	0.723	0.1	-0.121	0.718	-0.279	0.445
Post-supplementation during pregnancy	6.8x10 ⁻¹⁷	1	0.177	0.691	-1.7x10 ⁻¹⁷	1	0.095	0.801
Interaction model:								
bp.pc1.D↓A↓R↓*MMN	-0.281	0.376	-0.257	0.395	-0.121	0.604	-0.149	0.531
bp.pc2.C↓L↑*MMN	0.240	0.558	0.315	0.438	-0.799	0.016	-0.761	0.022

275 PC: principal component; bp.pc1.D↓A↓R↓: baseline maternal PC1; bp.pc2.C↓L↑: baseline
276 maternal PC2; dp-pp.pc1.D↑↓A↑R↑↓L↓: post-supplementation maternal PC1; dp-
277 pp.pc2.A↑C↑L↑: post-supplementation maternal PC2; D: vitamin D binding protein; A:
278 adiponectin; R: retinol binding protein 4; C: C-reactive protein; L: leptin; ↓: decrease; ↑:
279 increase; ↑↓: increased post-supplementation during pregnancy and decreased post-
280 supplementation at post-partum; β : coefficient of regression; Hb: hemoglobin; MUAC: mid-
281 upper arm circumference; MMN: multiple micronutrients. The model used for adjusted
282 regression: Post-supplementaiton maternal PC ~ baseline maternal PC1 + baseline maternal
283 PC2 + maternal Hb at baseline + maternal height + maternal MUAC at baseline + MMN/IFA
284 supplementation + post-supplementation during pregnancy/post-partum. The model used for
285 interaction (*): Post-supplementation maternal PC ~ baseline maternal PC1 + baseline

286 maternal PC2 + maternal Hb at baseline + maternal height + maternal MUAC at baseline +
287 MMN/IFA supplementation + post-supplementation during pregnancy/post-partum +
288 baseline maternal PC1 * MMN/IFA supplementation + baseline maternal PC2 * MMN/IFA
289 supplementation. Significant p values <0.05 .

290 **Fig 3. Biomarkers Interaction Plots.** **A.** Interaction plot between baseline maternal
291 PC2 bp.pc2.C \downarrow L \uparrow and supplementation type with post-supplementation maternal PC2 dp-
292 pp.pc2.A \uparrow C \uparrow L \uparrow . Blue line: MMN supplementation; Red line: IFA supplementation. **B.**
293 Interaction plot between maternal PC2 dp-pp.pc2.A \uparrow C \uparrow L \uparrow and child PC1 ch.pc1.D \uparrow R \uparrow C \uparrow .
294

295 **Association of maternal and child biomarkers**

296 We found that the post-supplementation maternal PC2 dp-pp.pc2.A \uparrow C \uparrow L \uparrow was significantly
297 associated with child PC1 ch.pc1.D \uparrow R \uparrow C \uparrow ($\beta = 0.439, p = 0.036$) (Figure 3B). Birth weight
298 was also associated with child PC1 ch.pc1.D \uparrow R \uparrow C \uparrow ($\beta = -0.826, p = 0.036$). And we
299 observed that maternal height ($\beta = -0.097, p = 0.030$), child's gender boys having lower
300 scores ($\beta = -0.958, p = 0.002$), and timing of post-supplementation during pregnancy, with
301 samples collected during pregnancy having higher scores ($\beta = 1.224, p < 0.001$, power =
302 0.972) were significantly associated with child PC2 ch.pc2.D \downarrow A \uparrow L \uparrow (Table 5). The
303 association of individual child biomarkers with maternal biomarkers at baseline and post-
304 supplementation with child biomarkers are shown in S3 Table and S4 Table.

305

306 **Table 5. Association between child biomarker PC and maternal biomarker PC**

	ch.pc1.D \uparrow R \uparrow C \uparrow (n=44)				ch.pc2.D \downarrow A \uparrow L \uparrow (n=44)			
	Unadjusted		Adjusted		Unadjusted		Adjusted	
	β	p	β	p	β	p	β	p
bp.pc1.D \downarrow A \downarrow R \downarrow	-0.094	0.546	0.243	0.195	0.041	0.732	-0.010	0.932
bp.pc2.C \downarrow L \uparrow	0.303	0.156	0.292	0.237	0.230	0.160	-0.043	0.774
dp-pp.pc1.D \uparrow A \uparrow R \uparrow L \downarrow	0.011	0.939	0.204	0.242	-0.040	0.727	-0.103	0.330

dp-pp.pc2.A↑C↑L↑	0.392	0.046	0.439	0.036	0.189	0.214	0.168	0.182
Hb at baseline (g/dL)	0.220	0.158	0.015	0.932	-0.124	0.301	-0.072	0.511
Height (cm)	0.066	0.324	0.090	0.204	-0.125	0.012	-0.097	0.030
MUAC (mm)	0.018	0.023	0.018	0.091	0.005	0.441	0.001	0.925
Birth weight (kg)	-0.685	0.074	-0.826	0.036	0.203	0.496	0.347	0.142
Gender: Boy	-0.035	0.936	0.496	0.299	-0.566	0.082	-0.958	0.002
MMN supplementation	-0.073	0.866	-0.092	0.841	0.006	0.986	0.328	0.249
Post-supplementation during pregnancy	-0.157	0.722	-0.453	0.355	1.166	< 0.001	1.224	< 0.001

307 PC: principal component; bp.pc1.D↓A↓R↓: baseline maternal PC1; bp.pc2.C↓L↑: baseline
308 maternal PC2; dp-pp.pc1.D↑↓A↑R↑↓L↓: post-supplementation maternal PC1; dp-
309 pp.pc2.A↑C↑L↑: post-supplementation maternal PC2; ch.pc1.D↑R↑C↑: children PC1;
310 ch.pc2.D↓A↑L↑: children PC2; D: vitamin D binding protein ; A: adiponectin; R: retinol
311 binding protein 4; C: C-reactive protein; L: leptin; ↓: decrease; ↑: increase; ↑↓: increased
312 post-supplementation during pregnancy and decreased post-supplementation at post-partum;
313 β: coefficient of regression; Hb: hemoglobin; MUAC: mid-upper arm circumference; MMN:
314 multiple micronutrients. The model used for regression: children PC ~ baseline maternal PC1
315 + baseline maternal PC2 + post-supplementation maternal PC1 + post-supplementation
316 maternal PC2 + maternal Hb at baseline + maternal height + maternal MUAC at baseline +
317 birth weight + child's gender: boy/girl + MMN/IFA supplementation + post-supplementation
318 during pregnancy/post-partum. Significant *p* values <0.05.

319 **Association of child health outcome with maternal and child biomarkers**

320 We then analyzed the association of maternal and child biomarker PC scores with child health outcomes (BMIZ, SBP and DBP) with (Table 6).
 321 We found maternal dp-pp.pc2.A↑C↑L↑ was negatively associated with child BMIZ ($\beta = -0.302$, $p = 0.022$), and maternal dp-
 322 pp.pc1.D↑↓A↑R↑↓L↓ ($\beta = 0.224$, $p = 0.036$), ch.pc1.D↑R↑C↑ ($\beta = 0.347$, $p = 0.002$) and ch.pc2.D↓A↑L↑ ($\beta = 0.515$, $p = 0.005$) were
 323 positively associated with child BMIZ (Figruie 4). Baseline maternal Hb ($\beta = -0.280$, $p = 0.010$), maternal MUAC ($\beta = 0.014$, $p = 0.027$), and
 324 timing of post-supplementation sampling ($\beta = -1.064$, $p = 0.005$, power = 0.972) also showed significant association with child BMIZ. No
 325 significant associations were found with child SBP and DBP. The association of child health outcome with maternal biomarkers and child
 326 biomarkers are shown in S5 Table (maternal biomarkers at baseline), S6 Table (maternal biomarkers at post-supplementation) and S7 Table
 327 (child biomarkers).

328

329 **Table 6. Association between child's outcome, child's biomarker PC and maternal biomarker PC**

	Child's outcome											
	BMIZ (n=44)				SBP (n=43)				DBP (n=43)			
	Unadjusted		Adjusted		Unadjusted		Adjusted		Unadjusted		Adjusted	
	β	p	β	p	β	p	β	p	β	p	β	p
bp.pc1.D↓A↓R↓	-0.063	0.581	0.088	0.424	0.564	0.609	1.100	0.445	0.486	0.571	0.853	0.438

bp.pc2.C↓L↑	0.081	0.610	0.114	0.429	1.272	0.415	1.050	0.606	0.186	0.879	-0.427	0.783
dp-pp.pc1.D↑↓A↑R↑↓L↓	0.144	0.191	0.224	0.036	1.352	0.201	1.968	0.185	1.222	0.136	1.369	0.227
dp-pp.pc2.A↑C↑L↑	-0.067	0.649	-0.302	0.022	-1.954	0.164	-2.788	0.126	-0.432	0.695	-0.605	0.658
ch.pc1.D↑R↑C↑	0.368	0.001	0.347	0.002	1.991	0.064	2.123	0.199	1.696	0.042	0.894	0.474
ch.pc2.D↓A↑L↑	0.163	0.269	0.515	0.005	1.113	0.441	2.097	0.428	2.289	0.037	2.403	0.237
Hb at baseline (g/dL)	-0.155	0.176	-0.280	0.010	0.273	0.807	0.594	0.692	-0.042	0.962	1.073	0.352
Height (cm)	0.061	0.210	0.063	0.165	0.314	0.509	0.328	0.592	0.042	0.909	0.402	0.392
MUAC (mm)	0.009	0.125	0.014	0.026	0.030	0.612	0.018	0.842	0.027	0.558	-0.013	0.851
Birth weight (kg)	0.000	0.540	-0.046	0.852	0.476	0.864	2.667	0.415	-2.179	0.309	-0.912	0.714
Gender: Boy	-0.277	0.381	0.540	0.104	-1.077	0.728	-0.715	0.875	-2.988	0.211	-2.332	0.503
MMN supplementation	0.132	0.678	-0.080	0.766	5.637	0.063	3.684	0.322	1.592	0.508	0.587	0.835
Post-supplementation during pregnancy	-0.254	0.431	-1.064	0.005	0.548	0.863	-1.985	0.724	2.572	0.294	1.350	0.753
Child BMIZ					4.064	0.007	1.035	0.670	3.444	0.003	1.990	0.288

330 PC: principal component; bp.pc1.D↓A↓R↓: baseline maternal PC1; bp.pc2.C↓L↑: baseline maternal PC2; dp-pp.pc1.D↑↓A↑R↑↓L↓: post-
 331 supplementation maternal PC1; dp-pp.pc2.A↑C↑L↑: post-supplementation maternal PC2; ch.pc1.D↑R↑C↑: children PC1; ch.pc2.D↓A↑L↑:
 332 children PC2; D: vitamin D binding protein ; A: adiponectin; R: retinol binding protein 4; C: C-reactive protein; L: leptin; ↓: decrease; ↑:
 333 increase; ↑↓: increased post-supplementation during pregnancy and decreased post-supplementation at post-partum; β: coefficient of regression;

334 Hb: hemoglobin; MUAC: mid-upper arm circumference; MMN: multiple micronutrients;
335 BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure. The
336 model used for adjusted regression: children BMI Z-score ~ baseline maternal PC1 + baseline
337 maternal PC2 + post-supplementation maternal PC1 + post-supplementation maternal PC2 +
338 children PC1 + children PC2 + maternal Hb at baseline + maternal height + maternal MUAC
339 at baseline + birth weight + child's gender: boy/girl + MMN/IFA supplementation + post-
340 supplementation during pregnancy/postpartum. BMI Z-score was added for SBP and DBP
341 adjustment. Significant *p* values <0.05.

342 **Fig 4. Association of maternal and child biomarkers with BMIZ. A-B.** Maternal baseline
343 PC1 bp.pc1.D↓A↓R↓ and PC 2 bp.pc2.C↓L↑. **C-D.** Maternal PC 1 dp-
344 pp.pc1.D↑↓A↑R↑↓L↓ and PC 2 dp-pp.pc2. **E-F.** Child ch.pc1.D↑R↑C↑ and PC 2
345 ch.pc2.D↓A↑L↑.
346

347 DISCUSSION

348 To our knowledge, few studies have explored the association of maternal metabolic
349 biomarkers during pregnancy and post-partum with child metabolic biomarkers at age 9-12
350 years. Moreover, because biomarkers may not work independently, but in concert, potential
351 interactions between patterns of biomarker components may better represent the complexity
352 of their downstream effects. Therefore, rather than analyze the effects of individual
353 biomarkers, we utilized PCA to identify patterns that represented their covariance structure,
354 and analyzed the associations between the resulting PC and other PC and outcomes.

355 PCA showed that maternal biomarkers at baseline and post-supplementation during
356 pregnancy and post-partum had distinctive component structures, indicating that gestational
357 age influences the maternal biomarker patterns. We found that maternal MUAC was
358 associated with baseline maternal PC, indicating the influence of maternal nutritional status

359 on maternal biomarkers. This notion has been previously reported where nutritional status
360 measured by BMI was positively correlated with leptin, adiponectin, and RBP4
361 concentrations [43–45], though these studies were not done in pregnant women.

362 We also found that maternal biomarkers PC at baseline were associated with
363 biomarkers PC at post-supplementation, although cross associations in these timepoints
364 between individual biomarkers were observed only in adiponectin and RBP4 (S2 Table). This
365 indicates that biomarkers are working together to influence each other in the biological
366 system. Moreover, MMN supplementation interacted with maternal biomarkers PC at
367 baseline to influence biomarkers PC at post-supplementation. Previous studies have reported
368 that vitamin C and E supplementation reduced CRP concentrations [36,46], and vitamin D
369 influenced serum leptin and adiponectin concentrations [47].

370 We observed that maternal PC scores at post-supplementation were positively
371 associated with child PC scores at 9–12 years. Previous studies showed that maternal leptin
372 concentration was correlated with children's leptin concentration in cord blood [23,48] and
373 serum of 9-years old children [49]. Postpartum maternal biomarkers may be associated with
374 child biomarkers through breast milk, in agreement with a previous study that reported a
375 correlation between leptin concentration in breast milk with its concentration in maternal
376 serum and infant's weight gain [50]. Although genetics was also reported to have moderate
377 influences for the variation of biomarkers concentration [51,52], environmental factors such
378 as nutrition, including micronutrients, and infection have been reported to also modulate
379 adipocytokines and inflammatory markers concentrations [32–37,53]. Our analysis did not
380 include the influence of dietary intake on biomarkers concentrations, which could reveal
381 additional associations.

382 BMI-for-age z-score represents nutritional and health conditions in children and
383 adolescents [54]. Our study showed that maternal and child biomarker PC scores were

384 positively associated with child BMIZ. This is in line with previous studies that reported BMI
385 in children was correlated with biomarkers concentration, such as leptin [55] and RBP4
386 concentrations [56]. BMIZ in children was reported to be influenced by in-utero milieus, such
387 as smoking during pregnancy that was associated with lower BMIZ [57]. In our study, the
388 average BMIZ was below WHO standard [41], which means the children tended to be
389 underweight. However, BMI is modifiable, and can be improved by nutritional and behavior
390 interventions [58]. Thus, maternal MMN supplementation during pregnancy might indirectly
391 influence child BMIZ considering that our results indicated that MMN modified the
392 association between maternal baseline and maternal post-supplementation biomarkers, while
393 maternal post-supplementation biomarkers are associated with both child biomarkers and
394 BMIZ.

395 It has been suggested that pre-pregnancy and pregnancy nutritional status have long
396 term effects on health outcomes of children. Maternal height was positively associated with
397 child PC scores, and maternal MUAC also had a positive association with child PC scores,
398 although not significant. Maternal Hb during pregnancy and height were also associated with
399 children's BMIZ. These results support the potential influence of maternal nutritional status
400 on the children metabolism and health. This notion has been previously reported where
401 maternal nutritional status measured by BMI was correlated with children's nutritional status
402 measured by BMI [59] and weight for height z-score (WHZ) [60]. Maternal BMI was also
403 reported to be associated with infant serum leptin values [45]. Therefore, our finding again
404 emphasized the importance of optimal macronutrients intake during pregnancy that would
405 improve maternal nutritional status and later child's health [61].

406 We proposed that maternal biomarkers of adipocytokines and inflammatory markers
407 could influence the same biomarkers in the child through the interactions of immunologic and
408 metabolic factors. Adiponectin, RBP4, CRP, and leptin play important roles in regulating

409 metabolism, energy homeostasis, and inflammatory responses, while VDBP has a role in
410 modulating immune and inflammatory response. The immune and metabolic system have co-
411 evolved to signal each other and form complex networks as a response to environmental
412 exposures, such as the secretion of leptin and adiponectin that are contra-regulated [62,63].
413 Transfer of immune and metabolic properties between mother and her child occurs through
414 the placenta during pregnancy [23,64], and through breast milk during the neonatal period
415 [50]. Together, these immune-metabolic signals provide innate and adaptive immunities and
416 influence the metabolic homeostasis of the newborn. The transmission of these cross-
417 generational immune and metabolic properties may be modified via optimal macronutrients
418 and micronutrients intake during pregnancy and postpartum. Maternal adverse conditions,
419 such as malnutrition or infection may modify these signals and alter the newborn immunity,
420 consequently influencing newborn and infant health, and possibly later life [65,66].

421 Despite the sparsity of the data, which is the limitation of this study, the consistency of
422 the associations observed is of interest. Nevertheless, replication of this study's findings
423 would be warranted. In addition, due the multiple hypotheses tested, the multiple
424 comparisons in the study were unavoidable, but again we note the consistency of the findings.
425 To our knowledge, this is the first study with complete mother-child dyads showing the effect
426 of MMN on the child outcomes via changes of the mother's biomarkers. As with other effect
427 of nutrients, the MMN effect cannot be determined based on a single biomarker only, as there
428 would be many pathways involved. Therefore, analyzing the effect of a particular pattern of
429 combined relevant biomarkers is more relevant, as conducted here.

430 In conclusion, maternal biomarkers of adipocytokines and inflammatory markers PC
431 during pregnancy were modulated by MMN supplementation, and associated with child PC
432 scores of the same biomarkers 9-12 years later, as well as with children's BMIZ. Improving

433 maternal nutritional status may improve child's conditions not only directly after birth, but
434 also during their childhood, and until adulthood.

435

436 **ACKNOWLEDGEMENTS**

437 We thank all the pregnant women, their children, the families, the communities, and the
438 midwives in Lombok, West Nusa Tenggara, who participated in and facilitated the original
439 SUMMIT and its follow up studies. We are grateful to Dr. Husni Muadz of Mataram
440 University, Center for Research on Language and Culture, and Ms. Mandri Apriatni, SPd,
441 MA, of Summit Institute of Development, who were involved in the SUMMIT study, and Mr.
442 Miswar Fattah and his team of Prodia CRO for the use of their MagPix CCD Imager. The
443 authors are grateful to the Scientific Members of the Indonesian Danone Institute Foundation
444 and Dr. Jacques Bindels of the Asia Pacific R&D Danone Baby Nutrition, for their inputs
445 during the initial development of this study.

446

447 **REFERENCES**

- 448 1. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-
449 insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X):
450 relation to reduced fetal growth. *Diabetologia*. 1993;36: 62–67.
451 doi:10.1007/BF00399095
- 452 2. Hales CN, Barker DJP. The thrifty phenotype hypothesisType 2 diabetes. *Br Med Bull*.
453 2001;60: 5–20. doi:10.1093/bmb/60.1.5
- 454 3. Symonds ME, Sebert SP, Hyatt MA, Budge H. Nutritional programming of the
455 metabolic syndrome. *Nat Rev Endocrinol*. 2009;5: 604–610.
456 doi:10.1038/nrendo.2009.195
- 457 4. Coupé B, Grit I, Hulin P, Randuineau G, Parnet P. Postnatal Growth after Intrauterine
458 Growth Restriction Alters Central Leptin Signal and Energy Homeostasis. *PLOS ONE*.
459 2012;7: e30616. doi:10.1371/journal.pone.0030616
- 460 5. Long NM, Rule DC, Zhu MJ, Nathanielsz PW, Ford SP. Maternal obesity upregulates
461 fatty acid and glucose transporters and increases expression of enzymes mediating fatty

462 acid biosynthesis in fetal adipose tissue depots. *J Anim Sci.* 2012;90: 2201–2210.
463 doi:10.2527/jas.2011-4343

464 6. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. *Nat Rev Mol Cell Biol.* 2006;7: 885–896. doi:10.1038/nrm2066

466 7. Sebert S, Sharkey D, Budge H, Symonds ME. The early programming of metabolic health: is epigenetic setting the missing link? *Am J Clin Nutr.* 2011;94: 1953S-1958S.
467 doi:10.3945/ajcn.110.001040

469 8. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. *Clin Chim Acta Int J Clin Chem.* 2007;380: 24–30. doi:10.1016/j.cca.2007.01.026

471 9. Wannamethee SG, Tchernova J, Whincup P, Lowe GDO, Kelly A, Rumley A, et al. Plasma leptin: Associations with metabolic, inflammatory and haemostatic risk factors for cardiovascular disease. *Atherosclerosis.* 2007;191: 418–426.
472 doi:10.1016/j.atherosclerosis.2006.04.012

475 10. Barazzoni R, Zanetti M, Semolic A, Pirulli A, Cattin MR, Biolo G, et al. High plasma retinol binding protein 4 (RBP4) is associated with systemic inflammation independently of low RBP4 adipose expression and is normalized by transplantation in nonobese, nondiabetic patients with chronic kidney disease. *Clin Endocrinol (Oxf).* 2011;75: 56–63. doi:10.1111/j.1365-2265.2011.03990.x

480 11. Visentin S, Lapolla A, Londero AP, Cosma C, Dalfrà, Mariagrazia, et al. Adiponectin Levels Are Reduced While Markers of Systemic Inflammation and Aortic Remodelling Are Increased in Intrauterine Growth Restricted Mother-Child Couple. *BioMed Res Int.* 2014;2014: e401595. doi:10.1155/2014/401595

484 12. Sahu A. Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. *Front Neuroendocrinol.* 2003;24: 225–253.

486 13. Warchał M, Krauss H, Wojciechowska M, Opala T, Pięta B, Żukiewicz-Sobczak W, et al. The role of ghrelin, leptin and insulin in foetal development. *Ann Agric Environ Med AAEM.* 2014;21: 349–352. doi:10.5604/1232-1966.1108603

489 14. Sowers JR. Endocrine functions of adipose tissue: focus on adiponectin. *Clin Cornerstone.* 2008;9: 32–38; discussion 39-40.

491 15. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. *Nature.* 2005;436: 356–362. doi:10.1038/nature03711

494 16. Kelly KR, Kashyap SR, O’Leary VB, Major J, Schauer PR, Kirwan JP. Retinol-binding protein 4 (RBP4) protein expression is increased in omental adipose tissue of severely obese patients. *Obes Silver Spring Md.* 2010;18: 663–666. doi:10.1038/oby.2009.328

497 17. Zhang M, Cheng H, Zhao X, Hou D, Yan Y, Cianflone K, et al. Leptin and Leptin-to-Adiponectin Ratio Predict Adiposity Gain in Nonobese Children over a Six-Year Period. *Child Obes Print.* 2017; doi:10.1089/chi.2016.0273

500 18. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical
501 Decrease of an Adipose-Specific Protein, Adiponectin, in Obesity. *Biochem Biophys
502 Res Commun.* 1999;257: 79–83. doi:10.1006/bbrc.1999.0255

503 19. Adali E, Yildizhan R, Kulusari A, Kurdoglu M, Bugdayci G, Sahin HG, et al. Increased
504 visfatin and leptin in pregnancies complicated by pre-eclampsia. *J Matern-Fetal
505 Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat
506 Obstet.* 2009;22: 873–879. doi:10.1080/14767050902994622

507 20. Vaisbuch E, Romero R, Mazaki-Tovi S, Erez O, Kim SK, Chaiworapongsa T, et al.
508 Retinol Binding Protein 4 – A Novel Association with Early-Onset Preeclampsia. *J
509 Perinat Med.* 2010;38: 129–139. doi:10.1515/JPM.2009.140

510 21. Misra VK, Straughen JK, Trudeau S. Maternal Serum Leptin During Pregnancy and
511 Infant Birth Weight: the Influence of Maternal Overweight and Obesity. *Obes Silver
512 Spring Md.* 2013;21: 1064–1069. doi:10.1002/oby.20128

513 22. Noureldeen AFH, Qusti SY, Al-seeni MN, Bagais MH. Maternal Leptin, Adiponectin,
514 Resistin, Visfatin and Tumor Necrosis Factor-Alpha in Normal and Gestational
515 Diabetes. *Indian J Clin Biochem.* 2014;29: 462–470. doi:10.1007/s12291-013-0394-0

516 23. Luo Z-C, Nuyt A-M, Delvin E, Fraser WD, Julien P, Audibert F, et al. Maternal and
517 fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. *Obes Silver
518 Spring Md.* 2013;21: 210–216. doi:10.1002/oby.20250

519 24. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of
520 inflammation in the prediction of cardiovascular disease in women. *N Engl J Med.*
521 2000;342: 836–843. doi:10.1056/NEJM200003233421202

522 25. Pitiphat W, Gillman MW, Joshipura KJ, Williams PL, Douglass CW, Rich-Edwards
523 JW. Plasma C-reactive protein in early pregnancy and preterm delivery. *Am J
524 Epidemiol.* 2005;162: 1108–1113. doi:10.1093/aje/kwi323

525 26. Ernst GDS, de Jonge LL, Hofman A, Lindemans J, Russcher H, Steegers EAP, et al. C-
526 reactive protein levels in early pregnancy, fetal growth patterns, and the risk for
527 neonatal complications: the Generation R Study. *Am J Obstet Gynecol.* 2011;205:
528 132.e1–12. doi:10.1016/j.ajog.2011.03.049

529 27. Gaillard R, Rifas-Shiman SL, Perng W, Oken E, Gillman MW. Maternal inflammation
530 during pregnancy and childhood adiposity. *Obes Silver Spring Md.* 2016;24: 1320–
531 1327. doi:10.1002/oby.21484

532 28. Lauridsen AL, Vestergaard P, Hermann AP, Brot C, Heickendorff L, Mosekilde L, et al.
533 Plasma concentrations of 25-hydroxy-vitamin D and 1,25-dihydroxy-vitamin D are
534 related to the phenotype of Gc (vitamin D-binding protein): a cross-sectional study on
535 595 early postmenopausal women. *Calcif Tissue Int.* 2005;77: 15–22.
536 doi:10.1007/s00223-004-0227-5

537 29. White P, Cooke N. The multifunctional properties and characteristics of vitamin D-
538 binding protein. *Trends Endocrinol Metab TEM.* 2000;11: 320–327.

539 30. Erkkola M, Nwaru BI, Viljakainen HT. Maternal vitamin D during pregnancy and its
540 relation to immune-mediated diseases in the offspring. *Vitam Horm.* 2011;86: 239–260.
541 doi:10.1016/B978-0-12-386960-9.00010-1

542 31. Khalessi N, Kalani M, Araghi M, Farahani Z. The Relationship between Maternal
543 Vitamin D Deficiency and Low Birth Weight Neonates. *J Fam Reprod Health.* 2015;9:
544 113–117.

545 32. García OP, Ronquillo D, Caamaño M del C, Camacho M, Long KZ, Rosado JL. Zinc,
546 vitamin A, and vitamin C status are associated with leptin concentrations and obesity in
547 Mexican women: results from a cross-sectional study. *Nutr Metab.* 2012;9: 59.
548 doi:10.1186/1743-7075-9-59

549 33. Loh B-I, Sathyasuryan DR, Mohamed HJJ. Plasma adiponectin concentrations are
550 associated with dietary glycemic index in Malaysian patients with type 2 diabetes. *Asia*
551 *Pac J Clin Nutr.* 2013;22: 241–248.

552 34. Mantzoros CS, Sweeney L, Williams CJ, Oken E, Kelesidis T, Rifas-Shiman SL, et al.
553 Maternal diet and cord blood leptin and adiponectin concentrations at birth. *Clin Nutr*
554 *Edinb Scotl.* 2010;29: 622–626. doi:10.1016/j.clnu.2010.03.004

555 35. Fernández-Real JM, Moreno JM, Ricart W. Circulating Retinol-Binding Protein-4
556 Concentration Might Reflect Insulin Resistance–Associated Iron Overload. *Diabetes.*
557 2008;57: 1918–1925. doi:10.2337/db08-0041

558 36. Block G, Jensen CD, Dalvi TB, Norkus EP, Hudes M, Crawford PB, et al. Vitamin C
559 treatment reduces elevated C-reactive protein. *Free Radic Biol Med.* 2009;46: 70–77.
560 doi:10.1016/j.freeradbiomed.2008.09.030

561 37. Jain SK, Kahlon G, Bass P, Levine SN, Warden C. Can l-Cysteine and Vitamin D
562 Rescue Vitamin D and Vitamin D Binding Protein Levels in Blood Plasma of African
563 American Type 2 Diabetic Patients? *Antioxid Redox Signal.* 2015;23: 688–693.
564 doi:10.1089/ars.2015.6320

565 38. Supplementation with Multiple Micronutrients Intervention Trial (SUMMIT) Study
566 Group, Shankar AH, Jahari AB, Sebayang SK, Aditiawarman null, Apriatni M, et al.
567 Effect of maternal multiple micronutrient supplementation on fetal loss and infant death
568 in Indonesia: a double-blind cluster-randomised trial. *Lancet.* 2008;371: 215–227.
569 doi:10.1016/S0140-6736(08)60133-6

570 39. Sebayang SK, Dibley MJ, Kelly PJ, Shankar AV, Shankar AH, SUMMIT Study Group.
571 Determinants of low birthweight, small-for-gestational-age and preterm birth in
572 Lombok, Indonesia: analyses of the birthweight cohort of the SUMMIT trial. *Trop Med*
573 *Int Health TM IH.* 2012;17: 938–950. doi:10.1111/j.1365-3156.2012.03039.x

574 40. Prado EL, Ullman MT, Muadz H, Alcock KJ, Shankar AH. The Effect of Maternal
575 Multiple Micronutrient Supplementation on Cognition and Mood during Pregnancy and
576 Postpartum in Indonesia: A Randomized Trial. *PLoS ONE.* 2012;7.
577 doi:10.1371/journal.pone.0032519

578 41. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of
579 a WHO growth reference for school-aged children and adolescents. *Bull World Health
580 Organ.* 2007;85: 660–667. doi:10.2471/BLT.07.043497

581 42. Stevens JP. *Applied Multivariate Statistics for the Social Sciences*, Fifth Edition. 5
582 edition. New York: Routledge; 2009.

583 43. Cohen SS, Gammon MD, Signorello LB, North KE, Lange EM, Fowke JH, et al. Serum
584 adiponectin in relation to body mass index and other correlates in black and white
585 women. *Ann Epidemiol.* 2011;21: 86–94. doi:10.1016/j.annepidem.2010.10.011

586 44. Rhie YJ, Choi B-M, Eun SH, Son CS, Park SH, Lee K-H. Association of Serum Retinol
587 Binding Protein 4 with Adiposity and Pubertal Development in Korean Children and
588 Adolescents. *J Korean Med Sci.* 2011;26: 797–802. doi:10.3346/jkms.2011.26.6.797

589 45. Savino F, Sardo A, Rossi L, Benetti S, Savino A, Silvestro L. Mother and Infant Body
590 Mass Index, Breast Milk Leptin and Their Serum Leptin Values. *Nutrients.* 2016;8.
591 doi:10.3390/nu8060383

592 46. Saboori S, Shab-Bidar S, Speakman JR, Yousefi Rad E, Djafarian K. Effect of vitamin
593 E supplementation on serum C-reactive protein level: a meta-analysis of randomized
594 controlled trials. *Eur J Clin Nutr.* 2015;69: 867–873. doi:10.1038/ejcn.2014.296

595 47. Naini AE, Vahdat S, Hedaiati ZP, Shahzeidi S, Pezeshki AH, Nasri H. The effect of
596 vitamin D administration on serum leptin and adiponectin levels in end-stage renal
597 disease patients on hemodialysis with vitamin D deficiency: A placebo-controlled
598 double-blind clinical trial. *J Res Med Sci Off J Isfahan Univ Med Sci.* 2016;21.
599 doi:10.4103/1735-1995.175144

600 48. Weyermann M, Beermann C, Brenner H, Rothenbacher D. Adiponectin and leptin in
601 maternal serum, cord blood, and breast milk. *Clin Chem.* 2006;52: 2095–2102.
602 doi:10.1373/clinchem.2006.071019

603 49. Volberg V, Harley KG, Aguilar RS, Rosas LG, Huen K, Yousefi P, et al. Associations
604 between perinatal factors and adiponectin and leptin in 9-year-old Mexican-American
605 children. *Pediatr Obes.* 2013;8. doi:10.1111/j.2047-6310.2012.00127.x

606 50. Schuster S, Hechler C, Gebauer C, Kiess W, Kratzsch J. Leptin in maternal serum and
607 breast milk: association with infants' body weight gain in a longitudinal study over 6
608 months of lactation. *Pediatr Res.* 2011;70: 633–637.
609 doi:10.1203/PDR.0b013e31823214ea

610 51. Kaprio J, Eriksson J, Lehtovirta M, Koskenvuo M, Tuomilehto J. Heritability of leptin
611 levels and the shared genetic effects on body mass index and leptin in adult Finnish
612 twins. *Int J Obes Relat Metab Disord J Int Assoc Study Obes.* 2001;25: 132–137.

613 52. Liu P-H, Jiang Y-D, Chen WJ, Chang C-C, Lee T-C, Sun HS, et al. Genetic and
614 environmental influences on adiponectin, leptin, and BMI among adolescents in
615 Taiwan: a multivariate twin/sibling analysis. *Twin Res Hum Genet Off J Int Soc Twin
616 Stud.* 2008;11: 495–504. doi:10.1375/twin.11.5.495

617 53. Iikuni N, Lam QLK, Lu L, Matarese G, La Cava A. Leptin and Inflammation. *Curr*
618 *Immunol Rev.* 2008;4: 70–79. doi:10.2174/157339508784325046

619 54. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert
620 Committee. *World Health Organ Tech Rep Ser.* 1995;854: 1–452.

621 55. Fleisch AF, Agarwal N, Roberts MD, Han JC, Theim KR, Vexler A, et al. Influence of
622 Serum Leptin on Weight and Body Fat Growth in Children at High Risk for Adult
623 Obesity. *J Clin Endocrinol Metab.* 2007;92: 948–954. doi:10.1210/jc.2006-1390

624 56. Yeste D, Vendrell J, Tomasini R, Gallart LL, Clemente M, Simón I, et al. Retinol-
625 binding protein 4 levels in obese children and adolescents with glucose intolerance.
626 *Horm Res Paediatr.* 2010;73: 335–340. doi:10.1159/000308165

627 57. Riedel C, Fenske N, Müller MJ, Plachta-Danielzik S, Keil T, Grabenhenrich L, et al.
628 Differences in BMI z-scores between offspring of smoking and nonsmoking mothers: a
629 longitudinal study of German children from birth through 14 years of age. *Environ*
630 *Health Perspect.* 2014;122: 761–767. doi:10.1289/ehp.1307139

631 58. Economos CD, Hyatt RR, Goldberg JP, Must A, Naumova EN, Collins JJ, et al. A
632 community intervention reduces BMI z-score in children: Shape Up Somerville first
633 year results. *Obes Silver Spring Md.* 2007;15: 1325–1336. doi:10.1038/oby.2007.155

634 59. Tigga PL, Sen J. Maternal Body Mass Index Is Strongly Associated with Children -
635 Scores for Height and BMI. In: *Journal of Anthropology* [Internet]. 2016 [cited 6 Dec
636 2017]. doi:10.1155/2016/6538235

637 60. Negash C, Whiting SJ, Henry CJ, Belachew T, Hailemariam TG. Association between
638 Maternal and Child Nutritional Status in Hula, Rural Southern Ethiopia: A Cross
639 Sectional Study. *PLoS ONE.* 2015;10. doi:10.1371/journal.pone.0142301

640 61. Lyles TE, Desmond R, Faulk LE, Henson S, Hubbert K, Heimburger DC, et al. Diet
641 Variety Based on Macronutrient Intake and Its Relationship With Body Mass Index.
642 *Medscape Gen Med.* 2006;8: 39.

643 62. Carbone F, La Rocca C, Matarese G. Immunological functions of leptin and
644 adiponectin. *Biochimie.* 2012;94: 2082–2088. doi:10.1016/j.biochi.2012.05.018

645 63. Zmora N, Bashiardes S, Levy M, Elinav E. The Role of the Immune System in
646 Metabolic Health and Disease. *Cell Metab.* 2017;25: 506–521.
647 doi:10.1016/j.cmet.2017.02.006

648 64. Zaretsky MV, Alexander JM, Byrd W, Bawdon RE. Transfer of inflammatory cytokines
649 across the placenta. *Obstet Gynecol.* 2004;103: 546–550.
650 doi:10.1097/01.AOG.0000114980.40445.83

651 65. Collier CH, Risnes K, Norwitz ER, Bracken MB, Illuzzi JL. Maternal infection in
652 pregnancy and risk of asthma in offspring. *Matern Child Health J.* 2013;17: 1940–1950.
653 doi:10.1007/s10995-013-1220-2

654 66. Parlee SD, MacDougald OA. Maternal Nutrition and Risk of Obesity in Offspring: The
655 Trojan Horse of Developmental Plasticity. *Biochim Biophys Acta*. 2014;1842: 495–506.
656 doi:10.1016/j.bbadi.2013.07.007

657

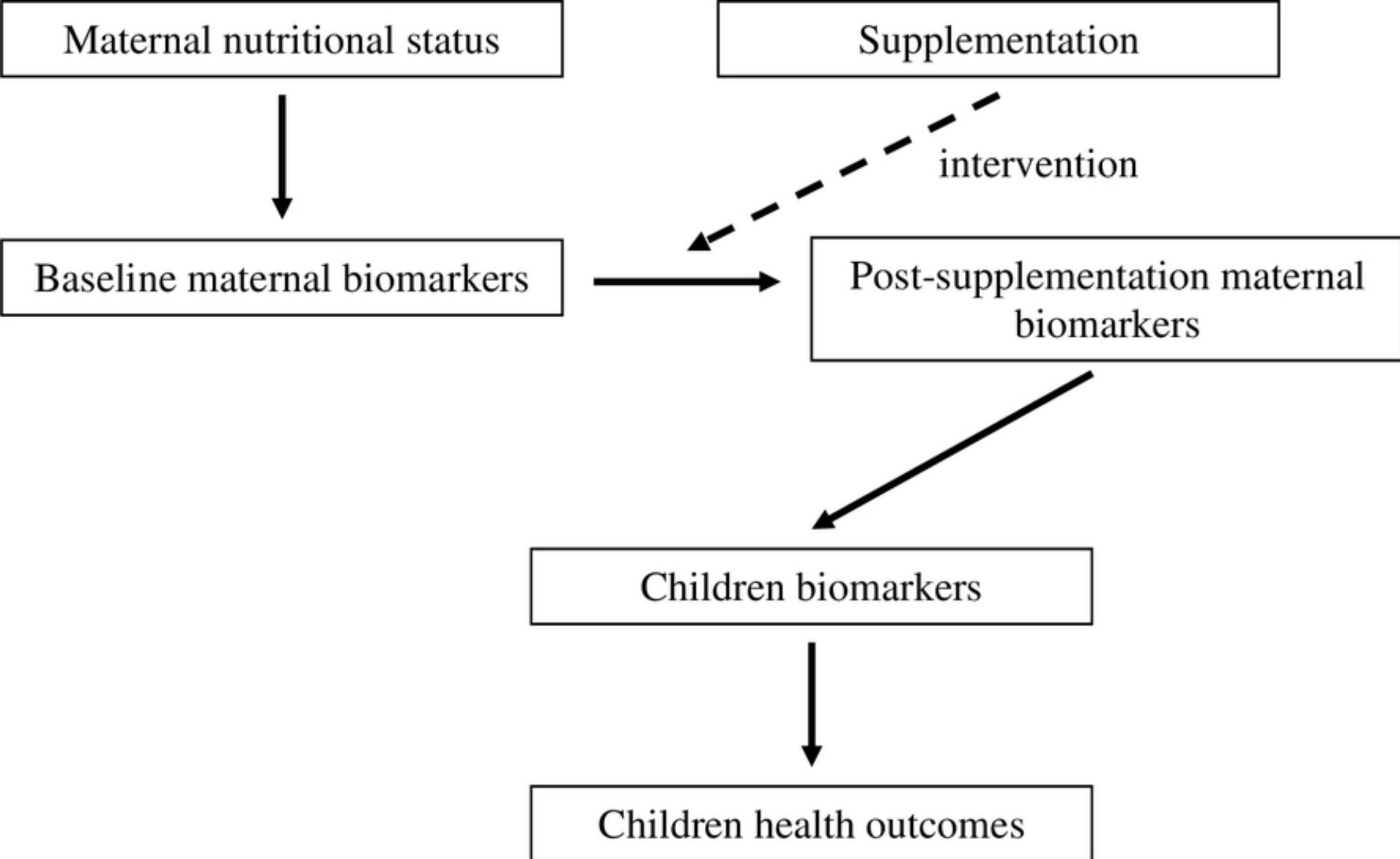


Figure 1

31,290 pregnant women enrolled
in the primary birth cohort

bioRxiv preprint doi: <https://doi.org/10.1101/625103>; this version posted May 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

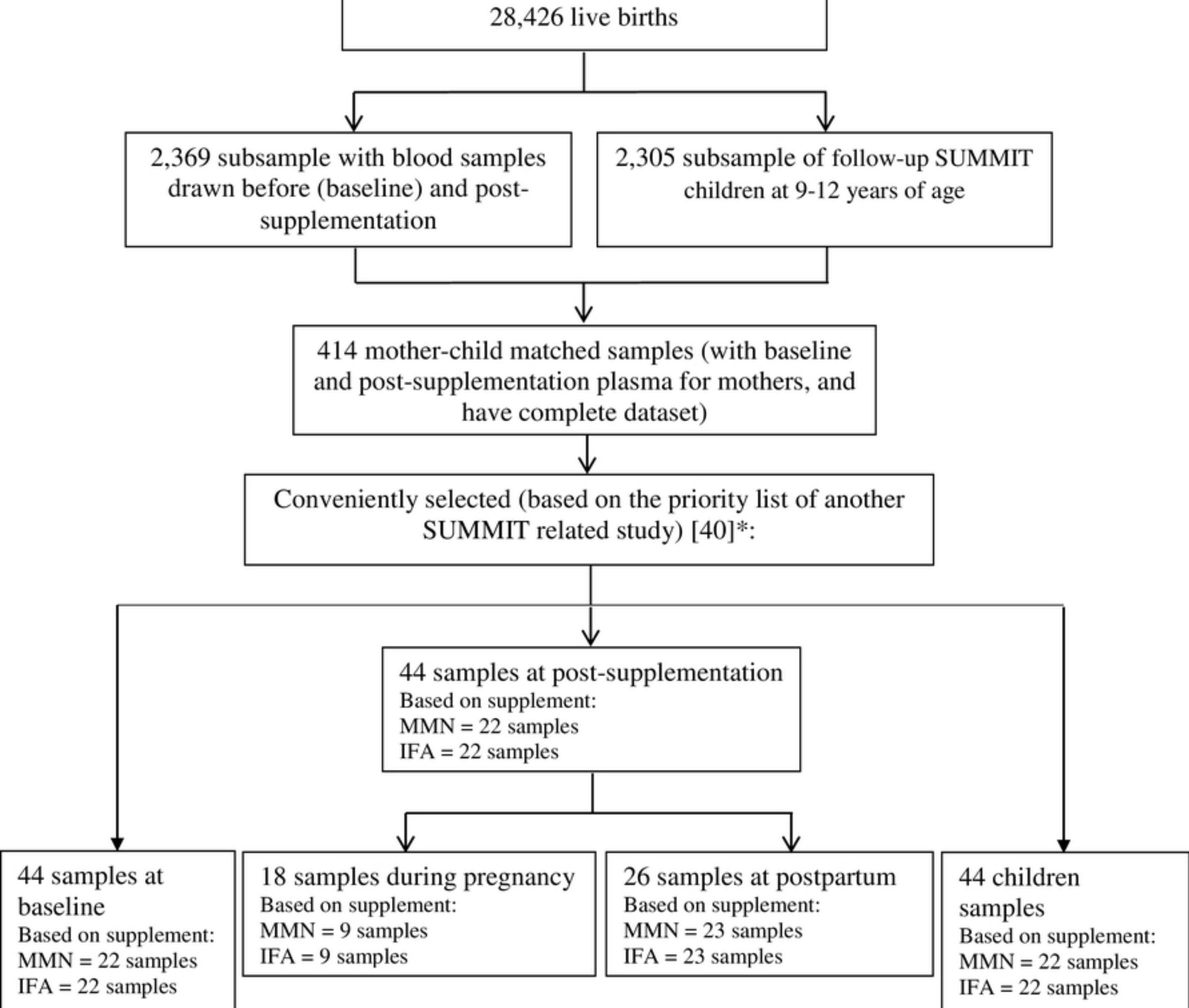


Figure 2

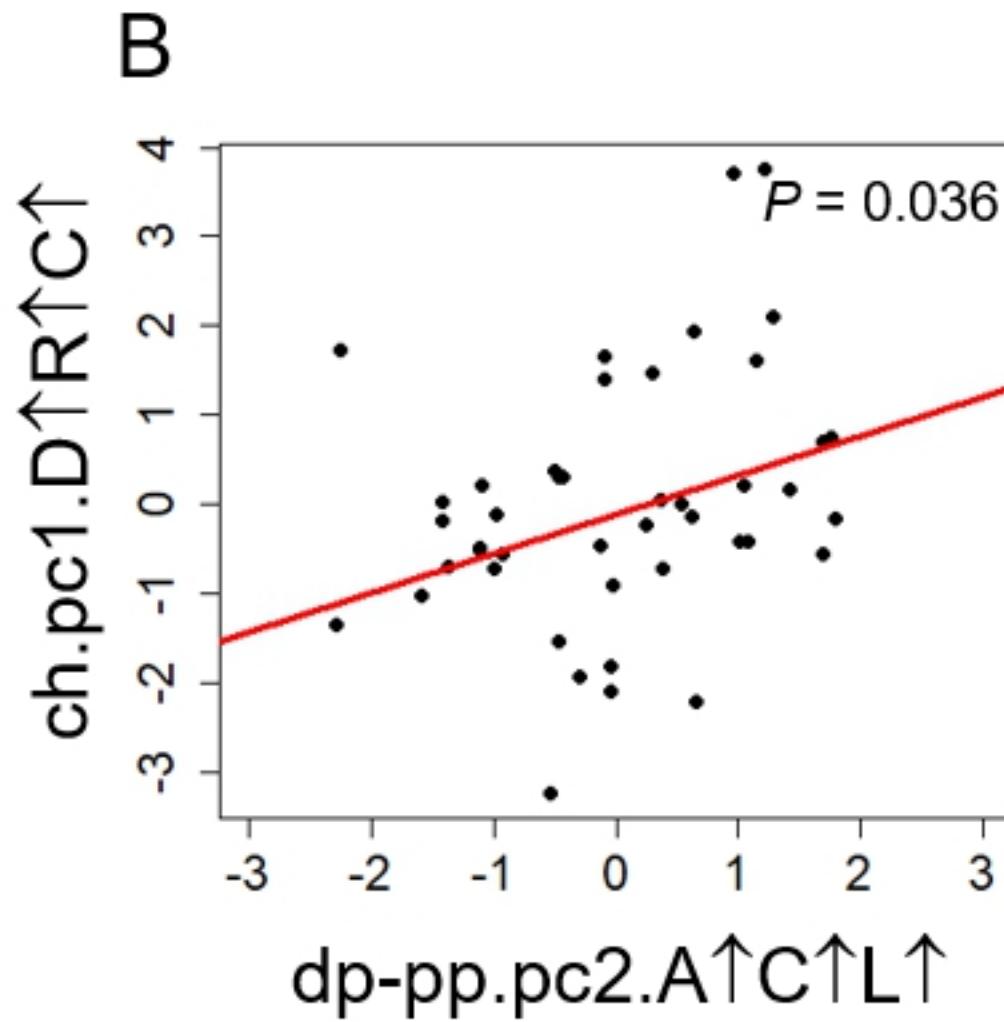
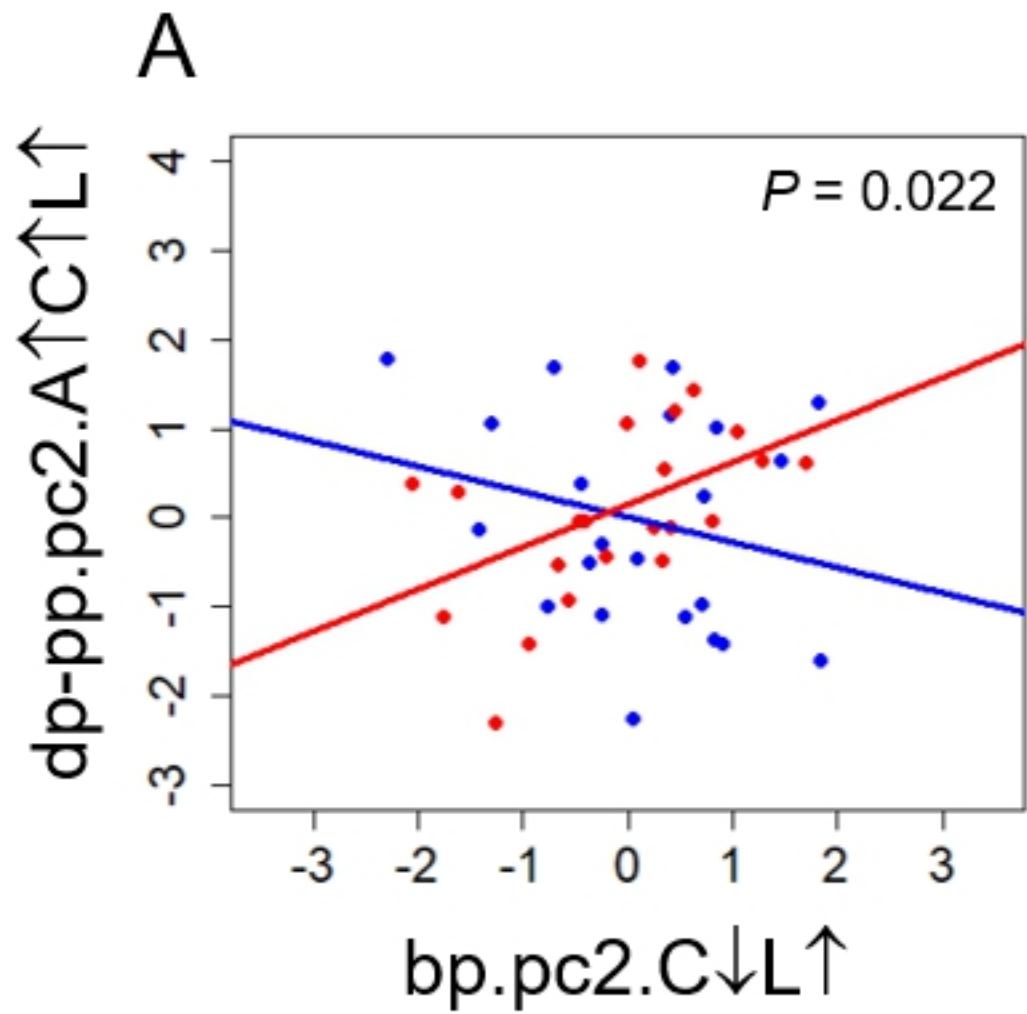



Figure 3

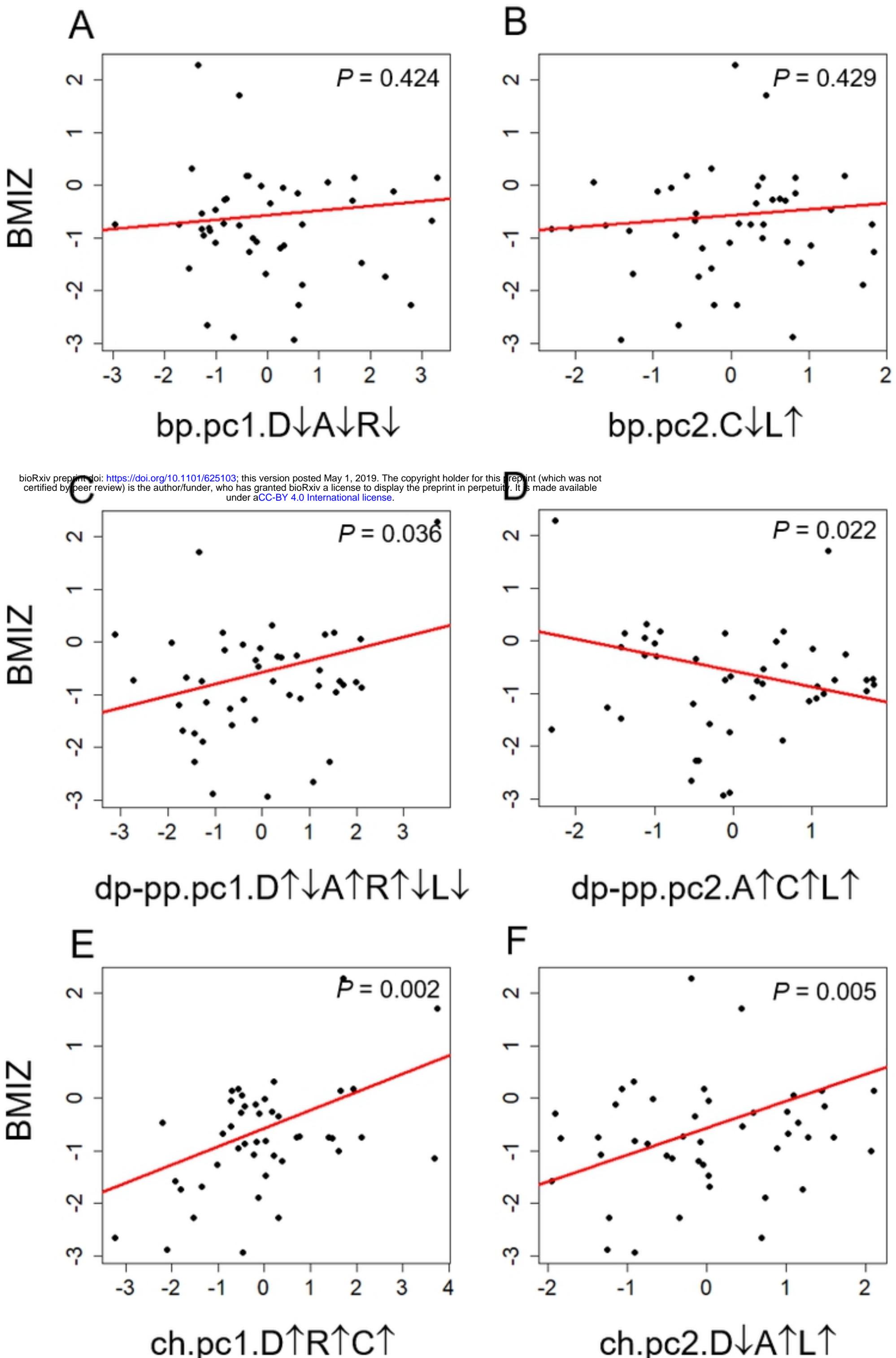


Figure 4