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Abstract

Permanently anoxic regions in the ocean are widespread, and exhibit unique microbial metabolic ac-
tivity exerting substantial influence on global elemental cycles and climate. Reconstructing microbial
metabolic activity rates in these regions has been challenging, due to the technical difficulty of direct rate
measurements. In Cariaco Basin, which is the largest permanently anoxic marine basin and an impor-
tant model system for geobiology, long-term monitoring has yielded time series for the concentrations
of biologically important compounds; however the underlying metabolite fluxes remain poorly quanti-
fied. Here we present a computational approach for reconstructing vertical fluxes and in sifu net pro-
duction/consumption rates from chemical concentration data, based on a 1-dimensional time-dependent
diffusive transport model that includes adaptive penalization of overfitting. We use this approach to es-
timate spatiotemporally resolved fluxes of oxygen, nitrate, hydrogen sulfide, ammonium, methane and
phosphate within the sub-euphotic Cariaco Basin water column (depths 150-900 m, years 2001-2014),
and to identify hotspots of microbial chemolithotrophic activity. Predictions of the fitted models are in
excellent agreement with the data, and substantially expand our knowledge of the geobiology in Cariaco
Basin. In particular, we find that the diffusivity, and consequently fluxes of major reductants such as
hydrogen sulfide and methane, are about two orders of magnitude greater than previously estimated, thus
resolving a long standing apparent conundrum between electron donor fluxes and measured dark carbon

assimilation rates.

Abbreviations: ILTM, inverse linear transport modeling; DCA, dark carbon assimilation

1 Introduction

Permanently or temporarily anoxic regions in the ocean are a topic of increasing interest due to their unique
microbial ecology (Wright et al., 2012; Ulloa et al., 2013), their importance to global elemental cycles and
marine productivity (Ulloa et al., 2012), and the intensifying deoxygenation of the ocean (Schmidtko et al.,
2017; Breitburg et al., 2018). Microorganisms in these regions are adapted to operate under oxygen-limited
or oxygen-depleted conditions, making use of alternative terminal electron acceptors for respiration and of-
ten utilizing inorganic substrates for energy. In many anoxic marine zones, reductants such as hydrogen
sulfide, ammonium and the potent greenhouse gas methane, diffusing upwards from underlying layers or
the sediments, react biologically with oxidants such as oxygen and nitrate produced in the overlying layers,
thus fueling chemolithoautotrophic activity and affecting marine nitrogen, sulfur, oxygen and carbon budgets
(Ulloa et al., 2012; Taylor et al., 2018). In the Cariaco Basin, a permanently anoxic marine region off the
coast of Venezuela, multi-decadal monitoring has generated rich time series of the distribution of metabol-
ically important compounds over space and time (Scranton et al., 2014; Muller-Karger ef al., 2019). These
data revealed the existence of a strong dynamic redox gradient over depth, along which upward diffusing
reductants such as hydrogen sulfide are directly or indirectly oxidized by oxidants such as oxygen in a tran-
sition zone roughly spanning depths 200-400 m, sometimes referred to as “redoxcline” (Ho et al., 2004; Li
et al., 2012b; Taylor et al., 2018). Concurrent molecular surveys revealed unique microbial communities

that exhibit a clear spatial organization across depth, and elevated population densities within the redoxcline
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(Taylor et al., 2006; Rodriguez-Mora et al., 2015; Taylor et al., 2018; Cernadas-Martin et al., 2017; Suter
etal.,2018). However, chemical fluxes across space and microbial metabolic rates in Cariaco Basin and other
anoxic regions remain poorly quantified and are largely temporally unresolved, thus making a mechanistic
connection between chemical transitions and microbial ecological dynamics difficult (Taylor et al., 2018).
A major reason for this gap in our knowledge is that, compared to chemical concentration measurements,

explicit metabolic rate measurements are technically challenging, especially when performed in situ.

Mathematical modeling is sometimes used to indirectly estimate the flux rates that underly the observed
chemical concentrations (Scranton et al., 1987; Berg et al., 1998; Taylor et al., 2001; Samodurov et al., 2013;
Li et al., 2012b; Cernadas-Martin et al., 2017; Taylor et al., 2018). For example, Scranton et al. (1987)
used a time-dependent diffusion box model to estimate sulfide fluxes from the sediments into the Cariaco
Basin water column. These calculations, however, were based solely on measurements at two time points
(in 1973 and 1982), ignored possible in situ sulfide production (Li ef al., 2012b), and assumed that sulfide
was consumed entirely at some fixed depth, thus ignoring shifts in the redoxcline depth over time (Scranton
et al., 2014). On the other hand, Li e al. (2012b) and Cernadas-Martin et al. (2017) used a 1-dimensional
diffusion model for Cariaco Basin to estimate fluxes of various compounds produced or consumed during
microbial metabolism (henceforth “metabolites” for simplicity). Their models only estimated fluxes into and
out of a narrow depth interval (~100-200 m wide), thus missing possible metabolic activity at other depths,
and assumed that metabolite depth profiles were at steady state, thus ignoring possible temporal lags in the
response of redox gradients to flux changes (Scranton et al., 1987, 2014) and microbial dynamics (Taylor
etal., 2018).

Here we develop a computational approach for estimating metabolite fluxes and net production/consumption
rates across space and time, using chemical concentration data measured at arbitrary spacetime points. Our
approach is based on a 1-dimensional time- and depth-dependent diffusive transport model that accounts
for temporal changes in boundary conditions, diffusive transport coefficients and in situ production rates, as
well as for potential geometric dilution effects due to variation of a system’s lateral (cross-sectional) area
with depth. We use our approach to reconstruct spatiotemporally resolved metabolite fluxes across the sub-
euphotic Cariaco Basin water column (depths 150-900 m) during the years 2001-2014. We consider several
important metabolites, including oxygen (O2), nitrate (NOj'), hydrogen sulfide (H>S), ammonium (NHZ{),
methane (CH4) and phosphate (POi_). Our estimates yield detailed insight into the microbial activity that

underlies the geochemical structure of the Cariaco Basin water column.

2 Results and Discussion

2.1 Estimating diffusivity over space and time

In largely stagnant marine basins such as Cariaco Basin (Scranton et al., 1987; Samodurov et al., 2013;
Taylor et al., 2018), the Black Sea (Ivanov and Samodurov, 2001) and parts of the Arabian Sea (Lam et al.,

2011), eddy (turbulent) diffusion is the dominant mode of vertical transport of dissolved metabolites. Great


https://doi.org/10.1101/625087
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625087; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

uncertainty often exists over the magnitude of the vertical diffusion coefficient (henceforth “diffusivity”), and
this uncertainty can substantially influence flux estimates. Previous theoretical and empirical work suggests
that the diffusivity (denoted D) in such water columns is typically related to the buoyancy frequency (denoted
N) through a power-law relationship of the form:

D(t,2) = aN(t,2) 7, (1)

where ¢ is time, z is depth, and « and p are system-specific parameters (Sarmiento et al., 1976; Gregg, 1977;
Armi, 1979; Smethie, 1980; Osborn, 1980; Gargett and Holloway, 1984; Gargett, 1984; Gregg et al., 1986).
Such a power law can be mathematically justified for stably stratified systems without double diffusion and
in which the bulk of kinetic energy reaches turbulent scales via internal waves (Gargett, 1984). In these
scenarios, the parameter o accounts for the average energy entering the system (e.g., by winds or tides),
and p (typically between 0.5 and 1) reflects the a priori unknown N-dependence of internal wave velocity
variances (Gargett, 1984). Alternatively, a power law can be derived for stably stratified systems in which an
apparent diapycnal diffusion-like mixing is caused mainly by turbulence near the basin bottom/boundaries
and topographic features and a rapid redistribution of material throughout the interior by isopycnal advection
(Armi, 1979), yielding p ~ 2. In some studies, a power law relationship between D and N is a purely
empirical observation, with p ranging between 0.5 and 2 (Sarmiento et al., 1976; Svensson, 1980; Gargett,
1984). We mention that alternative N-dependent models for D have also been derived, based on different
assumptions regarding the origin and dissipative nature of kinetic energy (Munk and Anderson, 1948; Lee
et al., 2006; Olbers and Eden, 2013).

Equation (1) has been used extensively to predict turbulent transport of dissolved gases and salts in vari-
ous systems, especially in anoxic marine systems (Fennel and Boss, 2003; Ho et al., 2004; Li et al., 2012b;
Samodurov et al., 2013; Reed et al., 2014; Louca et al., 2016). The buoyancy frequency N can be calcu-
lated from the measured salinity and temperature profiles, however the appropriate values for o and p are
typically poorly constrained. Some studies have estimated the parameters « and p, or diffusivity itself, using
spatiotemporal profiles of salinity (Gade, 1970; Smethie, 1980; Lewis and Perkin, 1982; Ivanov and Samod-
urov, 2001) or other conserved tracers (Svensson, 1980; Gargett, 1984). For example, Svensson (1980) used
the diffusion of Rhodamine B as a semi-conserved tracer to estimate a power-law exponent of p = 1.2 in
Byfjorden (Sweden), Gade (1970) used the salt budget to estimate an exponent of p = 1.6 in Oslofjord (Nor-
way), and Lewis and Perkin (1982) used the salt budget to estimate D in Agfardlikavsa Fjord (Greenland),
revealing a power law dependence on N with an exponent p ~ 1.2 (Gargett, 1984). In Cariaco Basin analo-
gous parameter estimates are lacking, and previous studies simply assumed an exponent of p = 1 (Scranton
etal., 1987; Taylor et al., 2001; Ho et al., 2004; Li et al., 2012b; Samodurov et al., 2013; Taylor et al., 2018).
A value of p = 1 is also frequently assumed in other systems (Zopfi et al., 2001; Yakushev et al., 2007;
Yakushev, 2013), although some studies instead assumed p = 2 (Fennel and Boss, 2003; Reed et al., 2014).
The factor « is usually chosen roughly based on estimates from other marine systems (Ho et al., 2004; Li
et al., 2012b; Samodurov et al., 2013; Taylor et al., 2018).

Here, to estimate both o and p for Cariaco Basin, thus resolving a major source of uncertainty in flux
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estimates, we used a 1-dimensional diffusive transport model for the salt budget in Cariaco Basin, and fitted
the parameters a and p by minimizing the deviation of the model predictions from salinity measurements.

Specifically, for any given choice of a and p, we numerically solved the diffusion equation

1 0A oS
+ A() o= lD(taz)azl ; 2

oS 9 05
5 9 [D(t’z)az

where S is the predicted salinity, D is the diffusivity calculated using Eq. (1) and A(z) is the lateral (cross-
sectional) area of the basin at depth z (Supplemental Fig. S.1). The last term in Eq. (2) accounts for
geometric dilution effects due to variation of the basin area over depth (Samodurov et al., 2013). This model
omits occasional lateral intrusions of Caribbean Sea water (Samodurov et al., 2013; Scranton et al., 2014);
the accuracy of the model is assessed in retrospect. We considered the depth range 150-900 m and the period
spanning years 2001-2014, with boundary conditions provided by measured salinities at 150 m and 900 m.
This depth range was chosen because 150 m is the maximum depth of the sill separating Cariaco Basin from
the open ocean (and above which non-diffusive salt transport due to lateral currents is more pronounced),
and because 900 m is the depth of the saddle that separates the west and east sub-basins in Cariaco (Taylor
et al., 2001). The parameters o and p were gradually adjusted using an optimization algorithm, so that
the sum of squared deviations between S and the measured salinity is minimized. This yielded the estimates
a = 0.0001316 and p = 1.7433, when D is measured in cm?-s~! and N is measured in s—!. The agreement
between the predicted and measured salinity profiles was excellent, as measured by the fraction of explained
variance (r2=0.982, Supplemental Fig. S.3B). This suggests that neglected processes, such as occasional
lateral water intrusions, only have a minor influence on the Cariaco Basin salt budget during the considered

time interval.

To test whether our diffusivity estimates are sensitive to the choice of model, we also considered an al-
ternative model known as Munk-Anderson scheme (Munk and Anderson, 1948; James, 1977; Lee et al.,
2006):

27-@
(H — 2)

D(t,z) =D, |14+0-N(t, 2)*-2 =3 :

3

where D,, o, Q and B are system-specific model parameters and H is the bottom depth (H ~ 1400 m
for Cariaco Basin). The Munk-Anderson scheme assumes that diffusion-like vertical mixing is driven by
frictional velocity shear, induced by tidal motions damped near the basin bottom (Munk and Anderson,
1948). The specific formula in Eq. (3) is based on an empirical logarithmic profile of horizontal current
velocities (James, 1977) and was used by Lee er al. (2006) in a North Atlantic ocean model. When we fit
the above model to the salinity profiles in Cariaco Basin (depths 150-900 m, years 2001-2014), we obtained
very similar diffusivity estimates as with the power law model (Supplemental Figs. S.4A,B). Further, when
we combined both models into a single additive model (i.e., using the sum of Eq. 1 and Eq. 3), we again
obtained similar diffusivity estimates as before (Supplemental Figs. S.4C,D). While our findings do not
resolve which model provides the most suitable mechanistic explanation of mixing in Cariaco Basin, all

models yield similar estimates for the effective diffusivity.
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To further confirm the robustness of our model-based estimates we also considered a model-independent
approach, in which diffusivity is estimated directly from the salinity data (5) regardless of the buoyancy
frequency and without assuming a particular process as the cause of mixing (Fig. 1C, details in Supplement
S.1). Briefly, this alternative approach assumes that D is constant over time and somehow known at some

given “anchor depth” z,. In this case, D(z) can be estimated using the implicit formula:

D)= 5 M) + D) @:-0)(0) — (2, @)

where M (z), U(z) and L(z) are auxiliary quantities calculated using the salinity data, defined as follows:

M(z) = [ de [S(ts,x) — S(t1, )],

()= [ ds 5(s, ), 5)

L(z) = / dx b(g;)jﬂzf) 0,0 (x),

and where t; < to are any two time points. The accuracy of the “anchored” estimate D defined in Eq. (4)
improves for larger considered time spans |t2 — ¢;|, and hence we used the full available time range (years
2001-2014). Because the auxiliary variable L itself depends on the estimated diffusivity D, an iterative
approach was used to solve for D. The choice of z, is in principle arbitrary, as long as D(z,) can be de-
termined somehow. A similar approach was used previously by Samodurov et al. (2013) to estimate D in
Cariaco Basin, using the anchor depth z, = 150 m, with an important difference: Samodurov et al. esti-
mated D(z,) using the buoyancy-frequency-based formula in Eq. (1), with « based on other marine systems
and assuming p = 1, whereas here we made no assumption about D(z,) and instead estimated D(z,) from
the salinity data via least-squares fitting (details in Supplement S.1). We emphasize that this estimate is
strictly speaking only valid if the true diffusivity D does not vary with time, and hence it should only be used
as a rough sanity check. This alternatively estimated diffusivity profile again closely reproduces the mea-
sured salinity profile (72 = 0.982, Supplemental Fig. S.3C) and also approximately resembles our previous

diffusivity estimates (Fig. 1B), further increasing our confidence in these estimates.

As seen in Fig. 1A, the estimated diffusivity increases drastically with depth, due to the decreased buoy-
ancy frequency and the super-linear scaling of D (p > 1). Our diffusivity estimates, particularly those near
the bottom, are substantially higher than typical diffusivities estimated in other fjords and basins (Gargett,
1984; Yakushev et al., 2007). In Cariaco Basin, stratification is extremely weak towards the bottom, allow-
ing for more rapid diapycnal mixing than in the redoxcline. An exponent p greater than 1 and closer to 2
also suggests that mixing in Cariaco Basin is largely driven by turbulence near the basin’s boundaries (Armi,
1979), especially at depth where the lateral area decreases substantially (Supplemental Fig. S.1). Compared
to other prominent anoxic marine systems, Cariaco Basin is relatively compact, with a horizontal area (at the
sill’s depth) about 40 times smaller than the Black Sea (Kideys, 2002) and the Baltic Sea (Leppiranta and
Myrberg, 2009) and about 130 times smaller than the Arabian Sea (Goyet ef al., 1998), potentially resulting


https://doi.org/10.1101/625087
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625087; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

in stronger boundary mixing than in those other systems. We point out that, in reality, the eddy diffusivity
may exhibit substantial lateral heterogeneity, and may be greater near the Basin’s walls than in the center.
The diffusivity profile estimated here thus represents the effective (laterally averaged) diffusivity under a
1-dimensional transport model that describes laterally-averaged vertical fluxes. Such a model is itself only
valid under the implicit assumption that lateral mixing is much faster than vertical mixing — a reasonable

assumption for Cariaco Basin, since stratification is largely vertical.

Our diffusivity estimates are substantially higher than estimates from previous studies in Cariaco Basin,
all of which assumed an exponent of p = 1 (Scranton et al., 1987; Li et al., 2012b; Samodurov et al., 2013;
Taylor et al., 2018). An exponent greater than 1 (p ~ 1.7) is strongly supported by our fitted model, as the
value p = 1 results in a much lower goodness of fit (Supplemental Fig. S.13). An exponent p > 1 is also
consistent with our alternatively estimated diffusivity profiles (Fig. 1C and Supplemental Fig. S.4). Hence,
previous studies probably underestimated D in Cariaco Basin, especially in deeper waters. As we discuss
below, this has substantial implications for metabolite flux estimates and may explain some of the apparent

imbalances between metabolite supply and biological demand previously observed in Cariaco Basin.

2.2 Inverse linear transport modeling

Our approach for estimating vertical fluxes and volume-specific net production rates of dissolved metabolites
is based on the following 1-dimensional reaction-diffusion differential equation for the metabolite’s volumet-

ric concentration:

oC 0
R [DW) o>

Here, C(t, z) is the metabolite’s concentration (mol-L 1), D(¢, z) is the diffusivity (e.g., as estimated above),

A(z) is the lateral (cross-sectional) area of the basin and R(t, z) is the a priori unknown volume-specific net
metabolite production rate at any time ¢ and depth z. Similarly to the salinity model above, this model can
account for geometric dilution effects due to variations of the lateral basin area with depth (Samodurov et al.,
2013). Variants of the above model have been used extensively to describe dissolved nutrient transport in
Cariaco Basin (Scranton et al., 1987; Li et al., 2012b; Cernadas-Martin et al., 2017; Taylor et al., 2018),
although previous studies made simplifying assumptions such as that R was negligible (Scranton et al.,
1987), that D was constant over time (Li et al., 2012b; Taylor et al., 2018) or that C' was at steady state
(i.e., 0C /0Ot = 0; Li et al., 2012b; Cernadas-Martin et al., 2017; Taylor et al., 2018). Since C has been
measured and D has been previously estimated, in principle one could directly calculate the unknown rate
R at various times and depths through a simple algebraic reordering of Eq. (6). Unfortunately, this approach
generally suffers from high estimation errors. The main reason is that the numerical estimation of spatial
derivatives from discrete depth profiles, or of temporal derivatives from discrete time series, typically leads

to an amplification of high-frequency noise (Knowles and Renka, 2014).

An alternative approach for estimating R that reduces estimation noise and avoids the risk of overfitting is
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to choose R on a finite spatiotemporal grid (“fitting grid”), such that the corresponding predicted distribution
C obtained by solving the differential equation (6) best matches the observed profile C. This approach, known
as “inverse linear transport modeling” (ILTM), is widely used in oceanography and atmospheric sciences,
where known distributions of compounds are used to estimate unknown sources and sinks (Berg et al., 1998;
Houweling et al., 1999; Mikaloff Fletcher et al., 2006; Hirsch et al., 2006; Mikaloft Fletcher et al., 2007;
Steinkamp, 2011; Lam ez al., 2011; Lettmann et al., 2012; Martinez-Camara et al., 2014; Louca et al., 2016).
We mention that most existing studies — including those investigating metabolite fluxes in anoxic water
columns or sediments (Berg et al., 1998; Lam et al., 2011; Lettmann et al., 2012; Louca et al., 2016) —
assumed that C' was at steady state even when fluxes were estimated at multiple time points, however this
assumption may be needlessly and overly restrictive. To reduce spurious oscillations in the estimated R (a
common ILTM artifact), excessively high estimates of R that only marginally improve the agreement with the
data are penalized, a procedure known as Tikhonov regularization (Bjorck, 1996; Hansen, 2000; Lettmann
et al., 2012). Specifically, for any given metabolite, the vector containing all values of R on the fitting grid

(denoted R) is estimated by minimizing the expression:
ER)=|C°+T-R—C|*+ |AR]]. (7

Here, C is a vector listing measured concentrations at arbitrary spacetime points, C? is a pre-calculated vector
listing concentrations predicted in the absence of any net production (i.e., when R = 0 and accounting for
initial and boundary conditions, Supplemental Fig. S.7), ||-||* denotes the squared norm of a vector (i.e.,
the sum of squares of all its components) and E(R.) denotes the function to be minimized by appropriate
choice of R. The matrix T maps net production rates on the fitting grid to concentrations on the same
spacetime points as the data, and is pre-calculated using the differential equation (6). The first ||-||* term
in Eq. (7) corresponds to the deviation of the predicted concentrations from the data, while the second
IE ||2 term corresponds to the overall magnitude of the estimated net production rates. The “regularization
factor” A\ modulates the penalization of spurious rate estimates, balanced against achieving a better fit to
the data, and is chosen adaptively and separately for each metabolite depending on the data using a cross-
validation algorithm (Golub ef al., 1979). Hence, for a chosen A, the task of estimating net production rates
based on concentration data translates to an optimization problem, which can be solved numerically using
linear algebra software (Supplement S.4). Because all data points C are used concurrently to fit the full
spatiotemporal rate profile R, this method is more robust against measurement errors than previous methods
that only use data from a single time point at a time (Berg et al., 1998; Lam et al., 2011; Lettmann ef al.,
2012; Louca et al., 2016).

We emphasize that the resolution and placement of the fitting grid must be chosen carefully to avoid
the risk of overfitting. Indeed, the number of spacetime points on the fitting grid dictates the number of
fitted free parameters, and hence the fitting grid must be much coarser than the concentration data C. At
the same time, the fitting grid should capture the major variations in R over space and time, as indicated
in the concentration data. Hence, the fitting grid should be densest in those spacetime regions where R is

suspected to vary most and where, ideally, concentration measurements are also densest. The latter constraint
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underscores the importance of carefully choosing the times and depths targeted by oceanographic surveys.
In practice, the fitting grid may need to be revised through trial and error and using expert knowledge of the
system, for example where substantial oscillations in the estimated rates are obviously spurious. A common
and useful difference between spurious and true variations in the estimated R is that the former tend to be

much more sensitive to small variations in the fitting grid.

2.3 Metabolite fluxes in Cariaco Basin

We used the above ILTM approach to estimate net in situ production rates of several important dissolved
metabolites in the Cariaco Basin sub-euphotic water column, using concentration time series spanning depths
150-900 m and years 2001-2014 (Fig. 2A-F). In addition to production rate estimates, we also estimated
vertical metabolite flux rates from the bottom (depths>900 m) and from the overlying waters (depths<150 m)
into the sub-euphotic zone and into the redoxcline. Estimated net metabolite production rates, interpolated
between grid points, are shown in Fig. 3. The agreement between the measured metabolite concentrations
and those predicted based on the estimated net production rates was generally good, with a fraction of ex-
plained variance (2) between 0.878 and 0.973 depending on the metabolite (Fig. 2). The main features not
captured by the fitted models are rapid fluctuations constrained within small depth intervals, potentially orig-
inating from occasional lateral water intrusions (Scranton et al., 2014; Muller-Karger et al., 2019), as well
as seasonally driven variations in oxygen and nitrate concentrations (Fig. 2). In contrast, the fitted models
accurately capture major decadal trends, most prominently seen in the sulfide and methane profiles (Figs.
2C,E). The inability of the fitted models to capture rapid transient small-scale fluctuations stems from two
fundamentally information-theoretical limitations: First, the spatiotemporal resolution of the available data
imposes a bound on the resolution of the fitting grid on which R can be independently estimated, and greater
grid resolutions would substantially increase the risk of overfitting. Second, the estimation of R mathemati-
cally corresponds to an inversion (specifically, a deconvolution) of the diffusion process, and hence tends to
amplify high-frequency noise in the data; the amplified noise manifests as spurious rapid oscillations in the
estimated rates that are hard to distinguish from real fluctuations (Steinkamp, 2011; Lettmann et al., 2012).
The temporal resolution of our estimates is thus constrained by the time scales associated with diffusive
mixing in Cariaco Basin which, based on the typical travel times of diffusing particles between the bottom
boundary and the redoxcline, are in the order of ~2.4 years (Supplement S.2). Thus, estimated metabolic

rates at any time point should be seen as local temporal averages over those time scales.

Our estimates clearly indicate a production of nitrate near the top (depths 150 m—250 m) and its consump-
tion in the immediately underlying layers (250-300 m, Figs. 3A,B). The weak apparent production of oxygen
estimated near the top is likely due to advective (e.g., lateral) transport and/or estimation error, rather than
actual in situ production at those depths. When integrated across all depths, estimated in sifu nitrate pro-
duction near the top almost exactly matches the in sifu consumption of nitrate immediately below, whereas
most of the oxygen consumed in the redoxcline originates from much shallower depths (<150 m, summaries
in Table 1). These observations are not surprising, since the main sources of oxygen are the atmosphere

and primary production at the surface, while nitrate is likely largely produced by nitrifiers throughout the
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oxycline wherever ammonium is available and used at depth mostly as an electron acceptor for respiration
(Scranton et al., 2014; Cernadas-Martin et al., 2017; Taylor et al., 2018). Using negative values of R as an
estimate of gross consumption rates, and integrating over all depths, we estimate a gross oxygen consumption
of ~13 mmol - m~2 - d~'and a gross nitrate consumption of ~2.6 mmol - m~2 - d~'on average, indicating
that oxygen is a more important terminal electron acceptor in this system than nitrate. Major reductants such
as hydrogen sulfide, ammonium and methane diffuse upwards from the bottom layers into the redoxcline
where they are largely consumed (Figs. 3C,D,E). The biologically driven flux of electrons from upward dif-
fusing electron donors onto downward diffusing electron acceptors, fuels chemolithoautotrophic microbial
activity within the redoxcline (Figs. 4A) and sustains high prokaryotic cell densities (Fig. 4D; Taylor et al.,
2006). When integrated (summed) over all considered depths, we estimate an average consumption rate of
11 mmol-m~2-d~! for sulfide, 4.7 mmol -m~2-d~! for ammonium and 3.3 mmol -m~2-d~! for methane,
where all area-specific quantities reported here and below are normalized to the basin area at depth 150 m for
ease of comparison. The bulk of sulfide, ammonium and methane consumption was found to occur within

the redoxcline (overviews in Table 1 and Supplemental Tables S.1 and S.2).

Our estimated sulfide and methane consumption rates are much greater than those estimated by previous
studies (~0.1-1.3 mmol - m~2 - d~!for sulfide; Taylor et al., 2001; Li et al., 2012b; Taylor et al., 2018 or
~0.04-0.07 mmol - m~2 - d~ for methane; Ward ez al., 1987; Li et al., 2012b), especially when considering
that these previous values would be further reduced after accounting for the smaller basin area at the depths
where they were measured (compared to 150 m). This disagreement can be largely explained by the lower
diffusivities assumed or estimated in these studies; these studies do acknowledge the great uncertainty in
their diffusivity estimates. Our work thus provides a possible explanation for a heavily discussed apparent
“conundrum”, whereby sulfide and other electron donor fluxes estimated for Cariaco Basin appeared too low
to explain measured dark carbon assimilation (DCA) rates (Taylor et al., 2001; Li et al., 2012b; Jost, 2012; Li
et al.,2012a). For example, sulfide fluxes into the redoxcline estimated by Li ef al. (2012b) are about 50 times
lower than ours; assuming a stoichiometric ratio of 1 mol C fixed per mol HS oxidized, Li et al. estimated
that only 0.2—4.2% of the depth-integrated DCA rate could be explained by sulfide fluxes or, alternatively, that
212 mol-C had to be assimilated per mol-H»S oxidized on average. According to our sulfide consumption
rate estimate (11 mmol - m~2-d~! on average) and depth-integrated DCA rates (31.6 mmol — C-m~=2-d~!
on average, Fig. 4A and Taylor et al., 2018), and assuming that sulfide (eventually oxidized to sulfate) is the
major source of energy for primary production in the redoxcline (Li et al., 2012b; Taylor et al., 2018), we
estimate an average system-wide yield factor of ~2.9 mol C fixed per mol sulfide oxidized. This estimate
is still higher than yield factors previously obtained from laboratory cultures of sulfide oxidizers (0.14-0.42
mol C fixed per mol HyS; Tuttle and Jannasch, 1979; Kelly, 1990). One explanation may be that energy
limitation in Cariaco Basin’s stagnant sub-oxic waters selects for oligotrophic microorganisms, capable of
more efficient substrate use than laboratory isolates. Indeed, the energy requirements and efficiencies of
various carbon fixation pathways vary widely, depending on the organisms and ecological niches filled (Bar-
Even et al., 2011; Berg, 2011; Klatt and Polerecky, 2015). If we follow the thermodynamic arguments by Li
et al. (2012b), then sulfide-oxidizing chemolithoautotrophic communities in Cariaco Basin may be capable

of fixing up to 6.6 mol-C per mol-H»S, well above our estimated yield factor. Further, since we ignored the
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contribution of other electron donors such as ammonium and methane, our estimated yield factor is probably
itself an overestimate of the true sulfide-specific yield factor. We also emphasize that this yield factor is an
empirical average property of the entire microbial system during the considered time period, and may vary
over depth and time depending on environmental conditions and biological interactions. The limited temporal
resolution of ILTM-estimated sulfide consumption rates, compared to the rapidly fluctuating measured DCA

rates (Fig. 4A), currently hinders a meaningful assessment of the variability of this yield factor.

Most of the sulfide, ammonium and methane input into the system (i.e., via diffusion or in sifu production)
can be attributed to diffusion from the bottom boundary (91%, 95% and 97%, respectively), potentially
produced near or in the underlying sediments. Our estimates suggest that some hydrogen sulfide is also
produced within the water column (depths ~600-900 m), consistent with the previous detection of sulfate-
reducing bacteria in sinking particles at anoxic depths (Suter et al., 2018), although some of the sulfide
sources may actually be sulfide diffusing out of the sediments on the basin’s side walls. The contribution
of in situ sulfide sources to overall sulfide fluxes into the redoxcline is relatively small (~10%) and has
decreased in the latter years, based on the estimated ratio of in sifu produced versus in situ consumed sulfide.
A relatively minor contribution of in situ sulfide sources is consistent with previous hypotheses (Scranton
etal., 1987; Ho et al., 2004). We also found that the majority of phosphate input (gross in situ production +
influx across the boundaries) is due to diffusion from the bottom boundary (~65%). This phosphate influx
from the bottom may partly originate from the remineralization of organic matter in the sediments. Indeed,
the estimated ratio of time-averaged ammonium influx vs. phosphate influx from the bottom is ~17:1, closely
resembling typical stoichiometric ratios of particulate organic matter in coastal marine ecosystems (17:1 on

average; Sterner et al., 2008).

Below the oxic zone, nitrate is presumably used as a terminal electron acceptor by heterotrophic and/or
lithotrophic prokaryotes (Scranton et al., 2014; Rodriguez-Mora et al., 2015), fueling complete denitrification
to No (Montes et al., 2013) and/or partial denitrification to intermediates such as nitrite. Since nitrite rarely
accumulates below 150 m (Supplemental Fig. S.10), any produced nitrite appears to be re-oxidized to nitrate,
further reduced by denitrifiers, or used to anaerobically oxidize ammonium (anammox). The occurrence of
denitrification and anammox would be consistent with the reduced ratios of dissolved inorganic nitrogen to
phosphorus (N/P) observed in the redoxcline (Muller-Karger et al., 2019), the detection of bacteria capable
of various denitrification steps and anammox (Rodriguez-Mora et al., 2015; Cernadas-Martin et al., 2017;
Taylor et al., 2018), and similar observations in other oxygen-depleted water columns (Lam and Kuypers,
2011; Lam et al., 2011; Ulloa et al., 2012). Given that sulfide oxidation spatially overlaps substantially
with nitrate consumption (Fig. 4C), it is probable that nitrate is at least partly used as a terminal electron
acceptor for the oxidation of various sulfur compounds, a process observed in other oxygen-depleted regions
of the ocean (Canfield et al., 2010; Schunck et al., 2013; Louca et al., 2016; Rogge et al., 2017). Indeed,
the Gammaproteobacterial clades BS-GSO2 and SUPOS5, members of which are frequently implicated in
sulfide oxidation and denitrification in oxygen-poor marine systems (Lavik et al., 2009; Walsh et al., 2009;
Fuchsman et al., 2012; Glaubitz et al., 2013; Shah et al., 2017; Rogge et al., 2017), have been observed at

high relative abundances in the Cariaco Basin redoxcline (Rodriguez-Mora et al., 2015; Taylor et al., 2018;
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Suter et al., 2018).

Our estimates reveal a weak but relatively steady consumption of phosphate (0.30 mmol - m~2 - d~! on
average) between depths ~150-250 m, and a similarly steady production of phosphate (0.17 mmol-m~2-d~*
on average) between depths ~250-350 m (Fig. 3F). This spatially adjacent consumption and production
of phosphate leads to the appearance of a subtle phosphate minimum and maximum around the upper and
lower half of the redoxcline, respectively. This pattern has been previously partly attributed to a “metal redox
shuttle”, whereby phosphate is scavenged during ferrous and manganese oxide formation in the redoxcline
and subsequently redissolved at depth (Dellwig et al., 2010; McParland et al., 2015; Muller-Karger et al.,
2019). Prokaryotic chemolithoautotrophic activity may also partly drive phosphate consumption within the
redoxcline, as suggested by McParland et al. (2015) and, in turn, the phosphate production seen immediately
below may be due to the remineralization of sinking biomass. The relative importance of such a “biomass
shuttle” to the phosphate pool has so far been unclear. Assuming an atomic C:P ratio of 41 for prokaryotic
cells (Vrede et al., 2002), and an average dark carbon assimilation rate of 5.25 mmol — C- m~2-d~! between
depths 150-250 m (Fig. 4A), one would predict a chemolithoautotrophy-driven phosphate consumption rate
of 0.13 mmol - m~2 - d~!. This prediction is about half of the estimated phosphate consumption rate within
that depth range. Hence, a biomass shuttle could only partly explain the phosphate sink and source within

the redoxcline, further emphasizing the importance of a putative metal redox shuttle.

We find that the consumption of hydrogen sulfide, methane and, to a lesser extent, ammonium and phos-
phate has gradually shifted towards shallower depths, and this shift is particularly apparent when comparing
times before the year 2010 and afterwards. We also estimate that in situ sulfide production at depth substan-
tially decreased over time (Fig. 3C). After 2009, the estimated amount of sulfide produced in situ became
negligible (<1%) compared to sulfide diffusing from the bottom (summaries in Supplemental Table S.1).
Concurrently, sulfide concentrations near the bottom (~1300 m depth) have increased steadily over time
(Supplemental Fig. S.11), potentially due to increased production in the underlying sediments, leading to
higher diffusive fluxes across the bottom boundary (~10 mmol - m~2 - d~'on average before 2010 and
~16 mmol - m~2 - d~'afterwards, Supplemental Fig. S.12). This might explain why, despite a decrease of
in situ sulfide production at depth, net sulfide fluxes into the redoxcline increased (~7.8 mmol-m~2-d~'on
average before 2010 and ~9.7 mmol - m~2 - d~!afterwards). Interestingly, the upward shift of the redoxcline
and the drop of in situ sulfide production coincide with major shifts in the composition of the sulfur oxidizing
community after 2009 (Taylor et al., 2018). Whether the above changes in nutrient fluxes actually affected,

and/or were affected by, changes in the redoxcline-inhabiting community remains unclear.

Three words of caution are warranted. First, due to the limited spatial resolution of our data (and thus,
our rate estimates) it is possible that the sinks and sources of metabolites are confined to narrower depth
intervals than estimated. Consequently, putatively coupled electron donors (such as sulfide) and electron ac-
ceptors (such as oxygen or nitrate), seemingly consumed within the same zone, may in reality be consumed
within distinct zones and may only be indirectly coupled through redox shuttles such as manganese and iron
(Taylor et al., 2001; Percy et al., 2008). Second, with the data at hand, at each location we can a priori only
estimate the local net production rate R (gross production minus gross consumption rate), but not the gross
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production and gross consumption rates separately. It is in principle possible that in some locations some
metabolites are both produced and consumed concurrently by separate processes, as observed for sulfate and
sulfide in other marine anoxic systems (Canfield et al., 2010). Third, the fact that our estimated rate profiles
represent locally averaged net rates implies that, a metabolite produced and consumed in distinct zones but
nevertheless in close proximity, may be subject to higher turnover rates than can be inferred from our rate
profiles. For example, it is possible that nitrate produced by nitrification is rapidly consumed by denitrifica-
tion in close proximity immediately below (Cernadas-Martin et al., 2017), and that we thus underestimated

nitrate turnover rates in the redoxcline.

2.4 Conclusions

We have described a computational approach for estimating vertical fluxes and in situ consumption/production
rates of dissolved chemical compounds over space and time, via inverse transport modeling. Our approach
builds upon established mathematical concepts and has been optimized for water columns or sediments with
essentially 1-dimensional geochemical structure, and for which chemical concentrations have been measured
at arbitrary spacetime points. We emphasize that despite the apparent simplicity of our models for Cariaco
Basin, which assume that eddy diffusion is the dominant mode of salt and metabolite transport in the con-
sidered depth interval, our models manage to reproduce the salinity and metabolite concentration data very
well (72=0.982 for salinity, 72=0.878-0.973 for metabolites).

We reconstructed vertical fluxes and in situ consumption/production rates of several biologically impor-
tant metabolites in the Cariaco Basin sub-euphotic water column over the course of 14 years. This allowed
us to assess the relative importance of in situ production in the water column versus supply from (or near)
the underlying sediments for various reductants fueling microbial productivity in the redoxcline. By inde-
pendently estimating the diffusivity in Cariaco Basin over depth and time, rather than relying on parameter
values from other marine systems, we further constrained an important source of uncertainty in previous flux
estimates (Ho et al., 2004; Li et al., 2012b; Samodurov et al., 2013; Taylor et al., 2018). This revealed that
fluxes of various electron donors and acceptors, such as hydrogen sulfide and methane, into the redoxcline
are about two orders of magnitude greater than previously estimated (Taylor ef al., 2001; Li et al., 2012b;
Taylor et al., 2018). Our work thus provides a possible resolution to the long unexplained apparent mis-
match between electron donor fluxes and dark carbon assimilation rates in Cariaco Basin (Li et al., 2012b;
Jost, 2012; Li et al., 2012a). We also estimated that chemolithoautotrophic activity and remineralization of
biomass within the redoxcline only partly explains the phosphate minimum and maximum observed within
the redoxcline, thus providing evidence for the existence of an alternative phosphate shuttle. Finally, our work
demonstrates that, using appropriate mathematical tools, a wealth of seemingly convoluted information on

microbial activity can be extracted from standard chemical concentration time series.
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3 Methods

3.1 Cariaco data

Chemical and physical data from Cariaco station A (coordinates 10.5°N, 64.66°W) were downloaded on
April 28, 2018 from the Cariaco Basin time series project website (http://www.imars.usf.edu/cariaco)
for station CARIACO. Additional sources of CARIACO chemical data are the NOAA’s National Centers
for Environmental Information (NCEI), the Ocean Carbon Data System, the US Biological and Chemical
Oceanography Data Management Office (BCO-DMO) and the NASA SeaBASS database. Data collection
methods have been described previously (Thunell et al., 2000; Li et al., 2008; Scranton et al., 2014; Muller-
Karger et al., 2019). Additional hydrogen sulfide concentration data, recently published by Muller-Karger
et al. (2019), were obtained directly from the authors. The lateral area of the eastern basin (within which
station CARIACO is located) at various discrete depths was taken from Samodurov et al. (2013, Table 1),
and was linearly interpolated between those depths (Supplemental Fig. S.1).

Inverse linear transport modeling (ILTM) was used to estimate net production rates (2 in Eq. 6) of oxygen,
nitrate, hydrogen sulfide, ammonium, methane and phosphate (dissolved pools). These compounds (referred
to here as “metabolites’) were chosen due to their biological importance within the considered depth interval,
their relatively good sampling resolution and spatiotemporal coverage, and the fact that their transport across
depth can be largely described by eddy diffusion. Nitrite was not included in ILTM because nitrite rarely
accumulates to significant levels (Supplemental Fig. S.10); hence, estimated net production rates would be
almost zero and dominated by errors despite potentially intense cryptic nitrite fluxes (e.g., as an intermediate

of nitrification or denitrification).

3.2 Estimating diffusivity in Cariaco Basin

Salinity and temperature profiles were LOESS-smoothened at degree 1 and a span of 10% to reduce noise.
Salinity, temperature and pressure profiles were used to calculate the buoyancy frequency (V) at each depth
and time point, using the R package oce (Kelley, 2014). To reduce noise in the buoyancy frequency stem-
ming from the numerical differentiation of noisy data, the buoyancy frequency was smoothened using a
Savitzky-Golay filter of degree 2 along the time axis (Savitzky and Golay, 1964). For any given choice of the
parameters « and p (Eq. 1), we simulated the salinity profile over depth and time by solving the differential
equation (2), using the pdepe function in MATLAB®. The initial profile was set to the measured salinity
profile at the first simulation time point (Jan. 1, 2001). Boundary conditions at the top (150 m) and bot-
tom boundary (900 m) were of Dirichlet type, with the imposed value at each time point and each boundary
being the current measured salinity at the boundary’s depth. Salinities between data points were bilinearly

interpolated wherever needed for the initial condition and boundary conditions.

We did not account for lateral intrusions of denser, oxygenated water from outside, which are known to

occur occasionally in Cariaco Basin (Scranton et al., 2014; Taylor et al., 2018). Salinity and temperature

14


http://www.imars.usf.edu/cariaco
https://doi.org/10.1101/625087
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625087; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

profiles during the time period and depth range considered here do not show obvious signs of foreign water
intrusions (Supplemental Figs. S.2A,B). Similarly, oxygen concentration profiles show only weak signs of
potential intrusions of oxygenated water at depth (Fig. 2A). It is in principle possible that intrusion events,
the subsequent re-equilibration of density structure and the consumption of introduced oxidants all occur
at much shorter time scales than resolved by the monthly time series. However, the good agreement of the
fitted diffusivity models with the salinity data (> = 0.982, Supplemental Fig. S.3) and the metabolite
concentration data (r2=0.878-0.973) further suggests that lateral water intrusions had little effect on the salt

and metabolite budgets within the considered spatiotemporal domain.

The predicted salinity profile S was compared to the measured salinity data (.S) by means of the fraction

of explained variance (r?), calculated as:
1 n
2 & 2
=1—-— E Si —S; 8
r V n i:1( I3 7,) B ( )

where ¢ iterates over all available salinity data points (n=111,920), S; is the salinity predicted for the same
spacetime point as S; and V is the sample variance of the measured salinities .5;. The power law parameters
« and p were gradually fitted until 72 reached a maximum, using the “interior-point” optimization algorithm
encoded by the function fmincon in MATLAB®. To avoid non-global local optima, we repeated the fitting
200 times, each time with randomly chosen initial values for o and p. The distribution of fitted parameters,
as a function of the maximized r2, is shown in Supplemental Fig. S.13. The parameter set corresponding to
the highest 72 was taken as the final estimate. The same approach was also used to fit the Munk-Anderson
diffusivity model (Eq. 3), as well as the combined power-law + Munk-Anderson model (sum of Egs. 1 and
3). For details on the “anchored” diffusivity estimate (Eq. 4), performed here solely for sanity checking
purposes, see Supplement S.1. For the subsequent ILTM analysis, we used the diffusivity obtained from the

fitted power-law model.

3.3 Inverse linear transport modeling

Mathematical background and computational details on our ILTM approach are provided in Supplement S.4.
Briefly, the differential equation (6) was used to calculate a linear mapping (represented as a matrix T, see
Eq. 7) between any given net production rates (on a finite grid of spacetime points) and the corresponding
predicted volumetric concentration profiles (on the same spacetime points as the concentrations measure-
ments). The spatiotemporal grid on which R was estimated (“fitting grid”’) was chosen separately for each
metabolite to account for differences in sampling resolution and spatiotemporal variability of metabolite con-
centrations, and such that its size was substantially lower than the number of available data points (overview
in Supplemental Fig. S.6 and Supplemental Table S.3). In all cases, the number of considered data points

was more than 10 times the size of the fitting grid.

Prior to any prediction, the net production rates on the fitting grid were interpolated onto a high-resolution

grid (“refined grid”) using an interpolation matrix I, which maps rates on the fitting grid to rates on the

15


https://doi.org/10.1101/625087
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/625087; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

refined grid. Because our numerical differential equation solver only returns solutions on a rectangular spa-
tiotemporal grid (“prediction grid”), an additional interpolation is performed from the prediction grid onto
the spacetime points of the data (using a suitable matrix PP). Hence, T is composed of 3 matrices, T = P-G I,
where G encodes the “Green’s function” (sometimes called “fundamental solution”) of the differential equa-
tion (Dufty, 2001). Each row in the matrix G corresponds to the solution of the differential equation (6)
evaluated at a specific point on the prediction grid, if the net production rate was zero in all but a single point
on the refined grid. The resolutions of the refined grid and the prediction grid were chosen sufficiently high to
ensure a high accuracy of the solutions of the differential equation. The estimation of net production rates on
the fitting grid can be formulated as a least-squares optimization problem (minimizing the expression in Eq.
7), which we solved using linear algebra routines in MATLAB® (MATLAB, 2010). For each metabolite,
the fraction of variance explained by the predicted concentrations (1-2) was calculated as described above for

the salinity model.

3.4 Estimation of depth-integrated fluxes and area-specific quantities

In all cases, depth-integration of rates and concentrations took into account the variation of the lateral (cross-
sectional) basin area with depth (Supplemental Fig. S.1), and all depth-integrated quantities (e.g., production
rates) and area-specific quantities (e.g., fluxes through the top and bottom boundaries, or fluxes into the
redoxcline) are normalized with respect to the basin area at depth 150 m. For example, if R(t,z) is the
estimated net production rate of some metabolite, then its depth-integrated value within some depth-interval

[21, 22|, averaged over some time interval [¢1, 2], was defined as:

= 1 t2 z2 A(z)
R = t2t1/t1 dt /Z1 dzR(t,z)A(zo), 9

where A(2) is the lateral basin area and z,=150 m. Thus, in this example, R is the hypothetical area-specific
vertical flux one would observe at depth z, if the total number of metabolite molecules produced between
depths 27 and zo (integrated over all latitudes/longitudes) was equal to the number of molecules vertically
transported past depth z,. The depth z,=150 m was chosen as reference because it is the approximate max-
imum depth at which Cariaco Basin connects to the ocean, thus marking the Basin’s “upper boundary”,
although any other depth could have been used instead.

Net metabolite flux rates across the top (150 m) and bottom boundary (900 m) were estimated from the
local metabolite concentration gradients and the local diffusivities. Gross influx rates and gross outflux
rates through each boundary were then estimated by using the positive or negative part of the net flux rates,
as appropriate. Net in situ production rates were estimated via ILTM fitting, as described above. Gross
production rates or gross consumption rates were then estimated by taking the positive or negative part of
the net production rates, as appropriate. Note that this approach may underestimate actual production and
consumption rates, if these occur concurrently at the same depth, since ILTM can a priori only reveal net rates.
Estimated in situ gross production and gross consumption rates were depth-integrated using the trapezoid

rule. A metabolite’s mean total input rate (R;, in mmol - m~2 - d~ 1) was defined as the sum of the time-
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averaged depth-integrated estimated gross production rate plus its time-averaged gross influx rates at the top
and bottom boundaries (all normalized to the basin area at depth 150 m). Similarly, a metabolite’s mean total
output rate (R,) was defined as the sum of the time-averaged depth-integrated estimated gross consumption
rate plus its time-averaged gross outflux rates at the top and bottom boundaries. A metabolite’s total content
(X, in mol-m~2) was calculated by integrating the metabolite’s measured concentration over the entire depth
interval while accounting for the variable lateral (cross-sectional) basin area, and subsequently averaged
over time. The mean residence time of a metabolite in the considered water column (depths 150-900 m)
was estimated from the non-time-averaged total input and output rates (R;(¢) and R,(t)) and the non-time-
averaged total content (X (¢)), based on a non-steady-state box model (see Supplement S.3). We mention
that, in the case of steady state the mean residence time predicted by the box model would be X/R,; this
simplified formula was used previously by Li er al. (2012b) under the implicit assumption of steady state.

All estimates are listed in Table 1 and Supplemental Tables S.1 and S.2.

Data Availability

All raw data used in this article have been published previously (Scranton et al., 2014; Muller-Karger et al.,
2019) and are publicly available at the Cariaco Basin Time Series project website (http://www.imars.

usf.edu/cariaco).
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Our MATLAB® code for estimating diffusivity based on salinity profiles and for estimating metabolite fluxes

via ILTM is available online at: www.loucalab.com/archive/CariacoMetabolic
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Figure 1: Estimated diffusivity in Cariaco Basin. (A) Diffusivity in Cariaco Basin (station CARIACO) over depth
and time, estimated based on the buoyancy frequency, using the power law in Eq. (1) and the fitted parameters o =
0.0001316 and p = 1.7433. (B) Time-averaged diffusivity depth profile, calculated from A. (C) Estimated diffusivity
depth-profile, estimated using Eq. (4) and assuming that D is independent of time.
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Figure 2: Metabolite concentrations in Cariaco Basin (data versus fitted models). A-F: Measured metabolite
concentrations in Cariaco Basin (station CARIACO) over depth and time (A: oxygen, B:nitrate, C:hydrogen sulfide,
D:ammonium, E:methane, F:phosphate). Black dots denote data points; contour plots are bilinear interpolations be-
tween data points. Data sources are described in the Methods. G-L: Predicted metabolite concentrations, based on the
net production rates estimated via ILTM. Fractions of explained variance (r2), when compared to the data, are indicated
in the figures.
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Figure 3: Estimated net metabolite production rates in Cariaco Basin. Volume-specific net metabolite production
rates in Cariaco Basin (station CARIACO) over depth and time (contour plots) or averaged over time (depth profiles),
estimated via inverse linear transport modeling (A: oxygen, B:nitrate, C:hydrogen sulfide, D:ammonium, E:methane,
F:phosphate). In the contour plots, red values correspond to net production, blue values correspond to net consumption,
white corresponds to zero net production/consumption. Dashed lines at zero in the time-averaged depth profiles are

shown for reference. For estimated gross production and gross consumption rates, see Supplemental Figs. S.8 and S.9,
respectively.
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Figure 4: Microbial productivity measured in Cariaco Basin. (A) Dark carbon assimilation (DCA) rate measured
in Cariaco Basin (carbon fixed per volume per time) across depth and time. Black dots indicate original data points; the
contour plot is obtained via bilinear interpolation. (B) Measured DCA rate, averaged over time (years 2001-2014). (C)
Estimated net sulfide and nitrate consumption rates, averaged over time (reproduced from Figs. 3B,C). (D) Measured
prokaryotic cell densities (cells per volume) across depth and time. (E) Measured prokaryotic cell densities, averaged
over time. Data sources are described in the Methods. For similar figures showing the full water column (including
depths <150 m and >900 m) see Supplemental Fig. S.5.
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Table 1: Estimated mean metabolite fluxes in Cariaco Basin. Estimated in situ production and consumption rates,
as well as influx and outflux rates across the top (150 m) and bottom boundary (900 m). The total content is depth-
integrated, averaged over the considered time interval (years 2001-2014) and measured in mol - m~2. All rates are
depth-integrated where applicable, averaged over the considered time interval, and measured in mmol - m~—2 - d .
Depth-integrated or area-specific quantities take into account the variation of the lateral (cross-sectional) basin area
with depth, and are normalized to the basin area at depth 150 m to facilitate comparisons. Mean residence times
were estimated based on the depth-integrated concentrations and gross input/output rates, using a non-steady-state box
model. See Methods for details. For analogous summaries constrained to after 2009, see Supplemental Table S.1. For
analogous summaries constrained to the redoxcline (depths 200-400 m), see Supplemental Table S.2.

variable O, NO2Z HS NH] CH; PO3
total content (depth-integrated) 3.5 0.81 11 4.7 2.1 1.3
gross production rate (depth-integrated) 24 2.7 1.1 <0.1 <0.1 0.17
gross consumption rate (depth-integrated) 13 2.7 11 4.7 33 0.3
net influx rate at top (150 m) 7.1 -045 <0.1 0.21 <0.1 -0.077
gross influx rate at top (150 m) 7.3 <0.1 0.12 0.21 <0.1 <0.01
gross outflux rate at top (150 m) <0.1 049 <0.1 <0.1 <0.1 0.08
net influx rate at bottom (900 m) <0.1 <0.1 13 53 3.6 0.31
gross influx rate at bottom (900 m) 0.13 <0.1 13 5.3 3.6 0.31
gross outflux rate at bottom (900 m) 0.17 <0.1 <0.1 <0.1 <0.1 <0.01
net influx rate at top+bottom 7 -0.43 13 5.5 3.7 0.23
total gross influx+production rate 9.8 2.8 14 5.5 3.8 0.48
total gross outflux+consumption rate 14 3.2 11 4.7 33 0.38
mean residence time (years) 0.67 0.69 2.6 2.7 1.7 9.1
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