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Abstract Recent reports have identified differences in the mutational spectra across human
populations. While some of these reports have been replicated in other cohorts, most have been

reported only in the 1000 Genomes Project (1kGP) data. While investigating an intriguing putative

population stratification within the Japanese population, we identified a previously unreported

batch effect leading to spurious mutation calls in the 1kGP data and to the apparent population

stratification. Because the 1kGP data is used extensively, we find that the batch effects also lead to

incorrect imputation by leading imputation servers and a small number of suspicious GWAS

associations. Lower-quality data from the early phases of the 1kGP thus continues to contaminate

modern studies in hidden ways. It may be time to retire or upgrade such legacy sequencing data.
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Introduction
Batch Effects in Aging Reference Cohort Data
The last 5 years have seen a drastic increase in the amount and quality of human genome sequence

data. Reference cohorts such as the International HapMap Project (International HapMap Con-
sortium, 2005), the 1000 Genomes Project (1kGP)(1000 Genomes Project Consortium, 2010, 2012;
Consortium et al., 2015), and the Simons Genome Diversity project (SGDP)(Mallick et al., 2016),
for example, have made thousands of genome sequences publicly available for population and

medical genetic analyses. Many more genomes are available indirectly through servers providing

imputation services (McCarthy et al., 2016) or summary statistics for variant frequency estimation
(Lek et al., 2016).
The first genomes in the 1kGP were sequenced 10 years ago (van Dijk et al., 2014). Since

then, sequencing platforms have rapidly improved. The second phase of the 1kGP implemented

multiple technological and analytical improvements over its earlier phases (1000 Genomes Project
Consortium, 2012; Consortium et al., 2015), leading to heterogeneous sample preparations and
data quality over the course of the project.

Yet, because of the extraordinary value of freely available data, early data from the 1kGP is still
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widely used to impute untyped variants, to estimate allele frequencies, and to answer a wide range

of medical and evolutionary questions. This raises the question of whether and how such legacy

data should be included in contemporary analyses alongside more recent cohorts. Mafessoni et al.

recently identified batch effects in the 1kGP by looking for individuals with excess LD among distant

variants. (Mafessoni et al., 2018). Here we point out how these and additional unreported batch
effects in the early phases of the 1kGP lead to incorrect genetic conclusions through population

genetic analyses and spurious GWAS associations as a result of imputation using the 1kGP as a

reference.

Mutational Signatures
Different mutagenic processes may preferentially affect different DNA motifs. Certain mutagens

in tobacco smoke, for example, have been shown to preferentially bind to certain genomic motifs

leading to an excess of G to T transversions (Pfeifer et al., 2002; Pleasance et al., 2010). Thus,
exposure of populations to different mutational processes can be inferred by considering the DNA

context of polymorphism in search of signatures of different mutational processes (Alexandrov
et al., 2013; Shiraishi et al., 2015). Such genome-wide mutational signatures have been used as
diagnostic tools for cancers (e.g., Alexandrov et al. (2013); Shiraishi et al. (2015)).

In addition to somatic mutational signatures, there has been recent interest in population

variation in germline mutational signatures which can be revealed in large sequencing panels.

In 2015, Harris reported 50% more TCC → TTC mutations in European populations compared
to African populations, and this was replicated in a different cohort in 2017 (Harris, 2015; Harris
and Pritchard, 2017;Mathieson and Reich, 2017). Strong population enrichments of a mutational
signature suggests important genetic or environmental differences in the history of each population

(Harris, 2015; Harris and Pritchard, 2017). Harris and Pritchard further identified distinct mutational
spectra across a range of populations, which were further examined in a recent publication by

Aikens et al. (Harris and Pritchard, 2017; Aikens et al., 2019).
Another signature, *AC→ *CC, has been observed at higher frequency in East Asians compared

to Africans in the 1kGP and the SGDP (Aikens et al., 2019; Harris and Pritchard, 2017). These two
studies also found heterogeneous frequency of this signature among 1kGP Japanese individuals.

This heterogeneity is intriguing because differences in germline signatures accumulate over many

generations. A systematic difference within the Japanese population would suggest sustained

environmental or genetic differences across sub-populations within Japan with little to no gene

flow. This observation could not be reproduced in SGDP due to the small number of Japanese

samples (Aikens et al., 2019). We therefore decided to follow up on this observation by using
a newly sequenced dataset of Japanese individuals from Nagahama. While we were unable to

reproduce the mutational heterogeneity within the Japanese population, we could trace back the

source of the discrepancy to a technical artefact in the 1kGP data. In addition to creating biases in

mutational signatures, this artefact leads to spurious imputation results which have found their

way in recent publications and online resources.

The results section is organized as follows. We first attempt to reproduce the original signal and

identify problematic variants in the JPT cohort from the 1kGP. Next, we expand our analysis to the

other populations in the 1kGP and identify lists of variants that show evidence for technical bias.

Finally, we investigate how these variants have impacted modern genomics analyses.

Results
A peculiar mutational signature in Japan
Harris and Pritchard reported an excess of a 3-mer substitution patterns *AC→*CC in a portion of
the Japanese individuals in the 1kGP (Harris and Pritchard, 2017). Our initial goal was to determine
whether this signature could be explained by population structure or technological error. While

trying to follow up on this observation in a larger and more recent Japanese cohort from Nagahama,
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Figure 1. Suspicious mutations carried by individuals with low quality data have distinct mutational profiles,
reproduce poorly across studies, and are distributed across the genome. A Genome wide association of the
average quality of mapped bases Q for the 104 Japanese individuals included in the 1000 Genomes Project.

This GWAS identified 1034 SNPs associated to the average Q of SNPs mapped for an individual, with p < 10−6

(587 SNPs had p < 10−8.) B Joint frequency spectrum plot of the Japanese from the 1000 Genomes Project and
a more recent Japanese dataset from Nagahama. The plot is zoomed in on frequencies below 0.5 for clarity. The

size of blue dots are proportional to the number of variants in a given frequency bin that associate with Q in the

JPT. CMutation spectrum of the 1034 variants that associated with Q in the JPT(p < 10−6), compared to the

expectation from the distribution of all SNPs. The majority of the variants with significant associations to Q

have the *AC→*CC mutational pattern. There is also an enrichment in GA*→GG* and GC*→GG* mutations.
These three enrichments can be summarized as G**→GG*. Stars ( * ) indicate a significant deviation from the
expected mutational spectrum from all SNPs.
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Figure 2. Sampling and sequencing technologies over time in the 1000 Genomes Project. A The average quality
of mapped bases Q for each individual per population included in the 1000 Genomes Project. Populations are

ranked by mean sequencing date (the earliest sequencing date was used for individuals with multiple dates).

The shape indicates whether the individual was first released in Phase 1 or Phase 3 of the 1000 Genomes

project. B Sequencing technologies used over the course of the 1000 Genomes Project.

we did not find this particular signature. When comparing the allele frequencies between the

Japanese individuals from the 1kGP and this larger dataset, we observed a number of single

nucleotide polymorphisms (SNPs) private to one of the two groups (Figure 1). Given the similarity of

the two populations, this strongly suggests a technical difference rather than a population structure

effect. These mismatches were maintained despite only considering sites that satisfied strict quality

masks and Hardy-Weinberg equilibrium in both cohorts.

When mismatch sites are removed from the 1kGP data, the *AC→*CC signal disappears (Figure
1). To identify possible technical reasons for the difference, we performed regressions of the

prevalence of the *AC→*CC mutational signature against different individual-level quality metrics
provided by the 1kGP (see Figure S1). The average quality of mapped bases Q per individual stood

out as a strong correlate : Individuals with low Q show elevated rates of the signature. Thus,

sequences called from low-Q data contain variants that reproduce poorly across studies and exhibit

a particular mutational signature.

To identify SNPs that are likely to reproduce poorly across cohorts without having access to a

second cohort, we performed an association study in the JPT for SNPs that associate strongly with
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low Q (Figure 1A). Traditionally, genome wide association studies use genotypes as the independent

variable. Here we perform a genotype conditional association test (GCAT), where genotypes are

now the dependent variable that we predict using the continuous variable Q as the independent

variable (Song et al., 2015). We use logistic regression of the genotypes on Q and identify 587
SNPs with p < 10−8

and 1034 SNPs with p < 10−6
. While identifying putative low-quality SNPs to

exclude, using a higher p-value threshold increases the stringency of the filtering (i.e., excluding

SNPs with p < 10−6
is more stringent than excluding SNPS with p < 10−8

). The variants that are

associated to Q have a significant enrichment in *AC→*CC mutations, GA*→GG*, and GC*→GG*
mutations (Figure 1C). These three enrichments can be summarized as an excess of G**→GG* in
individuals with low Q. Statistical significance of these enrichment is computed using a chi-squared

test following Harris and Pritchard (2017).
Thus, this mutational signal is heavily enriched inQ-associated SNPs, but residual signal remains

in non-significant SNPs, presumably because many rare alleles found in individuals with low Q

remain unidentifiable using association techniques due to lack of power (Figure S2). The removal of

individuals with Q below 30 successfully removes the *AC→*CC signal enrichment in the Japanese,
however other signals identified by Harris and Pritchard appear unchanged including the continental

enrichment of *AC→*CC signal in East Asians compared to Africans as reported by Harris and
Pritchard and replicated in the SGDP (Figure S3 and S4). For population genetic analyses sensitive

to the accumulation of rare variants, the removal of individuals with low Q appears preferable

to filtering specific low-quality SNPs. For other analyses where quality of imputation matters,

identifying Q-associated variants may be preferable.

Identifying suspicious variants in the 1000 Genomes Project
The distribution of Q across 1kGP populations shows that many populations have distributions

of Q scores comparable to that of the JPT, especially populations sequenced in the phase 1 of the

project: sequencing done in the early phases of the 1kGP was more variable and overall tended to

include lower quality sequencing data (Figure 2 and Figure S5). This variability could result from

evolving sequence platform and protocols or variation between sequencing centres. By 2011, older

sequencing technologies were phased out, and methods became more consistent, resulting in

higher and more uniform quality.

We therefore performed the same reverse GWAS approach in all populations independently,

and similarly identified Q-associated SNPs in 23 of the 26 populations in the 1kGP, with the phase 1

populations being most affected, with on average four times as many significantly associated sites

compared to the phase 3 populations. Over 1,165 variants were independently associated to low Q

with p < 10−6
in each (Figure S6).

To build a test statistic to represent the association across all populations simultaneously, we

performed a simple logistic regression predicting genotype based on Q with the logistic factor

analysis (LFA) as an offset to account for population structure or Genotype-Conditional Association

Test (GCAT) as proposed by (Song et al., 2015). We also considered two alternative approaches to
account for confounders, namely using the leading five principal components, and using population

membership as covariates. These models were broadly consistent (See Figure S7).

This method identifies a total of 24,390 variants associated to Q distributed across the genome

with 15,270 passing the 1kGP strict mask filter (Figures S8, S9, S10 and S11). Most analyses below

focus on the 15,270 variants satisfying the strict mask, since these variants are unlikely to be filtered

by standard pipelines. To account for the large number of tests, we used a two-stage Benjamini &

Hochberg step-up FDR-controlling procedure to adjust the p-values using a nominal Type-I error

rate α = 0.01 (Benjamini et al., 2006). We tested SNPs, INDELs and repetitive regions separately as
they may have different error rates (Table 1). Lists of Q-associated variants and individuals with low

Q are provided in Supplementary Data.

Q-associated variants are distributed across the genome, with chromosome 1 showing an excess

of such variants, and other chromosomes being relatively uniform (Figure S12A). Chromosome
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1 shows strong enrichments in the *AC→*CC signal compared to other chromosomes despite
normalizing for the number of variants tested per chromosome (Figure S12B). At a 1Mb scale, we

also see rather uniform distribution with a small number of regions showing an enrichment for

such variants (Figure S12C). Three outlying 1Mb regions in chromosomes 1, 2 and 17 have over 30

Q-associated variants. Distribution of association statistics in these regions are provided in Figure

S13. By contrast, variants that do not pass the 1kGP strict mask are more unevenly distributed

across the genome (Figure S12D).

The mutational 3-mer substitution patterns of this list of variants from the GCAT model is

similar to the signature identified in the single population test of the 1kGP JPT in that there is an

enrichment in *AC→*CC. There is also an enrichment of mutations from TAC, TCT, and TGT to the
homonucleotide TTT (Figure S14).

A recent publication by Mafessoni et al. also identified a batch effect in the 1kGP using a method

that uses linkage disequilibrium rather than quality metrics to identify 19,196 suspicious variants

with 67% of them passing the 1kGP strict mask (Mafessoni et al., 2018) (Figure S15A). They identify
17,917 variants significantly associated to abnormal LD patterns that are not associated to Q. We

find that 1,279 ( 3% ) of the variants they identified are also in our list of suspicious variants and have

correlated p-values to those identified using the GCAT method. We also find 23,111 Q-associated

variants that are not associated to abnormal LD patterns. Interestingly, the variants identified my

Mafessoni et al. are not enriched in the mutational spectra described above (Figure S15B). These

results indicate that there may a multitude of batch effects in the 1kGP that can only be identified

using a suite of association tests.

Repeat Proportion Non-Repeat Proportion Total

SNP 3,369 0.53‰ 11,059 0.56‰ 14,428

INDEL 181 0.3‰ 657 0.66‰ 838

Total 3,550 11,716 15,270

Table 1. Number and proportion of Q-associated variants passing the 1000 Genomes Project strict mask per
category. Variants that are flagged by the 1000 Genomes Project nested repeat mask file were analyzed

separately for FDR calculation. SNPs and INDELs were also analyzed separately. A total of 15,270 are statistically

significantly associated to Q and pass the 1kGP strict mask. The grey text is the proportion of Q-associated

variants per category. The number of variants included in the analysis for SNPs, SNPs in repeat regions, INDELs

and INDELs in repeat regions are 19,846,786, 6,312,620, 1,770,315 and 586,342 respectively.

Spurious variants, biased genotypes, or cell line artefacts?
To assess whether Q-associated variants are spurious variants resulting from sequencing artifacts

or real variants exhibiting biased genotyping, we compare the original 1kGP sequence data to more

recent sequencing efforts using the same cell lines. Q-associated variants that do not reproduce

across sequencing experiments are likely the result of sequencing artifacts in the 1kGP. By contrast,

Q-associated variants that do reproduce across experiments could result from (recurrent) cell line

mutations or, more likely, from existing variants whose genotyping depends on Q. Finally, given our

nominal false discovery rate of α = 0.01, we expect approximately 1% ofQ-associated variants to be

false discoveries, i.e., variants that are not associated with Q and that should therefore reproduce

across experiments.

In 2017, Lan et al. resequenced 83 Han Chinese individuals from the 1kGP (Lan et al., 2017).
Among the 296 such variants that were Q-associated in single-population tests for the CHB or CHS,

only 6 are present in the resequenced data (Figure S16). This is slightly more but consistent with the

3 false positives predicted according to the α = 0.01 nominal false discovery rate. Thus the majority

of Q-associated variants in the CHB or CHS appear to be spurious variants.

We did a similar analysis using all variants identified in the GCAT model (rather than only variants

significantly associated toQ within the CHB and CHS). Of the 15,270Q-associated variants identified
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globally, 6,307 are polymorphic in the 1kGP for the 83 resequenced individuals (See Figure S17). The

vast majority of polymorphisms associated withQ are not present at all in the resequencing dataset,

suggesting that they are spurious variants. Five variants show differing frequencies between both

datasets and are likely explained by biased genotypes. Finally, 1,139 (or 18%) are present in the

resequenced data at comparable frequencies. Because this is higher than the false discovery rate,

we conclude that the cohort-wide GCAT test identifies predominantly spurious variants, but also

variants that have biased genotypes in populations other than the CHB/CHD.

Finally, among the 15,270 Q-associated variants, 613 are present on Illumina’s Omni 2.5 chip

(See Figure S18). These are likely among the small number of variants that are present in the data

but exhibit biased genotyping in 1kGP.

Suspicious variants impact modern genomics analyses
State of the art imputation servers use a combination of many databases including some that

are not freely available. From the perspective of researchers, they act as black-box imputation

machines that take observed genotypes as input and return imputed genotypes.

To investigate whether suspicious calls from the 1kGP are imputed into genotyping studies,

we submitted genotype data for the first two chromosomes of the 1kGP genotype data to the

Michigan Imputation Server. We found that all of the variants associated with Q were imputed

back in the samples. This suggests that the imputation reference panel still includes individuals

with low Q, and the dubious variants will be imputed in individuals who most closely match the

low-quality individual. TheseQ-associated variants could also compromise the imputation of nearby

real-variants, however when considering the imputation scores of genotype data from Japanese

individuals from Nagahama, there does not appear to be any impact on nearby variant imputation

scores (Figure S19).

We searched the literature for any GWAS that might have reported these Q-associated variants

as being significantly associated with some biological trait, even though there is no particular

reason for these variants to be associated with phenotypes. The NHGRI-EBI Catalog of published

genome-wide association studies identified seventeen recent publications that had reported these

variants as close to or above the genome-wide significant threshold (Table 2).

Eleven of these studies included the 1kGP in their reference panel for imputation (Xu et al.,
2012; Lutz et al., 2015; Park et al., 2015; Astle et al., 2016; Herold et al., 2016; Suhre et al., 2017;
López-Mejías et al., 2017; Tian et al., 2017; Spracklen et al., 2017; Nagy et al., 2017; Gao et al.,
2018) and another used the 1kGP sequence data and cell lines directly (Mandage et al., 2017). One
study used an in-house reference panel for imputation (Nishida et al., 2018), two studies genotyped
individuals and imputed the data using the HapMap II as a reference database for imputation (Kraja
et al., 2011; Ebejer et al., 2013) and two studies used genotyping chip data (Yucesoy et al., 2015;
Ellinghaus et al., 2016).
All of these articles used a variety of strict quality filters, including Hardy-Weinberg equilibrium

test, deviations in expected allele frequency and sequencing data quality thresholds. They also

removed rare alleles and alleles with high degrees of missingness. Indeed, we expect a large

number ofQ-associated variants to be filtered out by some quality controls like the Hardy-Weinberg

equilibrium test. Even though the studies used state-of-the-art quality controls, the variants were

imputed onto genotype data and reached genome wide significance for association with biological

traits. However, the fact that some of these variants in other studies are not removed and that

the great majority of these variants are missing from higher quality datasets means that these

Q-associated variants should be flagged for removal to avoid spurious association.

These associations are not necessarily incorrect – a weak but significant bias in imputation

may still result in a correct associations. To distinguish between variants with weak but significant

association with Q from variants with strong biases, we distinguished between variants where

the allele frequency difference between individuals with low- and high-Q is larger than a factor

of two (which naturally separates two clusters of variants on Figure S20). The majority (92.7%)
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Pubmed ID Disease/Trait rsID GWAS

-log10 p

Q

-log10 p

(adjusted)

28654678 EBV copy number in rs201761909 5.7 78.11

lymphoblastoid cell lines rs201130852 5.05 72.28

rs201255786 5.7 68.97

rs200655768 6.52 66.67

rs184202621 5.52 60.45

rs80274284 6 56.15

rs200699422 5.3 7.43

23527680 ADHD
†

rs6057648 5.4 20.5

28928442 Cold sores rs201471471 6.52 7.87

26053186 HMPMA
‡
levels in

smokers

rs60136336 5.7 2.25

28270201 HDL cholesterol rs453755 7.52 5.29

23023329 Prostate cancer rs103294 *15.3 4.32

28334899 HDL cholesterol rs103294 *29.3 4.32

28240269 Blood protein levels rs103294 *72.7 4.32

27863252 High light scatter

reticulocyte count

rs3794738 *13.15 3.73

29534301 Response to

hepatitis B vaccine

rs9273062 *9.7 3.36

21386085 Metabolic syndrome rs301 *10.52 3.02

26830138 Alzheimer disease

and age of onset

rs77894924 6.7 2.77

29617998 Intraocular pressure rs4963156 *22.4 2.52

28698626 Immunoglobulin A

vasculitis

rs11015915 5.05 2.45

26974007 Chronic

inflammatory

diseases

rs3124998 *8.05 2.33

26634245 Post bronchodilator rs451000 6 2.28

FEV1/FVC ratio rs443874 5.3 2.26

rs400942 6 2.2

25918132 Diisocyanate-

induced

asthma

rs76780579 6 2.09

Table 2. Recent publications that reported Q-associated variants as close to or above the genome-wide

significant threshold. The variants reaching genome wide significance have a star ( * ). The black text colour

indicates that this variant is twice as frequent in individuals with Q < 30, grey text colour indicates that these

variants are less than twice as frequent in individuals with Q < 30 (See Figure S21). † Attention deficit

hyperactivity disorder. ‡ 3-hydroxy-1-methylpropylmercapturic acid.

of the Q-associated variants are strongly biased in that they are more than twice as frequent in

individuals with low-Q compared to high-Q data. By contrast, most Q-associated variants reported

in the GWAS catalogue had weak bias (See Figure S21), with three exceptions. One study that

reports associations with seven highly biased Q-associated variants considered copy number of

Epstein-Barr virus (EBV) sequence in the 1kGP as a phenotype (Mandage et al., 2017). These seven
variants were not flanked by LD peaks and were correctly removed from downstream analyses

however, they were still included in the NHGRI-EBI Catalog (Mandage et al., 2017). It is plausible that
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the EBV copy number phenotype is sensitive to mapping and confounded by the same technical

artefacts that lead to biased SNP calling.

Discussion
The variants identified in this study could be explained by technical artifacts from legacy technolo-

gies. Different sequencing technologies will have different error profiles. A report comparing the

Genome Analyzer II (GAII) to the Illumina HiSeq found that the GAII had much higher rates of reads

below a quality score of 30 (Minoche et al., 2011) with, for instance, different patterns of quality
decrease along reads. Differences in read quality and error profiles in turn require different calling

pipelines.

An enrichment in mutational profiles in one chromosome (Figure 12B) is difficult to explain

through biological mechanisms or sequencing technology as neither are expected to produce

systematic biases across chromosomes. Subtle differences in how these data were integrated

or processed could explain such biases, as chromosomes are commonly treated and analyzed

separately. However, to pinpoint the precise technical source of the discrepancy would require

further forensic inquiries into the details of the heterogeneous sample preparation, combination

of sequencing technologies and data processing pipelines used throughout the 1kGP. Given the

progress in sequencing and calling that occurred since the early phases of the 1kGP (Figure 2), it

is likely that the source of these biases is not longer being actively introduced in recent sequence

data.

However, because the 1kGP data is widely used as a reference database, these variants are

still being imputed onto new genotype data and can then impact association studies for a variety

of phenotypes. Even though significant association of a variant with a quality metric is not in

itself an indication that the variant is spurious, we would recommend to carefully examine GWAS

associations for such variants, e.g. by repeating the analysis without the 1kGP as part of the

imputation panel.

For analyses where individual variants cannot be examined individually (mutation profiles,

distributions of allele frequencies, polygenic risk scores), we would recommend to simply discard

the individuals with Q < 30 and to filter out the LD-associated variants identified by Mafessoni
et al. (2018) and the Q-associated variants we identified (lists of such variants and sample IDs
are provided in the Supplementary Data). We also recommend that imputation servers discard

individuals with low Q (or at least provide the option of performing the imputation without). Given

the value of freely accessible data, resequencing individuals with low Q would also likely be a

worthwhile investment for the community.

Conclusion
On a technical front, we were surprised that strong association between variants and technical

covariates in the 1kGP project had not been identified before. The genome-wide logistic regression

analysis of genotype on quality metric is straightforward, and should probably be a standard in

a variety of -omics studies. The logistic factor analysis is more computationally demanding but

produces more robust results (Song et al., 2015). All three approaches accounting for population
structure we tested produce comparable results.

More generally, to improve the quality of genomic reference datasets, we can proceed by

addition of new and better data and by better curation of existing data. Given rapid technological

progress, the focus of genomic research is naturally on the data generation side. However, cleaning

up existing databases is also important to avoid generating spurious results. The present findings

suggest that a substantial fraction of data from the final release of the 1kGP project is overdue for

retirement or re-sequencing.
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Methods
Code and data availability
Since this data is primarily performed using publicly available data, we provide fully reproducible and

publicly available on GitHub. This repository includes scripts used for data download, processing,

analysis and plotting.

Metadata
The metadata used in this analysis was compiled from each of the index files from the 1kGP file

system. Average quality of mapped bases Q per sample was obtained from the BAS files associated

with each alignment file. Each BAS file has metadata regarding each sequencing event for each

sample. If a sample was sequenced more than once, we took the average of each Q score from

each sequencing instance. The submission dates and sequencing centres for each sample in the

analysis was available in the sequence index files.

Quality Controls
For the mutation spectrum analysis, we reproduced the quality control and data filtering pipelines

used by Harris et al. as they applied the current state of the art quality thresholds to remove

questionable sequences for detecting population level differences. Several mask files were applied

to remove regions of the genome that might be lower quality, or might have very different mutation

rates or base pair complexity compared to the rest of the genome. The 1kGP strict mask was used

to remove low quality regions of the genome, highly conserved regions were removed using the

phastCons100way mask file and highly repetitive regions were removed using the NestedRepeats

mask file from RepeatMasker. Furthermore, only sites with missingness below 0.01, MAF less than

0.1, and MAF greater than 0.9 were considered. In total, 7,786,023 diallelic autosomal variants

passed our quality controls for the mutation spectrum analysis. We calculated the mutation

spectrum of base pair triplets for the list of significant variants for the JPT population using a similar

method as described in (Harris and Pritchard, 2017).
For the reverse GWAS, the only filtration used was the application of an minor and major

allele frequency cutoff of 0.000599 (removing singletons, doubletons and tripletons) resulting in

a total of S=28,516,063 variants included in the test. We also used the NestedRepeats mask file

to flag variants inside repetitive regions as these were analyzed separately for false discovery

rate estimation. Variants flagged by the 1kGP strict mask are included in the association test and

included in the FDR adjustment. These variants are only removed after the FDR and excluded from

downstream discussion of error patterns, since most population genetics analyses use the strict

mask as a filter, and we expect to find problematic variants in filtered regions.

Testing the association of quality to genotype
When conducting a statistical analysis of population genetics data, we must account for population

structure. In a typical GWAS, we are interested in modelling the phenotype as a function of the

genotype. Here we have the opposite situation, where the quantitative variable (Q) is used as an

explanatory variable. So we consider models where the genotype y is a function of an expected

frequency πsi, based on population structure, and Q. The null model is

ysi | πsi ∼ Binomial
(
2, πsi

)
. (1)

The expected frequency for a SNP s and individual i can be estimated using principal component

analysis, categorical population labels, or logistic factor analysis (Song et al., 2015). The alternative
model then takes in Q as a covariate:

ysi | qi,h(i) ∼ Binomial
(
2, logit−1

(
logit(πsi) + βsqi

))
. (2)
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Under the null hypothesis the slope coefficient βs is zero and Model (2) reduces to Model (1).

βs denotes the association to average quality of mapped bases Q to genotype ys. To test the null

hypothesis, we use the generalized likelihood ratio test statistic, whose deviance is a measure of

the marginal importance of adding Q in the model. The deviance test statistic under the null model

is approximately chi-square distributed with one degrees of freedom.

We run a total of S regressions, where S is the total number of genomic loci. Given the large

number of tests, the large proportion of expected null hypotheses and the positive dependencies

across the genome, we used the two-stage Benjamini & Hochberg step-up FDR-controlling proce-

dure to adjust the p-values (Benjamini et al., 2006). By using a nominal Type-I error rate α = 0.01, a

total of 15,270 variants were found to be statistically significance. See Supplementary Data for a list

of variants and adjusted p-values.
Individual-specific allele frequency
Examples of models that are widely used to account population structure include the Balding-

Nichols model (Balding and Nichols, 1995), and the Pritchard- Stephens-Donnelly model (Pritchard
et al., 2000). These and several other similar models used in GWAS studies can be understood in
terms of the following matrix factorization.

L = AH (3)

where the ith column (h(i)
) of the K × I matrix H encodes the population structure of the ith

individual and the sth row of the S×K matrixA determines how that structure is manifested in SNP
s. When Hardy-Weinberg equilibrium holds, observed genotype can be assumed to be generated

by the following Binomial model.

ysi | πsi ∼ Binomial
(
2, πsi

)
(4)

for s = 1 . . . S and i = i, · · · , I , where ysi ∈ {0, 1, 2} and logit(πsi) is the (s, i) element of the matrix

L such that πsi is the individual-specific allele frequency.

To test whether quality is associated to genotype while adjusting for population structure, we

performed the Genotype-Conditional Association Test (GCAT) proposed by (Song et al., 2015). The
GCAT is a regression approach that assumes the following model.

ysi | qi,h(i) ∼ Binomial
(
2, logit−1

( K∑
k=0

askhki + βsqi
))

(5)

for s = 1 . . . S and i = i, · · · , I (S = 28, 516, 063 and I = 2, 504) and where ĥ0i = 1 so that as0 is the

intercept term and logit(πsi) =
∑K

k=0 askhki. The vectors h
i
of the matrixH are unobserved but can

be estimated using Logistic Factor Analysis (LFA) (Song et al., 2015) and are therefore used directly
in the model. We approximated the population structure using K = 5 latent components from a

subsampled genotype matrix consisting ofM = 2, 306, 130 SNPs (we picked SNPs from the 1kGP

OMNI 2.5). To avoid possible biases in computing PCA from the biased variants, we considered the

genotype matrix L obtained by downsampling 1kGP variants the positions from the OMNI 2.5M

chip.

Imputation
Using the Michigan Imputation Server, we imputed the genotype data from 1kGP for chromosomes

1 and 2. We used the genotyped data from the 1kGP Omni 2.5M chip genotype data. The VCF file

returned from the server was then downloaded and used to search for the number of significant

variants successfully imputed.
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