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Abstract

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI)
tractography frequently require manual WM bundle segmentation, often called “virtual
dissection”. Human errors and personal decisions make these manual segmentations hard
to reproduce, which have not yet been quantified by the dMRI community. The contribu-
tion of this study is to provide the first large-scale, international, multi-center variability
assessment of the “virtual dissection” of the pyramidal tract (PyT). Eleven (11) experts
and thirteen (13) non-experts in neuroanatomy and “virtual dissection” were asked to per-
form 30 PyT segmentation and their results were compared using various voxel-wise and
streamline-wise measures. Overall the voxel representation is always more reproducible


https://doi.org/10.1101/623892
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623892; this version posted April 30, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

than streamlines (=70% and ~35% overlap respectively) and distances between segmen-
tations are also lower for voxel-wise than streamline-wise measures (=3mm and ~6mm
respectively). This needs to be seriously considered before using tract-based measures
(e.g. bundle volume versus streamline count) for an analysis. We show and argue that
future bundle segmentation protocols need to be designed to be more robust to hu-
man subjectivity. Coordinated efforts by the diffusion MRI tractography community are
needed to quantify and account for reproducibility of WM bundle extraction techniques
in this era of open and collaborative science.

Keywords: Diffusion MRI, White Matter, Tractography, Bundle segmentation,
Intra-rater, inter-rater, Reproducibility

1 1. Introduction

2 DMRI tractography reconstructs streamlines modeling white matter (WM) connec-
s tivty. The set of all streamlines forms an object often called the tractogram [Jeurissen
+ et al.,, 2017; Catani and De Schotten, 2008]. When specific hypotheses about known
s pathways, i.e. WM bundles, are investigated, neuroanatomists design “dissection plans”
s that contain anatomical landmarks and instructions to isolate the bundle of interest from
7 this whole brain tractogram [Catani et al., 2002; Catani and De Schotten, 2008; Chenot
s et al., 2018; Hau et al., 2016]. Bundles can be segmented to study WM morphology,
o asymmetries, and then can be associated to specific functions [Lee Masson et al., 2017;
10 Groeschel et al., 2014; Masson et al., 2018; Catani et al., 2007] with approaches similar
1 to other brain structures [Lister and Barnes, 2009; Reitz et al., 2009]. Despite having
12 similar anatomical definitions across publications, the absence of common segmentation
13 protocols for tractography leads to differences that are for the most part unknown and
1 unaccounted for. We need to know how variable our measurements are if we want to be
15 able to have robust tract-based statistics in the future.

16 The need for a gold standard that quantifies human variability is well-known and well-
17 studied in other fields, such as automatic image segmentation, cell counting or in machine
s learning [Kleesiek et al., 2016; Entis et al., 2012; Boccardi et al., 2011; Piccinini et al.,
1o 2014]. For applications such as hippocampi or tumor segmentation, thorough assessments
20 of reproducibility and multiple iterations of manual segmentation protocols already exist
2 [Boccardi et al., 2015; Frisoni et al., 2015]. These protocols were specifically designed
2 to reduce the impact of human variability and help outcome comparison in large-scale
2 clinical trials across multiple centers [Gwet, 2012; Frisoni et al., 2015].

2 The reproducibility of manual bundle segmentation will always be lower than manual
»s  image segmentation. Image segmentation in 3D requires local decision-making, and the
s decision to include voxels or not is directly done by raters. However, bundle segmenta-
27 tion requires local decisions that possibly impact the whole volume as streamlines reach
s outside of the scope of decisions made by raters. Since small hand-drawn regions of inter-
2 est (ROI) or spheres are used to segment bundles, small mistakes can have far-reaching
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s consequences. Even if ROIs are fairly reproducible in a strict protocol, the resulting bun-
a1 dles could be far from reproducible. This local-decision and global-impact conundrum
2 makes the design of reproducible protocols more difficult and can potentially cause low
;3 agreement between raters.

s 1.1. Bundle segmentation

3 Bundle segmentation is the action of isolating streamlines based on neuroanatomical
s priors, using known regions where certain conditions need to be satisfied. Inclusion and
w exclusion regions-of-interests (ROIs) are drawn and defined at the voxel-level using co-
s registered structural images, and are subsequently used to select the streamlines produced
» by tractography [Catani et al., 2002; Behrens et al., 2007; Ghaziri et al., 2015; Renauld
w et al., 2016; Rozanski et al., 2017], as seen in the Figure 1. Streamlines can be included
s or discarded using inclusion ROIs where streamlines are forced to traverse, and exclusion
2 ROIs that cannot be crossed. Known structures such as grey nuclei, gyri or sulci and
1 recognizable signal signatures can be used as landmarks to create a plan to follow for the
w segmentation [Catani et al., 2002; Catani and De Schotten, 2008; Hau et al., 2016; Chenot
»s et al., 2018]. In this work, the person performing the task of segmentation (i.e drawing
s the ROIs, following the protocol) will be referred to as rater. Manual segmentation can
«  be performed in software such as, but not limited to, DTT studio [Jiang et al., 2006],
s Trackvis [Wang et al., 2007], exploreDTI [Leemans et al., 2009], MITK Diffusion [Neher
s et al., 2012], FiberNavigator [Chamberland et al., 2014], or MI-Brain [Rheault et al.,
s 2016] (Figure 1).
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Figure 1: Illustration of the dissection plan of the PyT using the MI-Brain software [Rheault et al., 2016].
3 axial inclusion ROIs (pink, green, yellow), 1 sagittal exclusion ROI (orange), 2 coronal exclusion ROIs
(light yellow) and a cerebellum exclusion ROI (red). The whole brain tractogram was segmented to
obtain the left pyramidal tract.

51 Once a bundle of interest is segmented from a tractogram, the analysis varies ac-
2 cording to the research question. It is common to report asymmetry or group difference
53 in bundle volume [Catani et al., 2007; Song et al., 2014; Chenot et al., 2018], diffusion
s« values within the bundle of interest (average fractional anisotropy, mean diffusivity, etc.)
55 [De Erausquin and Alba-Ferrara, 2013; Kimura-Ohba et al., 2016; Ling et al., 2012; Mole
ss et al., 2016] or values along the bundle (called profilometry and tractometry) [Dayan
s et al., 2016; Yeatman et al., 2012, 2018; Cousineau et al., 2017]. Spatial distribution
ss of cortical terminations of streamlines can help to identify cortical regions with under-
s lying WM connections affected by a condition [Rushworth et al., 2005; Johansen-Berg
o et al., 2004; Donahue et al., 2016; Mars et al., 2011; Behrens et al., 2003]. Reporting
s the number of streamlines (e.g streamline count in connectivity matrix or density maps)
2 1is still very much present as a way to compare groups [Jones et al., 2013; Girard et al.,
ss 2014; Sotiropoulos and Zalesky, 2017], despite not being directly related to anatomy or
& connection strength [Jones, 2010; Jones et al., 2013].
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e 1.2. Quantifying reproducibility in tractography

66 When performing segmentation, it is crucial that raters perform the tasks as closely
67 as possible to the dissection plan. Even if a single individual performs all segmentations,
s the possibility of mistakes or erroneous decisions about landmarks exists [Boccardi et al.,
o 2011; Frisoni et al., 2015; Entis et al., 2012]. High reproducibility is often an assump-
7 tion, if this assumption is false the consequence could lead to inconsistent outcomes and
n erroneous conclusions. To assess the level of reproducibility of raters, identical datasets
2= need to be segmented blindly more than once [Gisev et al., 2013; Gwet, 2012; Frisoni
1 et al., 2015]. Reproducibility of segmentations from the same individual is referred to as
n intra-rater agreement, while reproducibility of segmentation across raters is referred to
75 as inter-rater agreement.

Streamline-wise
Dice

Voxel-wise

o 88|88 & =

Figure 2: Representation of the Dice Coefficient (overlap) for both the streamline and the voxel rep-
resentation. For the purpose of a didactic illustration, 4 streamlines are showed in a 2x5 voxel grid,
the red and blue streamlines are identical. Each streamline is converted to a binary mask (point-based
for simplicity) shown in a compact representation. Voxels with points from 3 different streamlines will
results in voxels with 3 different colors, this can be seen as a spatial smoothing. The matrices on the
right show values for all pairs (symmetrical). The green and yellow streamline are not identical, which
results in a streamline-wise Dice coefficient of zero. However, in the voxel representation they have 3

voxels in common and the result is (5212 = 0.75).

76 In the field of neuroimaging, voxels are used as the typical representation of data,
7 while the available representation in tractography is in the form of streamlines (i.e. sets
7 of 3D points in space). Figure 2 is a sketch of both representation. Several similarity
7 Mmeasures exist to compare voxel-wise segmentations, e.g Dice Score. Most of them have
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s an equivalent formulation to compare sets of streamlines. However, resulting values can
s widely vary as the spatial distribution is not the same for both representations. Some
s measures related to streamlines require the datasets to be exactly the same, e.g Dice score,
s  as streamline reconstructions are sets of discrete points with floating point coordinates
s and not discrete grids like 3D images. For this reason, comparison of streamlines is
s more challenging and datasets that do not originate from the same source distance in
s millimeters is often the only available solution [Garyfallidis et al., 2017; Maier-Hein et al.,
s 2017].

ss  1.3. Summary of contributions of this work

89 Automatic segmentation methods are becoming more widespread [Guevara et al.,
o0 2011; O’donnell et al., 2013; Chekir et al., 2014; Garyfallidis et al., 2017; Zhang et al.,
o 2018; Wasserthal et al., 2018] and aim to simplify the work of raters. The minimal
oo standard of any automatic segmentation method would be to reach the accuracy of
o3 raters, thus it is crucial to truly quantify human reproducibility in manual tasks.

o The goal of this work is first to quantify human reproducibility of bundle segmen-
o tation from dMRI tractography. A measurement of rater (intra and inter) agreement is
o extremely relevant to set an appropriate threshold for statistical significance. It is also
o7 relevant for meta-analysis aiming to study large sets of publications and synthesize their
s outcomes. An account of human errors or other sources of variability is necessary. A
9 second goal of this work is to investigate overlap, similarity measures and gold standard
w0 comparison designed for tractography. Development of easily interpretable measures
1w for bundle comparison is necessary for large datasets. Overall the voxel representation
102 is significantly more reproducible than the streamline representation. The voxel rep-
103 resentation is better suited for analysis of tractography datasets (e.g reporting volume
e instead of streamline count). More details about these different representations and
105 voxel/streamline-wise measures will be detailed in the Method and Results Section.

106 A thorough approach for bundle comparison quantification gives insights into seg-
w7 mentation quality for future projects. This is needed to facilitate synthesis of findings
s and outcomes from various publications [Gwet, 2012; Frisoni et al., 2015; Wisse et al.,
0o 2017].

1o 2. Method

wm 2.1. Study design

112 Twenty-four participants were recruited and divided into two groups: experts and
u3  non-experts. The division was based on their neuroanatomical educational background.
ue Participants working as researchers or PhD students in neuroanatomy, neurology or with
us extended experience in the field performing “virtual dissection” as well as neurosurgeons
us were part of the experts group (11 participants). The non-experts group was composed
u7 - of MSc, PhD student or Post-Doc in neuroimaging, but without any formal education
us  in neuroanatomy (13 participants). All participants had knowledge of dAMRI tractogra-
o phy in general as well as the concept of manual segmentations of tractography datasets.
120 Participation was voluntary and anonymous, recruitment was done individually and par-
1 ticipants from various labs in Europe and the USA were solicited. The study was per-
122 formed according to the guidelines of the Internal Review Board of the Centre Hospitalier
s Universitaire de Sherbrooke (CHUS).
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Figure 3: Representation of the study design showing N participants, each received 5 HCP datasets
(listed and color-coded) which were replicated 3 times (original, flipped, translated). All participants
had to perform the same dissection tasks, on the same anonymized datasets. Intra-rater, inter-rater
and gold standard reproducibility were computed using the deanonymized datasets. More details are
available in the supplementary materials

124 Five independent tractograms and their associated structural/diffusion images were
s used, each was triplicated (total of 15). One was untouched, one was flipped in the
s X axis (left/right) and one was translated. Then, all datasets were randomly named
127 80 the tasks could be performed blindly for each participant. Participants were not
18 aware of the presence of duplicated datasets. Five tractotrams were used to obtain
129 stable averages, duplicated datasets were used to score the intra-rater agreement and
1o the multiple participants to evaluate inter-rater agreement. The decision to separate
1 participants in two groups was made to generate additional data about reproducibility
122 in real-life conditions.

133 Figure 3 shows an overview of the study design. To evaluate intra-rater reproducibility
134 of rater #1, each triplicate was used to compute reproducibility measures. Meaning that
3 5 (A-B-C-D-E) x 3 (1-2-3) values were averaged to obtain the intra-rater “reproducibility
13 score” of a single rater. To evaluate inter-rater reproducibility of rater #1, triplicates
17 were fused and compared to all other raters to obtain a reproducibility measure. Meaning
s that 5 (A-B-C-D-E) x N (raters) values were averaged to obtain a single rater inter-rater
1o “reproducibility score”. To evaluate reproducibility against the gold standard of rater #1
1o the fused triplicates were also used. Meaning that 5 (A-B-C-D-E) x 1 (gold standard)
1w values were averaged to obtain a single rater gold standard “reproducibility score”. The
12 results showed in the Results Section are average values from all raters in each group.
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13 All reproducibility measures were computed using the same approach.

w 2.2. DWI datasets, processing and tractography

15 Tractograms were generated from the preprocessed HCP [Van Essen et al., 2013]
us  DWI data using three shells (1000, 2000, 3000) with 270 directions. The B0, fractional
w7 anisotropy (FA) and RGB (colored FA) images were computed from DWI to be used as
1s  anatomical reference during segmentation. Constrained spherical deconvolution (CSD)
o using a FA threshold from a tensor fit on the b=1000s/mm? was used to obtain fiber
150 orientation distribution functions (fODF) [Tournier et al., 2007; Descoteaux et al., 2007]
151 (spherical harmonic order 8) from the b=2000s/mm? and b=3000s/mm? shells. Prob-
152 abilistic particle filtering tractography [Girard et al., 2014] was subsequently computed
155 at 30 seeds per voxel in the WM mask (FSL FAST [Woolrich et al., 2009]) to make sure
1« sufficient density and spatial coverage were achieved.

155 The CSD model was also used for bundle-specific tractography (BST) to further
156 improve density and spatial coverage of the bundle of interest [Rheault et al., 2018;
157 Chenot et al., 2018]. This was to ensure that the full extent of the CST was reconstructed
158 and to ensure not to have criticisms from our experts in neuroanatomy complaining of
159 missing CST parts. A large model that approximates the CST was used to generate
o streamlines with a strong preference for the Z axis (up-down). For BST, the same
11 tractography parameters were used except for seeding, which was exclusively done from
12 the precentral gyrus, postcentral gyrus and brainstem at 5 seeds per voxel.

163 The whole brain tractogram and the CST-specific tractogram were fused. To accom-
1« modate all participants and the wide range of computer performance, tractograms were
165 compressed using a 0.2mm tolerance error [Rheault et al., 2017; Presseau et al., 2015]
166 and commissural streamlines were removed and datasets split into hemispheres.

wr 2.3. Dissection plan and instructions

168 Each participant received their randomly named datasets, a document containing
1o instructions for the segmentation and a general overview of a segmentation as example
w  (see supplementary materials). The segmentation task consisted in 15 segmentations of
wm  the pyramidal tract (left and right). Segmentation involved using 3 WM inclusion ROIs
12 (Internal capsule, Midbrain and Medulla Oblongata) and 2 exclusion ROIs (one plane
113 anterior to the precentral gyrus and one plane posterior to the postcentral gyrus). The
e  detailed segmentation plan is available in the supplementary materials [Chenot et al.,
ws o 2018].

176 Participants had to perform the segmentation plans, following the instructions as
w7 closely as possible. The dataset order was provided in a spreadsheet file. Participants had
s to choose between two software; Trackvis [Wang et al., 2007] or MI-Brain [Rheault et al.,
o 2016]. This decision was made to guarantee that the data received from all participants
10 was compatible with the analysis.

181 Metadata such as date, starting time and duration had to be noted in the spreadsheet
12 file. Upon completion, the participants had to send back the same 15 folders with two
153 tractography files in each, the left and right pyramidal tract (PyT).
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e 2.4. Bundles analysis

185 Once returned by all participants, datasets were de-randomized to match triplicates
s across participants. The duplicates (flipped and translated) were reverted back to their
17 native space and all datasets (images and tractograms) were warped to a common space
s (MNI152¢ 2009 nonlinear symmetrical) using the Ants registration library [Fonov et al.,
1o 2011; Avants et al., 2008] to simplify the analysis. With all datasets having a uniform
10 naming convention and in a common space, the intra-rater and inter-rater reproducibility
11 can be assessed.

12 Individual measures

103 Reproducibility can be assessed using various measures. Volume and streamline count
14 are the main attributes obtained directly from files. They do not provide direct insight
15 about reproducibility, but one could expect that very similar segmentations should have
s very similar values. However, this does not provide any nuance or specific information
w7 about difference. In this work results for the left and right PyT are averaged together
s without distinction, they are considered the same bundle during the analysis.
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Figure 4: Comparison of bundles and the impacts of spurious streamlines on the reproducibility measure-
ments. Each block shows streamlines on the left and the voxel representation on the right (isosurface).
Block 2a and 3a shows the core (green/orange) and spurious (red/pink) portion of the bundle. Block 2b
and 3b only shows the core portion of the bundle.

1-2a | 1-2b | 1-3a | 1-3b
VOX | 0.77 | 0.81 | 0.81 | 0.85
STR | 0.47 | 0.48 | 0.62 | 0.63
VOX | 2.66 | 2.64 | 2.04 | 1.82
STR | 441 | 3.54 | 4.63 | 3.24
Correlation of the density map | VOX | 0.90 | 0.91 | 0.93 | 0.94

Dice score

Bundle adjacency (mm)

Figure 5: Table showing the reproducibility “score” between bundles, VOX marks voxel-wise measures
and STR marks streamline-wise measures.

wo Intra-rater and inter-rater

200 Each participant performed the same tasks on each triplicate. The goal of this trip-
20 lication is to evaluate intra-rater reproducibility. Since all participants had access to the
202 same datasets, inter-rater reproducibility can be assessed too.

203 Computing the average value from all pairwise combinations provides an estimate of
204 the agreement between multiple segmentations of a same bundle. The deviation can also
25 provide insights about the consistency of these segmentations. Measurement values can
25 be between 0 and 1, such as Dice and Jaccard [Dice, 1945], meaning they are independent
27 of the size. An alternative to overlap measures are similarity measures, which can provide
208 insights about the distance between two segmentations (in millimeter). Even when spatial
200 overlap between two segmentations is low, both can be very similar in shape [Descoteaux
20 et al., 2004; Garyfallidis et al., 2010]. Figure 5 shows bundles and how to interpret
an these measures. Pearson’s correlation coefficient obtained from density maps provides
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212 insight into the statistical relationship and spatial agreement between two segmentations
23 [Hyde and Jesmanowicz, 2012]. More details on available measures for tractography are
2 available in the supplementary materials.

215 The most insightful measures are represented by the overlap (Dice coefficient), dis-
2z tance (bundle adjacency) and density and spatial coherence (density correlation). Each
27 measure provides a way to interpret the data at hand, but there is no single true measure
218 to summarize intra-rater and inter-rater agreement. Multiple measures were computed
29 and are all available in the supplementary materials along more detailed description for
20 each of them.

a1 Gold standard

2 When multiple raters provide segmentations from an identical dataset, it is of interest
23 to produce a gold standard. For a voxel representation, a probability map can be con-
24 structed, where each voxel value represents the number of raters that counted the voxel
»s  as part of their segmentation [Frisoni et al., 2015; Iglesias and Sabuncu, 2015; Langerak
»s et al., 2015; Pipitone et al., 2014]. This can be normalized and then thresholded to obtain
27 a binary mask representing whether or not the voxel was segmented by enough rater. A
28 threshold above 0.5 is often referred to as a majority vote. The same logic can be applied
29 to streamlines, each streamline can be assigned a value based on the number of raters
20 that considered it part of their segmentation.

231 This can be seen in Figure 6 where increasing the minimal vote threshold reduces the
.2 number of outliers and overall size. In this work, the gold standard does not represent
213 the true anatomy and should not be interpreted as such. It simply represents the average
24 segmentation obtained from a tractogram.
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Figure 6: Gold standard obtained from 7 segmentations, first row shows the streamline representation
and the second row shows the voxel represented as a smooth isosurface. From left to right, multiple
voting ratios were used (%, %, %, %), each time reducing the number of streamlines and voxels consider
part of the average segmentation. A minimal vote set at 1 out of 7 (left) is equivalent to a union
of all segmentations while a vote set at 7 out of 7 (right) is equivalent to an intersection between all
segmentations.

235 All elements that are not in a gold standard are true negatives and all the ones present
236 are true positives. By construction, the gold standard does not contain false positives
.3 or false negatives. Binary classification measures are available such as sensitivity or
28 specificity. However, several other measures are available and each are a piece of the
20 puzzle leading to a more accurate interpretation [Garyfallidis et al., 2017; Chang et al.,
20 2009; Schilling et al., 2018].

on To produce our gold standard a majority vote approach was used from the segmen-
a2 tations of the experts group, as their knowledge of anatomy was needed to represent an
a3 average version of the bundle of interest. The vote was set at 6 out of 11 and each of the
a4 b datasets got its own left and right gold standard. Since the representation at hand is
25 streamlines (which can be converted to voxels), a streamline-wise and a voxel-wise gold
26 standard were created.
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27 3. Results

208 On average, experts produce “smaller” bundles than non-experts, their volume and
a9 streamline count is lower than non-experts, as it can be observed in Table 1 and Figure 7.
20 This difference between groups is statically significant (p — value < 0.01). In the follow-
51 ing sections, all explicit comparisons between groups are statistically significant using
2 a standard Welch’s t-test for the means of two independent samples, which does not
253 assume equal population variance (p — value < 0.01). The range of values for segmen-
s tation measures is wider for non-experts, meaning that either intra-rater or inter-rater
s variability is higher. As mentioned earlier, this is useful insight about reproducibility,
s but lacks nuance and context.

Individual measurements
Average length Streamlines count Volume

150 *% ?%

100k
100

N &
50 0k % i3 50k %
0 M " ®

0
Experts Non-experts Experts Non-experts - Experts Non-experts

Figure 7: Boxplots and scatter plots showing distribution of the 3 measurements related to individual
files for both groups.

Expert Non-experts
Mean STD Mean STD
Volume (mm?) VOX | 34835 | 12625 || 51146 | 20966

Streamline count STR 4331 4457 12489 | 11091
Mean length (mm) | STR | 140.33 | 7.81 138.70 | 11.29

Table 1: Table showing main values from boxplots of the 3 measurements related to individual files for
both groups. The columns show the average value and the standard deviation for each group. VOX
marks voxel-wise measures and STR marks streamline-wise measures. Rows shown in bold mean that
the two groups (experts and non-experts) do not have the same distribution.

w7 3.1. Intra-rater evaluation

258 All reported values can be seen in Table 2 and in Figure 8. The average intra-rater
9 overlap is represented by the voxel-wise Dice coefficient and is on average 0.72 for experts
0 and 0.78 for non-experts. Streamline-wise Dice coefficient is much lower at 0.31 and 0.52
1 for both groups respectively. A higher Dice score value means that participants of a
%2 group are, on average, more reproducible with themselves. Non-overlapping voxels are
%3 on average at a distance 2.13mm for experts and 2.58mm for non-experts (lower Mean
26« value represent higher similarity). Streamline-wise distance is lower in the experts group
%5 at 5.27mm while the non-experts group is at 6.12mm. The average density correlation is
6 equal for both group at 0.82 and 0.82 for the experts and non-experts group respectively
w7 (p — value > 0.01).
13
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Intra-rater reproducibility
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Figure 8: Boxplots and scatter plots showing distribution of the 3 measurements related to pairwise
comparison measures for intra-rater segmentations.

Expert Non-experts
Mean | STD || Mean | STD
vox | 0.72 | 0.16 0.78 | 0.12
STR | 0.31 | 0.30 0.52 | 0.28
vox | 213 | 0.66 2.58 | 1.53
STR | 5.27 | 1.26 6.12 | 1.89
Correlation of density map | vox | 0.82 | 0.20 0.82 | 0.18

Dice score

Bundle adjacency (mm)

Table 2: Table showing main values from boxplots of the 3 measurements related to pairwise comparison
measures for intra-rater segmentations. Voxel and streamline values of the same measures are in the
same cell. Rows shown in bold mean that the two groups (experts and non-experts) do not have the
same distribution.

w8 3.2. Inter-rater evaluation

269 To minimize the influence of intra-rater reproducibility during the evaluation of inter-
a0 rater reproducibility, the triplicate datasets were fused into a single bundle. This was
on performed to approximate the results as if participant segmentations had no intra-rater
o2 variability. This lead to a underestimation of inter-rater variability, but necessary to
a3 separate source of variability later in the analysis. Voxel-wise Dice coefficient is on
aa average higher between experts than between non-experts, at 0.75 and 0.67 respectively.
zs  Streamline-wise Dice coefficient is not statistically different (p — value > 0.01) at 0.34
a6 and 0.32. Voxel-wise distance is on average lower for the experts group than non-experts,
o7 2.74mm and 3.85mm respectively. The average density correlation is higher between
s experts at 0.88 while non-experts are at 0.71. The standard deviation is higher for the
79 non-experts group, meaning that the similarity among non-experts is not only lower on
0 average, but widely varies. All reported values can be seen in Table 3 and in Figure 9.
14
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Inter-raters reproducibility
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Figure 9: Boxplots and scatter plots showing distribution of the 3 measurements related to pairwise
comparison measures for inter-rater segmentations.

Expert Non-experts
Mean | STD || Mean | STD
vox | 0.75 | 0.06 0.67 | 0.14
STR | 0.34 | 0.13 0.32 | 0.18
vox | 2.74 | 0.80 3.85 | 1.24
STR | 5.52 | 0.91 8.07 | 2.16
Correlation of density map | vox | 0.88 | 0.10 0.71 | 0.24

Dice score

Bundle adjacency (mm)

Table 3: Table showing main values from boxplots of the 3 measurements related to pairwise comparison
measures for inter-rater segmentations. Voxel and streamline values of the same measures are in the
same cell. Rows shown in bold mean that the two groups (experts and non-experts) do not have the
same distribution.

2 3.3. Gold standard evaluation

28 All reported values can be seen in Table 4, 5 and in Figure 10, 11. Comparisons
23 to the computed gold standard shows that on average experts and non-experts obtain
284 segmentation roughly similar to the average segmentation. However, all measures show
s that segmentations from experts are on average closer to the gold standard than those of
26 non-experts. This was expected as the gold standard was produced using segmentations
27 from the experts group. Values for streamline-wise measures are lower for Dice coefficient
s and density correlation and higher for bundle adjacency, meaning that reproducibility is
20 harder to achieve using the streamline representation. This was a similar trend observed
200 in intra-rater and inter-rater values.
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Gold standard score (pairwise)

Bundle adjacency of streamlines Bundle adjacency of voxels Correlation of density map
: : 1 4z
o ¥ . o ?‘ ==l
§ . % i : ;
; ko P mmmm G 05 . .
: dp i : ,@; &
Experts Non-experts Experts MNon-experts Experts MNon-experts
Dice score of streamlines Dice score of voxels

*= yem

05

Experts Non-experts Experts Non-experts

Figure 10: Boxplots and scatter plots showing distribution of the 3 measurements related to pairwise
comparison measures against the gold standard.

Expert Non-experts
Mean | STD || Mean | STD
vox | 0.82 | 0.05 0.74 | 0.10
STR | 0.53 | 0.14 0.42 | 0.17
vox | 235 | 0.66 2.88 | 0.99
STR | 5.50 | 1.00 6.82 | 1.89
Correlation of density map | vox | 0.92 | 0.07 0.83 | 0.15

Dice score

Bundle adjacency (mm)

Table 4: Table showing main values from boxplots of the 3 measurements related to pairwise comparison
measures against the gold standard. Voxel and streamline values of the same measures are in the same
cell. Rows shown in bold mean that the two groups (experts and non-experts) do not have the same
distribution.

201 Specificity and accuracy reach above the 95% for both groups both for streamlines
22 or voxels. Meaning that experts and non-experts alike classified the vast majority of
203 true negatives correctly. Since specificity is near a value of 1.0, the Youden score is
204 almost equal to sensitivity. All 3 measures take into account the true negatives, which
205 far outweigh the true positives, in our datasets, for this reason they were removed from
26 Figure 11 and shown only in the supplementary materials. Sensitivity is much lower at
27 0.59 and 0.71 for experts and non-experts respectively, as both groups partially capture
28 the gold standard. Precision is higher for experts than for non-experts, meaning that
20 experts were providing segmentations approximately the same size as the gold standard
s0  while non-experts were providing much bigger segmentations (that generally encompass
sn the gold standard). This explains the higher sensitivity and lower specificity of non-
w2 experts. The average Kappa and Dice score is lower for experts at 0.67 and 0.72 while
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33 the non-experts average is 0.69 and 0.73, respectively. The Kappa score takes into ac-
s count overlap with the probability of randomly obtaining the right segmentation. Given
;s the dimensionality of our data, getting the right segmentation by accident is very low,
s explaining why the Kappa and Dice score are very similar. It is important to consider
a7 that the ratio of true negatives to true positives is not the same for both representations
w8 (voxels vs. streamlines).

Gold standard score (binary)

Kappa of sireamlines Kappa of voxels
1 1
0.5 05
0 s
Experts Non-experts Experts MNon-experts
Precision of streamlines Precision of voxels

‘.,
;HEEA
Ve

-
1

0.5

0.5

0 Experts MNon-experts Experts Mon-experts
Sensitivity of streamlines Sensitivity of voxels
1 oo — 1 .
0.5 05
0 .
Experts Non-experts Experts Non-experts

Figure 11: Boxplots and scatter plots showing distribution of the 6 measurements related to binary
classification measures against the gold standard.
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Expert Non-experts

Mean | STD || Mean | STD

Kappa vox | 0.80 | 0.06 0.73 | 0.12
STR | 0.60 | 0.16 0.56 | 0.24

Precision vox | 0.90 | 0.07 0.75 | 0.14
STR | 0.79 | 0.12 0.54 | 0.23

Sensitivity vox | 0.78 | 0.12 0.85 | 0.13
STR | 0.54 | 0.23 0.71 | 0.27

Table 5: Table showing main values from boxplots of the 3 measurements related to binary classification
measures against the gold standard. Rows shown in bold mean that the two groups (experts and non-
experts) do not have the same distribution.

300 The computation of inter-rater reproducibility was performed using the fused tripli-
si0  cate to minimize the influence of intra-rater reproducibility. The approach to fuse the
an  triplicate is simply an approximation, producing more than 3 segmentations of the same
sz datasets would be necessary to perfectly evaluate intra-rater reproducibility. However,
a3 the 5 datasets used for this study represent sufficiently similar tasks to consider our ap-
s proximation adequate for this work. Preliminary analysis showed low correlation values,
315 between a participant “score” for intra-rater reproducibility and inter-rater reproducibil-
a6 ity. Correlation was between 0.2 and 0.4 for all measures, this indicates that there is
sz no clear link between the reproducibility of a participant’s own segmentations and the
sis  agreement with other participants.

50 4. Discussion

w0 4.1. Evaluation of protocols

21 This work illustrates that intra-rater and inter-rater agreement is far from perfect
22 even when following a strict and “simple” segmentation protocol. The intra-rater and
w3 inter-rater agreement must be taken into account when researchers compare bundles ob-
324 tained from manual segmentations. When human expertise is required for a project, it
s is crucial that people involved in the manual segmentation process evaluate their own
»s  reproducibility, even if they have sufficient neuroanatomy knowledge and extensive expe-
sz rience in manual segmentation. This measure of error will likely increase the threshold
w8 for statistical significance. In such case, either more datasets will be needed, or a better
20 protocol for segmentation needs to be designed [Gwet, 2012; Boccardi et al., 2015]. The
s similarity between both groups indicates that with the right protocol, it would be pos-
s sible to train people without anatomical background to perform tasks with results and
s quality similar to experts.

333 Without such evaluation it is impossible for experts and non-experts alike to know
s how reproducible they are beforehand. Since their “scores” vary with the protocol, the
135 bundle of interest and possibly other factors, it is important to consider an evaluation
16 before performing large-scale segmentation procedure [Frisoni et al., 2015]. An alternative
sr to guarantee more reproducible results is to design an appropriate protocol for non-
38 experts and to perform tasks blindly more than once. The results can then be averaged,
30 which will make outliers and errors easier to be identified.
18
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340 This study did not allow for collaboration and did not micro-manage participants,
s meaning they were left with the instructions without further intervention from the organ-
w2 isers. In a situation where a segmentation plan can be defined in groups and techniques
w3 can be improved along iterations of the plan, the intra-rater and inter-rater agreement
s would likely go up. This study aimed at the evaluation of participants following in-
us  structions from a protocol, similar to the ones present in books, publications or online
us  examples.

ar 4.2. Measures and representations

348 In this work the intra-rater agreement was higher for non-experts than experts, with-
ue out more information we could have concluded that non-experts were more meticulous
0 when they were performing their manual segmentations. However, by looking at sensi-
1 tivity and precision we can see than non-experts had “bigger” segmentations. Experts
32 are likely stricter in their decision-making process, this could amplify the local-decision
53 and global-impact conundrum mentioned earlier. A more liberal, less rigid, segmentation
3¢ likely makes it easier to be reproducible, but does not necessarily make it valid. This is
s an example showing the importance of having more than one type of measure to obtain
16 a complete picture.

357 In tractography, it is common to use a single measure to portray a complex phe-
s nomenon. Most measures used are simplified to have easily interpretable results. The
9 previous example shows the importance of using more than one type of measurements
w0 to obtain a complete picture of the reproducibility. Reproducibility “scores” are likely
1 to vary with the project and the bundle of interest. This needs to be addressed as a
w2 community. The discrepancy between protocol quality, reproducibility and conclusion
3 put forward in the literature can be problematic.

364 For binary measures (accuracy and specificity), scores were both above 95% as it
s 1s easy to discard true negatives, and consequently did not provide much insight. Sim-
s ilarly to the curse of dimensionality in machine learning [Verleysen and Frangois, 2005;
w7 Ceotto et al., 2011], our datasets typically contain millions of voxels (or streamlines), of
s which only a few thousands true positives are considered during segmentation. Thus,
w9 the vast majority of true negatives are rapidly discarded resulting in both accuracy and
50 specificity almost reaching 100%. Sensitivity provides more information, as true posi-
s tives are more difficult to get, since they are rarer in the tractograms (few thousands
sz out of millions) [Maier-Hein et al., 2017]. This needs to be taken into account using
w3 precision, as in some cases, strict segmentation is encouraged because false positives are
s more problematic than false negatives. Streamline-wise measures show lower agreement,
s meaning that reproducible results are likely more difficult to achieve with the streamlines
6 representation.

377 More complex measures need to be designed to fully capture the complexity of
sis  tractography datasets and compare them, even across datasets or for longitudinal studies.
s Currently, more advanced measures that capture fanning, spatial coherence, localized
s curvature and torsion or spectral analysis are still rare, despite being used in other
s neuroimaging fields [Esmaeil-Zadeh et al., 2010; Lombaert et al., 2012; Glozman et al.,
s 2018; Cheng and Basser, 2018].
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3 4.3. Tractography algorithms

384 Iterative tracotography algorithms are commonly divided in two categories: Deter-
s ministic or probabilistic [Tournier et al., 2012; Garyfallidis et al., 2014]. The most striking
s difference between both approaches is that probabilistic pathways cover more volume, as
sr they can easily curve and explore more ground. On the other hand, deterministic will
s be more conservative due to curvature restrictions, thus leading to less exploration and
0 therefore smaller volume [Maier-Hein et al., 2017].

390 Manual segmentation of deterministic tractograms is likely more reproducible, since
s small differences in ROI placement will have a smaller impact on the resulting bundle.
32 The local-decision and global-impact conundrum mentioned earlier is more obvious with
33 probabilistic tractography. Other tractography algorithms, such as global tractography
s [Kreher et al., 2008; Mangin et al., 2013; Christiaens et al., 2015; Neher et al., 2012],
a5 are likely to have different reproducibility “scores”, even with the same segmentation
s protocol. Any change to the preprocessing could lead to unexpected change in the repro-
sr  ducibility “scores”. Using the same datasets and tractography algorithm, but increasing
s or decreasing the number of streamlines could also change the reproducibility “scores”.
30 Investigations of other bundles of interest would likely lead to different reproducibility
wo  “scores”) using another anatomical definition of the PyT or even having the anatomi-
a1 cal definition taught to participants would have the same effect. However, the general
w2 conclusion remains that reproducibility needs to be quantified for specific projects and
w3 protocols. Reproducibility “scores” cannot be generalized and any attempt would be
w0 futile.

ws  4.4. Impact on analysis

406 If variability needs to be minimized further than the defined protocol, a simple rec-
w7 ommendation is to have a single rater perform each task multiple times or multiple raters
ws perform each task multiple times (or a subset of tasks). This way, it is guaranteed that
w0 each dataset is segmented more than once, decreasing the error risk. Regardless of the
a0 decision made, it is of great importance to quantify the reproducibility of manual segmen-
a1 tation of raters involved in the project before doing any statistics or group comparisons.
a2 This could drastically change the statistical significance of results. As of now, to the
as best of our knowledge, human variability and errors are rarely considered. Sources of
as  variability needs to be accounted to truly enable synthesis of work across multiple cen-
a5 ters. Even when automatic or semi-automatic methods are used, they first need to be
as  evaluated with agreed upon measures and reach or surpass human standards.

a7 The extension to other bundles of interest or other segmentation plans is not trivial
as  and the only conclusion that stands is that agreement is never 100% and that a unique
a0 Mmeasure is not enough to represent the whole picture for tractography segmentation. The
a0 desire to simplify measures or have only one value to describe quality or reproducibility
21 of segmentations needs to be discouraged. The nature of our datasets makes this task
222 much more complex to interpret than 2D or 3D images, and it is imperative that the field
23 comes to understand and agree on measures to report. This is more relevant than ever as
24 the field grows and now that open science is becoming more popular and reproducibility
w»s  studies are encouraged. Similarly to other neuroimaging fields, such as hippocampi
26 segmentation, standardized protocols need to be developed and designed to be used
w27 across multiple centers without active collaboration or micromanagement.
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ws 4.5, Future work

29 Future work includes the creation of a database containing bundle segmentations and
a0 metadata from participants that will be available online so further analysis can be done.
a1 As for now, a preliminary upload of the participants segmentation is available on Zenodo
a2 (https://doi.org/10.5281/zenodo.2547025), which will be updated. In this work,
.3 metadata was not used to evaluate duration as a variable influencing reproducibility.
s Investigating the relationship between variability and duration of a task or looking for bias
15 (inter-hemispheric or software influence). An online platform similar to the Tractometer
w6 [Coté et al., 2013] or a Nextflow pipeline [Di Tommaso et al., 2017] is planned to be
a7 released. Such a tool would be designed for researchers to quickly submit data that is
a8 expected to have some level of agreement and obtain their “reproducibility score”. This
a0 way protocols can be improved and reproducibility can be taken into account in the
w0 analysis.

aa1 Protocols for many bundles need to be developed for various purposes, such as
w2 clinical practice, synthesis of findings, building training sets for machine learning, etc.
a3 The segmentation plan and instructions need to be defined clearly by panels of experts,
we and agreed upon terminology [Mandonnet et al., 2018], to optimize reproducibility and
ws  anatomical validity. The field of manual tractography segmentation is decades behind
ws  fields such as grey nuclei or hippocampi manual segmentation on this matter. The latter
w7 has been refining segmentation protocols for the past decade and has already reached
s the state harmonized segmentation protocol and was evaluated with reproducibility in
uo  various settings [Boccardi et al., 2011, 2015; Frisoni et al., 2015; Apostolova et al., 2015;
ss0  Wisse et al., 2017].

s 5. Conclusion

452 When trying to understand how similar WM bundles from dMRI tractography are, at
3 least 3 values need to be taken into consideration: Dice coefficient of vozels showing how
sss well the overall volume overlaps, bundle adjacency of vozels showing how far are voxels
»ss  that do not overlap and correlation of density map showing if the streamlines are spatially
w6 distributed in a similar way. Results from our work on the pyramidal tract revealed that
»s7  rater overlap is higher for voxel-wise measures (approximately 70%) than streamline-wise
s measures (approximately 35%). Distance between segmentations is lower for voxel-wise
s measures than streamline-wise measures, approximately 3mm and 6mm respectively. In
w0 comparison to the group average, the results depict an ease to identify true negatives, an
w1 adequate amount of true positives, while having a low amount of false positives. The voxel
w2 and streamline representations do not produce equal levels of reproducibility. Studies
w3 reporting bundle asymmetry in term of streamline count (streamline-based) will require
ws a larger group difference than those reporting volume difference (voxel-based). This
w5 indicates a strong need for clear protocols for each bundle or at least detailed documents
ws included with publications that used manual segmentation. Reproducibility of results is
w7 mneeded and goes hand-in-hand with the open science movement. A collaborative effort
w8 to evaluate and quantify human variability is needed.
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