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Abstract

Cell morphology is an important indicator of cell state, function, stage of
development, and fate in both normal and pathological conditions. Cell shape is among
key indicators used by pathologists to identify abnormalities or malignancies. With
rapid advancements in the speed and amount of biological data acquisition, including
images and movies of cells, computer-assisted identification and analysis of images
becomes essential. Here, we report on techniques for recognition of cells in microscopic
images and automated cell shape classification. We illustrate how our unsupervised
machine-learning-based approach can be used to classify distinct cell shapes from a
large number of microscopic images.

Technical Abstract

We develop a methodology to segment cells from microscopy images and compute
quantitative descriptors that characterize their morphology. Using unsupervised
techniques for dimensionality reduction and density-based clustering, we perform
label-free cell shape classification. Cells are identified with minimal user input using
mathematical morphology and region-growing segmentation methods. Physical
quantities describing cell shape and size (including area, perimeter, Feret diameters,
etc.) are computed along with other features including shape factors and Hu’s image
moments.

Correlated features are combined to obtain a low-dimensional (2-D or 3-D)
embedding of data points corresponding to individual segmented cell shapes. Finally, a
hierarchical density-based clustering algorithm (HDBSCAN) is used to classify cells. We
compare cell classification results obtained from different combinations of features to
identify a feature set that delivers optimum classification performance for our test data
consisting of phase-contrast microscopy images of a pancreatic-cancer cell line, MIA
PaCa-2.
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Introduction 5

The morphology of cells often reflects their tissue-specific function or state. Cells 6

undergo morphological changes to become motile in response to various stimuli, either 7

as part of normal physiology and development, or due to pathologic disorder. In some 8

cancers, epithelial cells lose their inter-cellular connections, and take on protrusive, 9

exploratory morphologies as they transit from static to migratory phenotypes. 10

Recognizing such abnormal cell shapes can aide in properly identifying malignant (as 11

distinct from benign) tumors. Yet, this analysis of cell shapes derived from microscopic 12

images has traditionally been handled by expert humans, i.e. pathologists and 13

histologists, who use many cellular features, including cell shapes, in their diagnoses. 14

Modern medicine and high throughput quantitative biology have motivated new 15

methods for extracting useful information from microscopic data [1]. In particular, data 16

science and machine learning is being applied to devise new intelligent computational 17

tools to process microscopic images and recommend patient-specific clinical treatments. 18

Two broad classes of machine learning are the supervised and unsupervised methods. 19

Both can be used to address classification and regression problems. Supervised learning 20

algorithms require training data (annotated subset of data for which the desired result 21

or ground truth is known a priori) to train a classifier or regressor. Typically, the 22

learned classifier or regressor retains sufficient generality to handle new data for which 23

the outcome (category in the case of classification) is unknown. Several examples of this 24

type include the following. Keskin et al [2] used dual-tree complex wavelet transform to 25

classify cell images into 14 types of known breast and liver cancer types (i.e. match 26

images to predetermined classes). Similarly, Reta et al [3] developed automated 27

methods to classify leukemia cell images to one of four leukemia types based on 28

morphology of their nuclei and cytoplasm. Matsuoka et al [4] used morphological 29

features of stem cell microscopy images and training sets to predict the differentiation 30

stat eof the cells, and verified the results using biochemical markers. (Here we eschew 31

training data.) Similarly, Nanni et al [5] classified stem cells into three stages of 32

maturation using texture descriptors using wavelets, Gaussian filters, and other 33

methods. Park et al [6] used automatic processing of microscopy images to compare 34

morphologies of prostate cancer cells from patients and from cell cultures. Many of 35

these papers share some features of segmentation or clustering methods with our 36

techniques, but with an important distinction: In these examples, there exists a priori 37

knowledge of the basic classes of objects to be identified i.e. the goal is to match cell 38

features with known categories. Our goal is to extend such methods to datasets where 39

no such pre-knowledge is available. 40

Unsupervised learning algorithms exploit patterns inherent in the data to make 41

predictions under the premise that similar data should correspond to similar outcomes. 42

In practical applications, training data is often unavailable and requires significant time, 43

expense and effort to acquire. This is a limitation that can be avoided by using 44

unsupervised learning methods, and motivates our approach in this paper. 45

Here we develop a software-based pipeline for delineating cells boundaries in 46

micrographs (a process known as microscopic image segmentation), quantification of cell 47
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morphology (called feature extraction in machine-learning parlance) and subsequent cell 48

shape classification. The pipeline operates in a semi-supervised manner, with user 49

intervention required only at the segmentation stage to pick out correctly segmented 50

cells. Alternatively, user assistance is required to train a supervised algorithm to 51

perform image segmentation. The remainder of the pipeline (for feature extraction and 52

classification) is automated and does not require any user input. 53

We illustrate our methodology using phase-contrast images of pancreatic carcinoma 54

cells (MIA PaCa-2 cell line), though the methods are general and suitable for other 55

types of cell images. MIA PaCa-2 is a human cell line that was established by A. Yunis, 56

et al. [7] from primary tumor tissue of the pancreas. It is currently used as an in-vitro 57

model to study carcinogenesis in pancreatic ductal adenocarcinoma [8]. MIA PaCa-2 58

cells exhibit several distinct morphological shapes, making them particularly suitable for 59

our purposes. Since our methodology does not require biomarker cell labeling, it can be 60

easily adapted for confocal or fluorescent images. Phase microscopy is chosen for 61

demonstration purposes because phase images are particularly challenging to 62

segment [9]. 63

We assemble a pipeline using unsupervised learning methods that uses inherent 64

properties of the input data to extract clusters and determine a natural classification. 65

Each cell is associated with a feature vector, whose elements (“features” or 66

“descriptors”) quantify aspects of its morphology. Feature selection varies with imaging 67

modality (bright-field, phase-contrast, florescent, etc.) and target application. 68

Therefore, we compute a diverse range of features and evaluate their performance on the 69

MIA PaCa-2 data set to decide which features provide the best result. 70

Unsupervised methods are technically challenging to design and implement, especially 71

in the context of image classification, but have the advantage that they are 72

self-contained and require no expert curated training data. Unlike state-of-the-art 73

supervised methods (e.g., convolutional neural networks [10]) where feature 74

computation is an inherent part of training, unsupervised methods can only take 75

advantage of a set of pre-determined features. According to a recent review, supervised 76

methods outperform unsupervised clustering methods despite the availability of large 77

amounts of data, due to lack of consensus in class delineation, sensitivity to algorithm 78

parameters, limitations in feature extraction and lack of robustness in cluster 79

identification [11]. However, by computing a large number of features, performing 80

automated feature selection and limiting the number of output categories, this 81

shortcoming can be partly overcome. Additionally, features computed as part of the 82

unsupervised classification methodology contain information that can be easily 83

interpreted by biologists and medical professionals. 84

Despite their challenges, unsupervised learning methods have been gaining popularity. 85

Logan et al. [12] devised a learning methodology based on pixel intensities of fluorescent 86

cell images as features. Gençtav et al. [13] used pixel brightness along with 87

measurements of area, perimeter, shape factors and Feret diameters for both nuclear 88

and cytoplasmic segmentations to identify normal and malignant cervical cells. 89

Segmentation was performed in a semi-supervised manner where a single boundary 90

could be shared by more than one cell in cases where cells overlapped. Ahonen et 91

al. [14] used unsupervised clustering methods to classify simulated tumor and prostate 92

cancer spheroids. They used geometrical features calculated from ellipse fitting, 93

boundary features obtained from principal curve fitting and texture-based features. 94
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Kriegel et al. [15] classified the 3-D surface of myeloid cells by computing Fourier 95

shape descriptors from a series of 2-D projections and by using a Self-Organizing Map 96

(SOM, an unsupervised competitive learning method based on artificial neural networks) 97

to perform classification in the Fourier domain. Alizadeh et al. [16] analyzed shapes of 98

osteosarcoma cells in pairs of cell lines with distinct invasion potential. They used 99

Zernike moments as feature vectors. Their method succeeded in assigning cells into 100

their respective invasiveness categories. As in Fourier analysis, the original image can be 101

fully reconstructed by superposition of an arbitrarily large collection of its Zernike 102

moments. However, the individual moments do not, themselves, provide intuitive 103

descriptors that biologists can easily appreciate. 104

In this paper, we only consider morphological features and exclude texture 105

information. This enables us to develop methods that are more generic and do not 106

depend heavily on the type of microscopy image. Furthermore, we restrict our approach 107

to 2-D images as proof of principle. In principle, the same approach can be used to 108

classify segmented 3-D cell shapes, where the 3-D segmentation is obtained from a 109

volumetric image (acquired using a confocal micropscope for instance) using existing 110

methods such as the marching cubes algorithm. Our goal is to develop unsupervised 111

classification of cells based solely on morphological features, requiring no additional cell 112

labeling or staining. While this makes for a more challenging classification process, it 113

accommodates a far wider domain of acceptable input data, allowing for live-cell 114

imaging without artifacts of fixation, staining or fluorescent labeling. 115

Our methodology, while illustrated on MIA PaCa-2 cells, is applicable to a wide range 116

of cells and image types. Many related label-free methods currently used do not achieve 117

multi-class classification [17]. Conversely, other methods cannot process 118

high-throughput data due to computational complexity of feature extraction. Therefore, 119

a major objective of our work is to select from a diverse pool of easy to compute 120

features that are capable of classifying cells based on their morphology. 121

Methods 122

In this section, we describe our methodology for unsupervised classification of 123

Mia-PaCa2 cells (American Type Culture Collection, Manassas, VA, Cat # CRL-1420) 124

maintained in sub-confluent 2-D monolayer culture and imaged using phase contrast 125

microscopy (Nikon, TMS microscope using a 10X objective). Typically, the machine 126

learning algorithm is embedded into a processing pipeline that converts microscopy 127

images into numerical data corresponding to individual cells [18]. The pipeline consists 128

of image processing, feature extraction, dimensionality reduction, and classification 129

steps, as described in detail below. Due to the absence of labels in our data, validation 130

of our results is performed by human experts (Pamela Dean, Calvin Roskelley, 131

Dhananjay Bhaskar) who judge the performance of each classifier. 132

The first phase of image processing is to enable separation of foreground and 133

background by removing artifacts, reducing noise and compensating for uneven 134

illumination. Subsequently, image segmentation methods (techniques that divide an 135

image into regions of interest) are used to identify cells amongst the foreground pixels. 136

The choice of segmentation algorithm depends on the image and cell type. No single 137

algorithm is capable of identifying cells from diverse imaging modalities. Currently, our 138

segmentation is semi-supervised, with a human expert selecting correctly segmented 139

cells amongst the results of the image processing software. 140
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For each segmented cell, a feature vector consisting of quantifiable descriptors of cell 141

shape and size is computed. Each feature in the vector is normalized by subtracting its 142

mean and dividing by its standard deviation, where these statistics are calculated over 143

all segmented cells in the entire data set. Standardization of features in this manner 144

(called Z-score standardization) is a frequently used method for comparing features on a 145

common standard irrespective of the underlying distribution of feature values. A 146

classification algorithm uses the normalized feature vectors to define and to distinguish 147

between “cell types”. The performance of the classifier depends on the quality of 148

segmentation and accuracy of features. Two cells can be distinguished (i.e. assigned 149

different labels by the classifier) if their feature vectors are sufficiently different. 150

Furthermore, in order to identify a specific morphology, one or more features must 151

capture unique characteristics of that morphology. 152

Most widely used classification algorithms based on a distance metric between 153

features perform well for low dimensional feature vectors. Dimensionality reduction 154

techniques convert high dimensional feature vectors to lower dimensions by combining 155

multiple features to remove redundancy while preserving variance in data. Two popular 156

dimensionality reduction techniques, Principal Component Analysis (PCA) and 157

t-distributed Stochastic Neighborhood Embedding (t-SNE) are described in the 158

dimensionality reduction section below. After dimensionality reduction, clustering 159

algorithms are used to classify data points corresponding to individual cells. Several 160

clustering algorithms are publicly available and have been empirically evaluated using 161

synthetic data for their performance, robustness and accuracy [19]. We use HDBSCAN 162

(hierarchichal density-based spatial clustering of applications with noise) to identify 163

clusters and quantify similarity between cells. We evaluate our classification results 164

using different sets of features and dimensionality reduction techniques. 165

Figure 1 indicates steps in a standard data processing pipeline for object 166

classification, which we have automated and adapted for cell shape classification. Our 167

pipeline is modular, so that individual components can be changed or replaced as 168

needed to accomodate different imaging modalities (fluorescent, brightfield, 169

phase-contrast, multi-photon, DIC, etc.) and sample preparation methods. 170
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Figure 1. Standard pipeline for cell classification using microscopy images. The
output from each stage is printed in bold. The bulleted lists are commonly cited
methods used in the computation. Our methodology is predominantly automated, as
indicated in parentheses on the left.

Image Processing 171

Identifying individual cells in an image is essential for automated recognition of 172

multiple cell types in large cell populations. Automated processing of 2-D images to 173

count cells and identify cell types using morphological measurements has been steadily 174

gaining traction since the 1960s. Over the past decades, literature on the subject has 175

grown exponentially, according to a review published in 2012 [20]. 176

Most current segmentation methods are based on basic approaches such as intensity 177

thresholding, feature detection, morphological filtering, region accumulation and 178

deformable model fitting (reviewed in [20]). We overcome issues of inaccurate cell 179

boundaries and over-segmentation (typical in Voronoi-based or watershed transform 180

methods) by bootstrapping watershed segmentation with markers lying inside cell 181

boundaries. Popular deformable model approaches such as geodesic active contours or 182

level sets to detect cell boundaries (by minimizing a predefined energy functional), can 183

result in poor boundary detection: their local optimization algorithms can get trapped 184
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in local minima [21]. 185

Segmentation of bright field and phase contrast images is generally more challenging 186

compared to fluorescent images. The latter usually have better contrast and deformable 187

model fitting techniques like active contour or level sets work well [9]. Distinctive bright 188

white patches or halo surrounding cells in bright field and phase contrast images prevent 189

accurate determination of cell boundary. Therefore, a custom approach is required for 190

each application that takes heterogeneity in cell shape, population density, variability in 191

cell compartmentalization, etc., into account. 192

The following sections describe our approach for segmenting phase contrast images 193

using a combination of edge detection, thresholding, mathematical morphology and 194

watershed transform. 195

Foreground Detection 196

Foreground detection is performed in three stages. First, the Sobel-Feldman 197

derivative filter is applied to the original grayscale image to find edge points. These 198

points are pixel locations in the image corresponding to non-zero intensity changes. The 199

Sobel-Feldman operator uses two 3× 3 kernels, one for derivative in a horizontal 200

direction and the other for derivative in a vertical direction, which are convolved with 201

the original image to calculate gradient approximation. The result is binarized by 202

thresholding, with the value of the threshold specified by the user. 203

The binary image produced by edge detection is further manipulated using 204

mathematical morphology, as shown in Figure 2. Mathematical morphology is a 205

collection of set-theoretic operations on binary images that have been used for image 206

enhancement, noise removal, edge detection, etc. Foundations of mathematical 207

morphology are based on two operations: erosion and dilation. (See S1 Appendix for 208

details.) 209

In the second stage of foreground detection, edge points are connected by dilating the 210

image with line shaped structural elements. The size of the structural elements is a 211

parameter set by the user. This leads to the formation of closed loops around isolated 212

cells or clusters of tightly packed cells. The final stage involves filling of closed loops 213

and removal of small objects and artifacts whose size is below the user-specified 214

threshold for minimum cell size. Cells that cross the boundary of the image are also 215

removed during this stage of image processing. 216
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(a) Original Image (b) Edge Detection

(c) Dilated & Filled (d) Foreground Binary Mask

Figure 2. Foreground detection from phase contrast image

(a) Original phase contrast microscopy image of MIA PaCa-2 pancreatic carcinoma
cells. (b) Edge point detection after application of the Sobel-Feldman derivative filter
and conversion from grayscale to binary by thresholding. (c) Dilation by line-shaped
structural element. (d) Resulting foreground markers obtained after filling, removal of
small artifacts and objects connected with image boundary.

Cell Segmentation 217

Foreground detection separates foreground from background in the original image. 218

The foreground binary image is eroded N times (with N and size of structural element 219

specified by the user) to obtain foreground markers, a majority of which lie inside cell 220

boundaries. The marker-based watershed transform is a region accumulation approach 221

that segments cell boundaries using foreground markers and gradient of the original 222

image. The number of correct segmentations in the result depends on the pre-processing 223

of markers prior to the segmentation [22]. 224
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(a) Foreground Markers (b) Background Markers

(c) Watershed Segmentation (d) Manual Selection

Figure 3. Cell segmentation

(a) Eroded binary foreground markers overlaid on top of original image. (b) Background
markers computed by applying watershed transform to the distance transform of fore-
ground markers. (c) Result of watershed segmentation using foreground and background
markers. (d) Manual selection of correctly segmented cells.

The watershed segmentation algorithm requires foreground markers (to identify 225

regions inside individual cell) and background markers (for regions between adjacent 226

cells). Over-segmentation may occur if background markers are too close to cell edges. 227

To prevent this, we computed background markers using the “skeleton by influence 228

zones” (SKIZ) of the foreground markers [23]. Pixels in the immediate vicinity of a 229

given foreground marker (closer to it than to any other foreground marker) form its 230

influence zone. SKIZ, the boundary between influence zones of all foreground markers, 231

is analogous to the Voronoi tessellation of foreground markers in the image plane. In 232

practice, background markers are determined by (1) computing the distance transform 233

of the foreground markers and (2) finding ridge-lines using the watershed transform of 234

the distance-transformed foreground markers (see Figure 3b); ridge-lines correspond to 235

background markers or SKIZ. Given foreground and background markers, the 236

priority-flood watershed algorithm is applied to the original image, resulting in 237

watershed lines. These lines identify cell boundaries, see Figure 3c. 238

The entire image segmentation process requires minimal user input to (1) specify the 239

threshold parameters, size of structural elements and number of iterations for 240

morphological operations and (2) to manually select correct segmentation after the 241

watershed transform is applied, ensuring that only correctly segmented cells are 242

assigned unique ID numbers (and serialized) for further processing in the pipeline. 243
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Feature Extraction 244

Both boundary and area-based methods are used to extract morphological features 245

from segmented cell shapes. Both types of methods use cell-boundary data, but 246

area-based methods also use cell-interior points. Area based methods are more robust to 247

small perturbations in cell shape and are easy to compute. For example, to accurately 248

estimate the area of a given shape it suffices to count pixels in its interior, whereas 249

perimeter estimation is not so straightforward [24]. The main advantage of boundary 250

based features (curvature functions, cubic spline interpolation of cell boundary, 251

normalized Fourier shape descriptors, etc.), is that they provide a good quantization of 252

angles, corners and curves in the image. Such geometric details are lost in many 253

area-based features. 254

Hu’s Moment Invariants 255

Moments of a distribution are integrals that characterize means, variances, and higher
order properties of density distributions such as distributed mass m(x, y), probability
density p(x, y), or geometric shapes. In the case of binary cell images (e.g., Figure 2d),
the distribution of interest is a function f(x, y) that takes points (x, y) in the plane into
binary values, 0 or 1 (for points outside or inside the cell, respectively). The pq’th
image moment (of order p+ q), denoted mpq, is defined as:

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy,

which are approximated, here, by the discrete sum over all pixels in the raster image:

mpq =
∑
x

∑
y

xpyqf(x, y).

The zeroth raw moment, m00 is then the cell area, whereas x̄ = m10/m00 and
ȳ = m01/m00 are coordinates of the cell centroid. For translational invariants, moments
are typically computed relative to that centroid,

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y).

The zeroth central moment, µ00, is equivalent to m00 and corresponds to the area of a 256

segmented cell. 257

In classifying cell shapes, it is desirable to assign shape-features that are invariant to
image size, to rotation, and/or to reflection (mirror image). This can be accomplished
by normalizing some moments, and by deriving others that are invariant to such
operations. When the axes of a 2-D image are scaled by a factor λ (e.g., with λ > 1 for
magnification, λ < 1 for reduction), the moments µpq of the unscaled image are
transformed to

µ′pq = λ(p+q+2)µpq.

Hence, a normalized (scale-invariant) central moments ηpq is

ηpq = µ
−(p+q+2)

2
00 µpq,

(obtained by setting µ′00 = 1, which scales cell area to unity.) 258
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A set of rotationally-invariant moments φi, i = 1 . . . 7 derived by Hu [25], are widely 259

used for translation, scaling and rotation invariant pattern recognition, including 260

recognition of typed English language characters. We adopt these moments 261

(summarized in S2 Appendix) to describe cell shape features. One of the Hu moments, 262

φ7, is skew invariant in addition to translation, scaling and rotational invariance. Unlike 263

raw or central moments, φ1 . . . φ7 do not form a complete set of image descriptors. 264

While higher order moments can be calculated, image reconstruction given a set of Hu’s 265

moment invariants is not straightforward. Furthermore, all seven invariant moments are 266

zero for images that are rotationally symmetric [26]. 267

Dunn and Brown used shape measures (extension, dispersion and elongation) and 268

principal axis orientation calculated using φ1 and φ2 to characterize the shape and 269

alignment adopted by chick heart fibroblasts on micro-fabricated grooved substrata [27], 270

but adoption of Hu’s moments has declined in recent literature on morphology-based 271

cell classification. The role of these invariants and their usefulness is investigated in the 272

results section. 273

Geometrical and Boundary Features 274

For high-throughput cell classification, the cell-shape feature vector should be concise 275

and computationally inexpensive. While Hu’s moments meet this criterion, they are not 276

easily interpretable in terms of intuitive features. Normalized Fourier shape descriptors 277

(NFSDs) represent the boundary of an object using a subset of Fourier mode coefficients 278

[28]. One benefit of computing NFSDs is that synthetic cell images can easily be 279

generated by sampling from Fourier coefficients and computing the inverse transform. 280

In cases with limited number of segmented cell images, these synthetically generated cell 281

boundaries can be used to augment the origin data for classifier training. However, the 282

number of coefficients required for reasonable accuracy is hard to estimate, is often 283

large, and depends on the curvature of the object. Recent work in the Marée-Grieneisen 284

lab [29] has led to a generalization of cell shape Fourier analysis called Lobe 285

Contribution Elliptic Fourier Analysis (LOCO-EFA). This method has been used to 286

quantify the shape of pavement-cells on plant leaves. Individual modes of LOCO-EFA 287

are more directly interpretable in terms of actual cell shapes. 288

Point-wise values of curvature on the perimeter of a cell provide a detailed description 289

of its shape. For example, peaks in the curvature correspond to corners or tips of thin 290

protrusions. Urdiales et al. [30] describe a non-parametric method for efficient 291

computation of a curvature function for an object contour, represented as a short 292

feature vector. Their method requires pre-computation of certain Fourier transforms for 293

typical shapes, which is an obstacle to high-throughput cell classification (particularly 294

where the entire data set is not available in advance). 295

In view of the above, we bypass the use of curvature functions. Instead, we use simple 296

fitting of conics (circles and ellipses), which are universally applicable to all planar 297

objects. A set of boundary points (obtained from segmentation) is used as input and 298

uncertainty is quantified from goodness of fit measures. Cell boundary descriptors are 299

obtained from cubic spline interpolation, with the number of spline points estimated 300

using a manually adjusted smoothing parameter. Together, these descriptors encode 301

information about the shape and size of the cell that is easy to visualize (Figure 4). 302

Like Hu’s moments, these features are invariant to rotation and translation, as well as 303

to noise in the shape boundary. 304
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Consider an arbitrary curve f(θ) = 0 parametrized by M features, θ = (θ1, ..., θM )T .
We fit this geometry to a set of boundary points (xi, yi)

N
i=1, by solving the following

optimization problem:

argmin
θ

N∑
i=1

r2i (θ),

where ri is the orthogonal distance between boundary point (xi, yi) and the shape 305

f(θ) = 0. 306

Figure 4. Geometrical fits and boundary interpolation

(A) Cropped images of cells from phase-contrast image, (B) Ellipse, circle and polygonal
fit to segmented cell image, (C) Oriented rectangular fit, (D) Cubic spline fit along the

boundary color coded by curvature, and (E) Color bar showing curvature values

Ellipse and Circle Fitting 307

Using least-squares, an ellipse is fit to the cell outline so as to minimize the distance 308

between closest points on the ellipse and the cell boundary. The optimal least squares 309

solution can be computed directly without an iterative approach [31], as shown in S2 310

Appendix. The stable and robust fitting method returns the ellipse center, axes, and 311

angle of rotation, θ = (xc, yc, a, b, α). In addition to parameters obtained from fitting, 312

goodness of fit is estimated by calculating the variance [32]. Lengths of the two 313
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principal axes of the ellipse fit can be obtained from eigenvalues of the covariance 314

matrix. Table 1 summarizes features obtained from ellipse and circle fitting. 315

Feature Range Description

Ellipse Eccentricity [0, 1]
Close to 0, the ellipse is circular.
Close to 1, it is elongated.

Ellipse Major Axis
Length

[0,∞)
The length of the major axis of
the ellipse fit.

Ellipse Minor Axis
Length

[0,∞)
The length of the minor axis of
the ellipse fit.

Ellipse Area [0,∞) Area of the ellipse fit.
Ellipse Perimeter [0,∞) Perimeter of the ellipse fit.

Ellipse Variance [0, 1]
A goodness of fit measure for the
ellipse fit.

Circle Radius [0,∞) Radius of the circle fit.
Circle Area [0,∞) Area of the circle fit.

Circle Variance [0, 1]
A goodness of fit measure for the
circle fit.

Table 1. Features extracted from ellipse and circle fits of cell images

Rectangle and Polygon Fitting 316

A rectangular fit for a cell consists of four functions with constraints, mandating an 317

approach distinct from fitting conic sections. We use the procedure of Chaudhuri and 318

Samal [33]: 1) finding the centroid of the object, 2) determining principal axes, 3) 319

computing the upper and lower furthest edge points along the boundary, and finally, 4) 320

finding the vertices of the bounding rectangle. Table 2 summarizes Feret diameters 321

based on the rectangle fit. We use these to compute elongation, a non dimensional 322

shape factor. Note the distinction between bounding box and the above rectangle fit. 323

The edges of a bounding box are parallel to Cartesian axes whereas the major axes of 324

the rectangular fit are aligned to the principal axes of the cell shape. 325

Feature Method Description
Maximum Feret
Diameter

Rectangle fit
Longest distance between two paral-
lel tangents on cell boundary

Minimum Feret
Diameter

Rectangle fit
Shortest distance between two paral-
lel tangents on cell boundary

Cell Area
Polygon fit,
Pixel counting

Number of pixels inside segmented
cell boundary.

Cell Perimeter
Polygon fit,
3-pixel Vector
(3PV) Method

Estimate obtained from chain code
for pixels on cell boundary.

Table 2. Features extracted from bounding rectangle and polygonal fits

Polygon Fitting 326

A polygon fit along the cell boundary is computed using the 3-pixel vector (3PV) 327

method described by Inoue and Kimura [24]. The 3PV method is designed for 328

calculating the perimeter of low resolution raster objects, where counting the number of 329
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pixels at the boundary of the object results in inaccuracies. We modified the standard 330

3PV method to obtain vertices of the polygon fit while computing the cell perimeter. 331

Details of our implementation are provided in S2 Appendix. 332

Cubic Spline Boundary Fitting and Curvature 333

Table 3 summarizes all boundary features extracted from the segmented cell shape. A 334

cubic spline interpolation along the boundary of the segmented cell is computed using 335

vertices of the polygon fit. Curvature values are calculated from the first and second 336

derivative of the spline at 500 uniformly spaced points. Mean and standard deviation of 337

curvature is included in the feature vector. To estimate the number of protrusions and 338

indentations in the segmented cell boundary, the number of local maxima and local 339

minima (with values above 0.2 and below 0.2 respectively) is also recorded. An 340

additional constraint that no two maxima or minima can be located within a 341

neighbourhood of 10 pixels is imposed to avoid small arbitrary fluctuations in curvature 342

computation. Finally, the global extremum values are also included in the feature vector 343

to distinguish cells that exhibit sharp filopodia. We observe that cells with circular 344

morphology have positive curvature all along their boundary with zero protrusions or 345

indentations. Elliptical cells tend to have two protrusions, situated at the extremities. 346

Feature Description

Mean
Mean curvature along the boundary of
the cell.

Standard deviation
Indicates variation in curvature along
the boundary.

Number of protrusions
Number of local maxima in curvature
function, with peak values above the 0.2
per pixel threshold.

Number of indentations
Number of local minima in curvature
function, computed by calculating max-
ima of the negative.

Maximum curvature
Global maximum of curvature on cell
boundary.

Minimum curvature
Global minimum of curvature on cell
boundary.

Table 3. Features extracted from curvature of cubic spline fit
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(a) (b) (c)

Figure 5. Computation of boundary features

(a) Curvature along the parametrized boundary obtained from cubic spline fit. (b)
Colorbar for curvature values. (c) Cubic spline interpolation along the boundary color
coded by curvature value. 3 protrusions and 1 indentation are detected in the cell
shown above. Local maxima and minima in curvature with magnitude greater than 0.2
are classified as protrusions and indentations respectively. Multiple extrema within a
neighborhood of 10 boundary pixels are treated as a single protrusion or indentation.

Shape Factors 347

The previous section described features obtained by fitting various geometries to a cell 348

boundary. Shape factors are non-dimensional quantities that are computed by counting 349

pixels in a segmented cell image, and its convex hull, bounding box and oriented 350

rectangular fit. Shape factors are widely used to classify particulate matter [34,35] and 351

often used as part of feature vectors designed to classify cell shapes [36,37]. 352

In Table 4, we list the non-dimensional shape factors included in our feature vector 353

and formulas for their computation. These factors include extent, solidity, compactness, 354

elongation, circularity, and convexity. More details about these geometric measures are 355

provided in S2 Appendix. 356

Briefly, the extent is the fraction of the bounding box area taken up by the cell, 357

whereas solidity is the fraction of the convex hull occupied by the cell. For the MIA 358

PaCa-2 pancreatic cancer data set, rounded cells typically have solidity values that 359

approach unity. Compactness is the ratio of the diameter of a circle (with the same area 360

as the cell) to the major axis of the rectangle fit whereas elongation is the ratio 361

(1-d1/d2), where di are the width and length of the rectangular fit respectively. 362

Compactness is close to zero if a cell is elongated, whereas elongation is close to zero if a 363

cell is circular. Circularity measures the degree of similarity to a circle, whereas 364

convexity is the ratio of convex hull perimeter to segmented cell perimeter. 365
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Feature Range Equation Description

Extent [0, 1] Acell

Abounding box

Ratio of pixels belonging to seg-
mented cell to pixels in the bound-
ing box.

Solidity [0, 1] Acell

Aconvex

Ratio of pixels belonging to seg-
mented cell to pixels in the convex
hull.

Compactness [0, 1]
√

4(Acell)

π

Max. Diameter

Ratio of circular equivalent diam-
eter to maximum Feret diameter.

Elongation [0, 1] 1− Min. Diameter
Max. Diameter

1 - Aspect Ratio. Close to 1 for
elongated cells and close to 0 for
circular cells.

Circularity [0, 1]
√

4πAcell

P 2
cell

Degree of resemblance to a circle.

Convexity [0, 1] Pconvex hull

Pcell

Ratio of the convex hull perimeter
to the cell perimeter.

Table 4. List of non-dimensional shape factors

Dimensionality Reduction 366

Our unsupervised classification relies on clustering algorithms based on some distance 367

metric. It tends to perform poorly for high dimensional feature vectors, since in 368

high-dimensional space, distances between pairs of points tend to converge to similar 369

values. To prevent this “curse of dimensionality”, our clustering is performed on a 370

low-dimensional data set after dimensionality reduction. 371

Principal Component Analysis (PCA) 372

Principal Component Analysis, briefly summarized in S3 Appendix, is a common 373

method for dimensionality reduction. PCA transforms high dimensional data into a low 374

dimensional subspace, whose basis consists of linear combinations of the high 375

dimensional basis vectors. The PCA basis vectors (PCA1, PCA2, etc), termed principal 376

components, correspond to directions with the greatest variance in the original dataset. 377

That is, (PCA 1) has maximum variation, (PCA 2) has the second-most variation, etc. 378

A plot of variance in data explained by each principal component versus the number of 379

components is generally used to identify how many components are needed. The 380

tradeoff between number of components and total variance in data captured by principal 381

components is resolved by finding the “elbow” in this plot. Typically 2-3 components 382

account for majority of the explained variance and clusters in the transformed data can 383

be easily visualized. However, as we demonstrate, this was not the case for the data 384

used in this paper, motivating other dimensionality reduction methods. 385

t-Distributed Stochastic Neighborhood Embedding (t-SNE) 386

t-Stochastic neighborhood embedding (t-SNE) is a non-linear embedding from high 387

dimensional space (e.g. Rn) to low dimensional space (in our case, R2) designed to 388

preserve local structure in the data [38]. The map is created by iterated steps of 389

gradient descent that minimize Kullback-Leibler divergence, a cost function that 390

represents difference of similarities of pairs of points in Rn and similarities of their 391

images in the lower dimension representation. (In original SNE, Gaussian distributions 392

of point-distance probabilities were used for the similarity comparison, whereas t-SNE 393

employs a Gaussian in Rn and a Student-t distribution in the image space). An 394
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intuitive description of the iteration step was provided in [38]: image points in 2D move 395

as if “connected by springs”, with “spring stiffness” corresponding to the deviation of 396

similarities between the neighbor points in the data and in their images. t-SNE 397

modified and generalized SNE to more strongly repel points that are “dissimilar” in the 398

data, putting them far away in the 2D image, while keeping similar points close to one 399

another. 400

Unlike PCA, where an explicit linear transformation is set up, t-SNE is a nonlinear 401

map that aims to preserve probabilities of points being close or far from one another. 402

Because t-SNE normalizes over local density, it produces clusters in 2D that have 403

similar sizes. t-SNE does not faithfully represent geometry and in some cases even blurs 404

the topology of the original data, so that distances in the 2D t-SNE plot should not be 405

over-interpreted. An informative review of such eccentricities, with interactive 406

illustrations, is given in the website https://distill.pub/2016/misread-tsne/. 407

The t-SNE algorithm requires multiple input parameters (“perplexity”, “early 408

exaggeration”, learning rate and number of iterations). The perplexity is effective 409

number of neighbors of a data point, and typically ranges between 5 and 50, providing a 410

weighting between the importance of local and global properties. Wattenberg et al. [39] 411

provide an excellent summary of the effect of perplexity and motivate the need for 412

experimentation with a range of values of this parameter (see also the aforementioned 413

URL). Linderman et al. [40] discuss how to optimize the selection of the exaggeration 414

parameter and the step size. 415

The learning rate parameter plays an important role in preventing the algorithm from 416

getting stuck in a local minimum. Analysis of properties of t-SNE and its usefulness in 417

data visualization is provided in [40, 41]. While t-SNE is less straightforward than PCA, 418

we found that it produced better results for our data and feature vectors. 419

Unsupervised Classification 420

Once a low-dimensional data set is designated, the final step is to infer relationships 421

between the data points (unsupervised classification). Clustering algorithms are used to 422

automatically group the data points (descriptors or features in the context of machine 423

learning) corresponding to the cell images. Clustering methods typically require 424

parameter optimization to maximize classification accuracy [42]. We experimented with 425

a variety of clustering methods and parameter settings, including k-means algorithm 426

and DBSCAN (Density-based spatial clustering of applications with noise), as reviewed 427

in S4 Appendix. DBSCAN defines clusters based on the density of packing - associating 428

closely-packed nearest neighbors into a given category [43]. We used the hierarchical 429

variant, HDBSCAN [44] in the results described further on. 430

The k-means algorithm requires one parameter (k), which is the number of expected 431

clusters in the data. In many cases, including ours, the true value of k is not known a 432

priori, so some way to estimate this value is desirable. Rousseeuw described a heuristic 433

using silhouette coefficients to identify the number of clusters in a given data set [45]. 434

Points are clustered using k-means for various values of parameter k. Assuming that the 435

algorithm converges and gives stable results, the silhouette score is computed by 436

calculating the average of silhouette coefficients for all data points. The number of 437

clusters in the data set, i.e. the optimal value for k, is one that maximizes the silhouette 438

score. We provide details and examples of this method in S4 Appendix. 439

PLOS 17/30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/623793doi: bioRxiv preprint 

https://distill.pub/2016/misread-tsne/
https://doi.org/10.1101/623793
http://creativecommons.org/licenses/by-nc-nd/4.0/


The DBSCAN algorithm distinguishes between core points, boundary points and 440

noise points using two parameters, ε and MinPts. Core points have at least MinPts 441

points within ε radius neighbourhood. A border point has fewer than MinPts points 442

within its ε-neighbourhood. Points that are neither core points nor border points are 443

noise points. The DBSCAN algorithm iterates over all points and assigns them to 444

clusters based on their reachability from core points. Each cluster contains at least one 445

core point. The algorithm is sensitive to parameter values and does not perform well 446

when the data contains clusters of various densities. The HDBSCAN algorithm 447

eliminates the need to specify the ε parameter by repeatedly running DBSCAN at 448

various spatial scales corresponding to different values of ε. 449

Results 450

We applied the methods described above to 40 phase-contrast images of the MIA 451

PaCa-2 cancer cell line. By visual inspection, we found that 310 cells were correctly 452

segmented. 453

A typical segmentation result is shown in Figure 6. As expected, we found that 454

boundaries of cells that are closely packed were not resolved by the watershed algorithm 455

(see Figure 6b) since cells sharing foreground markers are treated as one object. To 456

segment closely packed cells, many iterations of erosion were needed (see mathematical 457

morphology). This, however, leads to poor results for spindle-shaped cells with long 458

thin “tails”, as multiple erosions shorten, split or remove such tails. We observed that 459

the number of erosion iterations (a parameter we varied) affected the range of cell sizes 460

and population density at which correct segmentations were obtained. Even for isolated 461

cells, fine details of cell boundaries such as tiny protrusions are lost due to erosion 462

during segmentation. 463

Once segmented, cells are each assigned a unique identification number (UID), that 464

associates the cell with each of its representations, from original image, to final cluster 465

membership. Our dataset consisted of 310 correctly segmented cells, a relatively small 466

dataset in the context of machine learning. Each of these cells was associated with a 30 467

component feature vector for the unsupervised classification process. The feature vector 468

consisted of the 7 Hu’s invariant moments, 6 shape factors, 11 geometrical features and 469

6 boundary features. Because our cells are not pre-identified by human experts, we have 470

no “ground truth” against which to compare results. Hence, we use visual inspection for 471

the validation step. 472
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(a)

(b) (c)

Figure 6. Cell segmentation

(a) MIA PaCa-2 image acquired using phase-contrast microscopy. (b) Boundaries (tagged
with IDs) obtained using mathematical morphology and watershed segmentation. Each
segmented boundary is assigned a unique ID. (c) Correctly segmented cells are serialized
by manually selecting IDs (from Figure 6b). Features computed for IDs identified by
the user are stored for further processing.

We first considered the K-means clustering algorithm on the entire feature vector of 473

30 features. To decide the optimal value of K, we computed silhouette scores for values 474

of K ranging from 2 to 25. Since the cluster assignment obtained from K-means 475

algorithm depends on the initialization of the the cluster centroids, the resulting 476

silhouette scores also vary with each run of the algorithm. Averaging over 10 runs, we 477

found that the silhouette score was maximized for K = 19, as shown in Fig. 7. This 478

means that the K-means method specifies that the data consists of 19 clusters. The 479

K-means algorithm is not capable of detecting outliers automatically, and determination 480

of optimal value of K using silhouette score is often highly sensitive to the initial choice 481

of centroids. We also considered using PCA for dimensionality reduction, as shown in 482

Fig. 8. Note that clusters are not evident in 2 or 3 component PCA space, even though 483
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3 components account for over 70% of the total explained variance in the dataset. This 484

motivated us to switch the classification method. 485

Based on the suboptimal results obtained from PCA, we switched to a 2-component 486

t-SNE followed by hierarchical clustering using HDBSCAN. All results described further 487

on are based on this methodology. We classified cells using all 30 features, including the 488

six shape factors, seven Hu’s moments, eleven geometrical features and six boundary 489

features. We ran 1000 iterations of t-SNE with random initialization, perplexity value of 490

5, and learning rate of 200. Squared Euclidean distance was used to compute distance 491

between features, which were standardized to have mean 0 and standard deviation of 1. 492

The HDBSCAN algorithm was used to cluster feature points in the 2-component t-SNE 493

space and identify outliers. The minimum points parameter was set equal to 4. We also 494

tried multi-dimensional scaling (MDS), which produces a low dimensional 495

representation of feature vectors with inter-point distances that are representative of 496

distances in the higher dimensional feature space. However, similar to PCA, clusters 497

were not evident in 2 and 3 dimensional MDS representation. 498

As shown in Figs. 9a and 9b, we found 27 clusters. There were also 19 outliers that 499

did not get classified. Representative cells in each cluster are shown in Fig. 10. It is 500

evident from Fig. 9a that some clusters (e.g. {1 and 2} as well as {14 - 21} are more 501

closely related in the family tree of the HDBSCAN than others. As seen in Fig. 9b, these 502

related clusters occupy nearby regions in the 2D plane of the t-SNE plot of Fig. 9b. 503
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(a)

(b) (c)

Figure 7. Classification using the K-means algorithm

(a) 19 clusters (labelled 0-18) obtained from 2-dimensional t-SNE features using the
K-means algorithm. (b) The number of clusters, K. To find the optimal K, we perform
clustering with a range of K values and find the value for which the silhouette score is
maximized, here we find K = 19. Note that the outcome of K-means clustering depends
on the initial choice of means. Consequently, we obtain different results with each run.
(c) Selected clusters obtained using the K-means algorithm. Cells in each cluster have
similar shapes.
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(a) 2D PCA

(b) 3D PCA

(c) PCA Elbow Plot

Figure 8. Dimensionality reduction using PCA. Although 3 principal components
account for over 70% of the total variance in our data, we are not able to resolve clearly
defined clusters when our features are embedded in 3-D PCA space. Instead, we see a
single cluster and multiple outliers.
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(a)

(b)

Figure 9. Clustering all features in a 2-component embedding

(a) Hierarchical clustering using HDBSCAN on all 30 cell features. The ε parameter in
DBSCAN algorithm is varied to obtain density-based clustering hierarchy. HDBSCAN
groups clusters into those that are more closely related along this “family tree” diagram.
(b) Cluster assignment in the 2D t-SNE plane. Cluster ID 0 indicates outliers that were
not assigned to any of the 27 clusters identified. See Fig. 11 for a visualization of the
cell shapes in a given cluster.
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Figure 10. Clusters of cell shapes obtained by classifying shapes using all features.

In order to gain some insight into the clustering results, we manually created a 504

composite diagram, Fig. 11 with HDBSCAN-related clusters grouped into ellipsoidal 505

domains in the t-SNE 2-D plane. We also superimposed a representative cell shape on 506

each cluster, to get an indication of how clustering was distinguishing between cells of 507

different types, and how clusters were grouped in the t-SNE dimensionality reduction. 508

We see from Fig. 11 that the 2D plane is roughly subdivided into circular cells (right), 509

spindly and polarized cells (top), lens-shaped cells (left) and lumpy cells (bottom). The 510

central region exhibits a larger number of irregularly spread out cells, some of which are 511

fan-like, or polygonal. We also see that dimensionality reduction using t-SNE tends to 512

preserve geometrical structure in data in the sense that similar shapes are grouped more 513

closely in the 2-D t-SNE plane. 514
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Circular cells

Spindle shapes

Lens-shapes

Irregular spreading cells

Lumpy shapes

Polarized cells

Figure 11. The 2D t-SNE plane, as in Fig. 9b, but with closely related clusters
grouped, and with superimposed shapes of cells in each cluster. See also SM Fig. ?? for
greater detail on the variety of cell shapes within each cluster.

Comparisons with clustering using a subset of features 515

Next, we asked whether the entire 30-feature vector is essential for cell shape 516

classification. To explore this question, we ran a limited number of tests with smaller 517

subsets of the feature vector using HDBSCAN and 2-component t-SNE. These results 518

are summarized in S5 Appendix and our conclusions are presented in Table 5. As shown 519

in the table, the number of clusters detected ranged between 27 and 34, with between 520

19 and 14 outliers. 521

In S5 Appendix we show several alternate classification results. Using the six shape 522

factors alone, we found greater heterogeneity in cell size within clusters than with the 523

classification based on the entire feature vector of 30 features. This is expected, since 524

shape factors are invariant to scaling. If cells are classified based on geometrical 525

features, which includes cell size, we observe that cells belonging to a cluster tend to 526

be similar in size. Classification based on geometrical and boundary features are 527

also demonstrated in S5 Appendix. 528
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Features used SF HM GF BF Number Number Quality
(Number of features) (6) (7) (11) (6) of clusters of outliers
All X X X X 27 19 good
Shape Factors X - - - 34 16 poor
Geometric features - - X - 30 14 adequate
Geometric and boundary - - X X 29 14 good

Table 5. A comparison of the number of clusters and outliers found using subsets of
the cell descriptors with 2-component t-SNE followed by hierarchical clustering using
HDBSCAN. SF = shape factors, HM = Hu’s moments, GF = geometric features, BF =
boundary features. See text for details on the quality of clusters.

Discussion 529

The main contribution of our paper is to develop a pipeline consisting of image 530

analysis and unsupervised machine learning methods that is suitable for analyzing and 531

classifying microscopy images that have no labels or annotations. The methodology we 532

illustrate in this paper is particularly useful for finding patterns and relationships within 533

large datasets where there is no knowledge about the basic classes of objects in advance. 534

A second contribution is in extracting physically meaningful features from cell images, 535

including cell shape and size, number of protrusions, and quantities that are less 536

abstract than coefficients of orthogonal functions (Fourier or Zernike moments). The 537

desirability of methods of classification based on physically meaningful descriptors has 538

been pointed out recently in the literature [46]. 539

In summary, we combined methods of cell segmentation as in [20,22,47] to first 540

identify and segment cells. We then computed features similar to those used 541

in [25, 26, 32, 34]. We added several of our own features (e.g. curvature of cell boundary) 542

to compose a 30-dimensional feature vector. We experimented with PCA as in [17,48] 543

to reduce dimensionality, but found that t-SNE [38] results in a better embedding for 544

cluster identification. While previous work employs a subset of these methods to 545

perform cell classification, we believe that our pipeline is the first to combine these 546

methods into a streamlined pipeline for unsupervised cell classification. 547

We have also shown that, with these features, we were able to achieve reasonable 548

classification of cell shapes into categories that are clearly meaningful, consistent, and 549

related. We showed that for the images and descriptors in our dataset, PCA does not 550

work if we keep only the first two or three principal components, accounting for 551

approximately 70% of the variance in the data. At that resolution, we can only separate 552

outliers from the rest of the cells, as seen from Fig. 8. PCA would perform better if we 553

keep a larger number of components (7 to 9, but then the results are not easily 554

visualized). For this reason, dimensionality reduction using 2 component t-SNE, 555

followed by clustering using HDBSCAN was the method of choice for us. 556

Comparing results obtained from a smaller subset of features (S5 Appendix) versus 557

all features, we found less heterogeneity in cell size within each cluster if we use only the 558

geometric features or geometric plus boundary features. This makes sense, since shape 559

factors normalize the size of cells, preventing cell size from affecting the classification. 560

Finally, we noted that for our data, geometric features by themselves produce 561

reasonable qualitative results. In contrast, shape factors alone lead to poor results as 562

these ignore differences in cell size. Similarly, boundary features alone (not shown in 563

figures) are also inadequate, since these also fail to account for cell size. It is likely that 564
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data with larger variation in cell shape would require the combination of all 30 features 565

to achieve good classification. 566

Supporting information 567

S1 Appendix. Mathematical morphology: erosion and dilation. Definition 568

of mathematical operations on binary images used to perform foreground detection. 569

S2 Appendix. Feature computation. Methodology and numerical methods used 570

to compute Hu’s moments, elliptical and circular fits, polygonal fits and shape factors. 571

S3 Appendix. Dimensionality reduction. Description of Principal Component 572

Analysis (PCA) and t-Distributed Stochastic Neighborhood Embedding (t-SNE). 573

S4 Appendix. Unsupervised classification. Clustering algorithms and silhouette 574

score analysis. 575

S5 Appendix. Classification using alternative feature vectors. Results 576

obtained using a low-dimensional feature vector containing only shape factors or 577

geometrical features or Hu’s moments. 578
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