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Abstract

Cell morphology is an important indicator of cell state, function, stage of
development, and fate in both normal and pathological conditions. Cell shape is among
key indicators used by pathologists to identify abnormalities or malignancies. With
rapid advancements in the speed and amount of biological data acquisition, including
images and movies of cells, computer-assisted identification and analysis of images
becomes essential. Here, we report on techniques for recognition of cells in microscopic
images and automated cell shape classification. We illustrate how our unsupervised
machine-learning-based approach can be used to classify distinct cell shapes from a
large number of microscopic images.

Technical Abstract

We develop a methodology to segment cells from microscopy images and compute
quantitative descriptors that characterize their morphology. Using unsupervised
techniques for dimensionality reduction and density-based clustering, we perform
label-free cell shape classification. Cells are identified with minimal user input using
mathematical morphology and region-growing segmentation methods. Physical
quantities describing cell shape and size (including area, perimeter, Feret diameters,
etc.) are computed along with other features including shape factors and Hu’s image
moments.

Correlated features are combined to obtain a low-dimensional (2-D or 3-D)
embedding of data points corresponding to individual segmented cell shapes. Finally, a
hierarchical density-based clustering algorithm (HDBSCAN) is used to classify cells. We
compare cell classification results obtained from different combinations of features to
identify a feature set that delivers optimum classification performance for our test data
consisting of phase-contrast microscopy images of a pancreatic-cancer cell line, MTA
PaCa-2.
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Introduction

The morphology of cells often reflects their tissue-specific function or state. Cells
undergo morphological changes to become motile in response to various stimuli, either
as part of normal physiology and development, or due to pathologic disorder. In some
cancers, epithelial cells lose their inter-cellular connections, and take on protrusive,
exploratory morphologies as they transit from static to migratory phenotypes.
Recognizing such abnormal cell shapes can aide in properly identifying malignant (as
distinct from benign) tumors. Yet, this analysis of cell shapes derived from microscopic
images has traditionally been handled by expert humans, i.e. pathologists and
histologists, who use many cellular features, including cell shapes, in their diagnoses.
Modern medicine and high throughput quantitative biology have motivated new
methods for extracting useful information from microscopic data [1]. In particular, data
science and machine learning is being applied to devise new intelligent computational

tools to process microscopic images and recommend patient-specific clinical treatments.

Two broad classes of machine learning are the supervised and unsupervised methods.

Both can be used to address classification and regression problems. Supervised learning
algorithms require training data (annotated subset of data for which the desired result
or ground truth is known a priori) to train a classifier or regressor. Typically, the
learned classifier or regressor retains sufficient generality to handle new data for which
the outcome (category in the case of classification) is unknown. Several examples of this
type include the following. Keskin et al [2] used dual-tree complex wavelet transform to
classify cell images into 14 types of known breast and liver cancer types (i.e. match
images to predetermined classes). Similarly, Reta et al |3] developed automated
methods to classify leukemia cell images to one of four leukemia types based on
morphology of their nuclei and cytoplasm. Matsuoka et al [4] used morphological
features of stem cell microscopy images and training sets to predict the differentiation
stat eof the cells, and verified the results using biochemical markers. (Here we eschew
training data.) Similarly, Nanni et al [5] classified stem cells into three stages of
maturation using texture descriptors using wavelets, Gaussian filters, and other
methods. Park et al [6] used automatic processing of microscopy images to compare
morphologies of prostate cancer cells from patients and from cell cultures. Many of
these papers share some features of segmentation or clustering methods with our
techniques, but with an important distinction: In these examples, there exists a priori
knowledge of the basic classes of objects to be identified i.e. the goal is to match cell
features with known categories. Our goal is to extend such methods to datasets where
no such pre-knowledge is available.

Unsupervised learning algorithms exploit patterns inherent in the data to make
predictions under the premise that similar data should correspond to similar outcomes.
In practical applications, training data is often unavailable and requires significant time,
expense and effort to acquire. This is a limitation that can be avoided by using
unsupervised learning methods, and motivates our approach in this paper.

Here we develop a software-based pipeline for delineating cells boundaries in
micrographs (a process known as microscopic image segmentation), quantification of cell
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morphology (called feature extraction in machine-learning parlance) and subsequent cell
shape classification. The pipeline operates in a semi-supervised manner, with user
intervention required only at the segmentation stage to pick out correctly segmented
cells. Alternatively, user assistance is required to train a supervised algorithm to
perform image segmentation. The remainder of the pipeline (for feature extraction and
classification) is automated and does not require any user input.

We illustrate our methodology using phase-contrast images of pancreatic carcinoma
cells (MIA PaCa-2 cell line), though the methods are general and suitable for other
types of cell images. MIA PaCa-2 is a human cell line that was established by A. Yunis,
et al. |7] from primary tumor tissue of the pancreas. It is currently used as an in-vitro
model to study carcinogenesis in pancreatic ductal adenocarcinoma [8]. MIA PaCa-2
cells exhibit several distinct morphological shapes, making them particularly suitable for
our purposes. Since our methodology does not require biomarker cell labeling, it can be
easily adapted for confocal or fluorescent images. Phase microscopy is chosen for
demonstration purposes because phase images are particularly challenging to
segment [9).

We assemble a pipeline using unsupervised learning methods that uses inherent
properties of the input data to extract clusters and determine a natural classification.
Each cell is associated with a feature vector, whose elements (“features” or
“descriptors”) quantify aspects of its morphology. Feature selection varies with imaging
modality (bright-field, phase-contrast, florescent, etc.) and target application.
Therefore, we compute a diverse range of features and evaluate their performance on the
MIA PaCa-2 data set to decide which features provide the best result.

Unsupervised methods are technically challenging to design and implement, especially
in the context of image classification, but have the advantage that they are
self-contained and require no expert curated training data. Unlike state-of-the-art
supervised methods (e.g., convolutional neural networks [10]) where feature
computation is an inherent part of training, unsupervised methods can only take
advantage of a set of pre-determined features. According to a recent review, supervised
methods outperform unsupervised clustering methods despite the availability of large
amounts of data, due to lack of consensus in class delineation, sensitivity to algorithm
parameters, limitations in feature extraction and lack of robustness in cluster
identification [11]. However, by computing a large number of features, performing
automated feature selection and limiting the number of output categories, this
shortcoming can be partly overcome. Additionally, features computed as part of the
unsupervised classification methodology contain information that can be easily
interpreted by biologists and medical professionals.

Despite their challenges, unsupervised learning methods have been gaining popularity.
Logan et al. |12] devised a learning methodology based on pixel intensities of fluorescent
cell images as features. Gengtav et al. |[13] used pixel brightness along with
measurements of area, perimeter, shape factors and Feret diameters for both nuclear
and cytoplasmic segmentations to identify normal and malignant cervical cells.
Segmentation was performed in a semi-supervised manner where a single boundary
could be shared by more than one cell in cases where cells overlapped. Ahonen et
al. [14] used unsupervised clustering methods to classify simulated tumor and prostate
cancer spheroids. They used geometrical features calculated from ellipse fitting,
boundary features obtained from principal curve fitting and texture-based features.
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Kriegel et al. [15] classified the 3-D surface of myeloid cells by computing Fourier
shape descriptors from a series of 2-D projections and by using a Self-Organizing Map
(SOM, an unsupervised competitive learning method based on artificial neural networks)
to perform classification in the Fourier domain. Alizadeh et al. [16] analyzed shapes of
osteosarcoma cells in pairs of cell lines with distinct invasion potential. They used
Zernike moments as feature vectors. Their method succeeded in assigning cells into
their respective invasiveness categories. As in Fourier analysis, the original image can be
fully reconstructed by superposition of an arbitrarily large collection of its Zernike
moments. However, the individual moments do not, themselves, provide intuitive
descriptors that biologists can easily appreciate.

In this paper, we only consider morphological features and exclude texture
information. This enables us to develop methods that are more generic and do not
depend heavily on the type of microscopy image. Furthermore, we restrict our approach
to 2-D images as proof of principle. In principle, the same approach can be used to
classify segmented 3-D cell shapes, where the 3-D segmentation is obtained from a
volumetric image (acquired using a confocal micropscope for instance) using existing
methods such as the marching cubes algorithm. Our goal is to develop unsupervised
classification of cells based solely on morphological features, requiring no additional cell
labeling or staining. While this makes for a more challenging classification process, it
accommodates a far wider domain of acceptable input data, allowing for live-cell
imaging without artifacts of fixation, staining or fluorescent labeling.

Our methodology, while illustrated on MIA PaCa-2 cells, is applicable to a wide range
of cells and image types. Many related label-free methods currently used do not achieve
multi-class classification [17]. Conversely, other methods cannot process
high-throughput data due to computational complexity of feature extraction. Therefore,
a major objective of our work is to select from a diverse pool of easy to compute
features that are capable of classifying cells based on their morphology.

Methods

In this section, we describe our methodology for unsupervised classification of
Mia-PaCa2 cells (American Type Culture Collection, Manassas, VA, Cat # CRL-1420)
maintained in sub-confluent 2-D monolayer culture and imaged using phase contrast
microscopy (Nikon, TMS microscope using a 10X objective). Typically, the machine
learning algorithm is embedded into a processing pipeline that converts microscopy
images into numerical data corresponding to individual cells [18]. The pipeline consists
of image processing, feature extraction, dimensionality reduction, and classification
steps, as described in detail below. Due to the absence of labels in our data, validation
of our results is performed by human experts (Pamela Dean, Calvin Roskelley,
Dhananjay Bhaskar) who judge the performance of each classifier.

The first phase of image processing is to enable separation of foreground and
background by removing artifacts, reducing noise and compensating for uneven
illumination. Subsequently, image segmentation methods (techniques that divide an
image into regions of interest) are used to identify cells amongst the foreground pixels.
The choice of segmentation algorithm depends on the image and cell type. No single
algorithm is capable of identifying cells from diverse imaging modalities. Currently, our
segmentation is semi-supervised, with a human expert selecting correctly segmented
cells amongst the results of the image processing software.
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For each segmented cell, a feature vector consisting of quantifiable descriptors of cell
shape and size is computed. Each feature in the vector is normalized by subtracting its
mean and dividing by its standard deviation, where these statistics are calculated over
all segmented cells in the entire data set. Standardization of features in this manner
(called Z-score standardization) is a frequently used method for comparing features on a
common standard irrespective of the underlying distribution of feature values. A
classification algorithm uses the normalized feature vectors to define and to distinguish
between “cell types”. The performance of the classifier depends on the quality of
segmentation and accuracy of features. Two cells can be distinguished (i.e. assigned
different labels by the classifier) if their feature vectors are sufficiently different.
Furthermore, in order to identify a specific morphology, one or more features must
capture unique characteristics of that morphology.

Most widely used classification algorithms based on a distance metric between
features perform well for low dimensional feature vectors. Dimensionality reduction
techniques convert high dimensional feature vectors to lower dimensions by combining
multiple features to remove redundancy while preserving variance in data. Two popular
dimensionality reduction techniques, Principal Component Analysis (PCA) and
t-distributed Stochastic Neighborhood Embedding (t-SNE) are described in the
dimensionality reduction section below. After dimensionality reduction, clustering
algorithms are used to classify data points corresponding to individual cells. Several
clustering algorithms are publicly available and have been empirically evaluated using
synthetic data for their performance, robustness and accuracy [19]. We use HDBSCAN
(hierarchichal density-based spatial clustering of applications with noise) to identify
clusters and quantify similarity between cells. We evaluate our classification results
using different sets of features and dimensionality reduction techniques.

Figure [1] indicates steps in a standard data processing pipeline for object
classification, which we have automated and adapted for cell shape classification. Our
pipeline is modular, so that individual components can be changed or replaced as
needed to accomodate different imaging modalities (fluorescent, brightfield,
phase-contrast, multi-photon, DIC, etc.) and sample preparation methods.

PLOS

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170


https://doi.org/10.1101/623793
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623793; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@PLOS | susmission

aCC-BY-NC-ND 4.0 International license.

Image Acquisition
(Bright-field, Phase-contrast, Fluorescent, etc.)

= Correct non-uniform illumination
= Cropping, contrast adjustment
= Background artifact removal

(Automatic, steps vary according to
imaging modality)

Pre-processed Image
(Removal of artifacts, corrections to intensity)

= Edge detection, thresholding
= Mathematical morphology

= Watershed transform

= Manual identification

(Semi-supervised)

Segmented Cells
(Identification of cell boundaries, unique ID assigned to each cell)

= Geometrical fitting
= Image moments

= Shape factors

= Fourier descriptors

(Automated)

Morphological Features
(Each cell is associated with a high dimensional feature vector)

(Automated) = Dimensionality reduction
(PCA, t-SNE)

Embedded Features
(Each cellis a point in a low dimensional space)

= Unsupervised clustering methods
(Automated) (k-Means, HDBSCAN, silhouette analysis)

Classified Cells
(Cells are grouped according to morphological similarity)

Figure 1. Standard pipeline for cell classification using microscopy images. The
output from each stage is printed in bold. The bulleted lists are commonly cited
methods used in the computation. Our methodology is predominantly automated, as
indicated in parentheses on the left.

Image Processing

Identifying individual cells in an image is essential for automated recognition of
multiple cell types in large cell populations. Automated processing of 2-D images to
count cells and identify cell types using morphological measurements has been steadily
gaining traction since the 1960s. Over the past decades, literature on the subject has
grown exponentially, according to a review published in 2012 [20].

Most current segmentation methods are based on basic approaches such as intensity
thresholding, feature detection, morphological filtering, region accumulation and
deformable model fitting (reviewed in [20]). We overcome issues of inaccurate cell
boundaries and over-segmentation (typical in Voronoi-based or watershed transform
methods) by bootstrapping watershed segmentation with markers lying inside cell
boundaries. Popular deformable model approaches such as geodesic active contours or
level sets to detect cell boundaries (by minimizing a predefined energy functional), can
result in poor boundary detection: their local optimization algorithms can get trapped
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in local minima [21].

Segmentation of bright field and phase contrast images is generally more challenging
compared to fluorescent images. The latter usually have better contrast and deformable
model fitting techniques like active contour or level sets work well [9]. Distinctive bright
white patches or halo surrounding cells in bright field and phase contrast images prevent
accurate determination of cell boundary. Therefore, a custom approach is required for
each application that takes heterogeneity in cell shape, population density, variability in
cell compartmentalization, etc., into account.

The following sections describe our approach for segmenting phase contrast images
using a combination of edge detection, thresholding, mathematical morphology and
watershed transform.

Foreground Detection

Foreground detection is performed in three stages. First, the Sobel-Feldman
derivative filter is applied to the original grayscale image to find edge points. These
points are pixel locations in the image corresponding to non-zero intensity changes. The
Sobel-Feldman operator uses two 3 x 3 kernels, one for derivative in a horizontal
direction and the other for derivative in a vertical direction, which are convolved with
the original image to calculate gradient approximation. The result is binarized by
thresholding, with the value of the threshold specified by the user.

The binary image produced by edge detection is further manipulated using
mathematical morphology, as shown in Figure [2l Mathematical morphology is a
collection of set-theoretic operations on binary images that have been used for image
enhancement, noise removal, edge detection, etc. Foundations of mathematical

morphology are based on two operations: erosion and dilation. (See[S1 Appendix| for
details.)

In the second stage of foreground detection, edge points are connected by dilating the
image with line shaped structural elements. The size of the structural elements is a
parameter set by the user. This leads to the formation of closed loops around isolated
cells or clusters of tightly packed cells. The final stage involves filling of closed loops
and removal of small objects and artifacts whose size is below the user-specified
threshold for minimum cell size. Cells that cross the boundary of the image are also
removed during this stage of image processing.
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(c) Dilated & Filled (d) Foreground Binary Mask
Figure 2. Foreground detection from phase contrast image

(a) Original phase contrast microscopy image of MIA PaCa-2 pancreatic carcinoma
cells. (b) Edge point detection after application of the Sobel-Feldman derivative filter
and conversion from grayscale to binary by thresholding. (c¢) Dilation by line-shaped
structural element. (d) Resulting foreground markers obtained after filling, removal of
small artifacts and objects connected with image boundary.

Cell Segmentation 217

Foreground detection separates foreground from background in the original image. 218
The foreground binary image is eroded N times (with N and size of structural element 21
specified by the user) to obtain foreground markers, a majority of which lie inside cell 20
boundaries. The marker-based watershed transform is a region accumulation approach 2z

that segments cell boundaries using foreground markers and gradient of the original 2
image. The number of correct segmentations in the result depends on the pre-processing 22
of markers prior to the segmentation [22]. 24
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(c) Watershed Segmentation (d) Manual Selection
Figure 3. Cell segmentation

(a) Eroded binary foreground markers overlaid on top of original image. (b) Background
markers computed by applying watershed transform to the distance transform of fore-
ground markers. (c¢) Result of watershed segmentation using foreground and background
markers. (d) Manual selection of correctly segmented cells.

The watershed segmentation algorithm requires foreground markers (to identify
regions inside individual cell) and background markers (for regions between adjacent
cells). Over-segmentation may occur if background markers are too close to cell edges.
To prevent this, we computed background markers using the “skeleton by influence
zones” (SKIZ) of the foreground markers [23]. Pixels in the immediate vicinity of a
given foreground marker (closer to it than to any other foreground marker) form its
influence zone. SKIZ, the boundary between influence zones of all foreground markers,
is analogous to the Voronoi tessellation of foreground markers in the image plane. In
practice, background markers are determined by (1) computing the distance transform
of the foreground markers and (2) finding ridge-lines using the watershed transform of
the distance-transformed foreground markers (see Figure ; ridge-lines correspond to
background markers or SKIZ. Given foreground and background markers, the
priority-flood watershed algorithm is applied to the original image, resulting in
watershed lines. These lines identify cell boundaries, see Figure

The entire image segmentation process requires minimal user input to (1) specify the
threshold parameters, size of structural elements and number of iterations for
morphological operations and (2) to manually select correct segmentation after the
watershed transform is applied, ensuring that only correctly segmented cells are
assigned unique ID numbers (and serialized) for further processing in the pipeline.
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Feature Extraction

Both boundary and area-based methods are used to extract morphological features
from segmented cell shapes. Both types of methods use cell-boundary data, but
area-based methods also use cell-interior points. Area based methods are more robust to
small perturbations in cell shape and are easy to compute. For example, to accurately
estimate the area of a given shape it suffices to count pixels in its interior, whereas
perimeter estimation is not so straightforward [24]. The main advantage of boundary
based features (curvature functions, cubic spline interpolation of cell boundary,
normalized Fourier shape descriptors, etc.), is that they provide a good quantization of
angles, corners and curves in the image. Such geometric details are lost in many
area-based features.

Hu’s Moment Invariants

Moments of a distribution are integrals that characterize means, variances, and higher
order properties of density distributions such as distributed mass m(z,y), probability
density p(x,y), or geometric shapes. In the case of binary cell images (e.g., Figure ),
the distribution of interest is a function f(z,y) that takes points (z,y) in the plane into
binary values, 0 or 1 (for points outside or inside the cell, respectively). The pq’'th
image moment (of order p + ¢), denoted m,,, is defined as:

o0 o0
Mypg = / / 2Py f(z, y)dzdy,
— 00 — 00
which are approximated, here, by the discrete sum over all pixels in the raster image:

Mpq = Z pryqf(x’ Y)-

The zeroth raw moment, mgo is then the cell area, whereas T = myq/moo and
7 = mo1 /Mmoo are coordinates of the cell centroid. For translational invariants, moments
are typically computed relative to that centroid,

Hpg = ZZ(JE —z)P(y —9)"f(z,y).

The zeroth central moment, g, is equivalent to mgg and corresponds to the area of a
segmented cell.

In classifying cell shapes, it is desirable to assign shape-features that are invariant to
image size, to rotation, and/or to reflection (mirror image). This can be accomplished
by normalizing some moments, and by deriving others that are invariant to such
operations. When the axes of a 2-D image are scaled by a factor A (e.g., with A > 1 for
magnification, A < 1 for reduction), the moments p,, of the unscaled image are
transformed to

Fpg = APHED .

Hence, a normalized (scale-invariant) central moments 7,, is

7(1>+2q+2)
Mlpg = Moo Hpg>

(obtained by setting ugo = 1, which scales cell area to unity.)
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A set of rotationally-invariant moments ¢;,7 = 1...7 derived by Hu [25], are widely
used for translation, scaling and rotation invariant pattern recognition, including
recognition of typed English language characters. We adopt these moments
(summarized in to describe cell shape features. One of the Hu moments,
¢7, is skew invariant in addition to translation, scaling and rotational invariance. Unlike
raw or central moments, ¢; ... @7 do not form a complete set of image descriptors.
While higher order moments can be calculated, image reconstruction given a set of Hu’s
moment invariants is not straightforward. Furthermore, all seven invariant moments are
zero for images that are rotationally symmetric [26].

Dunn and Brown used shape measures (extension, dispersion and elongation) and
principal axis orientation calculated using ¢1 and ¢- to characterize the shape and
alignment adopted by chick heart fibroblasts on micro-fabricated grooved substrata |27],
but adoption of Hu’s moments has declined in recent literature on morphology-based
cell classification. The role of these invariants and their usefulness is investigated in the
results section.

Geometrical and Boundary Features

For high-throughput cell classification, the cell-shape feature vector should be concise
and computationally inexpensive. While Hu’s moments meet this criterion, they are not
easily interpretable in terms of intuitive features. Normalized Fourier shape descriptors
(NFSDs) represent the boundary of an object using a subset of Fourier mode coefficients
[28]. Omne benefit of computing NFSDs is that synthetic cell images can easily be
generated by sampling from Fourier coefficients and computing the inverse transform.
In cases with limited number of segmented cell images, these synthetically generated cell
boundaries can be used to augment the origin data for classifier training. However, the
number of coefficients required for reasonable accuracy is hard to estimate, is often
large, and depends on the curvature of the object. Recent work in the Marée-Grieneisen
lab [29] has led to a generalization of cell shape Fourier analysis called Lobe
Contribution Elliptic Fourier Analysis (LOCO-EFA). This method has been used to
quantify the shape of pavement-cells on plant leaves. Individual modes of LOCO-EFA
are more directly interpretable in terms of actual cell shapes.

Point-wise values of curvature on the perimeter of a cell provide a detailed description
of its shape. For example, peaks in the curvature correspond to corners or tips of thin
protrusions. Urdiales et al. [30] describe a non-parametric method for efficient
computation of a curvature function for an object contour, represented as a short
feature vector. Their method requires pre-computation of certain Fourier transforms for
typical shapes, which is an obstacle to high-throughput cell classification (particularly
where the entire data set is not available in advance).

In view of the above, we bypass the use of curvature functions. Instead, we use simple
fitting of conics (circles and ellipses), which are universally applicable to all planar
objects. A set of boundary points (obtained from segmentation) is used as input and
uncertainty is quantified from goodness of fit measures. Cell boundary descriptors are
obtained from cubic spline interpolation, with the number of spline points estimated
using a manually adjusted smoothing parameter. Together, these descriptors encode
information about the shape and size of the cell that is easy to visualize (Figure {)).
Like Hu’s moments, these features are invariant to rotation and translation, as well as
to noise in the shape boundary.
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Consider an arbitrary curve f(#) = 0 parametrized by M features, 6 = (6, ...,0x)7.
We fit this geometry to a set of boundary points (z;, ;) ;, by solving the following
optimization problem:

N
argmin Z r:(0),
(]
where r; is the orthogonal distance between boundary point (z;,y;) and the shape 305
f(@) =o. 306
A
B
C
E
020
015
010
D % vos
: -0.10
015
020

Figure 4. Geometrical fits and boundary interpolation

(A) Cropped images of cells from phase-contrast image, (B) Ellipse, circle and polygonal
fit to segmented cell image, (C) Oriented rectangular fit, (D) Cubic spline fit along the
boundary color coded by curvature, and (E) Color bar showing curvature values

Ellipse and Circle Fitting 307

Using least-squares, an ellipse is fit to the cell outline so as to minimize the distance 308
between closest points on the ellipse and the cell boundary. The optimal least squares 30
golution can be computed directly without an iterative approach , as shown in 310
The stable and robust fitting method returns the ellipse center, axes, and a1

angle of rotation, 0 = (z., y¢, a, b, ). In addition to parameters obtained from fitting, a2
goodness of fit is estimated by calculating the variance . Lengths of the two 313
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Table [1| summarizes features obtained from ellipse and circle fitting.
Feature Range Description
. .. Close to 0, the ellipse is circular.

Ellipse Eccentricity [0,1] Close to 1, it is elongated.

Ellipse Major Axis [0, 00) The length of the major axis of

Length ’ the ellipse fit.

Ellipse Minor Axis 10, 00) The length of the minor axis of

Length ’ the ellipse fit.

Ellipse Area [0, 00) Area of the ellipse fit.

Ellipse Perimeter [0, 00) Perimeter of the ellipse fit.

Ellipse Variance 0,1] A .goodr.less of fit measure for the
ellipse fit.

Circle Radius [0, 0) Radius of the circle fit.

Circle Area [0, 00) Area of the circle fit.

Circle Variance [0,1] A good.ness of fit measure for the
circle fit.

Rectangle and Polygon Fitting

Table 1. Features extracted from ellipse and circle fits of cell images

principal axes of the ellipse fit can be obtained from eigenvalues of the covariance
matrix.

A rectangular fit for a cell consists of four functions with constraints, mandating an
approach distinct from fitting conic sections. We use the procedure of Chaudhuri and
Samal [33]: 1) finding the centroid of the object, 2) determining principal axes, 3)
computing the upper and lower furthest edge points along the boundary, and finally, 4)
finding the vertices of the bounding rectangle. Table [2| summarizes Feret diameters
based on the rectangle fit. We use these to compute elongation, a non dimensional
shape factor. Note the distinction between bounding box and the above rectangle fit.
The edges of a bounding box are parallel to Cartesian axes whereas the major axes of
the rectangular fit are aligned to the principal axes of the cell shape.

Feature Method Description
Maximum Feret Rectangle fit Longest distance between two paral-
Diameter lel tangents on cell boundary
Minimum Feret Rectangle fit Shortest distance between two paral-
Diameter lel tangents on cell boundary
Cell Area P.olngH . fit, | Number of pixels inside segmented
Pixel counting cell boundary.
. Polygon fit, Estimate obtained from chain code
Cell Perimeter 3-pixel  Vector for vixels on cell boundar
(3PV) Method P Y-

Polygon Fitting

Table 2. Features extracted from bounding rectangle and polygonal fits

A polygon fit along the cell boundary is computed using the 3-pixel vector (3PV)
method described by Inoue and Kimura [24]. The 3PV method is designed for
calculating the perimeter of low resolution raster objects, where counting the number of
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pixels at the boundary of the object results in inaccuracies. We modified the standard
3PV method to obtain vertices of the polygon fit while computing the cell perimeter.

Details of our implementation are provided in
Cubic Spline Boundary Fitting and Curvature

Table [3] summarizes all boundary features extracted from the segmented cell shape. A
cubic spline interpolation along the boundary of the segmented cell is computed using
vertices of the polygon fit. Curvature values are calculated from the first and second
derivative of the spline at 500 uniformly spaced points. Mean and standard deviation of
curvature is included in the feature vector. To estimate the number of protrusions and
indentations in the segmented cell boundary, the number of local maxima and local
minima (with values above 0.2 and below 0.2 respectively) is also recorded. An
additional constraint that no two maxima or minima can be located within a
neighbourhood of 10 pixels is imposed to avoid small arbitrary fluctuations in curvature
computation. Finally, the global extremum values are also included in the feature vector
to distinguish cells that exhibit sharp filopodia. We observe that cells with circular
morphology have positive curvature all along their boundary with zero protrusions or
indentations. Elliptical cells tend to have two protrusions, situated at the extremities.

Feature Description
Mean Mean curvature along the boundary of
the cell.

Indicates variation in curvature along
the boundary.

Number of local maxima in curvature
Number of protrusions | function, with peak values above the 0.2
per pixel threshold.

Number of local minima in curvature
Number of indentations | function, computed by calculating max-
ima of the negative.

Global maximum of curvature on cell
boundary.

Global minimum of curvature on cell
boundary.

Standard deviation

Maximum curvature

Minimum curvature

Table 3. Features extracted from curvature of cubic spline fit
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0.6

0.4

0.05

0.2

0.00

Curvature

-0.05

Magnitude of Curvature

0.0

-0.10

Arc Length Parameter Index —0.20

(a) (b) (c)

Figure 5. Computation of boundary features

(a) Curvature along the parametrized boundary obtained from cubic spline fit. (b)
Colorbar for curvature values. (¢) Cubic spline interpolation along the boundary color
coded by curvature value. 3 protrusions and 1 indentation are detected in the cell
shown above. Local maxima and minima in curvature with magnitude greater than 0.2
are classified as protrusions and indentations respectively. Multiple extrema within a
neighborhood of 10 boundary pixels are treated as a single protrusion or indentation.

Shape Factors

The previous section described features obtained by fitting various geometries to a cell
boundary. Shape factors are non-dimensional quantities that are computed by counting
pixels in a segmented cell image, and its convex hull, bounding box and oriented
rectangular fit. Shape factors are widely used to classify particulate matter [34L35] and
often used as part of feature vectors designed to classify cell shapes [361[37].

In Table [ we list the non-dimensional shape factors included in our feature vector
and formulas for their computation. These factors include extent, solidity, compactness,
elongation, circularity, and convexity. More details about these geometric measures are

provided in

Briefly, the extent is the fraction of the bounding box area taken up by the cell,
whereas solidity is the fraction of the convex hull occupied by the cell. For the MIA
PaCa-2 pancreatic cancer data set, rounded cells typically have solidity values that
approach unity. Compactness is the ratio of the diameter of a circle (with the same area
as the cell) to the major axis of the rectangle fit whereas elongation is the ratio
(1-dy /ds3), where d; are the width and length of the rectangular fit respectively.
Compactness is close to zero if a cell is elongated, whereas elongation is close to zero if a
cell is circular. Circularity measures the degree of similarity to a circle, whereas
convezity is the ratio of convex hull perimeter to segmented cell perimeter.
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Feature Range Equation Description
Ratio of pixels belonging to seg-
Extent [0,1] Aboué;c:g — mented cell to pixels in the bound-
ing box.
Ratio of pixels belonging to seg-
Solidity [0,1] el mented cell to pixels in the convex
hull.
Compactness [0, 1] \/@ Ratio of cirqﬂar equivaleyt diam-
Max. Diameter eter to maximum Feret diameter.
1 - Aspect Ratio. Close to 1 for
Elongation [0,1] 1 — pn. Diameter elongated cells and close to 0 for
circular cells.
Circularity [0,1] \/ 74’;;215“ Degree of resemblance to a circle.
. Pronvex hull Ratio of the convex hull perimeter
Convexity [0,1] Peen to the cell perimeter.

Table 4. List of non-dimensional shape factors

Dimensionality Reduction

Our unsupervised classification relies on clustering algorithms based on some distance
metric. It tends to perform poorly for high dimensional feature vectors, since in
high-dimensional space, distances between pairs of points tend to converge to similar
values. To prevent this “curse of dimensionality”, our clustering is performed on a
low-dimensional data set after dimensionality reduction.

Principal Component Analysis (PCA)
Principal Component Analysis, briefly summarized in is a common

method for dimensionality reduction. PCA transforms high dimensional data into a low
dimensional subspace, whose basis consists of linear combinations of the high
dimensional basis vectors. The PCA basis vectors (PCA1, PCA2, etc), termed principal

components, correspond to directions with the greatest variance in the original dataset.

That is, (PCA 1) has maximum variation, (PCA 2) has the second-most variation, etc.
A plot of variance in data explained by each principal component versus the number of
components is generally used to identify how many components are needed. The
tradeoff between number of components and total variance in data captured by principal
components is resolved by finding the “elbow” in this plot. Typically 2-3 components
account for majority of the explained variance and clusters in the transformed data can
be easily visualized. However, as we demonstrate, this was not the case for the data
used in this paper, motivating other dimensionality reduction methods.

t-Distributed Stochastic Neighborhood Embedding (t-SNE)

t-Stochastic neighborhood embedding (t-SNE) is a non-linear embedding from high

dimensional space (e.g. R"™) to low dimensional space (in our case, R?) designed to
preserve local structure in the data [38]. The map is created by iterated steps of
gradient descent that minimize Kullback-Leibler divergence, a cost function that
represents difference of similarities of pairs of points in R™ and similarities of their
images in the lower dimension representation. (In original SNE, Gaussian distributions
of point-distance probabilities were used for the similarity comparison, whereas t-SNE
employs a Gaussian in R"™ and a Student-t distribution in the image space). An
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intuitive description of the iteration step was provided in [38]: image points in 2D move
as if “connected by springs”, with “spring stiffness” corresponding to the deviation of
similarities between the neighbor points in the data and in their images. t-SNE
modified and generalized SNE to more strongly repel points that are “dissimilar” in the
data, putting them far away in the 2D image, while keeping similar points close to one
another.

Unlike PCA, where an explicit linear transformation is set up, t-SNE is a nonlinear
map that aims to preserve probabilities of points being close or far from one another.
Because t-SNE normalizes over local density, it produces clusters in 2D that have
similar sizes. t-SNE does not faithfully represent geometry and in some cases even blurs
the topology of the original data, so that distances in the 2D t-SNE plot should not be
over-interpreted. An informative review of such eccentricities, with interactive
illustrations, is given in the website https://distill.pub/2016/misread-tsne/.

The t-SNE algorithm requires multiple input parameters (“perplexity”, “early
exaggeration”, learning rate and number of iterations). The perplexity is effective
number of neighbors of a data point, and typically ranges between 5 and 50, providing a
weighting between the importance of local and global properties. Wattenberg et al. [39)
provide an excellent summary of the effect of perplexity and motivate the need for
experimentation with a range of values of this parameter (see also the aforementioned
URL). Linderman et al. [40] discuss how to optimize the selection of the exaggeration
parameter and the step size.

The learning rate parameter plays an important role in preventing the algorithm from
getting stuck in a local minimum. Analysis of properties of t-SNE and its usefulness in
data visualization is provided in [40,41]. While t-SNE is less straightforward than PCA,
we found that it produced better results for our data and feature vectors.

Unsupervised Classification

Once a low-dimensional data set is designated, the final step is to infer relationships
between the data points (unsupervised classification). Clustering algorithms are used to
automatically group the data points (descriptors or features in the context of machine
learning) corresponding to the cell images. Clustering methods typically require
parameter optimization to maximize classification accuracy [42]. We experimented with
a variety of clustering methods and parameter settings, including k-means algorithm
and DBSCAN (Density-based spatial clustering of applications with noise), as reviewed
in DBSCAN defines clusters based on the density of packing - associating
closely-packed nearest neighbors into a given category [43]. We used the hierarchical
variant, HDBSCAN [44] in the results described further on.

The k-means algorithm requires one parameter (k), which is the number of expected
clusters in the data. In many cases, including ours, the true value of k is not known a
priori, o some way to estimate this value is desirable. Rousseeuw described a heuristic
using silhouette coefficients to identify the number of clusters in a given data set [45].
Points are clustered using k-means for various values of parameter k. Assuming that the
algorithm converges and gives stable results, the silhouette score is computed by
calculating the average of silhouette coefficients for all data points. The number of
clusters in the data set, i.e. the optimal value for k, is one that maximizes the silhouette

score. We provide details and examples of this method in
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The DBSCAN algorithm distinguishes between core points, boundary points and
noise points using two parameters, € and MinPts. Core points have at least MinPts
points within e radius neighbourhood. A border point has fewer than MinPts points
within its e-neighbourhood. Points that are neither core points nor border points are
noise points. The DBSCAN algorithm iterates over all points and assigns them to
clusters based on their reachability from core points. Each cluster contains at least one
core point. The algorithm is sensitive to parameter values and does not perform well
when the data contains clusters of various densities. The HDBSCAN algorithm
eliminates the need to specify the e parameter by repeatedly running DBSCAN at
various spatial scales corresponding to different values of e.

Results

We applied the methods described above to 40 phase-contrast images of the MIA
PaCa-2 cancer cell line. By visual inspection, we found that 310 cells were correctly
segmented.

A typical segmentation result is shown in Figure[6] As expected, we found that
boundaries of cells that are closely packed were not resolved by the watershed algorithm
(see Figure since cells sharing foreground markers are treated as one object. To
segment closely packed cells, many iterations of erosion were needed (see mathematical
morphology). This, however, leads to poor results for spindle-shaped cells with long
thin “tails”, as multiple erosions shorten, split or remove such tails. We observed that
the number of erosion iterations (a parameter we varied) affected the range of cell sizes
and population density at which correct segmentations were obtained. Even for isolated
cells, fine details of cell boundaries such as tiny protrusions are lost due to erosion
during segmentation.

Once segmented, cells are each assigned a unique identification number (UID), that
associates the cell with each of its representations, from original image, to final cluster
membership. Our dataset consisted of 310 correctly segmented cells, a relatively small
dataset in the context of machine learning. Each of these cells was associated with a 30
component feature vector for the unsupervised classification process. The feature vector
consisted of the 7 Hu’s invariant moments, 6 shape factors, 11 geometrical features and
6 boundary features. Because our cells are not pre-identified by human experts, we have
no “ground truth” against which to compare results. Hence, we use visual inspection for
the validation step.
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(a)
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Figure 6. Cell segmentation

(a) MIA PaCa-2 image acquired using phase-contrast microscopy. (b) Boundaries (tagged
with IDs) obtained using mathematical morphology and watershed segmentation. Each
segmented boundary is assigned a unique ID. (c¢) Correctly segmented cells are serialized
by manually selecting IDs (from Figure . Features computed for IDs identified by
the user are stored for further processing.

We first considered the K-means clustering algorithm on the entire feature vector of
30 features. To decide the optimal value of K, we computed silhouette scores for values
of K ranging from 2 to 25. Since the cluster assignment obtained from K-means
algorithm depends on the initialization of the the cluster centroids, the resulting
silhouette scores also vary with each run of the algorithm. Averaging over 10 runs, we
found that the silhouette score was maximized for K = 19, as shown in Fig.[7] This
means that the K-means method specifies that the data consists of 19 clusters. The
K-means algorithm is not capable of detecting outliers automatically, and determination
of optimal value of K using silhouette score is often highly sensitive to the initial choice
of centroids. We also considered using PCA for dimensionality reduction, as shown in
Fig.[8] Note that clusters are not evident in 2 or 3 component PCA space, even though
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3 components account for over 70% of the total explained variance in the dataset. This
motivated us to switch the classification method.

Based on the suboptimal results obtained from PCA, we switched to a 2-component
t-SNE followed by hierarchical clustering using HDBSCAN. All results described further
on are based on this methodology. We classified cells using all 30 features, including the
six shape factors, seven Hu’s moments, eleven geometrical features and six boundary
features. We ran 1000 iterations of t-SNE with random initialization, perplexity value of
5, and learning rate of 200. Squared Fuclidean distance was used to compute distance

between features, which were standardized to have mean 0 and standard deviation of 1.

The HDBSCAN algorithm was used to cluster feature points in the 2-component t-SNE
space and identify outliers. The minimum points parameter was set equal to 4. We also
tried multi-dimensional scaling (MDS), which produces a low dimensional
representation of feature vectors with inter-point distances that are representative of
distances in the higher dimensional feature space. However, similar to PCA, clusters
were not evident in 2 and 3 dimensional MDS representation.

As shown in Figs. [0a] and [0B] we found 27 clusters. There were also 19 outliers that
did not get classified. Representative cells in each cluster are shown in Fig. [I0] It is
evident from Fig. [0a] that some clusters (e.g. {1 and 2} as well as {14 - 21} are more
closely related in the family tree of the HDBSCAN than others. As seen in Fig. [0b] these
related clusters occupy nearby regions in the 2D plane of the t-SNE plot of Fig. [Ob}
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Figure 7. Classification using the K-means algorithm

(a) 19 clusters (labelled 0-18) obtained from 2-dimensional t-SNE features using the
K-means algorithm. (b) The number of clusters, K. To find the optimal K, we perform
clustering with a range of K values and find the value for which the silhouette score is
maximized, here we find K = 19. Note that the outcome of K-means clustering depends
on the initial choice of means. Consequently, we obtain different results with each run.
(c) Selected clusters obtained using the K-means algorithm. Cells in each cluster have
similar shapes.
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Figure 8. Dimensionality reduction using PCA. Although 3 principal components
account for over 70% of the total variance in our data, we are not able to resolve clearly
defined clusters when our features are embedded in 3-D PCA space. Instead, we see a
single cluster and multiple outliers.
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Figure 9. Clustering all features in a 2-component embedding

(a) Hierarchical clustering using HDBSCAN on all 30 cell features. The e parameter in
DBSCAN algorithm is varied to obtain density-based clustering hierarchy. HDBSCAN
groups clusters into those that are more closely related along this “family tree” diagram.
(b) Cluster assignment in the 2D t-SNE plane. Cluster ID 0 indicates outliers that were
not assigned to any of the 27 clusters identified. See Fig. [L1] for a visualization of the

cell shapes in a given cluster.
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Figure 10. Clusters of cell shapes obtained by classifying shapes using all features.

In order to gain some insight into the clustering results, we manually created a
composite diagram, Fig. [11| with HDBSCAN-related clusters grouped into ellipsoidal
domains in the t-SNE 2-D plane. We also superimposed a representative cell shape on
each cluster, to get an indication of how clustering was distinguishing between cells of
different types, and how clusters were grouped in the t-SNE dimensionality reduction.
We see from Fig. |11 that the 2D plane is roughly subdivided into circular cells (right),
spindly and polarized cells (top), lens-shaped cells (left) and lumpy cells (bottom). The
central region exhibits a larger number of irregularly spread out cells, some of which are
fan-like, or polygonal. We also see that dimensionality reduction using t-SNE tends to
preserve geometrical structure in data in the sense that similar shapes are grouped more
closely in the 2-D t-SNE plane.
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Figure 11. The 2D t-SNE plane, as in Fig. but with closely related clusters
grouped, and with superimposed shapes of cells in each cluster. See also SM Fig. 7?7 for
greater detail on the variety of cell shapes within each cluster.

Comparisons with clustering using a subset of features

Next, we asked whether the entire 30-feature vector is essential for cell shape
classification. To explore this question, we ran a limited number of tests with smaller
subsets of the feature vector using HDBSCAN and 2-component t-SNE. These results
are summarized in and our conclusions are presented in Table[f] As shown
in the table, the number of clusters detected ranged between 27 and 34, with between
19 and 14 outliers.

In we show several alternate classification results. Using the six shape
factors alone, we found greater heterogeneity in cell size within clusters than with the
classification based on the entire feature vector of 30 features. This is expected, since
shape factors are invariant to scaling. If cells are classified based on geometrical
features, which includes cell size, we observe that cells belonging to a cluster tend to
be similar in size. Classification based on geometrical and boundary features are

also demonstrated in
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Features used SF HM GF BF Number Number Quality
(Number of features) (6) (7) (11) (6) of clusters of outliers

All v v v v 27 19 good
Shape Factors v - - - 34 16 poor
Geometric features - - v - 30 14 adequate
Geometric and boundary - - v v 29 14 good

Table 5. A comparison of the number of clusters and outliers found using subsets of
the cell descriptors with 2-component t-SNE followed by hierarchical clustering using
HDBSCAN. SF = shape factors, HM = Hu’s moments, GF = geometric features, BF =
boundary features. See text for details on the quality of clusters.

Discussion

The main contribution of our paper is to develop a pipeline consisting of image
analysis and unsupervised machine learning methods that is suitable for analyzing and
classifying microscopy images that have no labels or annotations. The methodology we
illustrate in this paper is particularly useful for finding patterns and relationships within
large datasets where there is no knowledge about the basic classes of objects in advance.
A second contribution is in extracting physically meaningful features from cell images,
including cell shape and size, number of protrusions, and quantities that are less
abstract than coefficients of orthogonal functions (Fourier or Zernike moments). The
desirability of methods of classification based on physically meaningful descriptors has
been pointed out recently in the literature [46].

In summary, we combined methods of cell segmentation as in [20}22,/47] to first
identify and segment cells. We then computed features similar to those used
in 25,|26,32,/34]. We added several of our own features (e.g. curvature of cell boundary)
to compose a 30-dimensional feature vector. We experimented with PCA as in |17,48]
to reduce dimensionality, but found that t-SNE [38] results in a better embedding for
cluster identification. While previous work employs a subset of these methods to
perform cell classification, we believe that our pipeline is the first to combine these
methods into a streamlined pipeline for unsupervised cell classification.

We have also shown that, with these features, we were able to achieve reasonable
classification of cell shapes into categories that are clearly meaningful, consistent, and
related. We showed that for the images and descriptors in our dataset, PCA does not
work if we keep only the first two or three principal components, accounting for
approximately 70% of the variance in the data. At that resolution, we can only separate
outliers from the rest of the cells, as seen from Fig. [§] PCA would perform better if we
keep a larger number of components (7 to 9, but then the results are not easily
visualized). For this reason, dimensionality reduction using 2 component t-SNE,
followed by clustering using HDBSCAN was the method of choice for us.

Comparing results obtained from a smaller subset of features versus
all features, we found less heterogeneity in cell size within each cluster if we use only the
geometric features or geometric plus boundary features. This makes sense, since shape
factors normalize the size of cells, preventing cell size from affecting the classification.
Finally, we noted that for our data, geometric features by themselves produce
reasonable qualitative results. In contrast, shape factors alone lead to poor results as
these ignore differences in cell size. Similarly, boundary features alone (not shown in
figures) are also inadequate, since these also fail to account for cell size. It is likely that
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data with larger variation in cell shape would require the combination of all 30 features
to achieve good classification.

Supporting information

S1 Appendix. Mathematical morphology: erosion and dilation. Definition
of mathematical operations on binary images used to perform foreground detection.

S2 Appendix. Feature computation. Methodology and numerical methods used
to compute Hu’s moments, elliptical and circular fits, polygonal fits and shape factors.

S3 Appendix. Dimensionality reduction. Description of Principal Component
Analysis (PCA) and t-Distributed Stochastic Neighborhood Embedding (t-SNE).

S4 Appendix. Unsupervised classification. Clustering algorithms and silhouette
score analysis.

S5 Appendix. Classification using alternative feature vectors. Results
obtained using a low-dimensional feature vector containing only shape factors or
geometrical features or Hu’s moments.
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