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Summary

EWSR1-FLI1, the chimeric oncogene specific for Ewing sarcoma (EwS), induces a
cascade of signaling events leading to cell transformation. However, it remains elusive
how genetically homogeneous EwS cells can drive heterogeneity of transcriptional
programs. Here, we combined independent component analysis of single cell RNA-
sequencing data from diverse cell types and model systems with time-resolved mapping
of EWSR1-FLI1 binding sites and of open chromatin regions to characterize dynamic
cellular processes associated with EWSR1-FLI1 activity. We thus defined an exquisitely
specific and direct, super-enhancer-driven EWSR1-FLI1 program. In EwS tumors, cell
proliferation was associated with a well-defined range of EWSRI1-FLI1 activity;
moreover, cells with a high EWSR1-FLI1 activity presented a strong oxidative
phosphorylation metabolism. In contrast, a subpopulation of cells from below and above
optimal EWSR1-FLI1 activity was characterized by increased hypoxia. Overall, our
study reveals sources of intratumoral heterogeneity within Ewing tumors.
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Introduction

Ewing sarcoma (EwS) is a highly aggressive pediatric bone cancer, which is defined by
a pathognomonic recurrent somatic mutation - a fusion between the EWSR1 gene and
an ETS family member, most frequently the FLI1 gene (Delattre et al., 1992; Grunewald
et al., 2018). This leads to the expression of EWSR1-FLI1, an aberrant and potent
chimeric transcription factor. EWSR1-FLI1 can act both as a transcriptional activator
and as a repressor, depending on the sequences of DNA binding sites and on the
presence of additional co-factors (Bilke et al., 2013; Riggi et al., 2014). EWSR1-FLI1
binds to DNA either at ETS-like consensus sites with a GGAA core motif or at GGAA-
microsatellites (GGAA-mSats) which are diverted by EWSRI1-FLI1 as de novo
enhancers (Gangwal et al., 2008; Guillon et al., 2009; Riggi et al., 2014). Through
binding to these sites, EWSR1-FLI1 has been reported to act directly or indirectly on
many key cellular processes including cell cycle, apoptosis, angiogenesis, metabolism
and cell migration (Grunewald et al., 2018; Stoll et al, 2013).

EwsS is genetically stable and ranks among tumors with the lowest mutation rates (Brohl
et al., 2014; Crompton et al., 2014; Lawrence et al., 2013; Tirode et al., 2014). Indeed,
apart from the EWSR1-FLI1 fusion, EwS harbors only few other recurrent mutations at
low frequencies: TP53 (5-10%), CDKN2A (10%) and STAG2 (15%) (Brohl et al., 2014;
Crompton et al., 2014; Grunewald et al., 2018; Huang et al., 2005; Tirode et al., 2014).
Despite this remarkable paucity of somatic mutations, EwS is a very aggressive tumor
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with a strong propensity to progress, metastasize and resist to treatments, suggesting
potent adaptation properties of cancer cells. Recent data suggests that epigenetic and
transcriptional heterogeneity can play an important role in explaining the mechanisms of
such adaptation. Indeed, from a large cohort of EwS tumors, a study on a genome-scale
DNA methylation sequencing described consistent DNA hypomethylation at enhancers
regulated by EWSR1-FLI1 and strong epigenetic heterogeneity within tumors (Sheffield
et al., 2017). Moreover, variable expression of EWSR1-FLI1 was recently suggested as
a source of heterogeneity in cell lines and tumors, with a high level of EWSR1-FLI1
expression (EWSR1-FLI1"" cells being highly proliferative whereas EWSR1-FLI1"
demonstrate a strong propensity to migrate, invade and metastasize (Franzetti et al.,
2017). EwS therefore constitutes an appropriate model to investigate how a single
somatic driver mutation may impact on critical cell fate decisions ultimately leading to
tumorigenesis.

Intratumoral heterogeneity can now be investigated at the single cell level through
single cell ‘omics’ technologies that enable to explore in great details the cell-to-cell
variations in gene expression (Baslan and Hicks, 2017). These approaches can help
characterize the origins of genetic and non-genetic heterogeneity which can modulate
cell response to exogenous and endogenous factors such as the activation of cancer
driver genes (Almendro et al., 2013). Such approaches can also decipher essential bi-
or multi-modalities in the distribution of expression of the genes regulating the cell fates
(Shalek et al., 2013) or the interplay between progression through the cell cycle and the
action of signaling and/or differentiation pathways, which can hardly be addressed
through bulk-cell analysis (Buettner et al., 2015).

Here, we first used single cell analysis to explore the dynamics of EWSR1-FLI1-related
expression changes at the single cell level using a time course upon the EWSR1-FLI1
induction. Ewing cell transcriptomic profiles were also compared with a set of single cell
profiles from other reference systems chosen by various aspects of similarity to the
Ewing cell system: being either time series experiments, cells corresponding to EwS
cell-of-origin or cells of various tumor types. This analysis was combined with the
exploration of the epigenetic changes. Overall, this approach allowed us to distinguish
generic dynamics of transcriptional changes that are shared by most scrutinized
systems from system-specific, and particularly EwS-specific, dynamics. These
components were then used to investigate single cells from Ewing tumors. This two-
steps approach illuminates the heterogeneity of Ewing tumors, distinguishing different
cell populations based on EWSRI1-FLI1 activity, proliferation and metabolic
characteristics.
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Results
Experimental design for collecting EwS single cell RNA-sequencing profiles

In order to explore the dynamics of individual cell transcriptomes under EWSR1-FLI1
expression, we used the previously developed A673/TR/shEF inducible cellular model
derived from the A673 EwS cell line where the expression of EWSR1-FLI1 can be
modulated through a doxycycline-controlled shRNA (Carrillo et al., 2007). Following
down-modulation of EWSR1-FLI1 (EWSR1-FLI1) by 7 days of doxycycline (DOX)
treatment, we performed a time course experiment after removal of DOX from the
medium leading to EWSR1-FLI1 re-expression. We made single-cell transcriptome
measurements at 7 time points (days 7: EWSR1-FLI1", 9, 10, 11, 14, 17 and 22:
EWSR1-FLI1"") (Figure 1A). We also tested in vivo the impact of EWSR1-FLI1 on
gene expression. From A673/TR/SshEF xenografts in SCID mouse, single-cell RNA-
sequencing (scCRNA-seq) was conducted without DOX (EWSR1-FLI1"") and after 7
days of DOX treatment (EWSR1-FLI1"" ). The modulation of EWSR1-FLI1 protein
expression was confirmed by western blot (Figure 1B). In addition, the expression of
CD99 at the membrane and the nuclear expression of LOX, surrogate markers of
EWSR1-FLI1 activation and repression respectively, was confirmed by
immunohistochemistry (IHC) (Figure 1B). We also conducted scRNA-seq experiments
on 3 Ewing patient derived xenografts (PDX), established in the laboratory by
implantation of tumor samples in SCID mice. PDX-83 and PDX-84 expressed EWSR1-
FLI1 type | fusion and PDX-111 harbors EWSR1-FLI1 type X fusion. Finally, we profiled
two primary cultures of mesenchymal stem cells (MSCs), the likely EwS cell-of-origin
(Tirode et al., 2007).

Unsupervised analysis of the Ewing single-cell transcriptomic data by Principal
Component Analysis (PCA), clearly separated in vitro (A673/TR/ShEF time series &
Ewing MSCs) (Figure 1C, upper left panel) and in vivo datasets (A673/TR/shEF
xenograft & Ewing PDXs) (Figure 1C, middle and right upper panel) along the first
principal component (PC1, 14.7% of explained variance) (Figure 1C). The second
principal component (PC2, 4.2% of explained variance) projection revealed the effect of
EWSRI1-FLI1 activation on transcriptomic dynamics. For A673/TR/ShEF time series,
EWSR1-FLI1™ cells (d7) were grouped close to MSCs and clearly separated from
EWSR1-FLI1"" cells (d22). As early as the second (d9) and the third (d10) days of
EWSR1-FLI1 re-expression, the distribution of single cell transcriptomes is already
significantly different from EWSR1-FLI1"" cells (d7). 4 and 7 days after re-induction
(d11 and d14) represent intermediate (between EWSR1-FLI1™" and EWSR1-FLI1"9")
states of single cell transcriptome distributions. Finally, at d17 most of the single cells

4


https://doi.org/10.1101/623710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623710; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

converge to the EWSR1-FLI1"" state of d22. Similarly, EWSR1-FLI1" and EWSR1-
FLI1"9" states of A673/TR/ShEF xenografts could be clearly distinguished. All EWSR1-
FLIZ"" cells, including the 3 PDXs, converge together in the transcriptomic space
(Figure 1C, All samples). The first component was not significantly enriched with any
gene ontology gene set, while the second principal component was associated by
functional enrichment analysis to EWSR1-FLI1 modulated genes (taken from Kinsey et
al., 2006), positive correlation, p < 10°°), Cell Cycle (GO:0007049, positive correlation,
p < 10%), and Extracellular Matrix (ECM) Organization (GO:0030198, negative
correlation, p < 10%).

We also checked the single cell expression dynamics of 8 genes known to be directly
modulated by EWSR1-FLI1 (up-regulated genes: PRKCB, LIPI, CCND1, NROB1; down-
regulated genes: IGFBP3, IL8, LOX, VIM) (Figure S1). These results confirmed
consistent re-induction dynamics of EWSR1-FLI1. Single cell expression of these genes
highlights early and late responsive cells to EWSR1-FLI1 re-expression at any given
time point (Figure S1) (Hancock and Lessnick, 2008).

Collectively, these analyses show that these Ewing single cell transcriptome datasets
recapitulated the main results found previously in bulk expression measurements in
similar biological systems. However, just as in the bulk data, this standard multivariate
analysis did not allow to distinguish processes directly related to EWSR1-FLI1 specific
transcriptional activity from generic biological processes (cell cycle, ECM organization,
etc...), indirectly modified following EWSR1-FLI1 expression.

Joint deconvolution of multiple scRNA-seq datasets into independent
components

In order to create a negative control to the Ewing-specific datasets and evaluate the
specificity of the sources of cellular heterogeneity, we jointly normalized and merged the
Ewing-specific single cell datasets together with several other single cell datasets
generated in-house or obtained from public resources (Patel et al., 2014; Trapnell et al.,
2014). Altogether we analyzed 1,964 single cell transcriptomic profiles from 8 different
datasets (Table S1). A t-distributed stochastic neighbor embedding (t-SNE) plot of all
cells is shown in Figure S2. The different Ewing-specific datasets are grouped together,
separated from the other datasets. In both in vitro and xenograft cases, cells in which
the EWSR1-FLI1 oncogene has been induced converge to the same area at the center
of the plot. Cells of mesenchymal origin (MSC and myoblasts) are localized close to
each other in the plot.
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Figure 1. Experimental design for collecting EwS scRNA-seq profiles. A. A673/TR/shEF in vitro -
Scheme of the time-resolved induction of DOX-regulated EWSR1-FLI1 and western blot. After 7 days of
DOX treatment, cells are extensively rinsed, grown in a DOX-free medium then collected at 2 days (d9), 3
days (d10), 4 days (d11), 7 days (d14), 10 days (d17) and 15 days (d22) and isolated using the
FluidigmTM C1 system for scRNA-seq. B. A673/TR/shEF xenograft. A673/TR/ShEF were injected sub-
cutaneously in SCID mice. After 18 days, mice were separated in two groups, one with DOX added to the
drinking water for 7 days and the other group without DOX. EWSR1-FLI1 expression was controlled by
western blot. IHC with positive (CD99) and negative (LOX) EWSR1-FLI1 surrogate markers are shown.
C. PCA of single cells EwS datasets. Cells are indicated by colored circles, from d7 (light blue circles) to
d22 (dark blue dot), A673/TR/shEF xenograft cells at dO (dark blue triangle) and d7 (light blue triangle), 3
Ewing PDXs (blue square), MSCs (yellow circles).
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We applied Independent Component Analysis (ICA) in order to decompose the
heterogeneity of scRNA-seq profiles into a relatively small number (30, as it was close
to the estimated optimal number, see Methods) of independently acting factors or
independent components (ICs). The rationale for choosing this approach is that ICA can
in principle deconvolute signals correlated to a common hidden factor, since the
covariance matrix was made unity before application of ICA by data whitening (Zinovyev
et al., 2013). For each IC, the analysis associated a weight for each gene (collectively
denoted as metagene) and a score for each sample (denoted as metasample) (Tables
S2 and 3).

Correlating the computed 30 meta-samples to the binary vectors describing different cell
subsets enabled us to distinguish generic and cell type-specific independent sources of
heterogeneity (Figure 2A and Table S2) including Ewing specific independent
components (IC10, IC30) as well as components specific to other cell types (Figure 2A).
In addition, ICA deconvolution leads to the identification of components not specific to
any cell type, whose correlations with the cell subsets binary vectors were small (those
are located in the right bottom part of the Figure 2A).

Generic and EWSR1-FLI1 specific components

We then looked for biological processes that could be associated with each of the ICs.
For this we defined two sets of top contributing genes for each component, one with
positive weights and one with negative weights (denoted as ICx+ and ICx- respectively
where x denotes the component number and +/- indicates the long and short tail of the
weight distribution, respectively), using a threshold of 5 standard deviations roughly
corresponding to a statistical significance of 1%. On these, we then performed gene set
enrichment analyses using the Toppgene suite (Chen et al., 2009) (online table:
http://bioinfo-out.curie.fr/projects/sitcon/mosaic/toppgene _analysis/).This analysis
highlighted associations with various generic biological processes, some having
remarkably strong enrichment scores, and led us to focus on 4 gene sets: IC1+, IC2+,
IC10+ and IC30+. Thus, IC1l+ was associated with chromosome segregation
(GO:0007059, p = 10®% and mitotic nuclear division (GO:0007067, p = 10°%), IC2+,
with DNA replication (GO:0006260, p = 10°%) and 1C30+, with extracellular matrix
organization (GO:30198, p = 10%%, 10%, and 10, respectively). IC10+ was not
strongly associated with any biological process. We matched the IC1+ and IC2+ scores
to two recently established transcriptomic signatures for the specific phases of the cell
cycle (Giotti et al., 2017), and found strong match between IC1+ and G2/M score and
between IC2+ and G1/S score. Accordingly to this analysis, we will refer to IC1+, IC2+,
IC30+ gene sets as IC-G2/M, IC-G1/S and IC-ECM correspondingly, for the sake of
clarity (Figure S3).
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Figure 2. Deconvoluting the cell cycle phases and specific transcriptional program of EWSR1-FLI1
activity. A. PCA plot visualizing the matrix of correlations computed between independent components
(ICs) and the binary vectors distinguishing different groups of cells: Ewing (blue), Neuroblastoma, NB
(grey), Rhabdoid, RHABD (green), Myoblast (red), Glioblastoma, GB (orange). B. Gene set score
distribution across all cell datasets for four selected ICs (IC1+: IC-G2/M, IC2+: IC-G1/S, IC10+: IC-EwS
and IC30+: IC-ECM). The scores are computed as average value of the gene expression of the most
variable genes in the set (see Materials and Methods). For Ewing dataset, blue scale illustrate EWSR1-
FLI1 level of expression: from EWSR1-FLI1"®" (light blue) to EWSR1-FLI1"®" (dark blue). For Rhabdoid
dataset, green scale shows SMARCB1 (light green) and SMARCB1" (dark green). For GB dataset, GB
cell line are in light orange and GB tumors are in dark orange. For the myoblast dataset, red color scale
illustrate the myoblast differentiation time course. C. Specificity of IC-EwS gene set for EwS. Gene
expression analysis is applied on a cohort of 22,956 non EwS tumors and 156 EwSs (all measured by
Affymetrix HG-U133Plus 2.0 array). Box plot of gene expression log, fold change of EwS vs. other tumors
of the non regulated genes (n = 100), IC-EwS genes (n = 220), the up- (n = 503) and down-regulated
genes (n = 293) described by Hancock and Lessnick, 2008(Hancock and Lessnick, 2008), the IC-G2/M (n
=212), IC-G1/S (n = 291) and IC-ECM (n = 252) genes.


https://doi.org/10.1101/623710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623710; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

IC10+ gene set was interpreted as highly Ewing sarcoma-specific; therefore, further we
refer to it as IC-EwS. The IC-EwS list (220 genes) was highly enriched in “Genes up-
regulated in mesenchymal stem cells (MSC) engineered to express EWSR1-FLI1 fusion
protein” (Riggi et al., 2008) (p = 10%?) and several other Ewing-related transcriptomic
signatures from MSigDB C2 collection (targets of EWSR1 ETS fusions up (Miyagawa et
al., 2008), p = 10™° targets of EWSR1-FLI1 fusion (Hu-Lieskovan et al., 2005), p = 10°
8. Ewing family tumor (Staege et al., 2004), p = 10?°) and to a lesser extent with the
“‘Ewing sarcoma disease” gene set (C3536893 entry in DisGeNET database (Pinero et
al., 2015), p = 10%). Unlike previously reported EwS-related gene signatures, IC-EwS
was not enriched in cell cycle-related reference gene sets.

We then assigned a gene set activation score to each cell regarding the different ICs
(an average expression of most variable genes in the gene set, see Methods). The
score distributions allowed to make the following conclusions: (1) IC-G2/M and IC-G1/S
scores are distributed across all datasets peaking in the states that can be associated to
active proliferation (Figure 2B); (2) within each dataset IC-G2/M and IC-G1/S scores are
highly variable; (3) IC-EwS and IC-ECM high score values are almost exclusively
associated to Ewing cells; (4) IC-EwS, IC-ECM scores clearly distinguish EWSR1-
FLI1"" and EWSR1-FLI1'" cell states and change monotonically with time, increasing
or decreasing, respectively. This is observed in the in vitro and xenograft inducible
cellular systems. Figure 2B visualizes IC-G2/M, IC-G1/S, IC-EwS, IC-ECM scores
across the studied datasets.

To further test the specificity of IC-EwS and IC-ECM gene expression in EwS, we
performed gene expression analysis in a combined cohort of 23,112 samples including
156 EwSs and 22,956 other tumors (Gene investigator(Hruz et al., 2008)). The IC-EwS
gene set strikingly discriminated EwS from all other samples (Figure 2C), better than the
gene signature previously defined by transcriptomic data meta-analysis and containing
genes regulated by EWSR1-FLI1 and enriched in EwSs(Hancock and Lessnick, 2008).
This analysis also showed that the IC-ECM gene set is not specific to EwS (Figure 2C).

Altogether, these data highlight that the IC-EwS gene set is highly specific to EwS both
in model systems (cell line and PDX) and in tumors.

Characterization of the specific EWSR1-FLI1 activity signature

To further characterize the IC-EwS signatures, we performed EWSR1-FLI1 ChlP-seq on
A673/TR/shEF at d7, d9, d10, d11, d14 and d17, following the experimental design
used to generate the A673/TR/shEF time series (Figure 1A). EWSR1-FLI1-specific
peaks (EF-peaks) were defined as peaks that significantly varied upon EWSR1-FLI1 re-
expression (p < 0.005).
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For each gene we calculated the distance between the transcription start site (TSS) to
the nearest EF-peak. We then compared the distribution of these distances for genes of
the various ICs to the distribution of distances of a set of 1,000 control genes that are
not regulated by EWSR1-FLI1. As shown in Figure 3A, this distance is significantly
smaller for IC-EwS genes (p = 10?°) as compared to other ICs and to the reference
Hancock et al. EWSR1-FLI1 signature. Indeed, we observed a highly significant
enrichment in percentage of genes with EF-peaks between 0-100 kb from TSS for IC-
EwS (38% of genes) as compared to “non-regulated” genes (<10%), from which we
concluded that many of IC-EwS genes are likely to be directly regulated by EWSR1-
FLI1 (Figure 3B). A slight enrichment was also observed for the 100-200 and 200-300
kb ranges (12%) but not for distances > 300 kb from TSS. TSS of the Hancock et al.
and of the IC-ECM genes are also slightly significantly closer to EF peaks than controls
but with a much less significant statistical association (Figure 3A).

Direct EWSR1-FLI1 target binding sites are shown to be either bona fide ETS motifs or
GGAA-mSats (Gangwal et al., 2008; Guillon et al., 2009; Riggi et al., 2014). We used
FIMO (Grant et al., 2011) to analyze the occurrences of these two motifs in EF-peaks
located less than 100 kb from TSS of IC-EwS genes (n = 83/220) as compared to
control genes (n = 72/1000). While most EF-peaks related to control genes were ETS
sites, most EF-peaks of IC-EwS genes contained GGAA-mSats with at least 4 repeats
(GGAA-mSats=> 4) (Figure 3C).

We also performed ChIP-seq analysis of H3K27ac histone mark to map active
chromatin regions at d0 (EWSR1-FLI1"") and d7 (EWSR1-FLI1""). We observed that
91% of EF-peaks are associated with H3K27ac marks at dO, in agreement with
EWSR1-FLI1 being a pioneer factor for chromatin remodeling (Boulay et al., 2017).
When considering only EF-peaks localized in super-enhancers (SES) regions, as
defined by the ROSE algorithm (Loven et al., 2013; Whyte et al., 2013), we can define
SE associated with EF-peak at dO, at d7 and at both time points. We observed that SEs
defined at dO and containing EF-peaks are enriched in the IC-EwS set of genes (p < 10°
®) (Figure 3D). Moreover, it appeared that the IC-EwS associated SEs ranked among
the strongest SEs (Figure 3E). Such an association is specific for IC-EwS as it was
observed neither for control genes (Figure 3F) nor for any other ICs (data not shown).

Altogether, these analyses allowed us to define the IC-EwS signature as strongly
enriched in EWSR1-FLI1 direct target genes. These genes are associated to EF-peaks
that (1) significantly vary upon EWSR1-FLI1 expression, (2) are significantly closer to
the TSS, (3) are enriched in GGAAmMSat > 4, (4) are significantly enriched in potent
super-enhancers. Given all the analysis steps described above, we defined a set of 83
genes that have most of these characteristics and hence appear to be excellent
candidates for being EWSR1-FLI1 direct targets, playing key roles in EwS oncogenesis
(Figure 4).
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Figure 3. Characterizing the IC-EwS gene set. A. Barplot showing for each IC the Log(1/p-value) of
comparisons of the “gene to EF peak” distance as compared to control genes (“Non-regulated genes” (n
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Figure 4. The 83 genes identified as likely direct EWSR1-FLI1 targets. From left to right: heatmap of
their expression in single cell normalized expression center scaled and winsorized (5%) in A673/TR/ShEF
time course from EWSR1-FLI1"" (d7, light blue) to EWSR1-FLI1"®" (d22, dark blue), heatmap of EF-peak
intensities in A673/TR/ShEF time course from EWSR1-FLI1®" (d7, white) to EWSR1-FLI1"" (d17, red),
number of GGAA in EF-peaks (grey scale), heatmap of H3K27ac histone mark co-localized with EF
peaks (from light green to dark green) and of super-enhancer ranking in A673/TR/shEF d0 and d7 (from
dark purple to light purple). The 83 genes are ranked by their weight in IC-EwS.
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Unraveling heterogeneity of Ewing tumors at single cell level in tumors

We then investigated whether the afore-mentioned signatures, mostly defined by in vitro
systems, may be informative to explore the structure of large single cell datasets
obtained from in vivo samples. 5 new patient-derived xenografts (PDX-352, PDX-861,
PDX-856, PDX-184 and PDX-1058), from EWSR1-FLI1-positive EwSs were profiled
using the 10x genomics sequencing platform. After quality checks and removal of
profiles corresponding to dead cells, a total of 3,595, 1,245, 604, 1,245 and 1,742
SCRNA-seq profiles was obtained for PDX-352, PDX-861, PDX-856, PDX-184 and PDX-
1058, respectively. In order to visualize distances between individual cell
transcriptomes, we used the SPRING web-based data visualization interface based on
the application of a force-directed graph layout to the graph of similarity between full
transcriptomic profiles of individual cells (kNN graph) (Weinreb et al., 2018). When IC-
EwS score, which can be considered as a direct assessment of EWSR1-FLI1
transcriptional activity, was mapped onto the SPRING layout in all PDXs, we observed
that this signature largely contributes to the intratumoral heterogeneity (Figure 5A and
Figure S4A-D). In all PDXs, IC-G2/M and IC-G1/S define specific groups of cells that
form a loop-like structure, most probably reflecting the transcriptional dynamics of the
cell cycle program (Figure 5A-B, Figure S4A-D).

An attempt was made to merge together the 5 PDXs transcriptomic datasets, but their
transcriptomes remain too specific to be directly compared even when adjusted for the
variations in library size. Instead, we found that the score distributions for specific set of
genes in our focus of study can be easily aligned (Figure 5A). Thus, using joint analysis
of 5 PDXs, we found that it is plausible to suggest existence of an optimal range of
intermediate IC-EwS values to activate cell proliferation (Figure 5C). We define such a
range as a window of IC-EwS scores containing 95% of proliferative cells, identified
accordingly to IC-G1/S or IC-G2/M scores (Figure 5C). Below and above this range we
observe only a small number of cells in proliferative state. By using Kolmogorov-
Smirnov test, we verified that this observation can not be a random sampling effect
caused by the globally higher density of cells in this defined range (p < 10).

We further investigated which biological factors can potentially explain the lack of
proliferation outside the optimal window of EWSR1-FLI1 activity estimated through the
IC-EwS score in PDXs. For each PDX separately, we defined IC-EwS®"T as the group
of cells whose IC-EwS scores fall into the optimal proliferation range, an interval
containing a majority of IC-EwS scores from proliferative cells. Other cells,
characterized by IC-EwS scores below and above the optimal range, were respectively
labeled as IC-EwS<°FT and IC-EwS™°"". Cells of both of these types were relatively rare
(in average, for 5 PDXs, IC-EwS“?"T and IC-EwS " groups were 10% and 8% of the
total cell number, correspondingly).
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Figure 5. Quantification of PDXs heterogeneity based on identified transcriptional signatures. A.
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First, we performed GSEA analysis, comparing IC-EwS®"" cells with the IC-EwS <"
groups. We found that the strongest up-regulated signal characterizing the cells outside
the optimal window was related to hypoxia (HALLMARK_HYPOXIA and PID138045
“HIF 1a transcription factor network” gene sets from MSigDB, NES = 5.2, 3.16, p < 107)
and glucose catabolism (GO:0006007 “glucose catabolic process”, NES = 3.74, p < 10
%). By contrast, cells residing inside the optimal range for proliferation were
characterized by a high oxidative phosphorylation
(HALLMARK_OXIDATIVE_PHOSPHORYLATION gene set from MSigDB, NES =4.3, p
< 103). In all PDXs, we observed that most of IC-EwS<°F" cells were characterized by
increased glucose catabolism score (for example, Figure 5A). Inspection of hypoxia
score in all PDXs showed that it highlights a compact subgroup of IC-EwS<°"" cells (see
characteristic example in Figure 5A and D, and all other PDXs in Figure S4A-D). In all
PDXs, this subgroup of IC-EwS<°"T cells highly expressed hypoxia-related markers,
such as ALDOA, CA9, NDRG1, VEGFA, ADM, BNIP3 and NRN1 (all members of the
“‘HIF1a transcription factor network” pathway) (Figure S5).

A relatively rare population of IC-EwS”FT cells was also characterized by a consistent
increase of many genes from the HIF1a transcription factor network, especially towards
the maximally observed IC-EwS scores (see Figure 5D). This signal was, however, not
the strongest one among others, being masked and dominated by the increased
expression of IC-EwS signature genes, in IC-EwS™"T (which is expected from the
definition of IC-EwS™"T). When the IC-EwS score was regressed out from the
expression of all genes, only the hypoxia-related signature remained positively enriched
in IC-EwS™"T subpopulation, compared to the rest of cells. Interestingly, several
members of the HIF1a transcription factor network pathway including the anti-apoptotic
hypoxia-induced gene MCL1 were expressed significantly more in IC-EwS™"T than in
IC-EwS*°"T (Figure S5). This observation can indicate an EWSR1-FLI1-modulated
interplay between hypoxia and apoptosis regulation in cells falling out of the optimal
proliferation range of IC-EwS scores. In favor of this hypothesis, in the top 10
differentially expressed genes between IC-EwS®"" and IC-EwS °"" cells there are
several apoptosis-related genes, namely pro-apoptotic factor BNIP3 (down-regulated in
IC-EwS®"T) and Cytochrome C oxidase COX6C (up-regulated in IC-EwS®"") (Figure
S6).

We can conclude that the major sources of transcriptomic heterogeneity inside EwS
PDXs are proliferation and the variation of activity of the EWSR-FLI1 transcription
factor. We observe that there is an optimal range of activity of EWSR-FLI1 for cells to
proliferate. We show that outside of this range, we can define cell subpopulations
expressing hypoxia markers and genes involved in glucose pathways.
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Discussion

As most pediatric cancers, EwS is characterized by a paucity of genetic abnormalities.
Accumulation of genetic alterations that frequently result from genetic instability, which
are suspected to play major roles in the progression of adult cancers, is therefore not
expected to be the major player in the progression of pediatric cancers.

Here, based on our recent findings that the variation of expression of EWSR1-FLI1
constitutes a major source of heterogeneity in EwS, we used a variety of experimental
systems to investigate at the single cell level the gene expression dynamics associated
with changes in EWSR1-FLI1 expression. To our knowledge this is the first report
studying the dynamics of a transcriptome at the single cell level after induction of a
known cancer driver gene.

We applied unsupervised independent component analysis (ICA), which first identified
two components that are extremely specific to G1/S and G2/M cell cycle phases (IC-
G2/M and IC-G1/S). These components are not EwS-specific and characterize a subset
of cells in all the experimental systems included in the analysis. In EwS cells, IC-G2/M
and IC-G1/S are clearly correlated with the expression level of EWSR1-FLIL.
Furthermore an independent component exquisitely specific for EWSR1-FLI1 activity
was identified which i) did not highlight any non-Ewing cells or tumors in single cell,
tumor bulk or normal tissue datasets, ii) is strongly enriched by EF1 peaks associated
with the presence of GGAA-mSats sequences in the vicinity of the TSS, iii) is strongly
associated with EWSR1-FLI1-dependent super-enhancers regions. Based on filtering
genes associated with this component, we further identified a set of 83 strong candidate
genes for direct regulation by EWSR1-FLI1, a characteristic which was not reported
previously for most of them. Previously proposed lists of EWSR1-FLI1 direct targets
contain numerous cell cycle genes as a result of the correlation between EWSR1-FLI1
induction and cell cycle gene expression. In contrast, this restricted list only contains
CCND1 as a gene directly involved in cell cycle strongly reinforcing the role of this gene
as a major player in EWSR1-FLI1-induced activation of the cell cycle. Clear distinction
between IC-EwS and IC-G2/M and IC-G1/S underlines the ability of the ICA approach to
discriminate the cell cycle process, a usual confounding factor which hides the effects of
other essential factors, and EWSR1-FLI1 direct downstream regulated genes. This is an
alternative to the use of other methods that have been developed to “subtract’ the
signal related to the cell cycle signal from the data(Bacher and Kendziorski, 2016;
Barron and Li, 2016), a step which would not be suitable in our study as the cell cycle
and the proper oncogene transcriptional programs appear to be highly correlated.

The identification of the IC-EwS signature constitutes a considerable improvement as
compared to the previously defined EWSR1-FLI1 signatures. When investigated with
functional annotation tools (Toppgene, DAVID), IC-EwS only retrieves weak enrichment
annotations as synapses, neurogenesis, or cell adhesion, in agreement with previous
observations that EWSR1-FLI1 activates some neural and cell-cell adhesion processes
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(Franzetti et al., 2017; Hu-Lieskovan et al., 2005). Rather, this list contains genes
involved in a variety of functions highlighting the pleiotropic effects of EWSR1-FLI1.
Importantly, a number of these genes appears to be controlled by EWSR1-FLI1 binding
to GGAA-mSats sequences that are highly polymorphic in the human population. The
hypothesis of polymorphisms in these regions being involved in hereditary susceptibility,
as shown recently for the EGR2 locus (Grunewald et al., 2015), or in the inter-tumoral
heterogeneity of EwS can now be more directly tested.

Exploration of 5 EwS tumors based on these independent components and on the most
significant functional reference genesets they pointed at, enables to illuminate some
aspects of intratumoral heterogeneity. One distinct group corresponds to actively
proliferating cells. The number of cycling cells is variable, from 9% to 30%. Rather
expectedly, these cells demonstrate increased scores for oxidative phosphorylation
signatures.

We observe strong cell-to-cell variability of IC-EwS signature score, being an indirect
measure of EWSR1-FLI1 activity. As expected, cells with a low IC-EwS score are not
cycling, in agreement with the hypothesis of a significant expression of EWSR1-FLI1
being necessary for cell cycle entry and progression. More surprisingly, cells with the
highest IC-EwS scores are not cycling either suggesting that proliferation of Ewing cells
is induced by an intermediary, potentially optimal level of EWSR1-FLI1 expression
(called IC-EwS®"T in this study).

In addition to the cell cycle, EWSRI1-FLI1 expression may induce metabolic
heterogeneity. In all tumors, our analyses highlight a subgroup of IC-EwS "7~ cells
that are characterized by hypoxia signal. We observe that the number of cells that may
be assigned to a Warburg effect, i.e. an aerobic glycolysis, appears relatively low. It will
be of strong interest to follow in vivo the relationship of these cell subpopulations with
the microenvironment including blood vessels, fibroblasts and immune cells, and follow
their evolution in response to therapy.

In conclusion, in this study we characterize the dynamic effect of EWSR1-FLI1 at single
cell level. We can distinguish, in an unsupervised and unbiased manner, its oncogene-
specific transcriptional program (IC-EwS) from a process strongly coupled to it, the
induction of proliferation. The IC-EwS allowed us to describe tumoral heterogeneity in
EwS’s PDXs highlighting three major populations: one corresponding to the optimal
window for cell proliferation activation and two others characterized by lower or higher
activity of IC-EwS and associated to hypoxia.

The methodology developed can be applied to other biological contexts, for example, in
order to dissect different transcriptional programs of other known cancer drivers or
tumor suppressors. The different components identified enable to characterize the
transcriptional heterogeneity of a tumor cell population. Further studies will be needed
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to assess whether the composition of tumors in these different compartments influences
the response to treatment and prognosis of tumors.
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Methods

Cell lines and animal experiments

All cells are grown at 37°C with 5% of CO, with 100 Ul/mL Penicillin and 100 pg/mL
Streptomycin (Gibco). A673/TR/shEF (Carrillo et al., 2007) are cultured in DMEM
(Gibco) 10% FBS (Eurobio), with 50 pg/mL Zeocin (Invitrogen), 2 pg/mL Blasticidin
(Invitrogen) added ex-tempo. I2A cells were grown in RPMI (Gibco), 10% FBS (Eurobio)
with 50 pg/mL hygromycin B (Life Technology), 300 pg/mL G418 (geneticin) and 50
ng/mL DOX (doxycyclin, Invitrogen) added ex-tempo when indicated. MSCs from bone
marrow Ewing patients were isolated by density-gradient centrifugation using Ficoll
technique and were cultured in alpha MEM (Gibco), MSC-qualified serum (Gibco), 1%
L-glutamine (Gibco) and 1 ng/mL bFGF (Sigma), added ex-tempo. CLB-berlud are
cultured in RPMI (Gibco) 10% FBS (Eurobio), 100U/mL.

EWSRI1-FLI1 specific small hairpin RNA was induced in A673/TR/ShEF cells by adding
DOX at 1 ug/mL. After 7 days, DOX was removed and cells were washed three times to
allow silencing of the shRNA and induction of EWSR1-FLI1. Cells were harvested at
seven different times points: 0 day (d7), 2 days (d9), 3 days (d10), 4 days (d11), 7 days
(d14), 10 days (d17) and 15 days (d22) after DOX removal.

For A673/TR/shEF xenograft, 20 millions cells were resuspended in 200 pL of PBS and
subcutaneously injected into severe combined immunodeficiency (SCID) mice. When
tumor volume reached 1,000 mm3, DOX was added in the drinking water of a subset of
mice (+ DOX group) for 7 days.

For I2A cells, DOX was removed and cells were washed three times to induce
SMARCBL1 expression.

Patient-derived xenograft

Ewing Patient Derived Xenografts (PDX) were established in the laboratory by
subcutaneous implantation of tumor samples in SCID mice. Patients consented
preoperatively to take part in the study which received agreement by the Institutional
Review Board Protocol.

Eight PDX from EWSRI1-FLI1l-positive EwSs were profiled using either the
Fluidigm™(PDX-83, PDX-84 and PDX-111) or the 10xGenomics (PDX-184, PDX-352,
PDX-856, PDX-861 and PDX-1058) single cell technology. Four of them were derived
from localized primary tumor, expressing an EWSR1-FLI1 fusion type 1 transcript, either
localized to the humerus and presenting a CDKN2A gene deletion (IC-pPDX-3 model:
PDX-84 and PDX-184) or located in the sacrum and presenting a STAG2 R614* gene
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mutation (IC-pPDX-8 model: PDX-83 and PDX-352). PDX-111 and PDX-861 were
derived from an Ewing primary tumor presenting metastasis at diagnosis and
expressing an EWSR1-FLI1 fusion type 1 (IC-pPDX-52 model: PDX-861) or type X
transcript (IC-pPDX-5 model: PDX-111). Finally, PDX-856 (IC-pPDX-80 model) and
PDX-1058 (IC-pPDX-87 model, relapse from IC-pPDX-52 mode) were obtained from a
relapse and expressed an EWSR1-FLI1 fusion type 1 transcript. PDX-1058 presented a
CDKN2A gene deletion and a TP53 R175C* gene mutation.

Tumor dissociation into single-cell suspension

A673/TR/shEF xenografts and Ewing PDX were dissected from mice and mechanically
dissociated. The finely minced tissue was transferred to a digestion mix consisting of
C0, independent medium (Gibco) containing 1 mg/mL collagenase D (Roche), 2 mg/mL
hyaluronidase (Sigma) and 25 ug/mL DNAse (Sigma), incubated for 45 min at 37 °C
and gently resuspended every 10 min. Cell suspension was then filtered using 70 pm
and 30 um cell strainers (Miltenyi Biotec). For A673/TR/ShEF xenograft experiments,
the tumoral suspension was depleted of infiltrated murine cells using the mouse cell
depletion kit from Milteny Biotec. Cells were then adjusted at 1x10° cel/mL in HBSS
containing 2 mM EDTA. Viability was measured using trypan blue exclusion.

Western blot

All A673/TR/shEF in vitro and xenograft proteins were extracted with RIPA and anti-
protease cocktail (Roche). Western blots were hybridized with rabbit monoclonal anti-
FLI1 antibody (1:1000, ab133485, abcam) and mouse monoclonal anti-beta-actin
(1:10,000, A-5316, Sigma Aldrich). Then, membrane was incubated with anti-
mouse/rabbit 1gG horseradish peroxidase coupled (1:3,000, Amersham Bioscience).
Proteins were detected using chemiluminescence (Pierce).

C1 single cell capture and mRNA-seq

Dissociated cells were captured and processed with the C1 Single-Cell Auto Prep
System (Fluidigm™) following the manufacturer's protocol. We started with a cell
suspension at a concentration of 0.45 x 10° cells/mL. After observation at the
microscope, we identified the sites where live single cells were captured. Processing of
cells occurred in the C1 instrument to perform steps of cell lysis, cDNA synthesis with
reverse transcriptase, and PCR amplification for each cDNA library. Quality of the
resulting cDNA was checked using the LabChip GX Touch HT (Perkin Elmer, Waltham,
MA).The cDNA synthesis and PCR used reagents from the SMARTer Ultra Low RNA kit
from Illumina sequencing (Clontech, Mountain View, CA). After harvest from the C1
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device, each cDNA library was tagmented using the Nextera XT DNA Sample
Preparation Kit (lllumina). After PCR, cDNA libraries were pooled. All libraries were
sequenced with HiSeq2500 (lllumina) using 150 bp paired-end sequencing.

10x Genomics single cell capture and mRNA-seq

Single-cell RNA-seq was performed using the Single Cell 3GEM Code Single-Cell
instrument (10x Genomics, Pleasanton, CA, USA), according to the manufacturer's
protocol. Cellular suspension (5,300 cells) was loaded on a 10x Chromium instrument to
generate 3,000 single-cell GEMs, using the Chromium™ Single Cell 3' Library & Gel
Bead Kit v2. The initial step consisted in performing an emulsion where individual cells
were isolated into droplets together with gel beads coated with unique primers bearing
10x cell barcodes, UMI (Unique Molecular Identifiers) and poly(dT) sequences. GEM-
RT was performed to generate barcoded full-length cDNA (53°C for 45 min, 85°C for 5
min, held at 4°C). After RT, GEMs were broken using the recovery agent and the single-
strand cDNA was cleaned up with DynaBeads MyOne Silane Beads (Thermo Fisher
Scientific).

Bulk cDNA was amplified (98 °C for 3 min; 12 cycles : 98 °C for 15s, 67 °C for 20 s,
72 °C for 1 min; 72 °C for 1 min; held at 4 °C) and then cleaned up with the SPRIselect
Reagent Kit (Beckman Coulter). A qualitative analysis on the amplified cDNA was
performed using Agilent Bioanalyzer high sensitivity chip.

Libraries were then constructed in 4 main steps: 1) fragmentation, end repair and A-
tailing, 2) adaptor ligation, 3) post ligation cleanup with SPRIselect and 4) sample index
PCR, quantified by Qubit fluorometric assay (Invitrogen) with dsDNA HS (High
Sensitivity) Assay Kit and qualified using LabChip (LabChip® GX Touch™
PerkinElmer).

Indexed libraries were equimolarly pooled and sequenced on an lllumina HiSeq 2500 in
rapid run mode, using paired-end (PE) 26/98 according to 10x recommendations. Using
a full rapid flow cell, a coverage around 100M reads per sample were obtained
corresponding to 100,000 reads/cell.

In order to remove profiles corresponding to dead or stressed cells from the analysis of
10x data, mitochondrial percentage score was computed for each cell as the
percentage of UMIs captured by the genes from the previously described gene set (llicic
et al., 2016). In the histograms of this score, a bimodal distribution was observed;
therefore, all cells from the higher mode were removed from the analysis. After
additional quality checks such as removal of cells with too small total number of UMiIs
(<5,000 UMis per cell, compared to the median 15,000 number of UMIs per cell) or too
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high (>40,000 UMIs), the number of selected cells in each PDX is indicated in the
Results section.

Alignment, counting and sample normalization of reads.

Reads obtained from sequencing of cells were aligned on the human genome (v. hg19)
using TopHat (version 2.0.6) (Trapnell et al., 2009). Reads mapping more than once
(parameter -x 1) or having edit distances of more than 3 (-N 3) were discarded.
Counting of reads on annotated genes from the GRCh37 gene build was done using
htseg-count (v. HTSeq-0.5.3p9) (Anders et al., 2015) with the following parameters:
reads with a quality score less than 10 (-a 10) were discarded and reads partially
overlapping with the annotated gene transcript were included in the counts unless they
overlapped with another read. In all experiments analysed the STRANDED=no option
was used.

Sample-to-sample normalization was performed by rescaling using DESeq size factors
(Love et al., 2014). For all data analyses the number of reads was logl0(x+1)
transformed.

In case of 10x Genomics data, the programs "cellranger mkfastq" and "cellranger count”
from the Cell Ranger software suite (v. 1.3.1) provided by 10X Genomics were used for
demultiplexing and counting the reads on the reference genome GRCh38. Sample-to-
sample normalization was performed using the total number of reads in the log scale.
For all data analyses the number of reads was log;o(x+1) transformed. More specifically
if X is the count matrix the R code to obtain the normalised matrix X.tpm is the following:
median.umi <- median(colSums(X)); X.tpm <- log(t(t(X)/colSums(X))*median.umi+1).
For each cell, reads from the k = 5 most similar cells were pooled together to define the
new cell measurement, in order to reduce the effect of drop-outs. For pooling, kNN
graph was computed on logl0(x+1) transformed data after filtering non-variant genes
(variance smaller than 0.01) and reducing the dimension of the data by projecting it into
20-dimensional subspace spanned by the standard PCA components.

Exploratory analysis of sScRNA-seq data

ICA was applied as previously described (Biton et al., 2014), using stabilization, with an
additional procedure for determining the optimal number of independent components
(Kairov et al., 2017). In the ICA decomposition X = AS, X is the gene expression
(sample vs. gene) matrix, A is the (sample vs. component) matrix describing the
loadings of the independent components, and S is the (component vs. gene matrix)
describing the weights (projections) of the genes in the components. We used a
modified MATLAB implementations of fastiCA (Hyvarinen, 1999) and icasso (Himberg
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et al, 2004 as a part of the BIODICA software available at
https://github.com/LabBandSB/BIODICA/, which contains an algorithm for estimating
the optimal number of components to compute. Icasso applies FastICA algorithm for
finding m independent components n = 100 times, and then uses hierarchical clustering
to estimate compactness of clusters of the components computed in all runs. The
resulting independent components represent medoids of the m clusters and are ranked
by the reproducibility (cluster compactness) in n runs. The orientation of the
components was chosen such that the longest tail of the gene projection distributions
would correspond to the positive values.

In order to explore the relation between IC metasamples and the binary vectors
representing various subsets of cells, we used the mutual correlation metrics in which
each IC was characterized by a vector of correlations with all other IC metasamples and
the binary vectors (Table S2), normalized to the unity L1-norm. Subsequently, a
standard PCA analysis was applied (Figure 2A).

t-SNE analysis(Van der Maaten, 2008) was done using R with setting the initial
dimension parameter to 100 and the perplexity parameter set to 80.

SPRING visualization was produced through computing the kNN graph (k = 5) by
applying a standard for SPRING approach (Weinreb et al., 2018) consisting in: 1)
filtering genes with the coefficient of variance smaller than 0.05 and the average
expression smaller than 0.01, computed for pooled read counts (this filter left from 8 to 9
thousands of genes in our datasets); 2) normalizing the measurements on the library
size and 3- reducing the dimension of the dataset to 20 by the standard PCA algorithm.

Functional enrichment analysis and gene set scoring

For interpreting the biological meaning of the sets of top-contributing to each of the ICs
genes, we applied toppgene functional analysis tool (Chen et al., 2009), limited to
reference gene sets not larger than 500 genes (in order to focus on more specific
functional categories). The toppgene analysis was automated through BIODICA
graphical user interface available from https://github.com/LabBandSB/BIODICA/ and
recapitulated in the form of an interactive online table http:/bioinfo-
out.curie.fr/projects/sitcon/mosaic/toppgene_analysis/. The table is organized in two
columns reporting the first most enriched functional gene sets for positive and negative
part of each IC metagene, in each reference categories (the enriched function is
mentioned in the table only if the the Bonferroni-corrected p < 0.05 and the number of
genes from the function found in the top-contributing list is not smaller than 8). Also the
sets of top-contributing genes smaller than 10 were not considered for the enrichment
analysis. Each hyperlink in the form of “ICX+/-” leads to a saved detailed enrichment
analysis as it was produced by toppgene. Each hyperlink in the form “X genes” leads to
the tested list of top-contributing genes.
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The table was further used to select a set of reference signatures for the analysis of the
tumor data. Only signatures from GO and Pathway categories enriched with the
Bonferroni-corrected p < 10™° were selected for further analysis. On top of this, we
added the standard HALLMARK set of transcriptomic signatures from MolSigDB.

For associating IC-EwS score computed for tumor cells with the reference signatures,
we applied the standard pre-ranked GSEA analysis to the t-test scores computed
between the 10th and 90th percentiles of the IC-EwS score. Classical scoring scheme
was used and 1,000 permutations estimating the empirical p-value.

Gene set scores for gene sets were computed in all analyses as average gene
expression of the genes composing the signatures, after removal of genes
characterized by small variance (in all analyses, 2000 most variable genes were kept for
computing the scores).

Non-regulated control gene sets

We selected “Non-regulated genes” for which at least 100 reads were detected at d7
and/or d22 and which showed no significant differential expression between d7 and d22
in A673/TR/shEF bulk expression dataset (0.5 < FC < 2, p > 0.01) (n = 2,117). Then,
genes were ranked from the lowest to highest fold change. For our analysis, we used
the top 100 non-regulated genes for the Figure 2C and the top 1,000 non-regulated
genes for the Figure 3 as a negative control.

Chromatin-immunoprecipitation and sequencing

DNA-protein cross-linking was performed in the presence of 1% of paraformaldehyde
on 12x10° cells for each condition during 10 minutes. Cell lysis, chromatin shearing,
immunoprecipitation and DNA purification was performed with reagents from iDeal
ChiP-seq kit for Transcription Factors (Diagenode, ref: C01010054). Twenty cycles of
sonication (30s high, 30s off) using TPX tube (Diagenode, ref: 50001) and the Bioruptor
(Diagenode) were achieved for chromatin shearing. We took 2 pg of FLI1 rabbit
polyclonal antibody (abcam, ab15289-ChIP grade) to perform immunoprecipitation of
EWSRI1-FLI1 transcription factor and 1 pug of H3K27ac antibody (abcam, ab4729) for
histone mark immunoprecipitation. IgG and CTCF ChIP was included as negative and
positive control. To check quality of each ChIP reactions, quantitative PCR was realized
prior to sequencing on 1/5 of purified DNA. Tested regions correspond to following
primers: 1- CCND1
(5'GGTGGGAGGTCTTTTTGTTTC3/5CACGCAATCCCAGATCAAAACT’); 2- CDKN1A
(5’ACTGACTCATCACTACTCCCTC3/5GTGTGCTATTCCCGCCAG3’); 3- CCND1
(5'CACAGTGTGGGTATTTCCATCAAGCA
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3'I5GGTGTGTAGGAAAAACAGCTCTCTGGA3); 4- Secl4L2
(5’GCCCCCGCTGATGCACTTCC3 /5AAGTGCGCCAGCAGAGCCAGY3). ChIP and
input were sequenced with HiSeq2500 (lllumina) using 100 bp single-end sequencing.

ChIP-seq peak detection and annotation

ChiP-seq reads were aligned to the human genome (hgl9 version) with
Bowtie2(Langmead and Salzberg, 2012). Peaks were called with MACS2 (Zhang et al.,
2008), with option narrow for FLI1 antibody and broad for H3K27ac histone mark. To
normalize, we took the input dataset from the same cell line. EWSR1-FLI1 specific
peaks were defined as peaks varying upon EWSR1-FLI1 expression (p < 0.005). To
obtain the p-values for each of the peaks we tested the statistical correlation (Im
function in R) between the vectors formed by the EWSR1-FLI1 peak intensities at d7,
d9, di0, d11, d14, d17 and the vector c (0, 2, 3, 4, 7, 10). That last vector consists in
the number of days of EWSR1-FLI1 re-expression for each of these time points. For
each gene, we reported the closest EF-peaks to TSS. We performed a Wilcoxon test to
compare the distribution of distances for genes of each IC with the control gene set
(Figure 3A). We used FIMO tool (Grant et al., 2011) to scan EF-peaks with ETS motif
(JASPAR ID: MA0475.1, p < 0.1) and GGAA-mSats (JASPAR ID: MA0149.1, p <
0.0005). If several motifs were found, we kept only the best motif. ROSE was used to
predict Super-Enhancers from H3K27ac marks (Loven et al., 2013){Whyte, 2013 #77.
We applied Fisher's exact test to evaluate the enrichment of EF-peaks in Super-
Enhancer (Figure 3D). The Super-Enhancers were associated to the closest expressed
gene (Figure 3E-F).
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Supplementary Information

Model Type Description (n) Sequencing parameters Normalisation Nb of single

cells

Eving Sacoma P14 celline Aﬁﬁgmm d7° (48), 49" (48), 010" (48), d11* (96), 014" (48), 017" (47), d22 -

Ewing Sarcoma ASP14 venograft Metastable; EWSR1-FLI™™ (106), EWSRL-FLII'" (100) 25

Eving Sarcoma Hmns%ug_m;cgé Xenogiaft o,y 63 39), PDX-84 (55),PDX-111 () )

— - Hiseq2500, paired-end 150 bp
Eving Sarcoma Euing patet privay celie e, 10 733 4 %
(MSC)
Rhabdoid 12A cellre Metastable: SMARCBL'®®(50), SMARCBL™® (49 HTSeq/DESeq %
Neuroblastoma (NB) CLB-Berlud cell line MYCN™® ALK™ (48) 8
) ] Tumors: MGH26 (1460), MGH28 (36), MGH29 (77), MGH30 (155), MGH31 (64) [Hiseq2500 - paired-end 25 bp (MGH30L sequencing replicate of
Glioblastoma (GB)  (Patel et al ) [Tumors & cell ines Celles: CS6 it), CSC8 56 MGH30 patectend 100 by) 665
Myoblast (Trapnell et al) Human felta muscle MODBSSS |1, e o 62, 240 79, 481 (88), 720 68)* Hiseq2500, paired-end 100 bp a

(HSMM)

Table S1. Summary of scRNA-seq datasets used in this study (A673/TR/shEF, PDX, MSC, I12A, CLB-

Berlud, glioblastoma and myoblasts). The model, the type of biological materials, the experiment

description, the sequencing parameters, the normalization applied and the number of single cells

sequenced are described for each dataset.
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1D IC1_IC2 IC3_Ic4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC14 IC15 IC16 IC17 IC18 IC19 IC20 IC21 IC22 IC23 IC24 IC25 IC26 IC27 IC28 1C29 1C30 GZ) % 8 % @ (o]
IC1 0.24 023 0.23 0.33 -021 0.20
IC2 0.66 0.28 0.22 0.24 0.43
IC3 -0.27 -0.32 -0.24 0.58 -0.24 042 0.26 0.45 -0.29
IC4 0.40 0.24
IC5 0.25 0.28 031 -0.29 0.23 -0.33 0.21
1C6 0.24 0.28 0.24 0.45 0.36 -0.22 030 0.22 0.25
IC7 0.22 0.23 031 0.36
I1C8 -0.27 -0.28 -0.21 -0.29 023 020 0.34 024 038 -0.29
IC9 023 024 025 024 023 0.20 0.28 0.45 -0.21 0.21
IC10 0.23 -0.24 -0.27 0.26 0.20 0.28 021 0.20 -0.26 022 026 -0.30 -0.31 -0.25 0.31 -0.23
IC11 0.58 0.26 0.44 0.24 0.29 0.26
IC12 0.20 021 0.25
IC13 -0.24 020 0.28 0.23 -0.23
IC14 0.28 031 0.24/-0.46 0.21 -0.23 0.67 -0.51 0.22
IC15 -0.28 0.21 0.21 -0.25 -0.40 -0.24 -0.39 -0.31 -0.21 -0.37| 0.74]
IC16 021 0.28 0.23 -0.28 0.39 0.33-0.34 -0.30 034
IC17 033 043 0.40 0.45 036 045 0.20 0.26 0.24 0.22] 031 -0.44
IC18 -0.29 -0.46 0.23 -0.48 -0.21 0.34- -0.22 0.59 0.25
IC19 024 031 036 0.23 0.21/-0.40 -0.28 0.40 -0.34 -051 0.24 0.26 031 0.30 -0.35 0.23
1C20 0.20 -0.21 -0.26 0.25 -0.48 -0.22 027 0.23 -0.28 -041 -0.39
IC21 0.42 0.22 0.44 039 031 -0.40 0.47 -0.26 0.33 -0.22 -0.24 0.37 -0.21
1C22 -0.21 0.26 -022 024 -0.24 -0.21 0.26 031 0.23
1C23 0.20 0.26 -0.34 -0.34 -0.22 -0.31 -0.33
1C24 0.45 -0.29 -0.30 0.29 0.33 -0.51 0.47 0.25 -0.21 -0.21
1C25 0.22 -0.23 -0.34 0.34 0.24 -0.26 -0.34 -0.24 0.28 0.54
1C26 0.23 034 0.67 -0.39 -0.30 0.26 0.27 -0.30 0.21 0.24/-0.58 0.27
1C27 -030 0.26 -0.31 0.22 0.23 033 031 -022 0.25 0.21 -0.21
1C28 0.25 0.24 -0.31 -0.21 -0.34 0.31 -0.22 -0.31 -0.21 0.28 0.24
1C29 -0.25 -0.51 -0.44 059 0.30 -0.28 -0.24 -033 0.54 -0.58
1C30 -0.38 0.31 -0.41
EWING -0.29 -0.29 0.21 0.23 -0.39 -0.34
NB -0.21
GB 033 -021 0.29 0.23 -0.35 037 0.23 -0.31
MSC 0.22 0.25 0.27
MYOBLASTS 021 -0.23 037 023 -0.34
RHABDOID 0.74) 0.21 -0.21 c

Table S2

. Correlations of the 30 components to the binary vector describing different cell subset.

27



https://doi.org/10.1101/623710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623710; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

AB73/TR AB73/TR

ABT3/TR/ShEF Ewin ABT73/TR/shEF Ewin
in vitro ShEF opY MsC invitro ShEF opy MsC
xenograft xenograft
5 4
Sl .
5 . 5 s 15 Y
8 — 8 v B\
[==1 ‘; E g % ; J'{ v jﬁt d
@ N @ s
g T grod g5 o d
r o |. . > N e FRRR .
o o » . (8] - A . ow
T o, - Bl u. K by [
® |+ - Tl oW 33 =
o> .o LA I oo 5 *
EE D ] * W
X s £ i _
- - A _
4 - 4
: .
— . S % D 3
8. L& 545 g :
E 0 P i g & E n |z e
= - . .| € . .| e
z 5. M P B : - g5, '
n -, A — & o i
Q3 o . A e I+] . . o X s
Q © TS I - =Z ¢ ' ¥ ] #
I T R B PR
g, FL- <o % g, t e T w x
. - s H 3
. . & Bon o ﬁr 344 T
. = - P R -
. — Eiat- i SR | [ P A I
5 5
. .
=~ . . —_
2| . o : 2
™ = T om -:° NN 3 = -
P . .
IR R i - =t -
wog |5 edw 4 . = 3 . N
Q o, ;‘% '% o :;. i " 3] DR - -
T = o b ° M .o,
© | ':3:& A ¥ e 5t L
& s - % ¢ . e . -
e F . |E= % -
T A Ma T .| . - = =
M AL R T R e . - A S S
5 5 .
5., . S ¢
2 ;o L £
L E T B . £ i
>O< € o % % T . s £
Q3 |THE ? M . = s 2
8 R . ao . 58
b=} wo . © H
3 . o 5 ° 4
]« micn & :
e "
1 A 1 s
& . .
- -
d7 d9 d10di1dl4d17d22 ', 5 83 84 111 7BJ 15FL d7 d9 d10d11d14d17 d22 , 5 83 84 111 7BJ 16FL
A I O ) L ;L1 )
time series,days A Q time series,days £ (@]
ey g5 8 1%} ey g5 8 1%}
T = 8 a =
xeno xeno
DN = - I |

EWSR1-FLI1ow EWSR1-FLI1Hin
Figure S1. Expression of selected known regulated genes in EwS single cell dataset. Eight genes
known to be modulated by EWSR1-FLI1 are plotted for A673/TR/shEF in vitro, A673/TR/shEF xenograft,
PDXs and MSCs: 4 known up-regulated genes (PRKCg, LIPI, CCND1 and NROB1) and 4 known down-
regulated genes (IGFBP3, IL8, LOX and VIM). The grey scale on the bottom illustrates the EWSR1-FLI1
level of expression.
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Figure S2. Exploratory analysis of several scRNA-seq datasets. t-SNE plot of the merged single cell
data (1,964 profiles, 8 datasets jointly normalized, Table S1).
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Figure S3. Comparison of cell cycle-associated independent components with cell cycle phase-
specific transcriptomic signatures (G1/S and G2/M). Two scores characterizing progression of a cell
through G1/S and G2/M phases of cell cycle computed using transcriptomic signatures obtained from
meta-analysis of public datasets{Giotti, 2017 #57} are compared against IC1+ and IC2+ scores. Global
correlation and correlation per time point or sample are indicated under each plot A. Pairwise scatterplots
for the G1/S and G2/M scores vs. IC1+ and IC2+ scores allows matching IC1+ to G2/M score and IC2+ to
G1/S score for A673/TR/shEF in vitro cells. B. The same comparison made in A673/TR/ShEF xenograft
cells and PDXs. The Pearson correlation coefficient is shown below the plots. The r° per time point or per
group are indicated underneath each correlation graph.
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Figure S4. Analysis of tumors heterogeneity using force-directed layout of the similarity graph
(SPRING software). A-D. SPRING representation of the kNN graphs (k = 5) for the four EwS PDXs:
PDX-861, PDX-856, PDX-184 and PDX-1058 datasets respectively. The scores are either gene set (top
contributing genes) scores of the ICs computed for model systems (IC-EwS recapitulating the
transcriptional program of EWSR1-FLI1, IC-G2/M and IC-G1/S recapitulating the transcriptional programs
of the cell cycle) or the scores of the reference gene sets recapitulating a biological function contributing
to the intratumoral heterogeneity.
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Figure S5. Expression of HIF1a transcriptional factor network of genes. A-D. Plot showing
connection between IC-EwS and genes of HIF1a transcription factor network score for the five EwS
PDXs. The expression of genes was rescaled in each PDX in order to have the same median expression.
Solid line shows local average of the gene expression, and the dashed lines indicate one standard
deviation interval. Only the data for the genes among the top 10k most variant genes in each PDX is
shown.

32


https://doi.org/10.1101/623710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623710; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ATP5MF

BNIP3

PDX-352 PDX-861 PDX-184 PDX-10558 PDX-856 | Direct target

Figure S6. Expression of the top differentially expressed genes between IC-EWS®"T and IC-
EWS ?"T"°PT_ plot showing connection between IC-EwS and several top genes differentially expressed
between the optimal for proliferation region IC-EWS®" and other cell populations, for the five EwS PDXGs.
Solid line shows local average of the gene expression, and the dashed lines indicate one standard
deviation interval. Only the data for the genes among the top 10k most variant genes in each PDX is
shown.
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