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Abstract

Enterococcus faecalis is a ubiquitous intestinal symbiont and common early colonizer of
the neonatal gut. Although colonization with E. faecalis has been previously associated
with decreased NEC pathology, these bacteria have been also implicated as
opportunistic pathogens. Here we characterized 21 strains of E. faecalis, naturally
occurring in 4-day-old rats, for potentially pathogenic properties and ability to colonize
the neonatal gut. The strains differed in hemolysis, gelatin liquefaction, antibiotic
resistance, biofilm formation, and ability to activate the pro-inflammatory transcription
factor NF-kB in cultured enterocytes. Only 3 strains appreciably colonized the neonatal
intestine on day 4 after artificial introduction with the first feeding. The best colonizer,
strain BB70, effectively displaced maternal E. faecalis and significantly increased NEC
pathology. Our results show that colonization with E. faecalis may predispose neonates
to NEC.
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Introduction

Necrotizing enterocolitis (NEC) affects approximately 1 in 1000 live births and is
one of the leading causes of mortality among preterm infants [1]. Although the
pathogenesis of this disease is not yet fully understood, it is broadly accepted that
bacterial colonization of the immature intestine in combination with perinatal stresses
such as formula feeding, hypoxia, and hypothermia play the leading role [2-4]. While no
single pathogen is likely responsible for NEC, previous work has implicated clostridia
[5], Cronobacter [6, 7], E. coli [8], and lactobacilli [9-11] as either NEC-promoting or
protective colonizers of the neonatal intestine. Importantly, protective or pathogenic
properties of these bacteria are strain-specific.

Probiotics, bacteria believed to be beneficial upon administration, have been
extensively tried for prevention of NEC. Most of these trials are encouraging [12-14].
However, probiotics may cause adverse effects [15]. Evidence-based recommendations
for clinical use of probiotics in NEC have not yet been developed due to lack of
standardization of bacterial species/strains, doses, and treatment regimens across
different trials [16]. A rational approach to probiotic therapy would be to identify
commensals that effectively colonize the neonatal gut upon introduction and protect
from NEC in animal models.

E. faecalis is a bacterial species of potential relevance to NEC. These bacteria
constitute up to 1% of adult intestinal microbiome [17] and are readily transmitted from
mothers to neonates in both humans [18, 19] and rodents [20, 21]. NEC patients tended
to harbor lower percentages of E. faecalis in their microbiomes compared to healthy

controls, but this tendency was not significant [22, 23]. Importantly, E. faecalis has been
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also implicated as pathogen [24]. To gain insight into potential role of E. faecalis in the
pathogenesis of experimental NEC, we isolated multiple strains of these bacteria from
4-day old rats and examined their ability to colonize the neonatal intestine and to alter
NEC pathology. Only few strains colonized the intestine following artificial introduction

with first feeding. The best colonizing strain significantly exacerbated NEC pathology.
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85 Materials and Methods

86 NEC Model

87 All animal experiments were approved by the CHLA Institutional Animal Care and

88 Use Committee (IACUC). Timed-pregnant Sprague Dawley rats were obtained from

89 either Envigo (Placentia, CA) or Charles River Laboratories (Hollister, CA). Newborn

90 rats were separated from dams at birth and were kept in an infant incubator (Ohio

91  Medical Products, Madison, WI) at 30°C and 90% humidity. NEC was induced by

92 formula feeding and hypoxia, according to our previously published protocol [20, 25,

93  26]. Neonatal rats are fed 200 pl of formula (15 g Similac 60/40, Ross Pediatrics

94  Columbus, OH in 75 ml of Esbilac canine milk replacement, Pet-Ag Inc., Hampshire, IL)

95 every 8 hfor 4 d. Fresh formula is prepared daily, each new batch is tested for bacterial

96 contamination by plating on blood agar and MRS, and care is taken with each feeding to

97  prevent introduction of extraneous bacteria. Pups are subjected to hypoxia at the

98 conclusion of each feeding (10 min in 95% N, and 5% O,). On day 4, animals are

99 euthanized by decapitation and terminal ileum is collected for NEC pathology score and
100 plating of intestinal contents. Samples for pathology scoring are fixed in formalin,
101 embedded in paraffin, sectioned and stained with hematoxylin-eosine. These are then
102  scored by a pathologist blinded to treatment groups. NEC score is assigned based on
103  the degree of observed injury to the intestinal epithelium based on a 5-point scale (0: no
104  pathology; 1: epithelial sloughing and/or mild sub-mucosal edema; 2: damage to the tips
105  of the villi; 3: damage to more than half of the villi; 4: complete obliteration of the
106  epithelium). Samples collected for bacterial analysis are homogenized in PBS, serially

107  diluted and plated onto diagnostic media within 2 h of collection. Adult animals are
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108  euthanized by CO, asphyxiation. If animals were treated with E. faecalis, bacteria were
109 resuspended in formula and given with the first feed.

110 Identification of bacteria

111 Independent isolates of E. faecalis were established from the intestinal contents
112  of 4-day-old rats, colony-purified and kept as frozen stock as described previously [20].
113 To characterize populations of intestinal bacteria, freshly excised intestines were

114  homogenized, serially diluted, and plated on blood agar (Sigma) for broad range of

115  bacteria and MRS agar (Oxoid, Basinstoke, UK) for lactic bacteria. Plates were

116  incubated for 4 d at 37°C in air (blood agar) or CO, atmosphere (MRS agar). Emerging
117  colonies were classified according to their appearance. Pure cultures for each colony
118  type were purified by re-streaking and kept as frozen stocks. Bacterial species were
119 identified by sequencing 16S rRNA gene PCR-amplified with 27F and 1492R primers at
120 GeneWiz (Los Angeles, CA). Sequences were queried against NCBI non-redundant
121 nucleotide (nt) database using the BLAST algorithm.

122 Bacterial culture and phenotypes

123 E. faecalis bacteria were grown at 37°C aerobically in Brain Heart Infusion (BHI),
124  Tryptic Soy Broth (TSB), or Luria Broth (LB). For pouring plates, agar was added to 17
125  g/L. Selective media for isolating E. faecalis contained 0.4 g/L sodium azide. E. faecalis
126  phenotypes were determined by replica plating onto diagnostic media including blood
127  agar, gelatin liquefaction medium (5 g/L peptone, 3 g/L beef extract, 120 g/L gelatin),
128  antibiotic agar (LB supplemented with 50 mg/L ampicillin, or 100 mg/ml kanamycin, or
129 30 mg/l rifaximin), B-galactosidase agar (LB supplemented with 30 mg/L X-gal and 2

130 mM IPTG), and sugar fermentation agar (LB supplemented with 0.2 mg/L Neutral Red
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131  and 1% appropriate sugar). Gelatin plates were incubated upright at room temperature.
132 Bacterial culture density was determined by spectrophotometry at 600 nm. Correlation
133  between ODggg and CFU/mI was determined by serial dilution and plating.

134 Restriction endonuclease analysis of bacterial DNA

135 Bacterial DNA was extracted from overnight culture by 5-min vortexing with 200
136  pm glass beads in TEN buffer (50 mM Tris pH 8.0, 100 mM NaCl, 10mM EDTA),

137  overnight digestion at 50°C following addition of SDS and Proteinase K to 1% and 20
138 pg/ml, respectively, phenol/chloroform extraction, and ethanol precipitation. 5 ug DNA
139  samples were digested with 10 u Hindlll (New England Biolabs, Ipswich, MA) for 2 h at
140  37°C. Digestion products were resolved by electrophoresis through 0.8% agarose Tris-
141  acetate gel. Gels were stained with ethidium bromide and photographed under UV light
142  using GelDoc XR (Bio-Rad, Hercules, CA).

143 Biofilm formation

144 A modified crystal violet assay, as previously described [27-29], was used to

145  quantify biofilm formation. Overnight cultures of E. faecalis were diluted 1:50 in fresh
146  medium and inoculated into wells of a 96-well polystyrene plate. Following static 24 h
147  incubation at 37°C, plate was rinsed 3 times with PBS and air dried. After 10 min fixing
148  with 3:1 ethanol:acetic acid, biofilms were stained with 0.1% crystal violet for 15 min.
149  Wells were then washed with water until effluent ran clear. Crystal violet was extracted
150  with 10% acetic acid, samples transferred to a new 96-well plate and ODs5¢ was

151  measured on plate reader.

152

153


https://doi.org/10.1101/623512
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623512; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

154  Binding of bacteria to enterocytes and activation of NF-kB

155 IEC-6 cells (rat intestinal epithelial cells) were obtained from ATCC and grown in
156 DMEM+5% FBS as recommended by the supplier. Cells (passage 21-30) were used at
157  70-90% confluence. Bacteria grown overnight were diluted in DMEM and added to IEC-
158 6 cells. After 30 min incubation at 37°C, cells were rinsed 3 times with ice-cold PBS,

159  collected, serially diluted and plated on blood agar for bacterial quantification.

160 For activation of NF-kB, IEC-6 cells were treated with bacteria for 15 min, lysed
161  onice for 10 min with RIPA buffer (50 mM Tris-HCI pH 7.0, 100 mM NaCl, 1% NP-40,
162  0.5% sodium deoxycholate, 0.1% SDS, 1 mM PMSF). Lysates cleared by centrifugation
163  at 10,0009 for 10 min were mixed with 2x Laemmli buffer and boiled for 1 min. 20 ug
164  protein samples were resolved on a 10% SDS-polyacrylamide gel. Transfer of protein
165  onto nitrocellulose membrane, membrane blocking, incubation with primary antibody for
166  IkBa (Cell Signaling, Danvers, MA) and secondary HRP-conjugated antibody were

167  performed as recommended by antibody supplier. After extensive washing in PBS,

168 membranes were impregnated with peroxide-luminol reagent and exposed to x-ray film.
169  Statistics

170 Means for parametric data were compared using unpaired 2-sample t-test.

171  Categorical and ordinal data were compared using x? test. All analyses were conducted
172  in Rv3.5.1 [30]. Graphics were designed either in R or GraphPad Prism v8.

173

174

175

176
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177  Results

178  Diversity of Enterococcus faecalis in 4-day old rats

179 To examine potential relationship between E. faecalis and NEC, we sought to

180 isolate enterococci naturally occurring in rats, identify different strains, and examine

181  their properties in the rat model of NEC. Enterococci were isolated by blood agar plating
182  of intestinal content from 4-day-old rats subjected to the NEC-inducing regimen of

183  formula feeding and hypoxia. E. faecalis were identified by their resistance to azide,

184  characteristic morphology upon Gram staining, and 16S rRNA gene sequencing. In our
185  previous study, Enterococcus spp. was found in about 90% of intestinal samples. In the
186  animals where enterococci were found, they constituted 17£3% of the bacterial

187  populations [20]. To characterize diversity of E. faecalis, we examined 147 independent
188 isolates of these bacteria collected from 4-day-old offspring of Charles River and Envigo
189  (formerly Harlan) rats during 2008-2013. All isolates were catalase-negative, glucose-,
190 fructose-, and sucrose-fermenting, ampicillin- and tetracycline-sensitive. Characteristics
191 that differed among isolates included colony morphology, hemolysis, gelatin

192 liquefaction, B-galactosidase activity, resistance to kanamycin or rifaximin, and

193  fermentation of sorbitol, mannitol, and arabinose (S1 Data File, Fig 1A). Each unique
194 combination of these phenotypes defined a distinct strain. We thus identified 21 different
195  strains of E. faecalis, each represented by between 1 and 59 isolates (S2 Data File, Fig
196  1B). All strains belonged to one of the two genomic groups, as revealed by patterns of
197  Hindlll DNA fragments (S2 Data File, Fig 1C). These results indicate that despite being

198  kept at specific pathogen-free environment at facilities renowned for their high
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199 standards of care, laboratory rats harbor and transfer to their offspring a diverse array of
200 E. faecalis strains.

201

202 Fig 1. Diversity of E. faecalis in rats.
203 Frequencies of different phenotypes (A) and different strains (B) within a group of E. faecalis isolates (n =
204 147) from 4-day old rats. (C) Patterns of genomic DNA Hindlll fragments of indicated strains. Note

205 dissimilarity of DNA patterns A (55-249, 49-171, and BB70) and B (265, BB24).

206

207 Potential pathogenic properties of E. faecalis strains identified in vitro

208 In order to narrow down the list of E. faecalis strains for in vivo studies, we

209 examined strains’ potential pathogenic properties. Of the phenotypes described above,
210 antibiotic resistance [31], hemolysis, and proteolysis [32] may contribute to

211 pathogenicity. Another pathogenic phenotype of relevance to NEC could be the ability of
212 bacteria to trigger mucosal inflammatory response. To characterize this phenotype, we
213  treated IEC-6 cells (intestinal epithelioid cell line of rat origin) with each of the 21 strains
214  of E. faecalis and examined activation of the pro-inflammatory transcription factor NF-kB
215 by western blotting for the inhibitory subunit IkBa. Strains 25, 37, 49, and 82 caused

216  degradation of IkBa (i.e. activation of NF-kB), whereas other strains caused partial

217  degradation or no degradation (Fig 2).

218

219  Fig 2. Activation of NF-kB by different strains of E. faecalis.
220 IEC-6 cells were treated with each strain of E. faecalis and activation of the NF-kB pathway was
221  determined by western blotting for IkBa. B-actin reprobes are included to demonstrate lane load.

222 Representative blots of 3 independent experiments are shown.

223
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224 Efficient binding to target cells may be one more phenotype associated with

225  pathogenicity [7]. To characterize binding of our E. faecalis strains to enterocytes, IEC-6
226 monolayers were incubated with bacteria, washed, and homogenized. Resulting

227 homogenates were serially diluted and plated onto BHI-azide agar for E. faecalis

228 counts. There were no significant differences in binding efficiency of different strains

229  (data not shown). On average, 11+1.4% of 108 CFU input, or 0.32+0.04 CFU per IEC-6
230 cell were bound. Binding was weak — numbers of bound bacteria progressively

231 decreased with additional washes (data not shown).

232 Biofilm formation, which may be associated with efficient colonization [21], is yet
233  another potentially pathogenic phenotype. We measured biofilm formation in our E.

234  faecalis strains by overnight culturing in polystyrene plates, washing off suspended

235 bacteria, and biofilm staining with crystal violet (Fig 3A). Biofilm formation varied

236 considerably among strains and was not associated with other phenotypes. Although
237 BHI is a recommended culture medium for E. faecalis, it promoted the lowest average
238  biofilm formation across strains compared to TSB or LB (Fig 3B). Thus, our strains of E.
239 faecalis differed in inflammatory activation and biofilm formation properties, but not in
240 enterocyte binding efficiency.

241

242 Fig 3. Biofilm formation by E. faecalis strains.
243 (A) Representative biofilm assay and average biofilm formation (n=3) for different strains grown in LB. (B)

244 Biofilm formation in strain 82 grown in the indicated media (n=3).

245

246
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247  Maternal enterococci outcompete most artificially introduced strains of E. faecalis
248  in colonization of newborn rats

249 To examine effects of different E. faecalis strains in experimental NEC, we

250 introduced these bacteria to newborn rats on day 1 and scored NEC pathology on day 4
251  of the NEC-inducing regimen of formula feeding-hypoxia. Percentages of E. faecalis in
252 intestinal microbiomes and strain composition of E. faecalis on day 4 were also

253 determined. Two strains with contrasting combinations of potentially pathogenic

254  phenotypes were chosen for initial experiments. Strain 8 is 3-hemolytic, negative for

255  gelatin liquefaction, NF-kB activation, and biofilm formation. Strain 82 is a-hemolytic,
256  positive for gelatin liquefaction, NF-kB activation, and biofilm formation (S2 Data File).
257  Newborn rats were given 108 CFU of either strain 8 or strain 82 once, with first formula
258 feed. Control animals were given equivalent amount of bacterial culture supernatant.
259  After 4 d of formula feeding-hypoxia, animals were sacrificed, and intestinal content was
260 plated on blood agar for total bacterial counts and BHI-azide for E. faecalis. E. faecalis
261  strains (50-75 azide-resistant colonies per animal) were identified by replica plating

262  onto diagnostic media. NEC was scored microscopically. Interestingly, neither of the two
263  strains was recovered from the inoculated animals; all enterococci isolated were thus of
264 the maternal origin (S3 Data File). There were no significant differences in NEC scores
265 between control group and animals inoculated with strains 8 or 82 (Table 1). Thus,

266  strains 8 or 82 failed to appreciably colonize neonatal rats upon artificial introduction.
267 Inoculation with these strains did not have significant effect on NEC pathology.

268

269
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270  Table 1. Distribution of NEC scores in 4-day-old rats
Treatment group NEC Score n |p-
value*

0, 1| 2| 3| 4

Breast-fed 70 0 0] O
Formula-hypoxia (FFH) | 17 | 13| 11 6| 1| 48

FFH + E. faecalis 8 29| 26| 35| 9| 0] 99 0.24
FFH + E. faecalis 82 9(12| 14| 6 42 0.25
FFH + E. faecalisBB70 | 3| 7] 10| 14| 0| 34 | <0.0001
271  *Compared to formula-hypoxia group, x? test.

272

273

—

274  ldentification of efficient colonizers among E. faecalis strains

275 One reason for the failure of strains 8 and 82 to effectively colonize the neonatal
276  intestine may be adaptive disadvantage of bacteria grown to stationary phase in liquid
277  BHI culture. Indeed, bacteria coming from mothers may successfully colonize the

278  offspring because they are adapted to survival and growth in the organismal

279  environment. In attempts to improve colonization, we tried different culture conditions
280 including growth in medium optimal for biofilm formation (LB), pre-incubation in FBS, or
281  starving bacteria in dilute TSB to induce dormant state. None of these treatments

282  significantly promoted colonization (S3 Data File).

283 In another approach to improving colonization, we set out to determine whether
284  some of our E. faecalis strains are inherently better colonizers than others. Newborn
285  rats were given a combined inoculum of all 21 strains mixed in equal proportions, and
286  strain composition of the enterococci was determined on day 4. Strikingly, only 3 strains
287  out of 21 turned out capable of at least some degree of colonization (Fig 4A). Strain
288 BB70 was the best colonizer—it was found in all animals that received the mixed

289 inoculum, and constituted, on average, 1/3 of enterococcal populations. None of the

13
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290 input strains were recovered from control non-inoculated animals. We next evaluated
291  efficiency of colonization with pure culture of BB70. In all inoculated animals, E. faecalis
292  populations were almost entirely BB70 (Fig 4B). Our results indicate that most

293  enterococcal strains failed to colonize newborn rat intestine upon introduction as pure
294  culture. However, some strains could be quite efficient colonizers.

295

296 Figure 4. Selection of efficient E. faecalis colonizers.

297  (A) Neonatal rats (n = 18) were given oral inoculum containing equal concentrations of all 21 E. faecalis
298  strains, followed by 4 d of formula feeding-hypoxia. Only 3 strains (224, BB24, BB70) were recovered on
299 day 4 at indicated average percentages of total E. faecalis. (B) Proportion of BB70 in populations of E.
300 faecalis in animals that received or did not receive 108 CFU of this strain with first feed (n=21 in each
301 group).

302

303 E. faecalis BB70 exacerbates NEC pathology

304 E. faecalis BB70 is negative for hemolysis, gelatin liquefaction, antibiotic

305 resistance, and biofilm, therefore it was expected to be innocuous. However, animals
306 inoculated with this strain had significantly higher NEC scores than control formula-
307 hypoxia animals (Table 1), indicating that contrary to expectations, BB70 behaved as a
308 NEC pathogen.

309

310

311

312
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314 Discussion

315 We isolated and characterized 21 different strains of E. faecalis from neonatal
316 rats. The strains differed in their colony appearance, hemolysis, gelatin liquefaction,
317 antibiotic resistance, B-galactosidase, and fermentation of sorbitol, mannitol, and

318 arabinose. The strains also differed in their ability to form biofilm and to activate the pro-
319 inflammatory transcription factor NF-kB in cultured enterocytes. There were two

320 genomic variants based on Hindlll DNA fragment patterns. Only 3 out of 21 strains

321  appreciably colonized the Gl tract of newborn rats upon artificial introduction with first
322 feed. The most efficient colonizer, E. faecalis BB70, significantly exacerbated NEC

323 pathology. These results provide an insight into the role of E. faecalis in the

324 pathogenesis of experimental NEC.

325 The strain diversity that we observed was somewhat surprising considering that
326  all animals were from a specific pathogen-free environment at facilities renowned for
327 their high standards of animal care and cleanness. This diversity may indicate that

328 laboratory rat populations harbor a multitude of E. faecalis strains with either equal

329 adaptive fitness in the organismal environment, or specific adaptation to different

330 ecological niches. The identification of new strains during the course of our inoculation
331 experiments also suggests that strain composition at the suppliers’ facilities might have
332 changed over the course of several years. Laboratory rats thus present an interesting
333 model to examine significance of the previously described enterococcal diversity [33-
334 35].

335 E. faecalis strains that we isolated originated from the specific pathogen-free

336 environment, therefore none of them is a likely hardcore pathogen. Nevertheless, some

15
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337 of the strains’ phenotypes, such as hemolysis, gelatin liquefaction, antibiotic resistance,
338  biofilm formation, or activation of pro-inflammatory signaling could be associated with
339  opportunistic pathogenicity in the context of NEC. We identified strains possessing

340 multiple potentially pathogenic traits, such as 82, as well as strains with one or no

341  pathogenic traits, such as 8 or BB70. We hypothesized that the former will behave as
342 pathogens and the latter as innocuous or protective symbionts in the rat model of NEC.
343  However, the fact that presumably innocuous BB70 turned in fact pathogenic is contrary
344  to this hypothesis. Unfortunately, we were unable to establish pathogenicity of other
345  strains because of poor colonization. Whether or not potentially pathogenic phenotypes
346  of E. faecalis predict increased pathogenicity in vitro remains an open question.

347 The failure of the majority of our strains to colonize the neonatal intestine upon
348 early introduction was a surprising finding in view of the fact that all the strains were
349 isolated from 4-day-old rats and thus had previous history of successful neonatal

350  colonization. Artificial colonization did not improve significantly by inducing dormancy,
351  culturing in media that promoted biofilm formation, or pre-incubation of bacteria with
352 FBS. A plausible explanation for the poor colonization with bacterial cultures is that

353  maternal enterococci, but not cultured bacteria, are adapted to the organismal

354  environment and therefore have higher probability of survival upon transfer to the

355 neonates. Strain BB70 was an exception: it always outcompeted maternal E. faecalis
356  strains. It is possible that in vivo survival of bacteria depends on host-induced genes,
357 and such genes may be constitutively expressed in BB70. Our findings indicate that

358 failure of cultured bacteria to establish intestinal colonization may be a serious limitation
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359 to probiotic therapy. Finding probiotic strains similar to BB70 in colonization ability may
360 be a way of overcoming this limitation.

361

362 S1 Data File. Phenotypic characterization of 147 isolates of naturally-occurring E.
363 faecalis

364 S2 Data File. Characteristics of 21 unique strains of E. faecalis

365 S3 Data File. Bacterial populations and NEC scores of 4-day-old rats following
366  various treatments
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