

1 **Effects of artificially introduced *Enterococcus faecalis* strains in experimental**
2 **necrotizing enterocolitis**

3

4 Patrick T. Delaplain^{1,2}, Brandon A. Bell¹, Jin Wang¹, Mubina Isani^{1,2,#a}, Emily Zhang³,
5 Christopher P. Gayer^{1,2}, Anatoly V. Grishin^{1,2}, Henri R. Ford^{1,2,#b}

6

7 ¹Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA

8 ²Department of Surgery, Keck School of Medicine, University of Southern California,
9 Los Angeles, CA

10 ³Shady Side Academy, Pittsburgh, PA

11 ^{#a}Current address: Department of Surgery, University of North Carolina, Chapel Hill, NC

12 ^{#b}Current address: Miller School of Medicine, University of Miami, Miami, FL

13

14

15

16

17

18

19

20

21

22 **Corresponding Author**

23 Patrick Delaplain, pdelaplain@chla.usc.edu

24 **Abstract**

25 *Enterococcus faecalis* is a ubiquitous intestinal symbiont and common early colonizer of
26 the neonatal gut. Although colonization with *E. faecalis* has been previously associated
27 with decreased NEC pathology, these bacteria have been also implicated as
28 opportunistic pathogens. Here we characterized 21 strains of *E. faecalis*, naturally
29 occurring in 4-day-old rats, for potentially pathogenic properties and ability to colonize
30 the neonatal gut. The strains differed in hemolysis, gelatin liquefaction, antibiotic
31 resistance, biofilm formation, and ability to activate the pro-inflammatory transcription
32 factor NF- κ B in cultured enterocytes. Only 3 strains appreciably colonized the neonatal
33 intestine on day 4 after artificial introduction with the first feeding. The best colonizer,
34 strain BB70, effectively displaced maternal *E. faecalis* and significantly increased NEC
35 pathology. Our results show that colonization with *E. faecalis* may predispose neonates
36 to NEC.

37 **Keywords:**

38 Necrotizing enterocolitis (NEC), rat, colonization, *Enterococcus faecalis*

39 **Introduction**

40 Necrotizing enterocolitis (NEC) affects approximately 1 in 1000 live births and is
41 one of the leading causes of mortality among preterm infants [1]. Although the
42 pathogenesis of this disease is not yet fully understood, it is broadly accepted that
43 bacterial colonization of the immature intestine in combination with perinatal stresses
44 such as formula feeding, hypoxia, and hypothermia play the leading role [2-4]. While no
45 single pathogen is likely responsible for NEC, previous work has implicated clostridia
46 [5], *Cronobacter* [6, 7], *E. coli* [8], and lactobacilli [9-11] as either NEC-promoting or
47 protective colonizers of the neonatal intestine. Importantly, protective or pathogenic
48 properties of these bacteria are strain-specific.

49 Probiotics, bacteria believed to be beneficial upon administration, have been
50 extensively tried for prevention of NEC. Most of these trials are encouraging [12-14].
51 However, probiotics may cause adverse effects [15]. Evidence-based recommendations
52 for clinical use of probiotics in NEC have not yet been developed due to lack of
53 standardization of bacterial species/strains, doses, and treatment regimens across
54 different trials [16]. A rational approach to probiotic therapy would be to identify
55 commensals that effectively colonize the neonatal gut upon introduction and protect
56 from NEC in animal models.

57 *E. faecalis* is a bacterial species of potential relevance to NEC. These bacteria
58 constitute up to 1% of adult intestinal microbiome [17] and are readily transmitted from
59 mothers to neonates in both humans [18, 19] and rodents [20, 21]. NEC patients tended
60 to harbor lower percentages of *E. faecalis* in their microbiomes compared to healthy
61 controls, but this tendency was not significant [22, 23]. Importantly, *E. faecalis* has been

62 also implicated as pathogen [24]. To gain insight into potential role of *E. faecalis* in the
63 pathogenesis of experimental NEC, we isolated multiple strains of these bacteria from
64 4-day old rats and examined their ability to colonize the neonatal intestine and to alter
65 NEC pathology. Only few strains colonized the intestine following artificial introduction
66 with first feeding. The best colonizing strain significantly exacerbated NEC pathology.

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85 **Materials and Methods**

86 **NEC Model**

87 All animal experiments were approved by the CHLA Institutional Animal Care and
88 Use Committee (IACUC). Timed-pregnant Sprague Dawley rats were obtained from
89 either Envigo (Placentia, CA) or Charles River Laboratories (Hollister, CA). Newborn
90 rats were separated from dams at birth and were kept in an infant incubator (Ohio
91 Medical Products, Madison, WI) at 30°C and 90% humidity. NEC was induced by
92 formula feeding and hypoxia, according to our previously published protocol [20, 25,
93 26]. Neonatal rats are fed 200 µl of formula (15 g Similac 60/40, Ross Pediatrics
94 Columbus, OH in 75 ml of Esbilac canine milk replacement, Pet-Ag Inc., Hampshire, IL)
95 every 8 h for 4 d. Fresh formula is prepared daily, each new batch is tested for bacterial
96 contamination by plating on blood agar and MRS, and care is taken with each feeding to
97 prevent introduction of extraneous bacteria. Pups are subjected to hypoxia at the
98 conclusion of each feeding (10 min in 95% N₂ and 5% O₂). On day 4, animals are
99 euthanized by decapitation and terminal ileum is collected for NEC pathology score and
100 plating of intestinal contents. Samples for pathology scoring are fixed in formalin,
101 embedded in paraffin, sectioned and stained with hematoxylin-eosine. These are then
102 scored by a pathologist blinded to treatment groups. NEC score is assigned based on
103 the degree of observed injury to the intestinal epithelium based on a 5-point scale (0: no
104 pathology; 1: epithelial sloughing and/or mild sub-mucosal edema; 2: damage to the tips
105 of the villi; 3: damage to more than half of the villi; 4: complete obliteration of the
106 epithelium). Samples collected for bacterial analysis are homogenized in PBS, serially
107 diluted and plated onto diagnostic media within 2 h of collection. Adult animals are

108 euthanized by CO₂ asphyxiation. If animals were treated with *E. faecalis*, bacteria were
109 resuspended in formula and given with the first feed.

110 **Identification of bacteria**

111 Independent isolates of *E. faecalis* were established from the intestinal contents
112 of 4-day-old rats, colony-purified and kept as frozen stock as described previously [20].
113 To characterize populations of intestinal bacteria, freshly excised intestines were
114 homogenized, serially diluted, and plated on blood agar (Sigma) for broad range of
115 bacteria and MRS agar (Oxoid, Basinstoke, UK) for lactic bacteria. Plates were
116 incubated for 4 d at 37°C in air (blood agar) or CO₂ atmosphere (MRS agar). Emerging
117 colonies were classified according to their appearance. Pure cultures for each colony
118 type were purified by re-streaking and kept as frozen stocks. Bacterial species were
119 identified by sequencing 16S rRNA gene PCR-amplified with 27F and 1492R primers at
120 GeneWiz (Los Angeles, CA). Sequences were queried against NCBI non-redundant
121 nucleotide (nt) database using the BLAST algorithm.

122 **Bacterial culture and phenotypes**

123 *E. faecalis* bacteria were grown at 37°C aerobically in Brain Heart Infusion (BHI),
124 Tryptic Soy Broth (TSB), or Luria Broth (LB). For pouring plates, agar was added to 17
125 g/L. Selective media for isolating *E. faecalis* contained 0.4 g/L sodium azide. *E. faecalis*
126 phenotypes were determined by replica plating onto diagnostic media including blood
127 agar, gelatin liquefaction medium (5 g/L peptone, 3 g/L beef extract, 120 g/L gelatin),
128 antibiotic agar (LB supplemented with 50 mg/L ampicillin, or 100 mg/ml kanamycin, or
129 30 mg/l rifaximin), β -galactosidase agar (LB supplemented with 30 mg/L X-gal and 2
130 mM IPTG), and sugar fermentation agar (LB supplemented with 0.2 mg/L Neutral Red

131 and 1% appropriate sugar). Gelatin plates were incubated upright at room temperature.
132 Bacterial culture density was determined by spectrophotometry at 600 nm. Correlation
133 between OD₆₀₀ and CFU/ml was determined by serial dilution and plating.

134 **Restriction endonuclease analysis of bacterial DNA**

135 Bacterial DNA was extracted from overnight culture by 5-min vortexing with 200
136 µm glass beads in TEN buffer (50 mM Tris pH 8.0, 100 mM NaCl, 10mM EDTA),
137 overnight digestion at 50°C following addition of SDS and Proteinase K to 1% and 20
138 µg/ml, respectively, phenol/chloroform extraction, and ethanol precipitation. 5 µg DNA
139 samples were digested with 10 u *Hind*III (New England Biolabs, Ipswich, MA) for 2 h at
140 37°C. Digestion products were resolved by electrophoresis through 0.8% agarose Tris-
141 acetate gel. Gels were stained with ethidium bromide and photographed under UV light
142 using GelDoc XR (Bio-Rad, Hercules, CA).

143 **Biofilm formation**

144 A modified crystal violet assay, as previously described [27-29], was used to
145 quantify biofilm formation. Overnight cultures of *E. faecalis* were diluted 1:50 in fresh
146 medium and inoculated into wells of a 96-well polystyrene plate. Following static 24 h
147 incubation at 37°C, plate was rinsed 3 times with PBS and air dried. After 10 min fixing
148 with 3:1 ethanol:acetic acid, biofilms were stained with 0.1% crystal violet for 15 min.
149 Wells were then washed with water until effluent ran clear. Crystal violet was extracted
150 with 10% acetic acid, samples transferred to a new 96-well plate and OD₅₅₀ was
151 measured on plate reader.

152

153

154 **Binding of bacteria to enterocytes and activation of NF-κB**

155 IEC-6 cells (rat intestinal epithelial cells) were obtained from ATCC and grown in
156 DMEM+5% FBS as recommended by the supplier. Cells (passage 21-30) were used at
157 70-90% confluence. Bacteria grown overnight were diluted in DMEM and added to IEC-
158 6 cells. After 30 min incubation at 37°C, cells were rinsed 3 times with ice-cold PBS,
159 collected, serially diluted and plated on blood agar for bacterial quantification.

160 For activation of NF-κB, IEC-6 cells were treated with bacteria for 15 min, lysed
161 on ice for 10 min with RIPA buffer (50 mM Tris-HCl pH 7.0, 100 mM NaCl, 1% NP-40,
162 0.5% sodium deoxycholate, 0.1% SDS, 1 mM PMSF). Lysates cleared by centrifugation
163 at 10,000g for 10 min were mixed with 2x Laemmli buffer and boiled for 1 min. 20 µg
164 protein samples were resolved on a 10% SDS-polyacrylamide gel. Transfer of protein
165 onto nitrocellulose membrane, membrane blocking, incubation with primary antibody for
166 IκBα (Cell Signaling, Danvers, MA) and secondary HRP-conjugated antibody were
167 performed as recommended by antibody supplier. After extensive washing in PBS,
168 membranes were impregnated with peroxide-luminol reagent and exposed to x-ray film.

169 **Statistics**

170 Means for parametric data were compared using unpaired 2-sample *t*-test.
171 Categorical and ordinal data were compared using χ^2 test. All analyses were conducted
172 in *R* v3.5.1 [30]. Graphics were designed either in R or GraphPad Prism v8.

173

174

175

176

177 **Results**

178 **Diversity of *Enterococcus faecalis* in 4-day old rats**

179 To examine potential relationship between *E. faecalis* and NEC, we sought to
180 isolate enterococci naturally occurring in rats, identify different strains, and examine
181 their properties in the rat model of NEC. Enterococci were isolated by blood agar plating
182 of intestinal content from 4-day-old rats subjected to the NEC-inducing regimen of
183 formula feeding and hypoxia. *E. faecalis* were identified by their resistance to azide,
184 characteristic morphology upon Gram staining, and 16S rRNA gene sequencing. In our
185 previous study, *Enterococcus* spp. was found in about 90% of intestinal samples. In the
186 animals where enterococci were found, they constituted 17±3% of the bacterial
187 populations [20]. To characterize diversity of *E. faecalis*, we examined 147 independent
188 isolates of these bacteria collected from 4-day-old offspring of Charles River and Envigo
189 (formerly Harlan) rats during 2008-2013. All isolates were catalase-negative, glucose-,
190 fructose-, and sucrose-fermenting, ampicillin- and tetracycline-sensitive. Characteristics
191 that differed among isolates included colony morphology, hemolysis, gelatin
192 liquefaction, β -galactosidase activity, resistance to kanamycin or rifaximin, and
193 fermentation of sorbitol, mannitol, and arabinose (**S1 Data File, Fig 1A**). Each unique
194 combination of these phenotypes defined a distinct strain. We thus identified 21 different
195 strains of *E. faecalis*, each represented by between 1 and 59 isolates (**S2 Data File, Fig**
196 **1B**). All strains belonged to one of the two genomic groups, as revealed by patterns of
197 HindIII DNA fragments (**S2 Data File, Fig 1C**). These results indicate that despite being
198 kept at specific pathogen-free environment at facilities renowned for their high

199 standards of care, laboratory rats harbor and transfer to their offspring a diverse array of
200 *E. faecalis* strains.

201

202 **Fig 1. Diversity of *E. faecalis* in rats.**

203 Frequencies of different phenotypes (**A**) and different strains (**B**) within a group of *E. faecalis* isolates (n =
204 147) from 4-day old rats. (**C**) Patterns of genomic DNA HindIII fragments of indicated strains. Note
205 dissimilarity of DNA patterns A (55-249, 49-171, and BB70) and B (265, BB24).

206

207 **Potential pathogenic properties of *E. faecalis* strains identified in vitro**

208 In order to narrow down the list of *E. faecalis* strains for in vivo studies, we
209 examined strains' potential pathogenic properties. Of the phenotypes described above,
210 antibiotic resistance [31], hemolysis, and proteolysis [32] may contribute to
211 pathogenicity. Another pathogenic phenotype of relevance to NEC could be the ability of
212 bacteria to trigger mucosal inflammatory response. To characterize this phenotype, we
213 treated IEC-6 cells (intestinal epithelioid cell line of rat origin) with each of the 21 strains
214 of *E. faecalis* and examined activation of the pro-inflammatory transcription factor NF-κB
215 by western blotting for the inhibitory subunit IκBα. Strains 25, 37, 49, and 82 caused
216 degradation of IκBα (i.e. activation of NF-κB), whereas other strains caused partial
217 degradation or no degradation (**Fig 2**).

218

219 **Fig 2. Activation of NF-κB by different strains of *E. faecalis*.**

220 IEC-6 cells were treated with each strain of *E. faecalis* and activation of the NF-κB pathway was
221 determined by western blotting for IκBα. β-actin reprobes are included to demonstrate lane load.
222 Representative blots of 3 independent experiments are shown.

223

224 Efficient binding to target cells may be one more phenotype associated with
225 pathogenicity [7]. To characterize binding of our *E. faecalis* strains to enterocytes, IEC-6
226 monolayers were incubated with bacteria, washed, and homogenized. Resulting
227 homogenates were serially diluted and plated onto BHI-azide agar for *E. faecalis*
228 counts. There were no significant differences in binding efficiency of different strains
229 (data not shown). On average, $11\pm1.4\%$ of 10^8 CFU input, or 0.32 ± 0.04 CFU per IEC-6
230 cell were bound. Binding was weak – numbers of bound bacteria progressively
231 decreased with additional washes (data not shown).

232 Biofilm formation, which may be associated with efficient colonization [21], is yet
233 another potentially pathogenic phenotype. We measured biofilm formation in our *E.*
234 *faecalis* strains by overnight culturing in polystyrene plates, washing off suspended
235 bacteria, and biofilm staining with crystal violet (**Fig 3A**). Biofilm formation varied
236 considerably among strains and was not associated with other phenotypes. Although
237 BHI is a recommended culture medium for *E. faecalis*, it promoted the lowest average
238 biofilm formation across strains compared to TSB or LB (**Fig 3B**). Thus, our strains of *E.*
239 *faecalis* differed in inflammatory activation and biofilm formation properties, but not in
240 enterocyte binding efficiency.

241

242 **Fig 3. Biofilm formation by *E. faecalis* strains.**

243 (A) Representative biofilm assay and average biofilm formation (n=3) for different strains grown in LB. (B)
244 Biofilm formation in strain 82 grown in the indicated media (n=3).

245

246

247 **Maternal enterococci outcompete most artificially introduced strains of *E. faecalis***
248 **in colonization of newborn rats**

249 To examine effects of different *E. faecalis* strains in experimental NEC, we
250 introduced these bacteria to newborn rats on day 1 and scored NEC pathology on day 4
251 of the NEC-inducing regimen of formula feeding-hypoxia. Percentages of *E. faecalis* in
252 intestinal microbiomes and strain composition of *E. faecalis* on day 4 were also
253 determined. Two strains with contrasting combinations of potentially pathogenic
254 phenotypes were chosen for initial experiments. Strain 8 is β -hemolytic, negative for
255 gelatin liquefaction, NF- κ B activation, and biofilm formation. Strain 82 is α -hemolytic,
256 positive for gelatin liquefaction, NF- κ B activation, and biofilm formation (**S2 Data File**).
257 Newborn rats were given 10^8 CFU of either strain 8 or strain 82 once, with first formula
258 feed. Control animals were given equivalent amount of bacterial culture supernatant.
259 After 4 d of formula feeding-hypoxia, animals were sacrificed, and intestinal content was
260 plated on blood agar for total bacterial counts and BHI-azide for *E. faecalis*. *E. faecalis*
261 strains (50-75 azide-resistant colonies per animal) were identified by replica plating
262 onto diagnostic media. NEC was scored microscopically. Interestingly, neither of the two
263 strains was recovered from the inoculated animals; all enterococci isolated were thus of
264 the maternal origin (**S3 Data File**). There were no significant differences in NEC scores
265 between control group and animals inoculated with strains 8 or 82 (**Table 1**). Thus,
266 strains 8 or 82 failed to appreciably colonize neonatal rats upon artificial introduction.
267 Inoculation with these strains did not have significant effect on NEC pathology.

268
269

270 **Table 1.** Distribution of NEC scores in 4-day-old rats

Treatment group	NEC Score					n	p-value*
	0	1	2	3	4		
Breast-fed	7	0	0	0	0	7	
Formula-hypoxia (FFH)	17	13	11	6	1	48	
FFH + <i>E. faecalis</i> 8	29	26	35	9	0	99	0.24
FFH + <i>E. faecalis</i> 82	9	12	14	6	1	42	0.25
FFH + <i>E. faecalis</i> BB70	3	7	10	14	0	34	<0.0001

271 *Compared to formula-hypoxia group, χ^2 test.

272
273

274 **Identification of efficient colonizers among *E. faecalis* strains**

275 One reason for the failure of strains 8 and 82 to effectively colonize the neonatal
276 intestine may be adaptive disadvantage of bacteria grown to stationary phase in liquid
277 BHI culture. Indeed, bacteria coming from mothers may successfully colonize the
278 offspring because they are adapted to survival and growth in the organismal
279 environment. In attempts to improve colonization, we tried different culture conditions
280 including growth in medium optimal for biofilm formation (LB), pre-incubation in FBS, or
281 starving bacteria in dilute TSB to induce dormant state. None of these treatments
282 significantly promoted colonization (**S3 Data File**).

283 In another approach to improving colonization, we set out to determine whether
284 some of our *E. faecalis* strains are inherently better colonizers than others. Newborn
285 rats were given a combined inoculum of all 21 strains mixed in equal proportions, and
286 strain composition of the enterococci was determined on day 4. Strikingly, only 3 strains
287 out of 21 turned out capable of at least some degree of colonization (**Fig 4A**). Strain
288 BB70 was the best colonizer—it was found in all animals that received the mixed
289 inoculum, and constituted, on average, 1/3 of enterococcal populations. None of the

290 input strains were recovered from control non-inoculated animals. We next evaluated
291 efficiency of colonization with pure culture of BB70. In all inoculated animals, *E. faecalis*
292 populations were almost entirely BB70 (**Fig 4B**). Our results indicate that most
293 enterococcal strains failed to colonize newborn rat intestine upon introduction as pure
294 culture. However, some strains could be quite efficient colonizers.

295

296 **Figure 4. Selection of efficient *E. faecalis* colonizers.**

297 (A) Neonatal rats ($n = 18$) were given oral inoculum containing equal concentrations of all 21 *E. faecalis*
298 strains, followed by 4 d of formula feeding-hypoxia. Only 3 strains (224, BB24, BB70) were recovered on
299 day 4 at indicated average percentages of total *E. faecalis*. (B) Proportion of BB70 in populations of *E.*
300 *faecalis* in animals that received or did not receive 10^8 CFU of this strain with first feed ($n=21$ in each
301 group).

302

303 ***E. faecalis* BB70 exacerbates NEC pathology**

304 *E. faecalis* BB70 is negative for hemolysis, gelatin liquefaction, antibiotic
305 resistance, and biofilm, therefore it was expected to be innocuous. However, animals
306 inoculated with this strain had significantly higher NEC scores than control formula-
307 hypoxia animals (**Table 1**), indicating that contrary to expectations, BB70 behaved as a
308 NEC pathogen.

309

310

311

312

313

314 **Discussion**

315 We isolated and characterized 21 different strains of *E. faecalis* from neonatal
316 rats. The strains differed in their colony appearance, hemolysis, gelatin liquefaction,
317 antibiotic resistance, β -galactosidase, and fermentation of sorbitol, mannitol, and
318 arabinose. The strains also differed in their ability to form biofilm and to activate the pro-
319 inflammatory transcription factor NF- κ B in cultured enterocytes. There were two
320 genomic variants based on HindIII DNA fragment patterns. Only 3 out of 21 strains
321 appreciably colonized the GI tract of newborn rats upon artificial introduction with first
322 feed. The most efficient colonizer, *E. faecalis* BB70, significantly exacerbated NEC
323 pathology. These results provide an insight into the role of *E. faecalis* in the
324 pathogenesis of experimental NEC.

325 The strain diversity that we observed was somewhat surprising considering that
326 all animals were from a specific pathogen-free environment at facilities renowned for
327 their high standards of animal care and cleanliness. This diversity may indicate that
328 laboratory rat populations harbor a multitude of *E. faecalis* strains with either equal
329 adaptive fitness in the organismal environment, or specific adaptation to different
330 ecological niches. The identification of new strains during the course of our inoculation
331 experiments also suggests that strain composition at the suppliers' facilities might have
332 changed over the course of several years. Laboratory rats thus present an interesting
333 model to examine significance of the previously described enterococcal diversity [33-
334 35].

335 *E. faecalis* strains that we isolated originated from the specific pathogen-free
336 environment, therefore none of them is a likely hardcore pathogen. Nevertheless, some

337 of the strains' phenotypes, such as hemolysis, gelatin liquefaction, antibiotic resistance,
338 biofilm formation, or activation of pro-inflammatory signaling could be associated with
339 opportunistic pathogenicity in the context of NEC. We identified strains possessing
340 multiple potentially pathogenic traits, such as 82, as well as strains with one or no
341 pathogenic traits, such as 8 or BB70. We hypothesized that the former will behave as
342 pathogens and the latter as innocuous or protective symbionts in the rat model of NEC.
343 However, the fact that presumably innocuous BB70 turned in fact pathogenic is contrary
344 to this hypothesis. Unfortunately, we were unable to establish pathogenicity of other
345 strains because of poor colonization. Whether or not potentially pathogenic phenotypes
346 of *E. faecalis* predict increased pathogenicity in vitro remains an open question.

347 The failure of the majority of our strains to colonize the neonatal intestine upon
348 early introduction was a surprising finding in view of the fact that all the strains were
349 isolated from 4-day-old rats and thus had previous history of successful neonatal
350 colonization. Artificial colonization did not improve significantly by inducing dormancy,
351 culturing in media that promoted biofilm formation, or pre-incubation of bacteria with
352 FBS. A plausible explanation for the poor colonization with bacterial cultures is that
353 maternal enterococci, but not cultured bacteria, are adapted to the organismal
354 environment and therefore have higher probability of survival upon transfer to the
355 neonates. Strain BB70 was an exception: it always outcompeted maternal *E. faecalis*
356 strains. It is possible that in vivo survival of bacteria depends on host-induced genes,
357 and such genes may be constitutively expressed in BB70. Our findings indicate that
358 failure of cultured bacteria to establish intestinal colonization may be a serious limitation

359 to probiotic therapy. Finding probiotic strains similar to BB70 in colonization ability may
360 be a way of overcoming this limitation.

361

362 **S1 Data File. Phenotypic characterization of 147 isolates of naturally-occurring *E.***

363 ***faecalis***

364 **S2 Data File. Characteristics of 21 unique strains of *E. faecalis***

365 **S3 Data File. Bacterial populations and NEC scores of 4-day-old rats following**

366 **various treatments**

367

368 **Acknowledgments**

369 We thank Monica Williams for help in isolating *E. faecalis* strains; Alec Borsook and
370 Alex Li for bacterial binding experiments. This study was supported by NIH grant AI
371 014032 to H.R.F.

372 **References**

373 1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in
374 Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012.
375 *Jama.* 2015;314(10):1039-51. Epub 2015/09/09. doi: 10.1001/jama.2015.10244.
376 PubMed PMID: 26348753; PubMed Central PMCID: PMCPMC4787615.

377 2. Nino DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into
378 pathogenesis and mechanisms. *Nat Rev Gastroenterol Hepatol.* 2016;13(10):590-600.
379 Epub 2016/08/19. doi: 10.1038/nrgastro.2016.119. PubMed PMID: 27534694; PubMed
380 Central PMCID: PMCPMC5124124.

381 3. Grishin A, Bowling J, Bell B, Wang J, Ford HR. Roles of nitric oxide and intestinal
382 microbiota in the pathogenesis of necrotizing enterocolitis. *J Pediatr Surg.*
383 2016;51(1):13-7. Epub 2015/11/19. doi: 10.1016/j.jpedsurg.2015.10.006. PubMed
384 PMID: 26577908; PubMed Central PMCID: PMCPMC4894644.

385 4. Grishin A, Papillon S, Bell B, Wang J, Ford HR. The role of the intestinal
386 microbiota in the pathogenesis of necrotizing enterocolitis. *Seminars in pediatric
387 surgery.* 2013;22(2):69-75. Epub 2013/04/25. doi: 10.1053/j.sempedsurg.2013.01.002.
388 PubMed PMID: 23611609; PubMed Central PMCID: PMCPMC3647029.

389 5. Schonherr-Hellec S, Klein GL, Delannoy J, Ferraris L, Roze JC, Butel MJ, et al.
390 Clostridial Strain-Specific Characteristics Associated with Necrotizing Enterocolitis.
391 *Applied and environmental microbiology.* 2018;84(7). Epub 2018/01/21. doi:
392 10.1128/aem.02428-17. PubMed PMID: 29352082; PubMed Central PMCID:
393 PMCPMC5861827.

394 6. Hunter CJ, Singamsetty VK, Chokshi NK, Boyle P, Camerini V, Grishin AV, et al.
395 Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat
396 model of necrotizing enterocolitis. *The Journal of infectious diseases*. 2008;198(4):586-
397 93. Epub 2008/07/01. doi: 10.1086/590186. PubMed PMID: 18588483; PubMed Central
398 PMCID: PMCPMC2497445.

399 7. Liu Q, Mittal R, Emami CN, Iversen C, Ford HR, Prasadrao NV. Human isolates
400 of Cronobacter sakazakii bind efficiently to intestinal epithelial cells in vitro to induce
401 monolayer permeability and apoptosis. *The Journal of surgical research*.
402 2012;176(2):437-47. Epub 2012/01/10. doi: 10.1016/j.jss.2011.10.030. PubMed PMID:
403 22221600; PubMed Central PMCID: PMCPMC3323755.

404 8. Thomas DM, Bell B, Papillon S, Delaplain P, Lim J, Golden J, et al. Colonization
405 with Escherichia coli EC 25 protects neonatal rats from necrotizing enterocolitis. *PLoS
406 one*. 2017;12(11):e0188211. Epub 2017/12/01. doi: 10.1371/journal.pone.0188211.
407 PubMed PMID: 29190745; PubMed Central PMCID: PMCPMC5708813.

408 9. Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ.
409 Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight
410 Junction Integrity in Experimental Necrotizing Enterocolitis. *Journal of probiotics &*
411 *health*. 2017;5(1). Epub 2017/06/24. doi: 10.4172/2329-8901.1000159. PubMed PMID:
412 28638850; PubMed Central PMCID: PMCPMC5475283.

413 10. Hoang TK, He B, Wang T, Tran DQ, Rhoads JM, Liu Y. Protective effect of
414 Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is
415 mediated by Toll-like receptor 2. *American journal of physiology Gastrointestinal and
416 liver physiology*. 2018;315(2):G231-g40. Epub 2018/04/13. doi:

417 10.1152/ajpgi.00084.2017. PubMed PMID: 29648878; PubMed Central PMCID:
418 PMCPMC6139641.

419 11. Olson JK, Navarro JB, Allen JM, McCulloh CJ, Mashburn-Warren L, Wang Y, et
420 al. An enhanced *Lactobacillus reuteri* biofilm formulation that increases protection
421 against experimental necrotizing enterocolitis. *American journal of physiology*
422 *Gastrointestinal and liver physiology*. 2018;315(3):G408-G19. Epub 2018/06/01. doi:
423 10.1152/ajpgi.00078.2018. PubMed PMID: 29848024; PubMed Central PMCID:
424 PMCPMC6415713.

425 12. AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in
426 preterm infants. *Cochrane Database Syst Rev*. 2014;(4):CD005496. Epub 2014/04/12.
427 doi: 10.1002/14651858.CD005496.pub4. PubMed PMID: 24723255.

428 13. Athalye-Jape G, Rao S, Patole S. Effects of probiotics on experimental
429 necrotizing enterocolitis: a systematic review and meta-analysis. *Pediatric research*.
430 2018;83(1-1):16-22. Epub 2017/09/28. doi: 10.1038/pr.2017.218. PubMed PMID:
431 28949953.

432 14. Sawh SC, Deshpande S, Jansen S, Reynaert CJ, Jones PM. Prevention of
433 necrotizing enterocolitis with probiotics: a systematic review and meta-analysis. *PeerJ*.
434 2016;4:e2429. Epub 2016/10/21. doi: 10.7717/peerj.2429. PubMed PMID: 27761306;
435 PubMed Central PMCID: PMCPMC5068355.

436 15. Molinaro M, Aiazzi M, La Torre A, Cini E, Banfi R. [Lactobacillus Rhamnosus
437 sepsis in a preterm infant associated with probiotic integrator use: a case report.].
438 *Recenti Prog Med*. 2016;107(9):485-6. Epub 2016/10/12. doi: 10.1701/2354.25230.
439 PubMed PMID: 27727257.

440 16. Pell LG, Loutet MG, Roth DE, Sherman PM. Arguments against routine
441 administration of probiotics for NEC prevention. *Current opinion in pediatrics*.
442 2019;31(2):195-201. Epub 2019/01/10. doi: 10.1097/MOP.0000000000000730.
443 PubMed PMID: 30624281.

444 17. Dubin K, Pamer EG. Enterococci and Their Interactions with the Intestinal
445 Microbiome. *Microbiol Spectr*. 2014;5(6). Epub 2014/11/01. doi:
446 10.1128/microbiolspec.BAD-0014-2016. PubMed PMID: 29125098; PubMed Central
447 PMCID: PMCPMC5691600.

448 18. Orrhage K, Nord CE. Factors controlling the bacterial colonization of the intestine
449 in breastfed infants. *Acta Paediatr Suppl*. 1999;88(430):47-57. Epub 1999/11/24.
450 PubMed PMID: 10569223.

451 19. P OC, Giri R, Hoedt EC, McGuckin MA, Begun J, Morrison M. *Enterococcus*
452 *faecalis* AHG0090 is a Genetically Tractable Bacterium and Produces a Secreted
453 Peptidic Bioactive that Suppresses Nuclear Factor Kappa B Activation in Human Gut
454 Epithelial Cells. *Frontiers in immunology*. 2018;9:790. Epub 2018/05/04. doi:
455 10.3389/fimmu.2018.00790. PubMed PMID: 29720977; PubMed Central PMCID:
456 PMCPMC5915459.

457 20. Isani M, Bell BA, Delaplain PT, Bowling JD, Golden JM, Elizee M, et al.
458 *Lactobacillus murinus* HF12 colonizes neonatal gut and protects rats from necrotizing
459 enterocolitis. *PLoS one*. 2018;13(6):e0196710. Epub 2018/06/23. doi:
460 10.1371/journal.pone.0196710. PubMed PMID: 29933378; PubMed Central PMCID:
461 PMCPMC6014650.

462 21. Barnes AMT, Dale JL, Chen Y, Manias DA, Greenwood Quaintance KE, Karau
463 MK, et al. *Enterococcus faecalis* readily colonizes the entire gastrointestinal tract and
464 forms biofilms in a germ-free mouse model. *Virulence*. 2017;8(3):282-96. Epub
465 2016/08/27. doi: 10.1080/21505594.2016.1208890. PubMed PMID: 27562711; PubMed
466 Central PMCID: PMCPMC5411234.

467 22. Normann E, Fahlen A, Engstrand L, Lilja HE. Intestinal microbial profiles in
468 extremely preterm infants with and without necrotizing enterocolitis. *Acta paediatrica*
469 (Oslo, Norway : 1992). 2013;102(2):129-36. Epub 2012/10/23. doi: 10.1111/apa.12059.
470 PubMed PMID: 23082780.

471 23. Stewart CJ, Marrs EC, Magorrian S, Nelson A, Lanyon C, Perry JD, et al. The
472 preterm gut microbiota: changes associated with necrotizing enterocolitis and infection.
473 *Acta paediatrica* (Oslo, Norway : 1992). 2012;101(11):1121-7. Epub 2012/08/01. doi:
474 10.1111/j.1651-2227.2012.02801.x. PubMed PMID: 22845166.

475 24. Tendolkar PM, Baghdyan AS, Shankar N. Pathogenic enterococci: new
476 developments in the 21st century. *Cellular and molecular life sciences : CMLS*.
477 2003;60(12):2622-36. Epub 2003/12/20. doi: 10.1007/s00018-003-3138-0. PubMed
478 PMID: 14685687.

479 25. Papillon S, Castle SL, Gayer CP, Ford HR. Necrotizing enterocolitis:
480 contemporary management and outcomes. *Advances in pediatrics*. 2013;60(1):263-79.
481 Epub 2013/09/07. doi: 10.1016/j.yapd.2013.04.011. PubMed PMID: 24007848.

482 26. Nadler EP, Dickinson E, Knisely A, Zhang XR, Boyle P, Beer-Stolz D, et al.
483 Expression of inducible nitric oxide synthase and interleukin-12 in experimental

484 necrotizing enterocolitis. *The Journal of surgical research*. 2000;92(1):71-7. Epub
485 2000/06/23. doi: 10.1006/jsre.2000.5877. PubMed PMID: 10864485.

486 27. O'Toole GA, Kolter R. Initiation of biofilm formation in *Pseudomonas fluorescens*
487 WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. *Mol*
488 *Microbiol*. 1998;28(3):449-61. Epub 1998/06/19. PubMed PMID: 9632250.

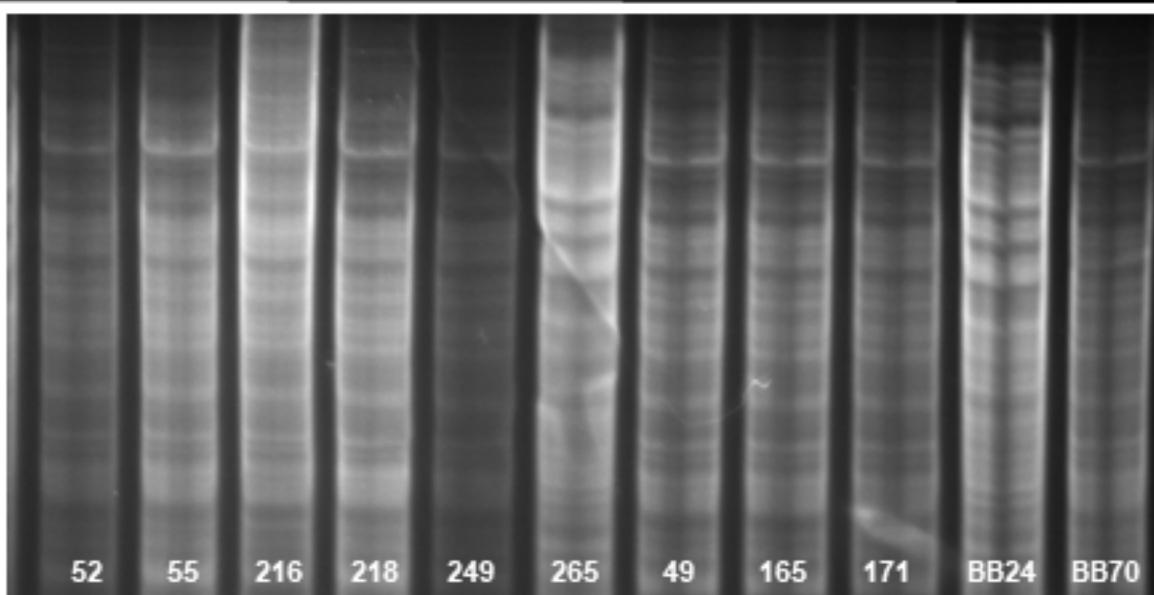
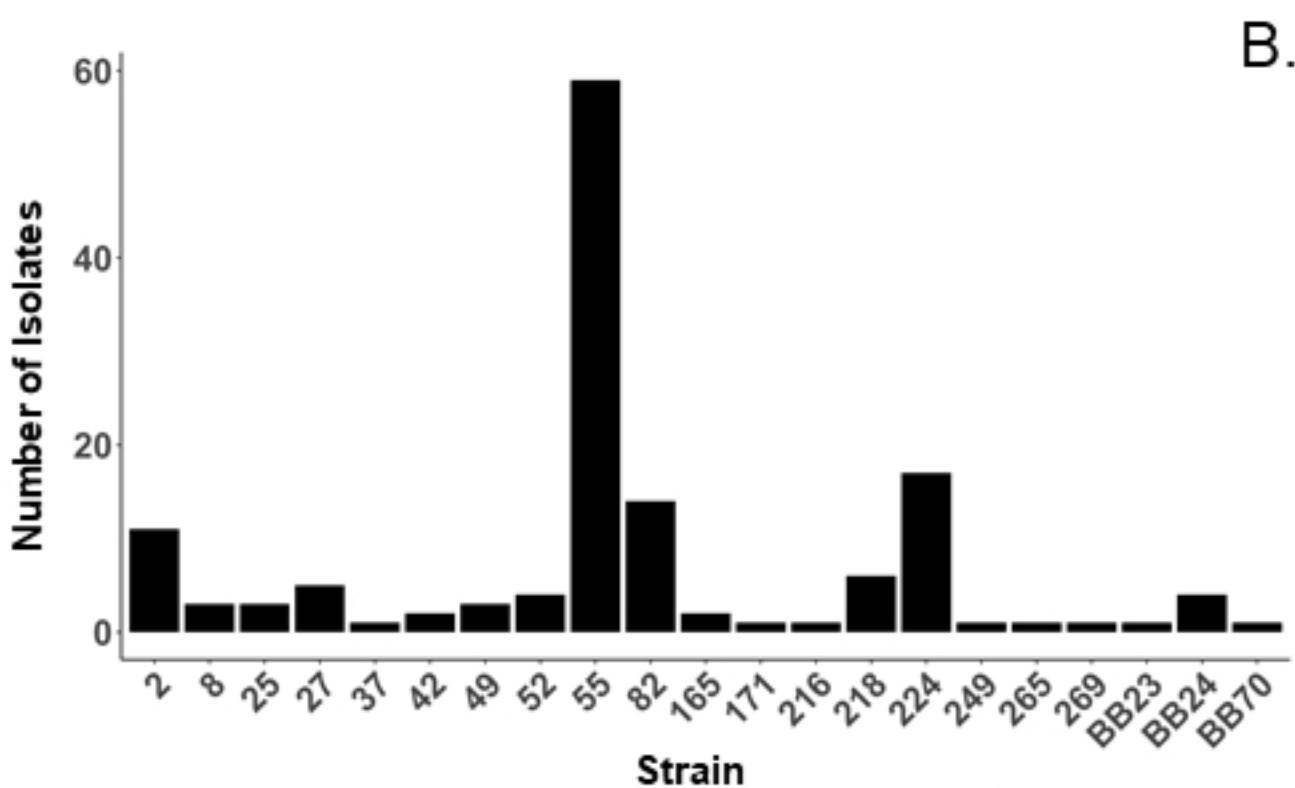
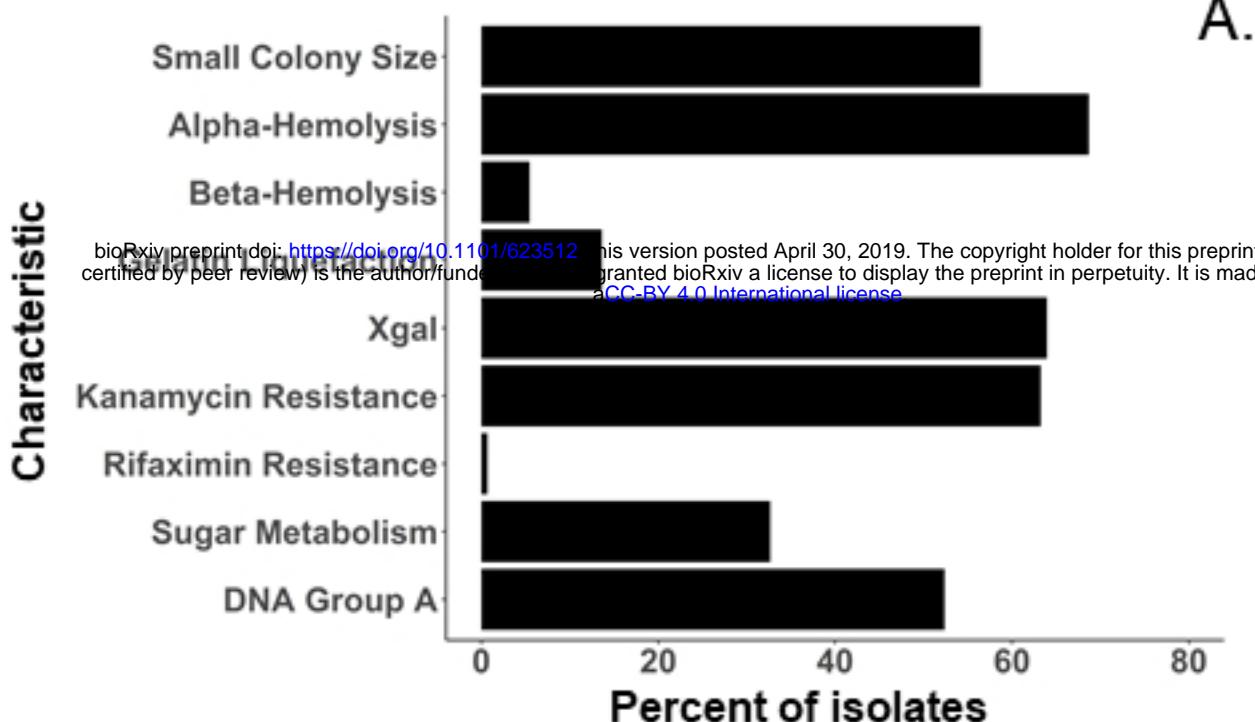
489 28. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, et al.
490 The enterococcal surface protein, Esp, is involved in *Enterococcus faecalis* biofilm
491 formation. *Applied and environmental microbiology*. 2001;67(10):4538-45. Epub
492 2001/09/26. PubMed PMID: 11571153; PubMed Central PMCID: PMCPMC93200.

493 29. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified
494 microtiter-plate test for quantification of staphylococcal biofilm formation. *J Microbiol*
495 *Methods*. 2000;40(2):175-9. Epub 2000/03/04. PubMed PMID: 10699673.

496 30. R Development Core Team. R: A language and environment for statistical
497 computing. Vienna, Austria: R Foundation for Statistical Computing; 2010.

498 31. Anderson AC, Andisha H, Hellwig E, Jonas D, Vach K, Al-Ahmad A. Antibiotic
499 Resistance Genes and Antibiotic Susceptibility of Oral *Enterococcus faecalis* Isolates
500 Compared to Isolates from Hospitalized Patients and Food. *Advances in experimental*
501 *medicine and biology*. 2018;1057:47-62. Epub 2017/06/12. doi: 10.1007/5584_2017_53.
502 PubMed PMID: 28601926.

503 32. Maharshak N, Huh EY, Paiboonrungruang C, Shanahan M, Thurlow L, Herzog J,
504 et al. *Enterococcus faecalis* Gelatinase Mediates Intestinal Permeability via Protease-
505 Activated Receptor 2. *Infection and immunity*. 2015;83(7):2762-70. Epub 2015/04/29.




506 doi: 10.1128/iai.00425-15. PubMed PMID: 25916983; PubMed Central PMCID:
507 PMCPMC4468563.

508 33. Chen PW, Tseng SY, Huang MS. Antibiotic Susceptibility of Commensal Bacteria
509 from Human Milk. *Current microbiology*. 2016;72(2):113-9. Epub 2015/10/24. doi:
510 10.1007/s00284-015-0925-4. PubMed PMID: 26494365.

511 34. Landete JM, Peiroten A, Medina M, Arques JL, Rodriguez-Minguez E. Virulence
512 and Antibiotic Resistance of Enterococci Isolated from Healthy Breastfed Infants.
513 *Microbial drug resistance* (Larchmont, NY). 2018;24(1):63-9. Epub 2017/07/15. doi:
514 10.1089/mdr.2016.0320. PubMed PMID: 28708453.

515 35. He Q, Hou Q, Wang Y, Li J, Li W, Kwok LY, et al. Comparative genomic analysis
516 of *Enterococcus faecalis*: insights into their environmental adaptations. *BMC genomics*.
517 2018;19(1):527. Epub 2018/07/13. doi: 10.1186/s12864-018-4887-3. PubMed PMID:
518 29996769; PubMed Central PMCID: PMCPMC6042284.

519

Fig 1

Treatment Strain

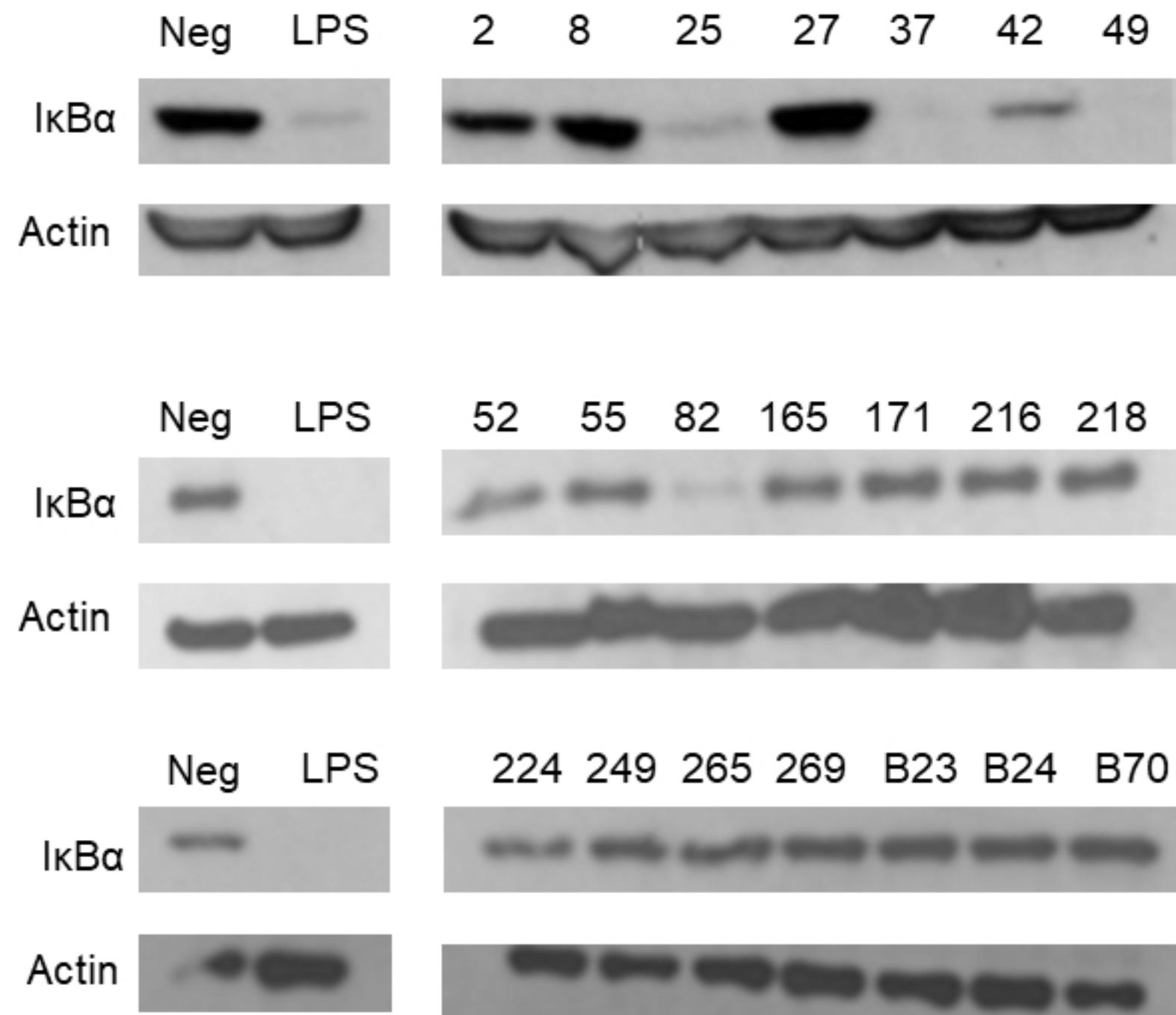
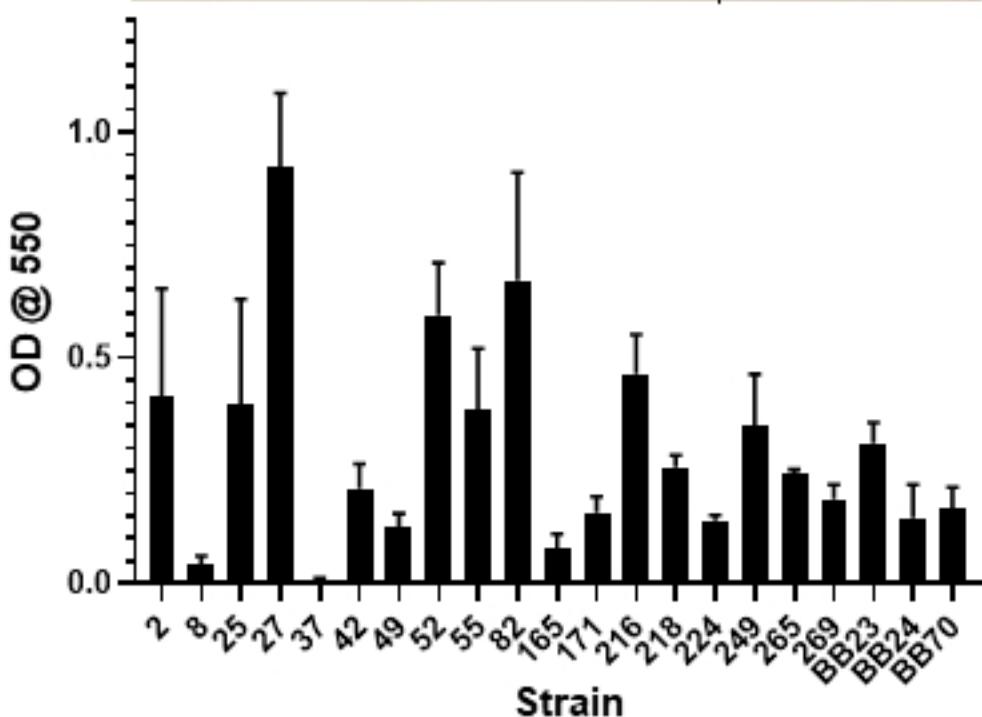
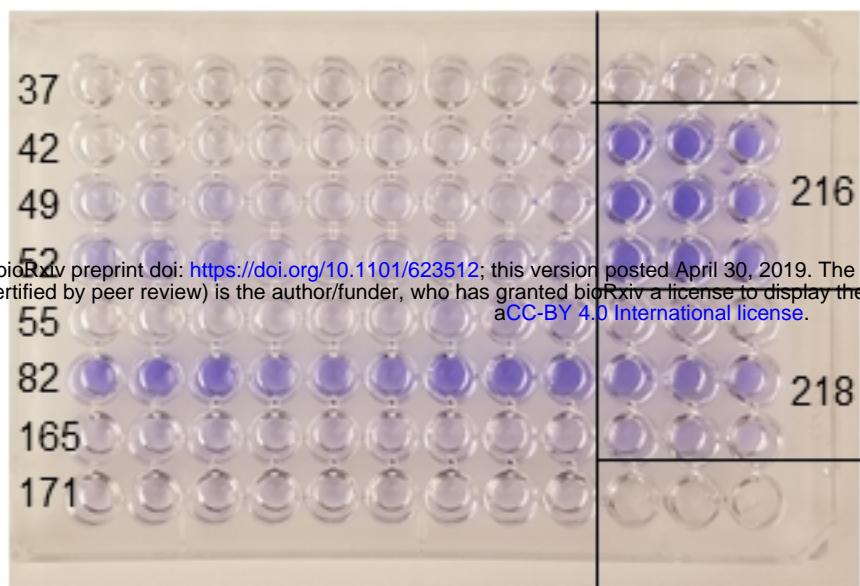
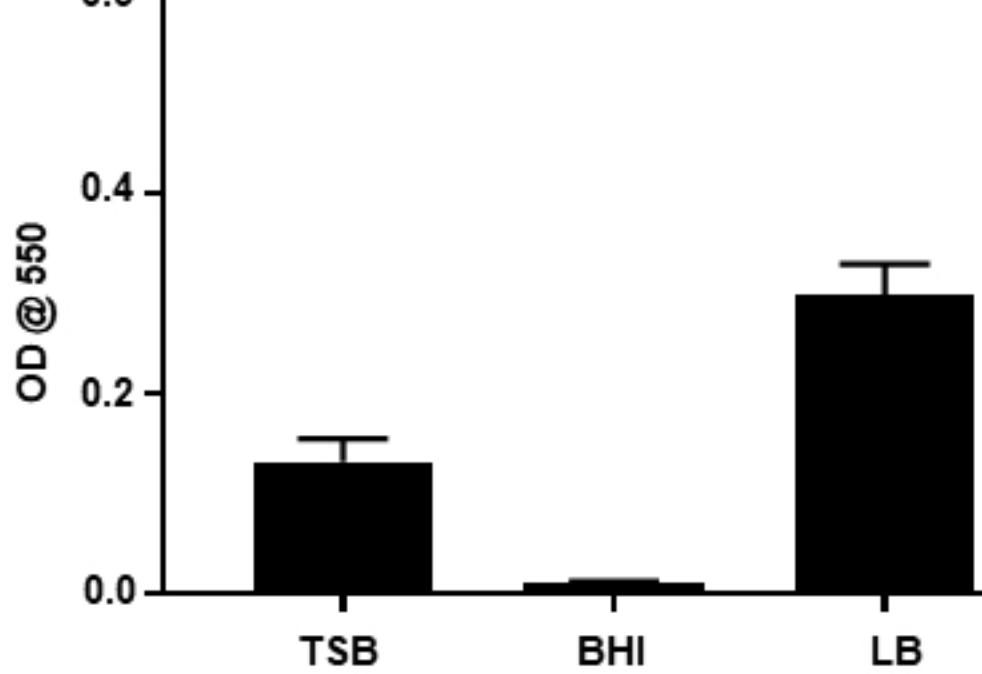
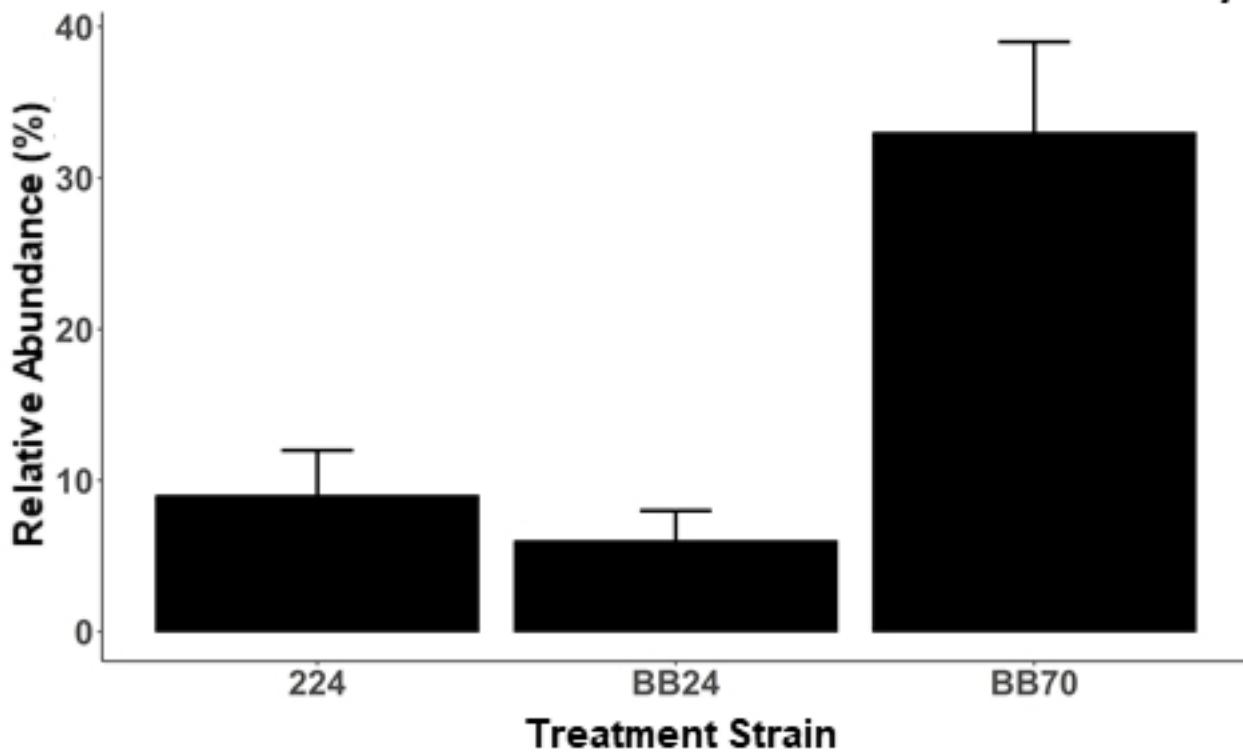





Fig 2



B.

Fig 3

A.

B.

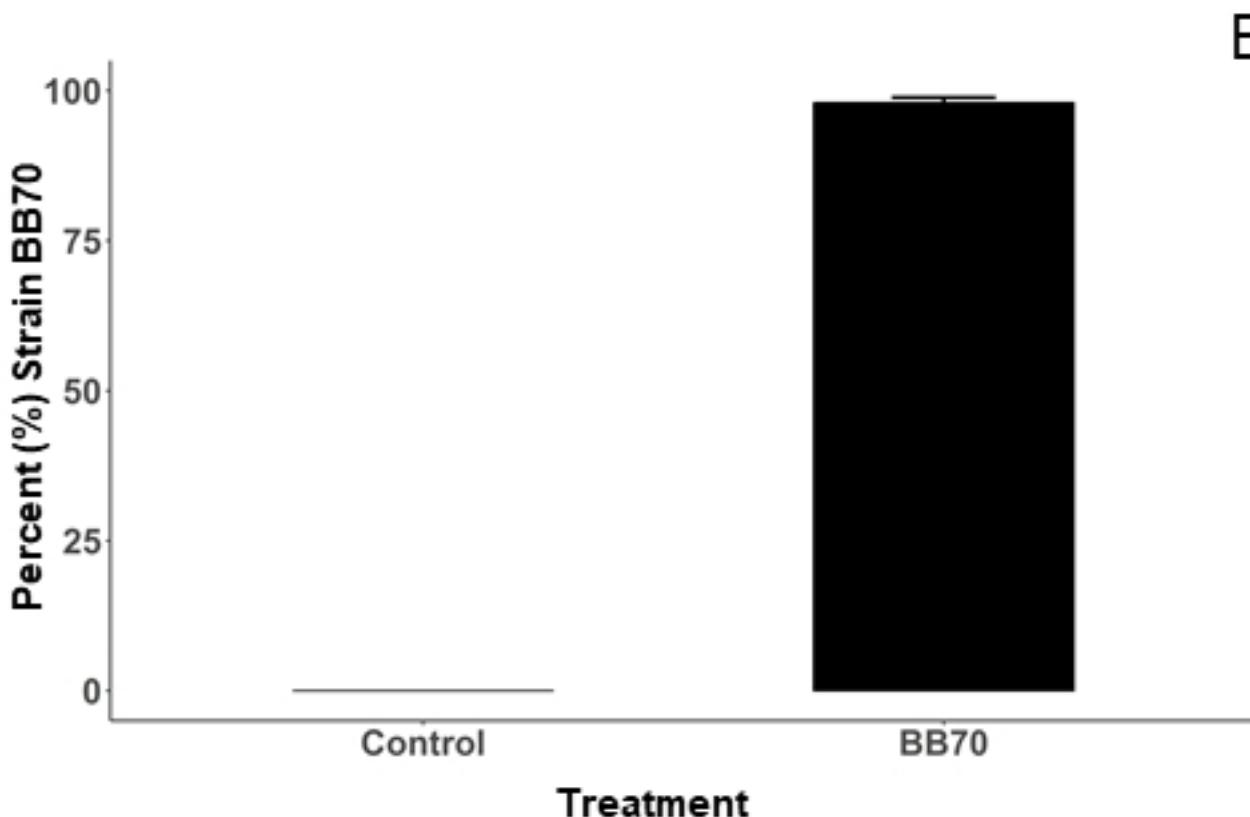


Fig 4