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ABSTRACT

Emotional communication between parents and children is crucial during early life,
yet little is known about its neural underpinnings. Here, we adopt a dual-brain connectivity
approach to assess how emotional valence modulates the parent-infant neural network.
Fifteen mothers modelled positive and negative emotions toward pairs of objects during
social interaction with their infants (aged 10.3 months) whilst their neural activity was
concurrently measured using dual-EEG. Intra-brain and inter-brain network connectivity in
the 6-9 Hz (infant Alpha) range was computed during maternal expression of positive and
negative emotions using directed (partial directed coherence) and non-directed (phase-
locking value) connectivity metrics. Graph theoretical metrics were used to quantify
differences in network topology as a function of emotional valence. Inter-brain network
indices (Density, Strength and Divisibility) consistently revealed that the integration of
parents’ and childrens’ neural processes was significantly stronger during maternal
demonstrations of positive than negative emotions. Further, directed inter-brain metrics
indicated that mother-to-infant directional influences were stronger during the expression of
positive than negative emotions. These results suggest that the parent-infant inter-brain
network is modulated by the emotional quality and tone of dyadic social interactions, and that
inter-brain graph metrics may be successfully applied to examine these changes in
interpersonal network topology.

(200/200 words)
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INTRODUCTION

1.1 Intra-individual neural networks for emotional processing

Emotional processing and regulation involve both ‘top-down’ and ‘bottom-up’
processes of control and regulatory feedback that engage the fronto-limbic network (FLN)
(Ochsner et al., 2009). Within the FLN, it is the dorsolateral, ventrolateral and medial
prefrontal cortices along with limbic structures, such as the amygdala and hippocampus that
have been most commonly implicated in emotion processing and regulation (Ochsner et al.,
2009) . The basal ganglia are also implicated in the processing of facial (Adolphs, 2002) and
vocal (Kotz et al., 2003) emotional expressions. For example, deep brain stimulation of the
basal ganglia causes impairment of emotion perception from facial and vocal expressions
(Péron et al., 2010). More recent approaches have used connectivity-based measures to
examine how these networks of brain regions coordinate their activity dynamically during
emotion processing (Diano et al., 2017; Sato et al., 2017) . Extensive previous research has
also examined how these intra-individual neural networks become disrupted during atypical

development (Goulden et al., 2012; Lu et al., 2012; Nicholson et al., 2017).

Neural oscillations (which are measurable using scalp EEG) reflect rhythmic
fluctuations in the synchronization of neuronal populations at a millisecond timescale.
Activity in the EEG Alpha band is strongly implicated in the processing of emotional stimuli
and social cognition in adults and infants (Allen et al., 2018; Coan & Allen, 2004). Studies
with normal adults indicate that Alpha power over the left and right frontal brain regions
respond differentially to emotional valence (Davidson, 1984, 1998). Activation over the left
frontal area is commonly associated with the experience of positive emotions such as joy or
interest, whereas right frontal Alpha EEG power is associated with disgust, crying and

sadness. Further, individuals who experience mood disorders such as depression exhibit
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atypical patterns of EEG asymmetry, commonly showing higher right frontal EEG activity
than controls (Gotlib et al., 1998). Recent research has also started to examine intra-
individual network topology during emotion processing using graph-theoretic measures. For
example, a recent study with adults showed that EEG graph-theoretic features performed
better than traditionally used EEG features (such as spectral power and asymmetry) on the

automatic classification of affective neural states (Gupta et al. , 2016).

Behavioral and neuroimaging studies into early development suggest that the neural
architecture for the detection and prioritized processing of emotional expressions, such as
fear, emerges sometime during the first year of life (Hoehl, 2013; Hoehl et al., 2019;
Leppénen & Nelson, 2009). It is during this time that infants’ visual system is sufficiently
developed to support the discrimination of most facial expressions (Leppénen & Nelson,
2006), and that infants begin to exhibit a reliable attentional bias towards fearful facial
expressions (Nelson & De Haan, 1996). For example, 7-month-old infants look longer at
fearful than happy facial expressions (Nelson et al., 1979) and are slower to disengage their
attention from a fearful face than happy or neutral faces (Leppanen et al., 2010). Recordings
using EEG responses to facial expressions in 7-month-old infants have shown that particular
ERP components are enhanced when infants view fearful facial expressions (Hoehl &
Striano, 2008; Leppénen et al., 2007). Influences of the early environment on infants’ neural
processing of emotion have also been shown: whereas typically-developing infants exhibit
greater left versus right frontal brain activity, infants of depressed mothers exhibit greater
right frontal brain asymmetry (Dawson et al., 1992; Field et al., 1995; Field et al. , 1995).
Understanding the early development of emotion processing is considered essential, in

particular, for helping to identify and intervene in cases of atypical development.


https://doi.org/10.1101/623355
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/623355; this version posted April 30, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1.2 Inter-individual neural networks for emotional processing

Research is increasingly moving from approaches that emphasise localised structure-
function correspondences towards a more distributed, network-based approach that studies
how activity is coordinated across multiple brain regions on an intra-individual basis
(Bullmore & Sporns, 2009). Less well established, however, is research into how network-
based patterns of brain activity subsist between individuals during human interactions — i.e.

on an inter-individual basis (Schilbach et al., 2013).

Inter-individual dynamics play an essential role in many forms of human interaction —
particularly so during early development (Feldman, 2007; Jaffe et al., 2001). Social co-
ordination between parents and their offspring engenders early learning across multiple
domains of social and cognitive development (Csibra & Gergely, 1998; Feldman, 2007;
Rogoff, 1990). The behaviour of human infants and their adult caregivers is closely co-
ordinated, and adult-infant temporal contingencies occur across behavioural, physiological
and neural domains. For example, adults’ and children’s gaze patterns (Kaye & Fogel, 1980),
vocalisations (Jaffe et al., 2001), emotional states (Cohn & Tronick, 1988), autonomic
arousal (Skoranski et al., 2017), hormonal fluctuation (Spangler, 1991), and neural oscillatory

activity (Leong et al., 2017) all show mutual temporal dependencies of different forms.

Dyadic neuroimaging studies with adults using functional Near-Infrared Spectroscopy
(FNIRS) have shown that during verbal (non-emotional) communication, dyads develop
synchronous patterns of activity between brain regions such as the inferior frontal gyrus,
prefrontal and parietal cortices (Jiang et al., 2012). A recent fNIRS study examining parents
and their 7.5-year-old children found that their prefrontal regions showed synchronisation
during conditions of social co-operation (but not during competition), and that the degree of

neural synchronisation mediated the relationship between parent’s and children’s emotional
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regulation abilities, as assessed via questionnaires (Reindl et al., 2018). Using EEG to
examine synchronisation at a finer time-scale, we have also shown that neural synchronicity
occurs between adults and infants in the Theta and Alpha bands, and that such dyadic neural
connectivity is modulated by eye contact between the adult speaker and infant listener (Leong
et al., 2017). Other research has, similarly, used EEG to explore inter-personal dynamics
between adults (Babiloni & Astolfi, 2014; Dumas et al., 2011), including research that has

examined larger sized groups (Dikker et al., 2017).

1.3 Graph connectivity in two-person neuroscience

The interpersonal neural network contains crucial information with regard to
teamwork/co-ordination (Babiloni et al., 2011; Dikker et al., 2017), communicative efficacy
(Hasson et al., 2012; Jiang et al., 2012), and social status (e.g. leader-follower relationships;
Jiang et al., 2015; Sénger et al, 2012, 2013), but it is not clear exactly how such information
is encoded within social networks. Whereas previous dyadic studies have typically focussed
on how strongly connected the interpersonal network is (i.e. how much information is shared
between partners), relatively little previous research has examined the organisation and
topology of the network itself (i.e. how information flows between partners). This distinction
IS important because socioemotional factors may modulate the structure of a neural network
without necessarily changing its mean strength or activation level. For example, Betzel et al
(2017) showed that individual variations in mood and surprise were correlated with changes
in neural network flexibility (that is, the reconfiguration of network community structure over
time). Positive moods were associated with higher levels of network flexibility whereas

increased levels of surprise were associated with lower network flexibility.

Graph connectivity measures are useful for capturing the topological properties of

neural networks (Bullmore & Sporns, 2009). However, graph metrics are not commonly
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adapted for use with inter-personal neural networks (although see Astolfi et al., 2010, 2015).
It has recently been suggested that these network metrics may in fact be usefully applied to
multilayer network models in order to understand how information is shared between

individuals and across social networks (Falk & Bassett, 2017).

1.4  Study overview

Here, we use graph theoretical indices to assess the topology of parents’ and infants’
intra- and inter-brain neural networks during emotional processing. To study emotional
processing, we used a classic social referencing task (Walden & Ogan, 1988) that involved
maternal demonstrations of positively- and negatively-valenced emotion. During social
referencing, the partner’s social interpretation of events is used to form one’s own
understanding of a situation (Feinman, 1982). Social referencing develops over the first year
of life, and by 10-12 months of age, infants will seek information from others in novel
situations and will use this information to regulate their own affect and behaviour (Feinman
et al, 1992). For example, infants at this age will avoid crossing a short visual cliff (Sorce et
al., 1985), show less interaction with toys (Gunnar & Stone, 1983; Hornik et al., 1987) and be
less friendly to strangers when their mothers model negative emotions as compared to neutral

or happy emotions (Feinman & Lewis, 1983; Feinman & Roberts, 1986).

Research has shown that, even in young infants, the brain responds differentially to
objects as a function of how other people are reacting to them (Hoehl et al., 2008). Infants'
neural processing of novel objects is enhanced by a fearful, but not a positive, face gazing
toward the object (Hoehl & Striano, 2010) — influence that may be enhanced or reduced by
infants’ temperamental predisposition (Aktar et al., 2016). However, little is known about the
dynamic, inter-personal neural mechanisms that support social referencing and emotional co-

ordination between parents and their children.
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As we were particularly interested in the direction of information flow between
parents and their children, we assessed network connectivity using both directed (partial
directed coherence, PDC) and non-directed (phase-locking value, PLV) indices. We were
primarily interested in whether, and how, the topology of inter-brain and intra-brain networks

would be influenced by emotional valence.
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1 METHODS

2.1  Participants

Fifteen mother-infant dyads participated in the study (8 male, 7 female infants).
Infants were aged 315.6 days on average (SEM = 9.42 days). All mothers reported no
neurological problems and normal hearing and vision for themselves and their infants. The
study was approved by the Cambridge Psychology Research Ethics Committee and parents

provided written informed consent for them and on behalf of their infants.

2.2 Materials

Four pairs of ambiguous novel objects were used. Within each pair, objects were
matched to be globally similar in size and texture, but different in shape and colour.
Ambiguous novel objects were chosen to ensure that infants would not have previous

experience with these objects.

2.3  Task protocol

A classic social referencing task was used, which involved positive and negative
maternal emotional demonstrations toward novel toy objects (Hirshberg & Svejda, 1990;
Hornik et al., 1987; Walden & Ogan, 1988). Infants were seated in a high chair, and a table
was positioned immediately in front of them (see Figure 1). Parents were seated on the
opposite side of the table, directly facing the infant. The width of the table was 65cm. Each
experimental trial comprised a maternal demonstration phase involving one pair of novel
objects, and a response phase. Trials began when the mother attracted her infant’s attention
by saying “Look”, or by holding one of the objects up. During the demonstration phase,
mothers were instructed to show positive affect toward one object and negative affect toward

the other object, as illustrated in Figure 1. Mothers were instructed to limit their speech to
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simple formulaic verbal statements per object (which they repeated for each object), and to
model positive or negative emotions in a prescribed manner (e.g. smiling versus frowning)
(see Figure 1). The order of object presentation (positive or negative) was counterbalanced
across trials, and the order of objects was counterbalanced across participants. Up to 16 trials

were presented to each infant and on average, infants completed 9.5 trials (std: 3.6).

“I don’t like “I like this
this one...”

Figure 1. lllustration of experimental setup and task. (Left) Negative object demonstration by adult;
(middle) Positive object demonstration by adult, (right) Infant’s interaction with objects. Written

informed consent was obtained for the publication of this image.

The period of positive emotion modelling will be referred to as the “P0os” condition,
and the period of negative emotion modelling will be referred to as the “Neg” condition.
Across participants, the mean duration of the Pos condition was 2.75 seconds (std: 1.26) and
the mean duration of the Neg condition was 2.48 seconds (std: 1.14). There was no significant
difference in the duration between conditions (p=0.40, Hedges’g=0.10). Further, as detailed
in the Supplementary Materials (S3), there was no significant difference in the mean pitch of
maternal utterances between conditions (p=0.10, Hedges’g=0.47). However, there was a
significant difference in loudness (p=0.001, Hedges’g=1.61), where maternal utterances
during the Pos condition were louder than during the Neg condition. In the Supplementary
Materials (S3) we provide further analyses controlling for the effect of these acoustic

differences on our neural connectivity analyses.
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After observing the maternal emotional demonstrations, infants were allowed to
interact briefly with the objects before they were retrieved. An experimenter was present
throughout the session, but positioned out of the line of sight of both participants, to ensure
that participants were interacting as instructed. The experimenter provided new pairs of
objects as required, but explicitly avoided making prolonged social contact with either

participant.

2.4 Baseline task

Each mother-infant dyad also performed a baseline task that did not involve emotional
modelling or social interaction. During this baseline task, they were seated in the same
configuration as for the main task (across a table from each other), but with a 40 cm high
screen in place, so that the infant and adult could see one another, but not the object with
which the other was interacting. Mother and infant played with their own toy objects (which
were different from the main task). The baseline task was completed either before or after the

main task, in a counterbalanced order across participants.

2.5  Video recordings

To record the actions of the participants (e.g. start and end of teaching periods), two
Logitech High Definition Professional Web-cameras (30 frames per second) were used,
directed at the adult and infant respectively. Afterwards, each video recording was manually

coded to identify the periods of interest, based on the onset and offset of maternal utterances.

2.6 EEG acquisition and pre-processing

EEG acquisition. A 32-channel BIOPAC Mobita mobile amplifier was used with an
Easycap electrode system for both infant and adult. Electrodes were placed according to the
10-10 international system for electrode placement. Data were acquired using AcqKnowledge

11
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5.0 software, at a 500 Hz sampling rate. The ground electrode was affixed to the back of the
neck as this location is the least invasive for infants. The amplifiers for both participants were
synchronized through a push button trigger signal that was sent simultaneously to both EEG
systems and also simultaneously delivered a LED signal that was visible on both video

recordings (for video-EEG synchronisation).

We selected a subset of 16 frontal, central and parietal channels for further analysis
(see Figure 2). This sub-selection was done to reduce the computational cost of the analysis,
and also because previous research has shown that the contribution of speech myogenic
artifacts is relatively stronger at peripheral electrodes (Porcaro et al., 2015; Brooker &
Donald, 1980). The selected channels were: F3, F;, F4, FC1, FC2, C3, C;, C4, CPs, CP1, CP2,

CPs, P3, Pz, P4, and PO..

Figure 2. Electrode map of selected channels.

EEG pre-processing for motion-related artifacts. EEG signals were band-pass
filtered in the range of 1 to 16 Hz in order to suppress line noise as well as minimise as far as
possible the effect contamination by muscular (e.g. speech and facial) artifacts which are
most prominent at frequencies over 20 Hz (Whitham et al., 2007). Next, a threshold criterion

(= 80uV) was applied to remove high-amplitude artifacts. Finally, visual inspection of the
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data was performed to eliminate residual artifacts. Only EEG segments that were artifact-free
across all electrodes for both mother and infant within each dyad were used for further

analysis (on average 83.62% of the data were used for further analysis).

Baselining. Prior to conducting connectivity analysis, and in order to reduce
differences in amplitude across participants in the dataset, and between infants and parents,
two normalisation steps were applied. First, the main task data from each participant were z-
normalised according to their corresponding baseline task data. That is, the mean of the
baseline task data was subtracted from the main task data, and the result was then divided by
the standard deviation of the baseline task data. Second, the main task data from each dyad

were z-normalised relative to one another.

2.7  Connectivity metrics (6-9 Hz, infant Alpha band)

Two sets of connectivity calculations were performed. First, we examined intra-brain
connectivity, between the individual electrodes in the infant and the adult recordings
considered separately. Second, we examined inter-brain connectivity, between the infant
electrodes and the adult electrodes. Our analyses focused on assessing network connectivity
in the infant Alpha frequency band (6-9 Hz; Marshall et al., 2002) for three reasons. First,
because Alpha activity is strongly implicated in the processing of emotional stimuli and
social cognition in adults and infants (Allen et al., 2018; Coan & Allen, 2004). Second,
because we had previously observed adult-infant neural synchronicity in this frequency range
(Leong et al., 2017). Third, because our previous research and that of others has shown that
this frequency range is least affected by facial myogenic artifacts (Georgieva et al., under
review; Goncharova et al., 2003) and global Alpha network characteristics can be reliably

assessed even in 10 month infants (Velde et al., 2019)

We contrasted two measures of neural connectivity: one non-directed measure (Phase
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Locking Value, PLV) and one directed measure (Partial Directed Coherence, PDC). Both
connectivity measures were computed on 6-9 Hz band pass filtered data, using 2s sliding
windows with a 50% overlap. All computations were performed using in-house adaptations
of functions from publicly available Matlab® based toolboxes (He et al., 2011; Niso et al.,

2013).

Phase Locking Value (PLV) measures frequency-specific transients of phase locking

independent of amplitude (Lachaux et al., 1999). The instantaneous phase of the signal was
calculated using the Hilbert transform. Two signals x(t) and y(t) with instantaneous phases

@x(t) and @, (t) are considered phase synchronised if their instantaneous phase difference is

constant:

0(t) = @, (t) — ¢, (t) = constant. (1)

To calculate phase synchronisation, we used PLV defined as:
PLV = |-¥T_, €@, (2)
where T is the number of time samples. PLV is a value within the range [0, 1], where values

close to 0 indicate random signals with unsynchronised phases and higher values indicate

stronger synchronization between the two signals (here, pairs of electrodes).

Partial Directed Coherence (PDC) is based on the concept of Granger Causality

(Granger, 1969). It is a spectral estimator and provides the directed influences between each
pair of signals in a multivariate data set (Baccala & Sameshima, 2001). If a multivariate data
set is understood as an ensemble of simultaneously recorded signals (channels), for a k-

channel set the model is defined by:

X®) =X, ANXE-N+E® @)

where E(t) is a vector of k white noise values for each time point t. A is a square k x k matrix

14
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representing the model parameters and p is the model order. Transforming the given

multivariate model into frequency domain we obtain:
E(f) = A(DX(F) > X(f) = AT (HE(), where A(f) = Zp_o A(m) e 278 (4)
From the transformed model coefficients, A(f), the PDC can be calculated as:

Aij(f)
a5 (Day () ()

PDC is a normalised measure that can distinguish between direct and indirect

PDC}'_)i =

connectivity flows better than other Granger causality based metrics such as Direct Transfer

Function or its versions (Astolfi et al., 2007).

The application of multivariate models for connectivity analysis requires the
estimation of the model order p. In this study we implement the Schwarz Bayesian
information criterion (SBIC) (Schwarz, 1978) and the Akaike information criterion (AIC)
(Akaike, 1974), where the value of the model order was selected based on the measure
providing the lowest values across both methods. Under this criterion a model order of 5 was
used, which explained the highest proportion of data (91.39% of infants’ data and 81.30% of
adults’). To ensure that the implemented model was able to capture the essential dynamics of
the data we applied two different techniques to validate the fitted model. First, we calculated
the percentage of consistency of the model using the Ding method (Ding et al., 2000). This
test provides the percentage of the correlation structure in the data that is captured by the
fitted model. 100% of the dataset achieved a consistency of =>80%, which is considered to
be the acceptable lower limit. Second, the coefficient of determination or r-squared was
calculated. This test indicates the percentage of the data that is explained by the model.
Again, the entire dataset obtained an r-squared value of over 30%, indicating good model
estimation (Seth, 2010). The same procedures were used to calculate inter-subject

connectivity, where one autoregressive model was created based on the EEG data from the
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infant-mother dyad.

2.8  Statistical validation of connectivity results

Intra-brain connectivity. To assess whether the intra-brain connectivity values were
significantly above chance, a surrogate data analysis was performed which controlled for
spurious (random) connections. To achieve this, a Fourier transform was applied to each data
epoch for each channel, and a random permutation of phase values was performed in the
frequency domain. Finally, an inverse Fourier transform was used to recreate the surrogate
data in the time domain. This process retained the original spectral profile of the data whilst
selectively disrupting phase relationships across channels, thereby removing genuine phase-
based connectivity patterns. A total of 100 surrogate datasets were created for each
participant, channel and epoch. To perform the validation procedure, the neural connectivity
indices obtained for the real data were compared against those for the surrogate data at a
significance level of p<0.05 using paired-samples t-tests, corrected for multiple comparisons
using Tukey’s honestly significant difference criterion (Matlab®). Individual connections that
were not significantly different from their respective surrogates were set to zero (and

disregarded for subsequent statistical analyses of differences between conditions).

Inter-brain connectivity. To assess whether the measured inter-brain connectivity
results were significantly above chance, two validation steps were performed. First the
analysis using phase-randomised surrogates was performed in an identical fashion to that
described above. Second, the neural connectivity values obtained from the real data were
compared to a pair-randomised dataset generated by randomly pairing mothers and infants
from different sessions whose brain data was non-matching (210 new couples). For this pair-
randomised data, any connectivity that existed between the random pairings would have

occurred purely by chance (e.g. due to participants experiencing similar environmental
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conditions during the experiment). As the duration of trials varied across participants, the
longer dataset was cropped to the same length as the shorter dataset for each random pair
(Reindl et al., 2018). For each condition and EEG channel, a two-sample t-test (significance
level of 5% corrected by false discovery rate for multiple comparisons using the Tukey’s
honestly significant difference criterion) was performed between the real dataset and the pair-
randomised dataset. Individual connections that did not reach significance after the first

(surrogate) data step were not included in this second validation step.

2.9  Thresholding

Thresholding is necessary to remove spurious connections and to obtain sparsely
connected networks, which is a pre-requisite for the computation of many graph metrics
(Deuker et al., 2009). Different approaches are used to select an appropriate threshold value.
Thresholds can be selected based on the statistics of the data distribution or by taking into
account the sparsity of the resulting matrix (Philips et al., 2017). Here, we adopt the most
widely used method where a proportional threshold is imposed on all the links within the
network. This means that the density of the adjacency matrix, defined as the percentage of
existing connections with respect to all possible connections in the network, is fixed.
Proportional thresholding is expected to lead to more stable networks metrics (Garrison et al.,
2015) and is the most widely used technique for studies that compare between experimental

conditions or groups (Nichols et al., 2017; Toppi et al., 2012).

To determine the appropriate threshold, we first conducted a visual inspection of the
connectivity patterns resulting from thresholding at a range of values (0.17, 0.15, 0.10, 0.08
and 0.05). Figure 3 shows the results that were obtained when different thresholds were
applied to the adult grand averaged PLV dataset. By visual inspection of Figure 3, the

strongest connections appear to be concentrated within fronto-central scalp regions. As
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thresholds are relaxed (e.g. above 15%), this pattern becomes increasingly obscured as
weaker connections from other regions begin to be included. The same threshold criterion of
15% was applied to the PLV metric as to the PDC data. These selected thresholds offered the
most optimal balance between data retention (increased with lower threshold values),
readability of connectivity patterns (optimal for higher values) and computational cost (Filho
et al., 2016). Section S1 in the Supplementary Materials shows the effect of applying
different thresholds for both infant and adult data, and for PDC and PLV metrics, which

yielded similar effects to the data shown here.

17% 15% 10% 8% 5%

Figure 3. Effect of applying different thresholds to maternal grand average 6-9 Hz PLV matrices. The
first row shows the Pos condition and the second row shows the Neg condition. From left to right the
threshold values for each column are: 17, 15, 13, 8 and 5% of the strongest links preserved. The

threshold of 15% was selected as being the most optimal.

2.10 Graph theoretical indices of network topology

A graph consists of a series of nodes (EEG electrodes) and a set of edges
(connections) showing the relationships between the nodes. To define a graph, it is necessary
to construct an adjacency matrix A which captures the connectivity structure of the graph. An

adjacency matrix is constructed by comparing the link between each pair of nodes in the
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connectivity matrix against a corresponding threshold. Edges whose values are larger than the
threshold (here, the top 15% as described in the previous section) remained in the adjacency

matrix, whilst those with values under the limit were set to 0.

2.10.1 Intra-brain metrics

The indices that define the topology of a network can be broadly divided into four
groups: individual metrics (degree, density, strength), functional segregation metrics
(clustering coefficient, transitivity, modularity or local efficiency), functional integration
metrics (global efficiency, characteristic path length, radius and diameter), and centrality
metrics such as betweenness centrality (Rubinov & Sporns, 2010). Here, we selected one
metric from each group to provide an overview of these different network properties. As we
used a fixed network density (15%), the density and the average degree of the networks
would be the same for each experimental condition, hence these indices were not used.

Rather, the following indices are reported here:

Individual metrics. Strength (S) is the weighted variant of degree. This is typically
defined as the sum of neighbouring link weights. In this case, we report the highest value of
neighbouring link weights. This is likely to be more informative than mean strength as
network density was fixed to retain only the most strongly connected links.

Functional segregation. Transitivity (T) is the overall probability for the network to

contain interconnected adjacent nodes, revealing the existence of tightly connected
communities. In simple terms of network topology, this index represents the mean probability
that two vertices that are network neighbours of the same other vertex will themselves be
neighbours (Newman, 2003).

Functional integration. Global Efficiency (GE) is inversely related to the topological

distance between nodes and is typically interpreted as a measure of the capacity for parallel
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transfer and integrated processing. It is based on the inverse of the shortest path length, which
is an indicator of the ease with which each node can reach other nodes within the network
using a path that is composed of only a few edges. Hence, the global efficiency is an indicator
of the degree to which a network can share information between distributed regions (Kabbara
et al., 2018)

Centrality. Betweenness centrality (BC) is a measure of centrality. These measures

identify central nodes that connect various brain regions. The betweenness centrality of a
node is defined as the fraction of all shortest paths in the network that pass through the given
node. Nodes with a larger betweenness centrality value will participate in a higher number of
shortest paths.

Graph analysis was performed separately for PLV and PDC measures, and for each
condition using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). The resulting
intra-brain graph indices were assessed separately for parents’ and infants’ data using
Repeated Measures ANOVAs, taking Condition (Pos and Neg teaching) as a within-subjects
factor. Results were corrected for multiple comparisons using Tukey’s honestly significant

difference criterion (Matlab®).

2.10.2 Inter-brain metrics

Due to the difference in format between individual and inter-brain adjacency matrices,
an adaptation process was needed before inter-brain graph indices could be computed. Each
dual-brain adjacency matrix comprises of four different sections; the first section of the first
N rows and N first columns describes the intra-brain connections for the first member of the
dyad (here, the mother). The first N rows and last N columns represent the connectivity
between the first and second member of the dyad (mother to infant). The last N rows and the

last N columns represent the intra-brain connectivity values for the second member (infant)
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and the last N rows and first N columns represent connectivity between the second and first
member of the dyad (infant to mother). For non-directional indices (e.g. PLV), mother-to-

infant and infant-to-mother connectivity patterns are symmetric.

Two inter-brain-adapted graph metrics were used here: Strength and Divisibility.
These graph metrics were computed for each dyad and experimental condition using only
significant inter-brain connections. To maintain an equal density across experimental
conditions, the least number of significant connections across both conditions was used in the

inter-brain graph analysis — this was 10 connections.

Strength: is the sum of neighbouring link weights as described previously. The

adapted version for inter-brain connectivity was calculated as follows:
— \'N 2N 2N N
Sppc = Zi:l Zj=N+1 Wij + Zi=1v+1 Zj=1 Wij,

Sprv = Xith+1 Z?’=1 Wij = X Z?£N+1 Wij.
where N is the number of channels for each subject and w;; is the weight of the connection
between node i of subject 1 and node j of subject 2. As PLV is a non-directed metric, the
connectivity matrix from subject 1 to subject 2 is identical to the matrix from subject 2 to 1.

For PDC however, separate calculations were performed to assess the directed strength from

mothers to infants (Mtol) and vice versa, from infants to mothers (ItoM):

N 2N

Smtor = Z E Wij
i=1 j=N+1
2N N

Sitom = E ZWU
i=N+1j=1

Divisibility: is a measure of how well the entire connectivity network (including intra-

and inter-brain connections) can be divided into two sets of nodes, corresponding to the brain
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of each member of the dyad (Astolfi et al, 2015; 2010; De Vico et al, 2010). It is defined as:

b w
Zwy[1-6(c. ¢+ w

where W is the total weight of the network (including within and inter-brain subnetworks), C;
and Cjindicate the community (which brain) the nodes i and j belong to respectively. The
function § is binary with values 0 or 1 (1 if vertices i and j are in the same community and 0
otherwise). The resulting values of D (divisibility) range between [0,1]. For example, in a
fully connected network (where all possible links are connected with a value of 1), the
resulting value D is 0.67. When the network is fully disconnected (all possible links are set to
0), the resulting D value is 0. A value of D=0.5 is obtained when all inter-brain connections
are fully connected (=1), but all within brain connections are disconnected (=0), since in this
case the index reduces to D=W/(W+W)=0.5. Conversely, a value of D=1 is obtained when all
inter-brain connections are disconnected (=0), but all within-brain connections are fully
connected (=1), in which case D=W/(0+W)=1. Therefore, if 0.5 <D < 0.67, it may be
inferred that interbrain connections are stronger than within brain connections. For values of
0.67 < D < 1, interbrain connections are weaker than within brain connections.

Directed Divisibility: For PDC, similarly to the directed strength, separate

calculations were performed for incoming and out-going directions of connectivity. This
would highlight which partner was “leading” the neural integration process during each
condition under study. In order to calculate directed divisibility, one of the inter-brain
matrices was set to zero each time. For instance, to calculate the directed divisibility from
mothers to infants the quadrant corresponding to connections from infants to mothers was set
to zero. Therefore, the total weight W from the previous equation was transformed to:

Wutor = M/Infant + Wuother + Wator

Witom = Wlnfant + Wuother + Witom-
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Resulting in the following directed divisibility equations:

WMmtol
> Wij[l—S(Ci,Cj)]+WMt01’

Dyeor =

D _ Witom
ItoM — v Wij[1—6(Ci,Cj)]+WItoMl

The resulting Strength and Divisibility inter-brain graph indices were subjected to
non-parametric Kruskal-Wallis tests (significance level of 5%, multiple comparison corrected
using Tukey’s honestly significant difference criterion) to assess statistically significant

differences in inter-brain connectivity between conditions (Pos and Neg).

2.11 Intra- and inter-brain density

In addition to the graph metrics of network topology, we also computed measures of

intra- and inter-brain network density.

Intra-brain density. Intra-brain density was calculated as the ratio of existing

(significant) edges to the total number of possible connections. This index was computed

using the non-thresholded data (since thresholds impose a fixed ratio).

Inter-brain density: Here, we defined inter-brain density as an extension of the

established within-brain density metric: the ratio of existing (significant) inter-brain edges to
the total number of possible interbrain connections. The inter-brain density metric is therefore
a measure of neural integration between parents and infants. Calculations were computed
over the statistically validated inter-brain connectivity matrices (i.e. to identify significant
connections) without any further thresholding. For computation of PLV-based inter-brain
density, only one of the inter-brain connectivity matrices was used as mother-to-infant and

infant-to-mother matrices are identical. PLV inter-brain density was computed as:

N y2N
i=12j=N+14ij

(%)

Dpry =
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Where N is the total number of channels, and a represents the existence (or not) of a link
between two nodes in the adjacency matrix.
For the PDC measure, both inter-brain connectivity matrices were included and total

inter-brain density was computed as the sum of the individual directed densities:

N 2N .. 2N ZN B
Dppc =D +D _ Zi=124j=N+1%ij 214N 2j=1 Qij
PDC — YMtol ItoM —
(N2/4) (N2/4)
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2 RESULTS

3.1. Intra-brain connectivity

Effective connectivity networks were estimated at the single subject level for each
condition (Pos and Neg) using both non-directed (PLV) and directed (PDC) connectivity

metrics.

3.1.1 Intra-brain connectivity by experimental condition

Figures 4 and 5 depict adults’ and infants’ respective grand average connectivity
patterns for the 6-9 Hz Alpha band in Pos and Neg conditions, obtained using PLV (top row)
and PDC (bottom row) measures respectively. Stronger connectivity between electrode pairs

is indicated with thicker and darker lines.

For adults, significant connections were strongest in temporal-parietal regions for
both connectivity metrics (Figure 4). However, whereas PDC-derived networks emphasised
interhemispheric (left-right) connections, PLV links frequently connected a node to its closest

neighbours, perhaps reflecting volume conduction effects.

Infants’ topographies were characterised by strong connections in central and tempo-
parietal regions. Similar to what was observed for adults, infants’ PDC network also showed
strong interhemispheric patterns of connectivity. This pattern is consistent with the early
emergence of interhemispheric functional connectivity between primary brain regions, which
has been demonstrated to exist even in the fetal brain (Anderson & Thomason, 2013;

Fransson et al., 2007).
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Figure 4. Adult intra-brain connectivity patterns for the 6-9 Hz band using PLV (top row) and PDC
(bottom row). The left column shows the Pos condition and right column shows the Neg condition. For
each subplot, the colour and size of each node is proportional its degree, where hotter colours indicate
higher values and cooler colours indicate lower values. The weight of the edges in the networks are
represented in grey scale, where darker colours indicate stronger connections. For the PDC measure,

arrows represent the directionality of connections, ending in the node receiving the information flow.
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Pos Infant Neg
(6-9H2z)

PDC

Figure 5. Infant within brain connectivity patterns for the 6-9 Hz band using PLV (top row) and PDC
(bottom row). The left column shows the Pos condition and right column shows the Neg condition.
For each subplot, the colour and size of each node is proportional its degree, where hotter colours
indicate higher values and cooler colours indicate lower values. The weight of the edges in the
networks are represented in grey scale, where darker colours indicate stronger connections. For the
PDC measure, arrows represent the directionality of connections, ending in the node receiving the

information flow.
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Paired t-tests of intra-brain network density (computed separately for each participant
(adult and infant) and metric (PLV and PDC)) revealed that there were no significant
differences between Pos versus Neg conditions, for either metric or participant (mean Pos-
Neg density: PLV adult = 0.0, p=1.00; PLV infant = -0.01, p=1.00; PDC adult = 0.02,
p=0.20; PDC infant = -0.01, p=0.99; p-values corrected for multiple comparisons, Tukey

HSD).
3.1.2 Intra-brain graph indices

Next we assessed the topology of adults’ and infants’ networks to see if these
properties differed across Pos and Neg experimental conditions. Recall that four graph
indices were computed to represent different aspects of network topology for intra-brain
measures (individual or basic metrics, measures of segregation, integration and centrality).
Table 1 provides a summary of the Strength (S), Global Efficiency (GE), Transitivity (T) and
Betweenness Centrality (BC) values obtained for PLV and PDC connectivity measures, for

each experimental condition.

For adults, we observed limited differences in network topology as a function of
emotional valence. Namely, PDC Transitivity decreased and PLV Betweenness Centrality
increased (p=.02 for both; Hedges’g=-0.861 and 0.936 respectively) for the Pos condition
with respect to Neg condition. For infants however, no statistically significant differences

were observed between conditions for any graph metric (p>.25 for all indices).
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(a) Adult
PDC PLV
Index F(1,28) | p M(;?_fns F(1,28) | p M el
Strength (S) 0.53 0.47 -0.05 217 0.15 -0.38
Transitivity (T) 5.87 0.02* -0.01 0.79 0.37 -0.03
Global Efficiency (GE) 8.5E-2 0.77 +0.001 2.94 0.09 +0.39
Betweenness Centrality (BC) 0.08 0.77 +0.14 6.47 0.02* +6.21

(b) Infant
PDC PLV
Index F128) | p M(;?]?S Fa28) | p M(;*f‘;‘s
Strength (S) 1.31 0.26 -0.06 0.14 0.71 +0.05
Transitivity (T) 0.94 0.34 -0.004 0.007 0.93 +0.002
Global Efficiency (GE) 1.8E-5 0.99 +0.04 0.47 0.49 -0.20
Betweenness Centrality (BC) 0.01 0.90 -0.37 1.40 0.25 -4.03

Table 1. Results of Repeated Measures ANOVAs for (a) Adult and (b) Infant networks assessing the
effect of experimental Condition (Pos/Neg) on the four graph indices (strength [S], transitivity [T],
global efficiency [GE], and betweenness centrality [BC]) computed from PDC and PLV measures.
Statistically significant differences (*p<0.05) are highlighted in bold and shaded. Means differences

are calculated as Pos-Neg.
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3.2 Inter-brain connectivity
3.2.1 Inter-brain connectivity by experimental condition

Figures 6 and 7 show the significant inter-brain connections (relative to surrogate
data, see Methods Section 2.8) that were observed between mothers and infants during Pos

and Neg conditions for PLV and PDC metrics respectively.
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Figure 6. Grand average inter-brain connectivity PLV matrices for Positive (a) and Negative (b)
conditions in the 6-9 Hz band. On the left side is the connectivity matrix; rows correspond to infants’
EEG channels and columns correspond to mothers’ channels. Statistically significant inter-brain
connections are shown in colour (redder colours indicate higher PLV values) and non-significant
connections are shown in light grey. On the right size, topographical head plots of significant inter-

brain connections for Pos condition (top) and Neg condition (bottom) are shown. In both cases
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infants are shown on the left and mothers on the right. The weight of edges in the inter-brain network
is represented in grey scale, with darker colours and thicker lines indicating stronger connections.
For clarity only the 10 highest connections are plotted in the topographies, whereas in the matrices

all significant connections are indicated.
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Figure 7. Grand average inter-brain connectivity PDC matrices for Positive (a) and Negative (b)
conditions in the 6-9 Hz band. On the left side are the connectivity matrices for each direction of
‘sending’: (infant to mother (left matrix) and mother to infant (right matrix)). Connections which are
not statistically significant are marked in grey (redder colours indicate higher PDC values). On the
right side (third column) topographical head plots of significant connections for Pos (top) and Neg
(bottom) conditions are shown. In both cases infants are shown on the left and mothers on the right.
Connections from the infant to the mother are shown in grey whilst connections from the mother to
the infant are shown in red. For both directions of sending, darker and thicker lines indicate stronger
connections. For clarity only the 5 highest connections in each direction (10 in total) are plotted in

the scalp topographies, whereas in the matrices all significant connections are indicated.
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For the PLV metric (Figure 6, left), the Pos condition (first row) suggested a denser
connection between mothers and infants than the Neg condition (second row). To statistically
assess this difference, we computed the inter-brain density (IBD) of the network in each
condition (see Figure 8). The results of the ANOVA indeed revealed a significant effect
(F(1,28)=234.09, p<.001, mean difference=+0.101), confirming that IBD was significantly

higher during the Pos than the Neg condition.

A similar IBD analysis was carried out using the PDC metric (Figure 8b), where the
inter-brain density for each direction of sending (from infant to mother [ItoM] and from
mother to infant [Mtol]) was estimated in addition to the total density (sum of infant to
mother and mother to infant IBD). The ANOVA results indicated that for total IBD, there
was no significant difference between conditions (F(1,28)=0.42, p=0.52, mean
difference=+0.009). However, analysis of directed IBD (Repeated Measures ANOVA with
Condition and Direction as within-subjects factors) revealed a significant main effect of
sending Direction (F(1,14)=30.05, p<.0001, np = .68) where the ItoM network was more
densely connected than the Mtol network overall (Figure 8b, right subplot). Further, a
significant interaction was observed between Condition and Direction (F(1,14) = 326.13,
p<.0001, n’p = .96). Post hoc analysis revealed that for Mtol (Mothers ‘sending’ to Infants),
inter-brain density was significantly higher for Pos > Neg (p<.001). But for ItoM, inter-brain

density was higher for Neg > Pos (p<.001).
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Figure 8. Inter-brain density (IBD) for (a) PLV and (b) PDC. For PDC two different metrics were
obtained: total IBD (calculated as for PLV) and directed IBD (mother to infant [Mtol] and infant to

mother [ItoM]). ***p<0.001.

3.2.2 Inter-brain graph indices
To quantify topological differences in the pattern of inter-brain connectivity between
experimental conditions, two inter-brain graph indices were computed on the thresholded

connectivity matrices: Strength and Divisibility (see Section 2.10.2 for full descriptions).

(a) PLV (b) PDC
Strength  Divisibility Strength Divisibility

02

0.85 [

0.75
01

00 0.75 ] 0.7

Pos Neg Pos Neg Pos Neg Pos Neg

Figure 9. Strength and divisibility inter-brain graph connectivity indices for (a) PLV and (b) PDC, for

positive and negative conditions. ** p<0.01, *p<0.05 (false discovery rate corrected)

Overall Strength. Across both PLV and PDC metrics, Figure 9 shows that the mother-
infant inter-brain network had significantly greater strength during the Pos condition as
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compared to the Neg condition (PLV Pos = 0.096 (+0.026), PLV Neg = 0.047 (£0.011);
p<0.01, Hedges’ g=2.34). The same was true for PDC when both directions of influence
(Mtol and ItoM) were averaged (PDC Pos = 0.24 (+0.006), PDC Neg = 0.17 (£0.07); p<.05,

Hedges’ g=0.87).

Overall Divisibility. Across both PLV and PDC metrics (see Figure 9), we
consistently observed significantly reduced divisibility in the Pos condition as compared to
the Neg condition (PLV P0s=0.837+0.02, PLV Neg=0.906+0.02, p<0.01, Hedges’ g = -2.66;
PDC P0s=0.762+0.04, PDC Neg=0.806+0.05, p=0.02, Hedges’ g = -0.84). These results
indicate greater integration between mothers’ and infants’ sub-networks during the Pos

condition.

Directed Strength Directed Divisibility

POS @ NEG

0.24 ** 0.95 **

- | |
|

0.8
0.06
0.75
0 0.7
Mtol IitoM Mtol ItoM

Figure 10. Directed Strength (left) and Divisibility (right) for PDC inter-brain connectivity, for

mothers to infants (Mtol) and infants to mothers (ItoM). ** p<0.01

Finally, taking advantage of the property of directionality for the PDC metric, directed
Strength and Divisibility were calculated for each participant and condition. Figure 10 shows
the average directed strength and directed divisibility for mother to infants (Mtol) and infants
to mothers (ItoM), for each condition (Pos and Neg). For directed Strength, a Repeated

Measures ANOVA revealed a significant main effect of Condition (F(1,14) = 6.56, p<.05,
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n°p = .32, Pos> Neg), a significant main effect of Direction (F(1,14) = 11.18, p<.01, n?p =
44, Mtol > ItoM) and a significant interaction between Condition and Direction
(F(1,14)=8.72, p<.05, n°p = .38). Post hoc analysis of the interaction revealed that whereas
Mtol sending was significantly higher for Pos > Neg (p<.01), there was no significant

difference between conditions for ItoM sending (p=.99).

A complementary pattern was observed for directed Divisibility (Figure 10, right).
The Repeated Measures ANOVA revealed significant main effects of Condition (F(1,14) =
6.06, p<.05, n%p = .30, Neg> Pos) and Direction (F(1,14) = 10.50, p<.01, n’p = .43, ItoM >
Mtol), as well as a significant interaction between Condition and Direction (F(1,14)=7.29,
p<.05, n°p = .34). This pattern is consistent with the results showed for Strength (where
values were higher for the Pos condition), as both metrics are inversely related (Ciaramidaro
et al., 2018; De Vico et al., 2010; Toppi et al., 2016). Post hoc analysis of the interaction
revealed that whereas Mtol divisibility was significantly higher for Neg > Pos (p<.01), there

was no significant difference between conditions for ItoM sending (p=.90).

3.2.3 Control for acoustic differences across conditions

Finally, we were concerned that the observed inter-brain connectivity differences
between Pos and Neg conditions could have arisen from sensorimotor differences in the
production or perception of Pos versus Neg maternal utterances, rather than from emotional
valence effects per se. Accordingly, we sought to establish (1) whether there were significant
differences in the acoustic properties of maternal Pos and Neg utterances, and if so (2)
whether these acoustic differences accounted for our observed results. As reported in the
Supplementary Materials (S3), these control analyses showed that the addition of loudness
(which differed across conditions) as a covariate in our statistical analyses did not introduce

any major systematic changes to the previously-reported results on inter-brain connectivity.
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4 DISCUSSION

This study aims to describe changes in parent-infant intra- and inter-brain network
topology as a function of the valence of emotions displayed by mothers during social
interaction with their infants. Social interaction and cooperative communication are of great
importance in our daily lives. Previous studies have reported changes in adult-adult
interpersonal neural connectivity during cooperative-competitive games (Astolfi et al., 2015;
Astolfi et al., 2010; Ciaramidaro et al., 2018; Filho et al., 2016; Sinha et al., 2017), imitation
(Delaherche et al., 2015), cooperative action (Muller et al., 2013; Sciaraffa et al., 2017) and
verbal spoken communication (Tadi¢ et al., 2016). However, such dyadic neuroimaging
studies have usually involved adult participants, and it is not known if, and how, infants’
connectivity with their parents is also modulated by the emotional quality of social
interaction.

Here, we find that emotional valence during social interaction (positive or negative)
significantly modulates the inter-brain network topology of mother-infant dyads. For both
non-directed (phase-locking value, PLV) and directed (partial directed coherence, PDC)
measures of connectivity, the inter-brain network showed significantly higher Strength and
lower Divisibility for positive as compared to negative emotional states. When considering
the direction of information flow within the dyad (PDC only), mothers’ influence on and
connectedness to their infant was consistently higher during positive than negative emotional
states across all directed indices. Conversely, infant-to-parent directed inter-brain density
(1BD) was higher during negative emotions, although network Strength and Divisibility
showed no significant difference. These results highlight the contrasting role of mothers and
infants in modulating the strength and integration of dyadic neural connections during
different emotional states. This valence selectivity may be due to infants’ stronger responses

to negative than positive maternal affect, which is known to trigger an increase in infants’
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own visual scanning and attention solicitation behaviour (Toda & Fogel, 1993; Weinberg et
al., 1999; 1996).

By contrast, we observed no emotional valence differences in the intra-brain network
topology of infants for all graph metrics assessed. Further, intra-brain density did not differ
across conditions for either mothers or infants, using both directed and non-directed metrics.
However, some emotional valence differences in maternal network organisation were
observed: maternal Transitivity (for PDC) was decreased and Betweenness Centrality (for
PLV) was increased during positive emotions. Betweenness centrality is a measure of the
“importance” of each node to the transit of information across the network. Nodes with high
Betweenness act as centralised hubs in a network. Hence, if a network has high Betweenness
new information can spread more easily throughout the network, facilitating functional
integration. This is congruent with lower Transitivity, which is a measure of segregated
neural processing. Accordingly, during the communication of positive as compared to
negative emotions, maternal neural networks were more strongly integrated, permitting more
efficient neural communication (van den Heuvel & Sporns, 2013). It was surprising that no
significant differences in infants’ network topology were observed across conditions, for all
metrics assessed, especially given that global Alpha network characteristics can be reliably
assessed in 10 month infants (Velde et al., 2019). One possible explanation could be that
infants’ neural networks for processing positive and negative emotions may (at this point in
development) not yet be structurally differentiated, as compared to adults’. For example,
previous work has demonstrated that in adults’ brains, structural maturational changes occur
during which inefficient connections are pruned to conserve energy (Boersma et al., 2011,
Bullmore & Sporns, 2009; Rotem-Kohavi et al., 2017). Further, although structural hubs
emerge relatively early during brain development, many of these are still in a relatively

immature functional state, with those in visual and motor regions most functionally active
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(Fransson et al., 2011).

It is important that these null results are not misinterpreted as indicating that there are
no differences in neural activation per se within the brains of infants with respect to positive
and negative emotions. In fact, when we directly contrasted the neural activation levels for
individual connections (without considering network organisation or topology), our
supplementary analysis revealed extensive activation differences between Positive and
Negative conditions for both mothers and infants (see Supplementary Materials Section S2).
These differences in neural activation were observed particularly in terms of hemispheric
lateralisation, which is consistent with prior literature (Coan & Allen, 2004; Davidson, 1984,
1998). Rather, our current findings add to the existing literature by showing that emotional
valence modulates the topology of the inter-brain network (that is, how information flows
between mothers’ and infants’ brains) even more strongly than it modulates to the topology

of infants’ intra-brain network (i.e. how information flows within the infant’s brain).

4.1 Limitations

One limitation of the current work is that the study included a relatively small sample
size of N=15 dyads. As a result, individual differences in dyadic emotional processing could
not be examined. A second limitation is that a semi-naturalistic experimental design was used
in order to facilitate social interaction between mothers and their infants. However, the
ecological setting increased the complexity of data analysis, for example in terms of the
number and variation in myogenic artifacts contained in mothers’ and infants” EEG data. This
necessitated more stringent data rejection and baselining pre-processing steps in order to
account for potentially spurious effects arising from these artifacts (see also Section S3 of the
Supplementary Materials for an evaluation of the effect of maternal speech acoustics — and by

extension, speech articulation effects - on our main results). A final consideration was with
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regard to how volume conduction effects could have affected our connectivity analyses. For
example, we noted that volume conduction effects could have biased infants’ intra-brain
network topography as computed by the PLV metric (Section 3.1.1). However, the main
comparison of interest here was between experimental conditions. Since volume conduction
effects would be expected to affect both conditions in a similar way, we did not expect

volume conduction to confound the interpretation of our main results.

4.2 Conclusion

Here, we adopted a dual connectivity approach to assess the effect of emotional
valence on the topology of the parent-infant joint neural network. We found that inter-brain
network indices (density, strength and divisibility) consistently revealed strong effects of
emotional valence on the parent-child connection, whereby parent and child showed stronger
integration of their neural processes during positive than negative emotional states. By
contrast, only weak valence effects were detected for intra-brain connectivity. Further,
directed inter-brain metrics (PDC) revealed that mothers had a stronger directional influence
on the dyadic network during positive emotional states, whereas infants had a stronger
influence on the network during negative emotional states. These results suggest that the
parent-infant inter-brain network is strongly modulated by the emotional quality and tone of
dyadic social interactions, and that inter-brain graph metrics may be successfully applied to

elucidate these effects.
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