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Abstract

The childhood muscle cancer rhabdomyosarcoma (RMS) is the most common pediatric soft tissue
sarcoma. In the last 40 years, outcomes for low and intermediate risk patients have improved;
however, high risk patients with metastatic disease still have poor overall survival. Differentiation
therapy for RMS has been considered a potential clinical approach to halting tumor progression
by inducing the terminal myogenic differentiation program, and thus reducing the need for
cytotoxic chemotherapy. Both the NOTCH and MEK pathway have been shown to play varying
roles in inducing differentiation in RMS cells. Here, we tested several different RMS cell lines
harboring varying genetic abnormalities with the MEK inhibitor trametinib alone, and in
combination with y-secretase inhibitors and found no significant effect on cell viability when used

together.
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Introduction

Rhabdomyosarcoma (RMS) is a rare pediatric cancer thought to phenocopy a skeletal muscle
lineage. RMS presents as one of two main subtypes, each exhibiting a unique histological and
molecular profile. Embryonal rhabdomyosarcoma (eRMS) is characterized by widespread genetic
instability with P53, RAS, PIK3CA, RB1 and FGFR4 disruptions often observed (1-6). Alveolar
rhabdomyosarcoma (aRMS) is defined by a t(2;13) or t(1;13) chromosomal translocation that
results in the DNA binding domain of either PAX7 or PAX3 fusing with the transactivation domain
of FOXOI, creating an oncogenic transcription factor (7,8). Even though RMS is the most
common soft tissue sarcoma in children, survival for patients with metastasis has remained
unchanged over the past 47 years despite intensive multimodal therapy.

Histologically, rhabdomyosarcoma expresses markers of myogenic differentiation such as
myogenin and MyoD1 (9,10); however, the function of these myogenic proteins is often impaired
and RMS cells fail to fully differentiate (11). RMS is believed to circumvent terminal
differentiation, allowing RMS tumor cells to divide uncontrollably. Restoring the terminal
differentiation program is posited to slow or halt tumor growth by transforming malignant,
proliferating cells into non-dividing cells. Differentiation therapy appears to have clinical
potential, as eRMS cells have been observed to differentiate following chemotherapy and radiation
(12—-14), although this response is not often found in aRMS.

Different groups have uncovered strategies for inducing differentiation in RMS and thus slowing
growth, but with limited success. Genetic suppression of the Notch1-Hey1 pathway by shRNA in
eRMS RD cells, or suppression of Notch-3 by siRNA in RD and aRMS Rh30 cells results in an
increase of myogenic differentiation markers in vitro, and pharmacological inhibition of Notch
signaling using a y -secretase inhibitor reduces cell proliferation (15,16). In RD cells, modulating

miR-206 increases differentiation by 30% in vitro (17), while GSK3 inhibitors significantly


https://doi.org/10.1101/622522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/622522; this version posted April 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

increase the number of myosin heavy chain positive cells after treatment for 72 hours (18). The
inhibition of RAF/MEK protein kinases induce terminal differentiation in RD cells (18), a result
not surprising given that RAS pathway activation is common in eRMS, and that this disease
demonstrates a “Ras on” gene signature (5,19). In vivo trametinib slows but does not halt tumor
growth in eRMS cell lines SMS-CTR and BIRCH, but not RD; these tumors exhibit an increase in
nuclear MYOG expression, but not across all cells of a tumor, and complete terminal
differentiation is not observed (20). Taken together, these results demonstrate the difficulty in
achieving complete terminal differentiation and suggest the therapeutic benefit of a single agent
differentiation therapy will have limited clinical success, and thus combining pathway inhibitors
will likely be necessary to achieve tumor remission.

Unpublished data from our lab suggests in vitro synergy when simultaneously targeting the MAPK
and Notch pathways in RMS cells. Presented here are the in vitro drug screening assays performed
on a range of aRMS and eRMS cells lines and primary patient cells harboring different genetic
hallmarks, to examine the efficacy of the MEK inhibitor trametinib alone or in combination with

Notch signaling inhibition using y-secretase inhibitors.
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Results

Trametinib decreases viability in a range of cell lines

Our experiments confirmed that treatment of KRAS-driven RD cells with sub-micromolar
concentrations (684 nM) of trametinib for 72 hours resulted in cytotoxicity (Figure 1A).
Unexpectedly, SCA1-01, a Kras activated primary mouse tumor cell line, was not sensitive to
MEK inhibition (IC50= 38,000 nM), indicating that a pathway other than RAS-MEK is necessary
for tumor cell maintenance (Figure 3). An aRMS patient-derived primary tumor cell culture (CF-
1, Figure 2A) and an aRMS cell line (Rh30, Figure 4A) that both harbored the PAX3:FOXO1
chromosomal translocation were also treated with trametinib and responded with low micromolar
concentrations (IC50= 1,557 nM and 803 nM, respectively). Finally, we tested CW9019, a cell
line that has an alveolar histology and harbored a t(1;13) reciprocal translocation resulting in a
PAX7:FOXOL fusion protein. This cell line was the most sensitive to trametinib treatment, with a
half maximal inhibitory concentration of 113 nM (Figure 5A). However, the in vitro IC50 values

for these cell lines are still well above the clinically achievable dose of trametinib (36 nM) (21).

Trametinib in combination with fy-secretase inhibitors does not exhibit synergistic

cytotoxicity

To query whether trametinib augmented with inhibition of the Notch pathway would cause
additive or synergistic cytotoxicity, we additionally tested the above cell lines in combination with
one of the clinical y-secretase inhibitors, nirogacestat, semagacestat or RO4929097. y-secretase
inhibitors were combined with either a low, clinically achievable dose (50 nM) or a high dose (150
nM) of trametinib. Little or no synergy was observed at clinically achievable concentrations of y-
secretase inhibitors in all cell lines tested. In RD cells y-secretase treatment alone did not cause

cytotoxicity (Figure 1B-D); synergy was only observed at the highest concentrations of
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nirogacestat and the highest tested concentration of trametinib (150nM, Figure 1F), but not with
R0O4929097 and a low concentration of trametinib (50nM, Figure 1E). y-secretase inhibitors
exhibited no synergistic effect on the aRMS primary patient sample cell culture CF-1 (22), the
aRMS cell line Rh30 or the mouse non-myogenic sarcoma tumor SCA-1 when combined with
trametinib (Figure 2, 3, 4 E-F). The aRMS cell line CW9019 which was most sensitive to single
agent trametinib treatment exhibited some single agent sensitivity to the highest concentrations of
nirogacestat (Figure 5C) but not semagacestat or RO4929097 (Figure 5 B,D). Combination
treatment with 150 nM trametinib and y-secretase inhibitors did not demonstrate any synergistic

decrease in cell viability (Figure 5 E-F).
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Discussion

A common assumption in clinical trial design is that single agents should have strong activity in
phase I/I1 studies to advance to phase III trials. However, some drugs may have substantial synergy
and might improve survival by 10-20% in Phase III clinical trials, even if no activity could be seen
in phase I/II trials. In this context, we sought to test the combination of two drugs with limited
single agent potential, MEK inhibitors and y-secretase inhibitors. Unfortunately, even in the
earliest in vitro pre-clinical studies, no supporting evidence for this combination approach could

be garnered.
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Materials and methods
Cell lines

SCA1-01 cells were donated by Dr. Amy Wagers and Dr. Simone Hettmer (Harvard University)
and established from a Kras;p16p19™!! mouse non-myogenic sarcoma tumor. CW9019 cells were
a generous gift from Dr. Fred Barr (National Cancer Institute). SCA-1 and CW9019 were
maintained in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin and
maintained at 37°. RD (CCL-136) eRMS and Rh30 (CRL-2061) aRMS cells were purchased from
ATCC (Manassas, VA) and cultured per manufacturer’s instructions. CF-1 is a primary patient
sample isolated from a 18 month old male presenting with alveolar rhabdomyosarcoma (22). These

cells were cultured in RPMI supplemented with 10% FBS and 1% penicillin-streptomycin and
maintained at 37°. CF-1 cells are only tested at passage earlier than 8. All human cell lines were

authenticated using short tandem repeat analysis performed by the University of Arizona Genetics

Core (Tuscon, AZ).
In Vitro inhibitor testing

Small molecule inhibitors semagacestat (LY-450139, S1594), nirogacestat (PF03084014, S1575)
and R0O4929097 (S8018) were purchased from Selleckchem (Houston, TX), reconstituted to
manufacturers specifications and stored in -80°C. To generate a standard 10-point dose response
curve, inhibitors were distributed as single agents into 96 well plates to produce final
concentrations ranging from 100 uM to 0.005 uM. Combination plates were likewise prepared in
96 well plates with trametinib (GSK1120212, S2673) at fixed final concentrations of 50nM or
150nM, paired with y-secretase inhibitors at varying concentration identical to those used for single
agents. All drug plates were stored at -20°C and thawed a maximum of 3 times. Cells were seeded

at a density of 3x10* cells per well in a 96 well plate on day 0 (Oh). On day 1 (24h) each drug or
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combination was added to the cells for a final volume of 100uL per well. Cells were incubated at
37° with 5% CO; for 72 hours. On day 4 (96h) compounds were screened for their effect on
proliferation by adding 100uL room temperature cell titer-glo (CTG, Promega, Madison, WI) to
each well and rocking in the dark at room temperature for 10 minutes. Luminescence was measured
with a Biotek Synergy plate reader. Standard dose response curves and IC50 values were

calculated with GraphPad Prism software using log-10 transformed concentrations and normalized

values. Each dose was performed in triplicate and all experiments were repeated three times.
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Figure Legends

Fig 1. Cell viability assays using the KRAS-driven human eRMS cell line RD. Cells were treated with

trametinib (A) or y-secretase inhibitors (B-D) alone, or 50 nM (IC62) trametinib (E) or 150 nM (IC57)

trametinib (F) in combination with varying concentration of y-secretase inhibitors.

Fig 2. Cell viability assays using the primary patient derived aRMS cell culture CF-1. Cells were treated
with trametinib (A) or y-secretase inhibitors alone (B-D), or 150 nM (IC78) trametinib in combination with

varying concentration of y-secretase inhibitors (E-G).

Fig 3. Cell viability assays using the KRAS,p16p19™" (Cdkn2a) mouse non-myogenic soft tissue sarcoma
tumor SCA-1. Cells were treated with trametinib (A) or y-secretase inhibitors alone (B-D), or 150 nM
(IC93) trametinib in combination with varying concentration of y-secretase inhibitors (E-G).

Fig 4. Cell viability assays using the human aRMS cell line Rh30. Cells were treated with trametinib (A)

or y-secretase inhibitors alone (B-D), or 150nM (IC64) trametinib (F) or 50 nM (IC73) trametinib (E) in

combination with varying concentration of y-secretase inhibitors.

Fig 5. Cell viability assays using the human aRMS cell line CW9019. Cells were treated with trametinib

(A) or y-secretase inhibitors alone (B-D), or 150nM (IC64) trametinib in combination with varying

concentration of y-secretase inhibitors (E-G).
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Table 1. Cell lines used for this study

Name Origin Genetic features Histology
RD 7 year old female | MYC amplification, NRAS.Q61H mutation, TP53 SRMS
mutation
t(2;13), PAX3:FOXO1, TP53 mutation,
Rh30 16 year old male amplification of 12q13-15 region including aRMS
CDK4
CF-1 5 year old male t(2;13), PAX3:FOXO1 aRMS
CW9019 human t(2;13), PAX7:FOXO01, TP53 mutation aRMS
SCA-1 mouse KRAS, p16p19 null NMS (non-myogenic
sarcoma)
Table 2. Drugs used for this study
Generic Brand name Target Vendor, Cat#, Trial status
name Lot #
LY450139 semagacestat 1-secretase Selleckchem Alzheimer’s Ph 3 Completed
(AB42, AB4o, 51594, disease
AB38), Notch 5159402
. Selleckchem Desmoid .
PF0O3084014 nirogacestat y-secretase 51575, tumors, Ph 2 Active
S$157504 Fibromatosis
R04929097 y-secretase Se”szcéfgem No active or
(AB40), ¢ recruiting trials
Notch $801801
trametinib mekinist MEK1/2 SeIISeZCSk;::em Metastatic FDA May 2013
¢ melanoma approved
$267308
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