

1                   **A Molecular Link between Cell Wall Modification and Stringent  
2                   Response in a Gram-positive Bacteria**

5                   **Running Title:** Cell wall modification protein regulates stringent response pathway

7                   *Surya D. Aggarwal<sup>1</sup>, Saigopalakrishna S. Yerneni<sup>2</sup>, Ana Rita Narciso<sup>3,4</sup>, Sergio R. Filipe<sup>3,4</sup>, N.  
8 Luisa Hiller<sup>1\*</sup>*

10                  <sup>1</sup>Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

11                  <sup>2</sup>Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

12                  <sup>3</sup>Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e  
13 Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

14                  <sup>4</sup>UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia,  
15 Caparica, Portugal

17                  \*corresponding author: lhiller@andrew.cmu.edu

19                  **Keywords:** Gram-positive, *Streptococcus pneumoniae*, cell wall, translation quality  
20                  control, stringent response, alarmone, autolysis, phagocytosis

21 **ABSTRACT**

22

23 To ensure survival during colonization of the human host, bacteria must successfully

24 respond to unfavorable and fluctuating conditions. This study explores the fundamental

25 phenomenon of stress response in a gram-positive bacterium, where we investigate the

26 ability of a cell wall modification enzyme to modulate intracellular stress and prevent the

27 triggering of the stringent response pathway. The *Streptococcus pneumoniae* cell wall

28 modification proteins MurM and MurN are tRNA-dependent amino acid ligases, which

29 lead to the production of branched muropeptides by generating peptide crossbridges. In

30 addition, MurM has been proposed to contribute to translation quality control by

31 preferentially deacylating mischarged tRNAs mischarged with amino acids that make up

32 the peptidoglycan. Here, we demonstrate that the *murMN* operon promotes optimal

33 growth under stressed conditions. Specifically, when grown in mildly acidic conditions, a

34 *murMN* deletion mutant displays early entry into stationary phase and dramatically

35 increased lysis. Surprisingly, these defects are rescued by inhibition of the stringent

36 response pathway or by enhancement of the cell's ability to deacylate mischarged tRNA

37 molecules. The increase in lysis results from the activity of LytA, and experiments in

38 macrophages reveal that *murMN* regulates phagocytosis in a LytA-dependent manner.

39 These results suggest that under certain stresses, these bacterial cells lacking MurMN

40 likely accumulate mischarged tRNA molecules, activate the stringent response pathway,

41 and enter prematurely into stationary phase. Moreover, by virtue of its ability to

42 deacylate mischarged tRNAs while building peptidoglycan crossbridges, MurM can

43 calibrate the stress response with consequences to host-pathogen interactions. Thus,

44 MurM is positioned at the interface of cell wall modification, translation quality control

45 and stringent response. These findings expand our understanding of the functions of the

46 bacterial cell wall: cell wall modifications that impart structural rigidity to the cell are

47 interlinked to the cell's ability to signal intracellularly and mount a response to

48 environmental stresses.

49 **SIGNIFICANCE**

50

51 During infection, microbes must survive the hostile environmental conditions of the  
52 human host. When exposed to stresses, bacteria activate an intracellular response,  
53 known as stringent response pathway, to ensure their survival. This study connects two  
54 fundamental pathways important for cellular growth in a gram-positive bacterium; it  
55 demonstrates that enzymes responsible for cell wall modification are connected to the  
56 stringent response pathway via their ability to ameliorate errors in protein translation.

57 Our study was performed on *Streptococcus pneumoniae* where the cell wall  
58 modification enzyme, MurM, is a known determinant of penicillin resistance. We now  
59 demonstrate the importance of MurM in translation quality control and establish that it  
60 serves as a gatekeeper of the stringent response pathway.

61 **INTRODUCTION**

62  
63 Gram-positive bacteria have evolved a thick and sophisticated cell wall that ensures bacterial  
64 structural integrity and is critical for cellular viability. This dynamic structure serves as a scaffold  
65 for surface anchored proteins, wall teichoic acids, lipoteichoic acids, lipoproteins, and capsular  
66 polysaccharides (1, 2). It is also a major target of immune defenses and antibiotics (3, 4).  
67 Opportunistic pathogens, such as *Streptococcus pneumoniae* (pneumococcus), encounter  
68 hostile environments within the human host, where the cell wall serves as a barrier and an  
69 interface between the bacteria and its host.

70

71 The pneumococcal cell wall consists of glycan chains that are cross-linked via peptide bridges  
72 (5). These glycan chains consist of alternating subunits of *N*-acetylglucosamine (NAG) and *N*-  
73 acetylmuramic acid (NAM) residues. Each NAM subunit is attached to a peptide side chain,  
74 which is crosslinked to stem peptide from another glycan chain. In pneumococcus, the link can  
75 be direct or through a short diamino acid peptide bridge that is assembled by MurM and MurN,  
76 two tRNA-dependent amino acid ligases. These proteins add the diamino acid peptide to the  
77 lipid II peptidoglycan precursor in the inner side of the bacterial membrane before this complex  
78 is flipped to the outer side, where the peptidoglycan building block containing this diamino acid  
79 peptide is incorporated into the cell wall by penicillin binding proteins (6). The peptide bridge  
80 originates from the third residue (L-Lys) on one pentapeptide chain and is ultimately connected  
81 to the fourth residue (D-Ala) of the stem peptide in a neighboring glycan chain (6, 7). MurM  
82 contributes either an alanine or a serine to the first position of the bridge, while MurN contributes  
83 an alanine to the second position. Thus the pneumococcal peptidoglycan peptide bridge  
84 consists of either L-Ala-L-Ala or L-Ser-L-Ala. Allelic variants of *murM* alone lead to diversity in  
85 the nature of stem peptide branching in the cell wall peptidoglycan (8–10). Finally, *murMN* are

86 required for penicillin resistance, as inactivation of this operon leads to a complete loss of  
87 penicillin resistance (6, 11).

88

89 As tRNA-dependent amino acid ligases, MurMN acquire the alanines and serines they utilize for  
90 the peptidoglycan bridge from aminoacyl-tRNAs. The employment of charged tRNAs as  
91 substrates for MurMN is an evolutionary design that juxtaposes the fundamental cellular  
92 functions of peptidoglycan biosynthesis and protein translation. Previous work has  
93 demonstrated that MurM can deacylate mischarged tRNAs (12). Moreover, *in vitro*, it displays a  
94 substantial preference for deacylating mischarged tRNAs over correctly charged tRNAs (13).  
95 The preference for amino acids from mischarged tRNAs strongly suggests that MurM decreases  
96 the pool of mischarged tRNAs present in the cell, thereby, contributing to the process of  
97 translation quality control (12).

98

99 Under stress, many bacterial cellular processes including translation, are regulated by the  
100 stringent response pathway. Deprivation of amino acids or carbon sources, elevated  
101 temperature, and acidic conditions can trigger the stringent response and rewire the cellular  
102 circuitry to adapt to challenging conditions and ensure bacterial survival (14–17). In addition, the  
103 stringent response plays a role in regulation of bacterial virulence and susceptibility to  
104 antimicrobials (15, 18–20). The stringent response pathway is characterized by the  
105 accumulation of alarmones, specifically guanosine tetra- (ppGpp) and pentaphosphate  
106 (pppGpp). In the majority of gram-negative bacteria, these are produced by RelA. In gram-  
107 positive bacteria, these are produced by a bifunctional RSH protein (RelA/SpoT homolog), with  
108 both synthetase and hydrolase activity (16, 21). In gram-negative bacteria, binding of  
109 deacylated-tRNA to ribosomes activates alarmone production (22–25), however, the molecular

110 mechanisms underlying activation of the stringent response pathway in gram-positive bacteria  
111 remain elusive.

112

113 In this study, we show that MurMN is a molecular link between the processes of cell wall  
114 modification and translation quality control. Our findings indicate that the absence of these  
115 proteins sensitizes pneumococcal cells to acidic stress: when a *murMN* deletion mutant strain  
116 is grown in mildly acidic conditions, growth defects result from the likely accumulation of  
117 mischarged tRNAs and the activation of the stringent response pathway. Further, our data  
118 suggest that activation of the stringent response stimulates LytA activity and subsequently  
119 influences pneumococcal cells' ability to be phagocytosed. These findings provide insight into  
120 cell wall function by suggesting that the cell wall modification enzymes can buffer intracellular  
121 stress and modulate activation of the stringent response pathway.

122

## 123 RESULTS

124

### 125 **The *murMN* operon protects cells against acid-induced growth defects**

126

127 When growing a  $\Delta$ *murMN* strain in planktonic culture, we observed a pronounced growth defect  
128 in rich media in mildly acidic conditions (pH 6.6) (**Fig. 1A**). The mutant exhibited increased  
129 susceptibility to stationary-phase induced autolysis and a decrease in the maximum optical  
130 density reached after growth (max OD), consistent with an early onset of stationary phase. This  
131 growth defect was rescued in a  $\Delta$ *murMN* complemented strain ( $\Delta$ *murMN*:*murMN*) (**Fig. 1B and**  
132 **1C**). Although minor differences in growth of wild-type and  $\Delta$ *murMN* strains were observed in  
133 rich media at normal conditions (pH 7.4), these differences were much more pronounced in  
134 mildly acidic conditions.

135

136 MurMN contribute to cell wall branching by adding diamino acid peptide bridges to the  
137 peptidoglycan stem peptide that lead to production of branched muropeptides (6). The loss of  
138 branching alters pneumococcal cell wall composition and increases bacterial sensitivity to lysis  
139 by cell wall inhibitors (26). Thus, one hypothesis for the difference in sensitivity of wild-type and  
140  $\Delta$ *murMN* strains to acidic stress is that wild-type cells incur changes in the cell wall in response  
141 to pH, and that these changes are absent in a  $\Delta$ *murMN* strain. To test this hypothesis, we  
142 employed high-performance liquid chromatography (HPLC) to analyze the peptidoglycan  
143 composition of pneumococci grown in rich media at normal (pH 7.4) and mildly acidic (pH 6.6)  
144 conditions for both wild-type and  $\Delta$ *murMN* strains. We did not observe any differences in the cell  
145 wall composition of the wild-type cells between normal and acidic conditions (**Fig. 2Ai, B**).  
146 Similarly, there was also no difference in the cell wall composition of  $\Delta$ *murMN* cells between  
147 normal and acidic conditions (**Fig. 2Aii, B**). As expected, we observed that deletion of *murMN*  
148 led to the loss of branched peptides from the peptidoglycan compared to wild-type cells. These  
149 findings suggest that the growth differences observed in the  $\Delta$ *murMN* strain in acidic conditions  
150 cannot be attributed to pH-dependent alterations in peptidoglycan composition.  
151

152 **Disruption of the translation quality control function of MurM leads to pneumococcal  
153 growth defects**

154 Recent *in vitro* experiments have shown that MurM can deacylate mischarged tRNAs, and that it  
155 may play a significant role in maintaining low levels of mischarged tRNAs in pneumococcal cells  
156 (12). Given that the growth defect of the  $\Delta$ *murMN* strain could not be attributed to alterations in  
157 the cell wall composition in acidic conditions (**Fig. 2**), we hypothesized that the loss of the  
158 translation quality control role of MurM was responsible for the observed phenotypes.

159

160 In addition to obtaining alanine or serine from correctly aminoacylated-tRNAs (Ala-tRNA<sup>Ala</sup> or  
161 Ser-tRNA<sup>Ser</sup> respectively), MurM can also acquire these amino acids from other mischarged  
162 tRNA species (12, 27). In fact, alanyl-tRNA synthetase (AlaRS), the enzyme responsible for  
163 charging tRNA<sup>Ala</sup> to produce Ala-tRNA<sup>Ala</sup> is error prone, such that tRNA<sup>Ala</sup> is often misactivated  
164 with serine (Ser-tRNA<sup>Ala</sup>) or glycine (Gly-tRNA<sup>Ala</sup>) (28) (**Fig. 3B**). Accumulation of Ser-tRNA<sup>Ala</sup> is  
165 toxic to cells such that many organisms, across all the three kingdoms of life, encode a free-  
166 standing homolog to the editing domain of AlaRS protein, termed AlaXp. These AlaXp prevent  
167 toxicity by deacylating mischarged tRNA<sup>Ala</sup> molecules in different organisms (29–33).  
168 Interestingly, analysis of the *S. pneumoniae* available genomes, suggests that pneumococcus  
169 does not encode an AlaXp protein; instead, once the tRNA molecules are charged, the  
170 responsibility of ensuring translational fidelity has been proposed to rest with MurM by virtue of  
171 its deacylation function (12, 34). Importantly, the catalytic efficiency of MurM in using  
172 mischarged Ser-tRNA<sup>Ala</sup> as a substrate for generating crosslinks is dramatically higher relative  
173 than its ability to use correctly acylated Ala-tRNA<sup>Ala</sup> or Ser-tRNA<sup>Ser</sup> (13). The high affinity of  
174 MurM for misacylated-tRNA<sup>Ala</sup> combined with the absence of a gene encoding AlaXp in the  
175 pneumococcal genome, emphasize the importance of MurM in translation quality control.

176

177 We reasoned that expression of a tRNA-editing protein in a *ΔmurMN* background could allow us  
178 to distinguish between the cell-wall crosslinking and the translation quality control roles of MurM,  
179 and thus establish which of these roles is responsible for the growth defect of the *ΔmurMN*  
180 strain. To this end, we overexpressed the editing domain of AlaRS protein. We determined the  
181 editing domain of the protein encoded by pneumococcal *alaRS* (*spr\_1240*) using an amino acid  
182 alignment with AlaRS proteins from *E. coli* (WP\_096112793.1) and *B. subtilis*

183 (WP\_007408211.1), where the protein domains have been well characterized (30, 31, 35). The  
184 pneumococcal editing domain was identified as residues 437-873 of the pneumococcal AlaRS,  
185 and the peptide encoded by this region was used for functional complementation (AlaRS<sub>editing</sub>)  
186 (**Fig. 3A**). Ectopic expression of AlaRS<sub>editing</sub> is predicted to deacylate mischarged alanine-  
187 specific tRNA species (tRNA<sup>Ala</sup>), the most abundant of which are Ser-tRNA<sup>Ala</sup> and Gly-tRNA<sup>Ala</sup>  
188 (12, 28) (blue in **Fig. 3B**). Since AlaRS<sub>editing</sub> only deacylates mischarged tRNA<sup>Ala</sup> molecules, its  
189 expression will not diminish the correction of other mischarged tRNA species (tRNA<sup>Ser</sup>, tRNA<sup>Phe</sup>,  
190 tRNA<sup>Lys</sup>), which are also thought to be employed by MurM to acquire non-cognate alanine or  
191 serine (12, 13, 27) (green in **Fig. 3B**).

192

193 The expression of AlaRS<sub>editing</sub> in the *ΔmurMN* strain partially rescued the growth defect  
194 displayed by the *ΔmurMN* strain in mildly acidic conditions (**Fig. 3C**). Specifically, the  
195 *ΔmurMN::alaRS<sub>editing</sub>* strain resembled the wild type in that it did not exhibit the dramatically  
196 increased stationary-phase induced lysis associated with the *ΔmurMN* and its maxOD was  
197 intermediate between the *ΔmurMN* and wild-type strains. These finding illustrate the importance  
198 of the deacylating function of MurM *in vivo* and imply that MurM ensures normal growth in mildly  
199 acidic conditions by its ability to deacylate mischarged tRNAs, which would be toxic for  
200 pneumococcal cells.

201

## 202 **MurMN regulate activation of the stringent response pathway**

203 The stringent response is a well conserved pathway utilized by bacteria to ensure survival under  
204 stressed conditions. Mediated by the production of alarmones, the activation of this pathway  
205 rewrites the cellular circuitry and coordinates cellular entry into stationary phase (36). We

206 hypothesized that the differences in growth of the  $\Delta murMN$  strain, relative to the wild-type strain,  
207 are a consequence of activation of the stringent response pathway.

208

209 If activation of the stringent response pathway contributes to the early onset of stationary phase  
210 in the  $\Delta murMN$  strain, this growth phenotype should be decreased or abrogated in a  $\Delta murMN$   
211 where the stringent response pathway cannot be activated. This pathway is activated by  
212 accumulation of the intracellular alarmones, ppGpp or pppGpp, which are hyperphosphorylated  
213 forms of GDP or GTP respectively, synthesized by the addition of a pyrophosphate molecule  
214 obtained from ATP (**Fig. 4A**). In pneumococcus, the primary source of alarmone production is  
215 RSH (RelA/SpoT Homolog), a bifunctional synthetase and hydrolase of (p)ppGpp (37). Thus,  
216 we deleted *rsh* (*spr\_1487*) to generate strains defective in the ability to activate the stringent  
217 response pathway. Thin-layer chromatography experiments were used to confirm that the  $\Delta rsh$   
218 strain did not produce measurable levels of alarmone (**Fig. 4B**).

219

220 We compared growth among wild-type,  $\Delta murMN$ , and  $\Delta murMN\Delta rsh$  strains (**Fig. 4C**).  
221 The  $\Delta murMN\Delta rsh$  strain did not exhibit the growth defects observed for the  $\Delta murMN$  strain in  
222 mildly acidic conditions. Thus, inhibition of the stringent response abrogates the growth defects  
223 in a  $\Delta murMN$  background. To measure the relative alarmone levels in the  $\Delta murMN$  strain  
224 relative to the wild-type strain in mildly acidic conditions, we employed thin-layer  
225 chromatography (TLC). The  $\Delta murMN$  strain displays increased alarmone levels compared to the  
226 wild-type strain, as observed by the higher levels of alarmone relative to GTP, consistent with  
227 growth defects in the absence of *murMN* (**Fig. 4B**). We conclude that acidic conditions promote

228 entry into stringent response, and that MurMN buffer the activation of stringent response and  
229 consequently entry into stationary phase.

230

231 It is well established that *murMN* is required for penicillin resistance of pneumococci (6). We  
232 investigated whether the fitness of  $\Delta murMN$  strain under penicillin pressure can be enhanced by  
233 inhibition of the stringent response pathway. To this end, we determined the percentage of  
234 viable pneumococcal cells when grown at a concentration of penicillin, that is approximately  
235 equal to the minimum inhibitory concentration of this antibiotic for the  $\Delta murMN$  strain (0.025  
236  $\mu\text{g/ml}$ ). At this concentration, the  $\Delta murMN\Delta rsh$  and the  $\Delta murMN::alaRS_{\text{editing}}$  strains displayed a  
237 marked increase in survival relative to the  $\Delta murMN$  background (**Table 1**). We conclude that the  
238 role of MurM in preventing the activation of the stringent response, due to correction of  
239 mischarged tRNAs, contributes to increase in fitness under penicillin pressure.

240

#### 241 ***murMN* dampen LytA-mediated lysis**

242 The early onset of stationary phase is followed by increased lysis in the  $\Delta murMN$  strain when  
243 grown in mildly acidic conditions (**Fig. 1**). Having established that *murMN* regulate activation of  
244 the stringent response pathway, we searched for the molecule(s) responsible for the autolysis.  
245 Autolysis of pneumococcal cells is carried out by autolysins, peptidoglycan hydrolases  
246 containing choline-binding domains that enable their binding to phosphocholine residues  
247 present on the teichoic acids of the cell wall (38–40). Lysis requires attachment of choline-  
248 binding proteins to the cell surface, such that addition of exogenous choline inhibits this binding  
249 and the consequent autolysis (38, 41–43). Addition of two percent choline chloride to  $\Delta murMN$   
250 grown in mildly acidic conditions abrogated lysis, suggesting lysis is triggered by choline binding

251 protein(s) (Fig. 5A). Of the multiple choline binding proteins encoded in the pneumococcal  
252 genomes, LytA is the major autolysin. To investigate whether the increased lysis of  $\Delta murMN$  is  
253 induced by LytA, we tested growth of  $\Delta murMN$  with a deletion in *lytA* ( $\Delta murMN\Delta lytA$ ). The  
254  $\Delta murMN\Delta lytA$  strain resembled the wild-type strain in that it did not display lysis (Fig. 5B).  
255 Further, the lower maxOD observed in  $\Delta murMN$  strain was not rescued to wild type levels in the  
256  $\Delta murMN\Delta lytA$  strain (Fig. 5B). This rescue of only the lysis phenotype in the  $\Delta murMN\Delta lytA$   
257 strain suggests that in the absence of *murMN*, activation of the stringent response induces early  
258 onset of stationary phase and that LytA is responsible for the subsequent autolysis phenotype.  
259 The dramatically increased sensitivity of the  $\Delta murMN$  to LytA activity, relative to both the wild-  
260 type strain at mildly acidic and the  $\Delta murMN$  strain at normal conditions, suggest that *murMN*  
261 suppress the activation of LytA under mildly acidic conditions (Fig. 5C).

262

### 263 **MurMN influence macrophage phagocytosis by regulating LytA activity**

264 Pneumococcal cells encounter numerous environmental stresses in an infection setting. Among  
265 these is acidic pH, encountered as a result of the inflammatory response mounted by the host  
266 against the invading bacteria (44, 45). Moreover, previous work suggests that LytA contributes  
267 to pneumococcal evasion from phagocytosis (46), and our data revealed that the  $\Delta murMN$  strain  
268 displays increased LytA mediated autolysis. Thus, we hypothesized that macrophages would be  
269 less efficient at uptaking the  $\Delta murMN$  strain relative to wild-type cells.

270

271 To test for phagocytosis, we moved to the encapsulated strain D39, the serotype 2 strain which  
272 is the ancestor of R6D. Macrophages were tested for their ability to phagocytose D39 and its  
273 isogenic mutants. In support of our hypothesis, the number of macrophages positive for

274 pneumococcus was lower when infected with  $\Delta murMN$  strain relative to the wild-type strain (**Fig. 6, S1**). Further, this phenotype was reversed for the  $\Delta murMN\Delta lytA$  strain, demonstrating the  
275 importance of LytA in this phenotype (**Fig. 6, S1**). Finally, in agreement with previous work (46),  
276 the number of macrophages positive for pneumococcus was increased upon infection with a  
277  $\Delta lytA$  strain (**Fig. 6, S1**).

279  
280 Our data suggest that the activation of LytA in the  $\Delta murMN$  strain requires activation of the  
281 stringent response pathway. In support, the number of macrophages that internalize the  
282  $\Delta murMN\Delta rsh$  strain was higher than those that internalize the  $\Delta murMN$  strain. Finally, our model  
283 predicts that *murMN* buffers the stringent response and LytA activation via its role in deacylating  
284 the misacylated tRNAs. Consistently, we observed a higher number of macrophages positive for  
285 the  $\Delta murMN::alaRS_{\text{editing}}$  strain relative to the  $\Delta murMN$  strain (**Fig. 6, S1**). These data are  
286 consistent with a role for *murMN* in activation of the stringent response and consequent  
287 increase in LytA activity and capture the consequence of *murMN*-mediated stringent response  
288 suppression for phagocytosis.

289  
290 The decreased percentage of macrophages positive for the  $\Delta murMN$  strain could be a  
291 consequence of either greater evasion of pneumococcal cells from phagocytosis or increased  
292 lysis of pneumococcal cells upon their internalization. If the acidic environment of macrophages  
293 promotes increased lysis of the  $\Delta murMN$  strain, there should be a rapid decrease in internalized  
294 bacteria over time. In contrast, we observe a more gradual decline in internalized  $\Delta murMN$   
295 relative to the wild-type strain (**Fig. S2**). Thus, the  $\Delta murMN$  strain appears to evade  
296 phagocytosis, and, as previously reported, this process is LytA-dependent (46).

297 **DISCUSSION**

298 Elucidating the mechanisms that bacterial cells employ to compartmentalize their functions or  
299 organize cell-wide responses to environmental stresses is fundamental to the field of  
300 microbiology. The tRNA-dependent-amino acid ligases involved in cell wall modification are  
301 optimally positioned to play a dual role in the cell: they build peptide crossbridges that serve as  
302 a major component of the bacterial cell wall, and they deacylate mischarged tRNAs, carrying out  
303 a vital role of translation quality control. Some bacterial species have evolved mechanisms to  
304 divert aminoacylated tRNA molecules away from translation and toward cell wall biosynthesis  
305 (12). For instance, *Staphylococcus aureus* encodes a set of isoacceptor tRNA species that  
306 display a greater propensity for peptidoglycan biosynthesis than translation, via diminished  
307 binding to the EF-Tu elongation factor utilized in translation (47). Similarly, *Mycobacterium*  
308 *tuberculosis* encodes dedicated tRNA synthetases that are spatially tethered to cell wall  
309 biosynthesis enzymes, and thus are exclusively used in the peptidoglycan (48). In contrast, in  
310 other bacterial species, the same pool of aminoacyl tRNAs serves both peptidoglycan  
311 modification and translation (49). Our data suggest that in this organization, cell wall tRNA-  
312 dependent-amino acid ligases can serve as regulators of intracellular stress. Our studies in the  
313 *pneumococcus* reveal that diminished editing and likely accumulation of mischarged tRNAs  
314 initiates the stringent response, premature entry into stationary phase, and subsequent  
315 activation of the murein hydrolase LytA. In this context, the cell wall modification protein MurM,  
316 by virtue of its role in deacylating mischarged tRNAs, dampens activation of the stringent  
317 response and calibrates the cellular reaction to stress.  
318  
319 An outstanding question in this model is how do mischarged tRNAs trigger the stringent  
320 response? Binding of aminoacyl tRNA to the ribosomal A-site provides the required amino acid

321 for polypeptide elongation (16). In gram-negative bacteria, binding of deacylated tRNAs to the  
322 ribosome activates RelA and induces alarmone production (16). Activation of the stringent  
323 response is less understood in gram-positive bacteria, where the alarmone synthetase and  
324 hydrolase functions are fused in the bifunctional RSH enzyme (14, 50, 51). We propose that the  
325 accumulation of misacylated tRNAs, due to the absence of functional MurMN proteins, may also  
326 trigger the stringent response. Classic translation models suggest that the translation machinery  
327 recognizes the EF-Tu bound aminoacylated tRNA without displaying specificity for the amino  
328 acid, such that some amino acids from mischarged tRNAs can be incorporated into protein (52–  
329 55). However, other evidence suggest that the translation machinery recognizes both the amino  
330 acid and the tRNA: strong binding affinities of EF-Tu to tRNAs are compensated by weak  
331 binding affinities of EF-Tu to amino acids and vice-versa, leading to uniform binding affinities  
332 across tRNAs charged with their cognate amino acid (56). In this case, misacylated tRNAs can  
333 display binding affinities to the EF-Tu that are dramatically different than correctly charged  
334 tRNAs (57). Given the considerable difference in the inherent EF-Tu binding affinities of tRNA<sup>Ala</sup>  
335 and tRNA<sup>Ser</sup> (56, 58–60), it is expected that incorporation of Ser-tRNA<sup>Ala</sup> will lead to an  
336 appreciable change in translation efficiency. Combined with our result that accumulation of  
337 mischarged tRNAs trigger the stringent response in pneumococcus, it seems plausible that RSH  
338 may be activated by binding of mischarged tRNAs to the ribosome.

339  
340 Previous work has characterized the only RSH present in the pneumococcus, and established  
341 its important in alarmone production (37). The pneumococcal RSH contributes to copper uptake,  
342 provides increased fitness in cells subjected to mupirocin (an antibiotic that causes amino acid  
343 (Ile) starvation), and is a virulence determinant in the murine models of pneumococcal  
344 pneumoniae and sepsis (37). Further, studies of a RSH point mutation identified in a laboratory

345 variant of a clinical strain, demonstrated that RSH promotes resistance to neutrophil killing and  
346 provides a fitness advantage in a murine model of colonization (61). Together, these studies  
347 strongly suggest that the ability of pneumococcus to trigger the stringent response is critical for  
348 virulence. We put forward the idea that MurMN play a role in fine-tuning entry into the stringent  
349 response, and as such may contribute to the outcome of pneumococcal infections. This could  
350 explain why most bacteria carry the *murMN* operon despite lacking a peptidoglycan rich in the  
351 branched muropeptides that are the product of the MurMN proteins.

352

353 Our work describing a novel role for *murMN* was performed using growth in a mildly acid  
354 condition. Bacterial cells commonly encounter acidic environment in the human host during  
355 infection due to inflammation response mounted by immune cells (45). There are a series of  
356 studies on molecular responses of pneumococcal cells subjected to acid stress (62–65). These  
357 studies describe the molecular regulation of acidic stress-induced lysis, a response mediated by  
358 LytA and regulated by phosphorylation of ComE in a competence stimulating peptide-  
359 independent manner (63–65). These studies differs from our work in design and scope. First,  
360 while we also focus on pneumococcal growth in acidic pH, these studies analyzed cells pre-  
361 conditioned in alkaline pH before exposure to acidic stress. Second, our work is centered on  
362 *murMN* and its role in the cellular response to acidic stress. The growth defect we describe is  
363 not observed in a  $\Delta$ comE strain and the growth of the  $\Delta$ murMN $\Delta$ comE strain resembles that of  
364  $\Delta$ murMN strain (data not shown). Thus, the molecular responses described in this study do not  
365 appear to overlap with those previously described and highlights the importance of *murMN* in  
366 regulation of growth in mildly acidic conditions.

367

368 The  $\Delta murMN$  strain is prone to LytA-mediated lysis, and this effect is dramatic at a mildly acid  
369 pH. The dynamics of LytA during planktonic growth have been well characterized (66). During  
370 exponential growth, LytA is mainly intracellularly and inactive. During stationary phase, LytA  
371 exits the cells, where it promotes autolysis via its *N*-acetylmuramoyl-L-alanine amidase activity  
372 and in doing so breaks the amidase bond between the carbohydrate and the peptide  
373 components of the peptidoglycan backbone (67). Thus, the activation of LytA in the  $\Delta murMN$   
374 strain can be explained by its early onset into stationary phase. In addition, previous work has  
375 demonstrated that LytA contributes to evasion from phagocytosis by inhibition of complement-  
376 mediated immunity (46). LytA inhibits binding of proteins in the classical complement pathway to  
377 the pneumococcal surface and enhances recruitment of suppressors of complement to impair  
378 the alternative complement pathway. Thus, we hypothesized that increased activity of LytA in  
379 the  $\Delta murMN$  strain would protect it from macrophage uptake. As predicted, the number of  
380 macrophages with internalized pneumococci was lower for the  $\Delta murMN$  relative to the wild-type  
381 strain. Moreover, this phenotype was reversed in a  $\Delta murMN\Delta lytA$  mutant. These data are  
382 consistent with our conclusion that *murMN* restrains LytA activity. Further, our experiments in  
383 macrophages combined with previous work on  $\Delta rsh$  strains (37, 61) suggest that pneumococcal  
384 fitness *in vivo* may depend on careful calibration of the stringent response, where activation and  
385 timing can expose or conceal pneumococcus to different facets of the immune response.  
386  
387 MurM is encoded in all pneumococcal strains as well as some related species, and there are  
388 multiple *murM* alleles (9, 68–70). All pneumococcal *murM* alleles have the ability to introduce  
389 both serine and alanine at the first position of the diamino acid peptide bridge (8). However,  
390 alleles vary regarding expression levels and the relative ratio of serine versus alanine they insert

391 in the first position of the peptide bridge (8, 26). Thus, *murM* alleles may also vary in their ability  
392 to deacylate mischarged Ser-tRNA<sup>Ala</sup> and control entry into the stringent response.

393

394 In nature, there is one free standing editing protein, AlaXp, and it deacylates Ser-tRNA<sup>Ala</sup> and  
395 Gly-tRNA<sup>Ala</sup>. AlaXp is homologous to the editing domain of the AlaRS alanyl-tRNA synthetase  
396 protein, which possesses both synthetase and editing functions (33). The conserved  
397 widespread distribution of AlaXp across the tree of life contrasts with the limited phylogenetic  
398 distribution of other standalone aminoacyl-tRNA editing proteins and highlights the importance  
399 of the AlaXp function. Further, analysis of characterized AlaXp proteins reveals that they are  
400 conserved in their ability to deacylate Ser-tRNA<sup>Ala</sup>, but not necessarily Gly-tRNA<sup>Ala</sup> molecules  
401 (33). These findings suggest that deacylating mischarged Ser-tRNA<sup>Ala</sup> is of great importance to  
402 the cell, and that accumulation of this mischarged tRNA is toxic to the cell. Thus, it has been  
403 proposed that AlaXp is an evolutionary solution to the ubiquitous challenge of Ser-tRNA<sup>Ala</sup>  
404 production. The overlap in function between MurM and AlaXp suggests that MurM may also  
405 represent an alternative evolutionary solution to the challenge of editing Ser-tRNA<sup>Ala</sup> (34). Our  
406 genomic search reveals that many Firmicutes that produce peptide bridges, such as  
407 *Staphylococcus aureus*, *Streptococcus thermophilus*, *Streptococcus agalactiae*, *Streptococcus*  
408 *salivarius*, *Enterococcus faecalis* and *Lactobacillus viridescens*, do not appear to encode for an  
409 AlaXp protein. It is thus tempting to speculate that the composition of cell wall bridges, the vast  
410 majority of which utilize serine, alanine, or glycine, may represent an adaptation that reflects the  
411 function of cell wall tRNA synthetases in translation quality control.

412

413 In conclusion, this study suggests that MurM provides a molecular link between cell wall  
414 modification and translation quality control in gram-positive bacteria that produce short peptide  
415 bridges in their peptidoglycan layer. These bridges are structural components with a critical role

416 in antibiotic resistance (6–8, 11). This study provides *in vivo* evidence to suggest that the  
417 propensity of MurM to deacylate mischarged-tRNA allows it to serve as a translation quality  
418 control checkpoint and dampen entry into the stringent response. Through these mechanisms,  
419 MurM regulates the activity of LytA and influences phagocytosis. These findings implicate MurM  
420 in the survival of bacteria as they encounter unpredictable and hostile conditions in the host.  
421 The question of how the regulation of these fundamental biological processes by MurM  
422 influences the extent of pathogenesis still remains to be investigated. Our work provides  
423 functional insight into the role of peptidoglycan peptide bridge generating enzymes in  
424 modulating intracellular stress and entry into the stringent response.

425

## 426 MATERIALS & METHODS

### 427 Bacterial strains & growth conditions

428 This experimental work was performed on two strains of *Streptococcus pneumoniae* and their  
429 isogenic mutants. The majority of the work was performed on a penicillin-resistant derivative of  
430 R6 (R6D). This R6D isolate, also referred to as Hun663.tr4, was generated from a genetic cross  
431 where parental R6 strain was recombined with DNA isolated from Hungary19A-6 and  
432 recombinants were selected for penicillin resistance (71). The *murM* allele in this strain  
433 correspond to allele *murMB1*. R6D is a non-encapsulated strain, thus the macrophage  
434 experiments were performed with the highly related serotype 2 D39 strain (*murMA* allele) and  
435 isogenic mutants (GenBank CP000410) (72).

436

437 Colonies were grown from frozen stocks by streaking on TSA-II agar plates supplemented with  
438 5% sheep blood (BD BBL, New Jersey, USA). Colonies were then picked and inoculated in  
439 fresh Columbia broth (Remel Microbiology Products, Thermo Fisher Scientific, USA) and  
440 incubated at 37°C and 5% CO<sub>2</sub> without shaking. For acidic conditions, the pH of the Columbia

441 broth was adjusted to 6.6 by the addition of 1M HCl. The basic recipe used for preparing  
442 chemically defined medium (CDM) was as previously described (73). MOPS-CDM was  
443 prepared by replacing potassium phosphate and sodium phosphate as previously described  
444 (37).

445

#### 446 **Construction of mutants**

447 The deletion mutant strains were constructed by using site-directed homologous recombination  
448 to replace the region of interest with antibiotic selection marker (Table S1). Briefly, the  
449 transformation constructs were generated by assembling the amplified flanking regions with the  
450 antibiotic resistance cassettes. Between 1-2kb of flanking regions upstream and downstream of  
451 the regions of interest were amplified from parental strains using Q5 2x Master Mix (New  
452 England Biolabs, USA). The antibiotic resistance gene *ermB* was amplified from *S. pneumoniae*  
453 SV35-T23, and the genes, *kan* and *aad9* were amplified from *S. pneumoniae* R6DΔ*briC*::*briC*  
454 and R6D::spec<sup>R</sup> (74), respectively. SV35-T23 has an *ermB*-containing mobile element, making it  
455 resistant to erythromycin (75). These PCR products were assembled together either by sticky-  
456 end ligation of restriction-cut PCR products or by Gibson Assembly using NEBuilder HiFi DNA  
457 Assembly Cloning Kit (New England Biolabs, USA).

458

459 The strains  $\Delta$ *murMN*:*murMN* and WT::*alaRS*<sub>editing</sub> were generated by ligating the gene of interest  
460 at its 3' end with an antibiotic resistance cassette. These were assembled with the amplified  
461 flanking regions either by sticky-end ligation of restriction-cut PCR products or by Gibson  
462 Assembly using NEBuilder HiFi DNA Assembly Cloning Kit. The *murMN* complement strain  
463 ( $\Delta$ *murMN*:*murMN*) was recombined at the native *murMN* locus. The WT::*alaRS*<sub>editing</sub> was  
464 introduced downstream of *bga* (without modifying *bga*), a commonly employed site for  
465 transformation (74, 76). The  $\Delta$ *murMN*::*alaRS*<sub>editing</sub> strain was generated by transformation of the

466 corresponding *alaRS* construct into  $\Delta murMN$  strain. Primers used to generate the construct are  
467 listed in Table S2.

468

469 The D39 mutants (D39  $\Delta murMN$ , D39  $\Delta lytA$ , D39 $\Delta murMN\Delta lytA$ , D39  $\Delta murMN\Delta rsh$ ,  
470 D39 $\Delta murMN::alaRS_{editing}$ ) were generated by transformation with the corresponding constructs  
471 amplified from R6D into strain D39.

472

#### 473 **Bacterial transformations**

474 To generate mutants, target strains (R6D or D39) were transformed in the following way. Strains  
475 were grown in acidic Columbia broth to an OD<sub>600</sub> of 0.05, followed by the addition of 1 $\mu$ g of DNA  
476 along with 125 $\mu$ g/mL of CSP1 (sequence: EMRLSKFFRDFILQRKK; purchased from GenScript,  
477 NJ, USA). These treated cultures were incubated at 37°C for 2 hours. Following the  
478 incubation, the cultures were plated on selective Columbia agar plates that contain the  
479 appropriate antibiotic: spectinomycin (100 $\mu$ g/ml), erythromycin (2 $\mu$ g/ml), or kanamycin  
480 (150 $\mu$ g/ml), and incubated at 37°C overnight. The following day, resistant colonies were  
481 selected and cultures in selective media, and colonies were confirmed using PCR. The bacterial  
482 strains generated in this study are listed in the Table S1.

483

#### 484 **Growth curves**

485 Strains of interest were streaked on TSA-II agar plates supplemented with 5% sheep blood (BD  
486 BBL, New Jersey, USA). These streaked cells were then inoculated into fresh Columbia broth  
487 (normal or acidic) and incubated at 37°C and 5% CO<sub>2</sub> without shaking. Once the cultures  
488 reached an OD<sub>600</sub> of 0.05, the growth of the cultures was followed every 30 minutes by  
489 recording their optical density at a wavelength of 600nm.

490

491 Strains with a *Δrsh* genetic background showed a much longer lag phase. To circumvent this,  
492 when comparing growth of cells with strains in *Δrsh* background, we adapted our protocol from a  
493 previous study measuring growth of these cells (37). The cells were grown in acidic Columbia  
494 broth to an OD<sub>600</sub> of ~0.2. The cells were then collected by centrifugation at 3000 rpm for 10  
495 minutes. These cells were then resuspended in acidic Columbia broth to an OD<sub>600</sub> of  
496 approximately 0.1. The growth of these cultures was followed by every 30 minutes by recording  
497 their optical density.

498

499 All growth curves represented within a given figure panel were carried out in parallel and with  
500 the same batch of media.

501

## 502 **Cell wall preparation & enzymatic degradation**

503 Pneumococcal cell walls were prepared following a previously published procedure (71). Briefly,  
504 after collecting cells by centrifugation, cells were suspended in ice-cold PBS and dropped into  
505 boiling sodium dodecyl sulfate to inactivate cell wall-modifying enzymes. The peptidoglycan was  
506 further purified using enzymatic degradation as previously described (6).

507

## 508 **Analysis of stem peptide composition**

509 The stem peptides contained with the extracted and processed peptidoglycans were separated  
510 and analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) as has  
511 been previously described (6).

512

## 513 **Thin-layer chromatography (TLC)**

514 *S. pneumoniae* strains were grown in acidic Columbia broth until an OD<sub>600</sub> of 0.1 followed by an  
515 additional 1-hour incubation. This time-point was chosen so all cells were still in exponential  
516 phase, owing to the early lysis observed in *ΔmurMN* cells. The protocol for alarmone labelling

517 and TLC was adapted from a previous study (37). Cells were harvested by centrifugation at  
518 3300 g for 4 minutes. Pellets were washed and the cells were resuspended to the same density  
519 in MOPS-CDM. 200 $\mu$ L of the suspension was prewarmed at 37°C for 10 minutes. Following  
520 this, 25 $\mu$ L of the warmed suspension was mixed with 150 $\mu$ L of MOPS-CDM containing 150 $\mu$ Ci  
521 mL<sup>-1</sup> of H<sub>3</sub>[<sup>32</sup>P]O<sub>4</sub> (2mCi mL<sup>-1</sup> in Water; PerkinElmer, Waltham, MA) for 30 minutes. 25 $\mu$ L of the  
522 sample was then removed and mixed with an equal volume of frozen 13M formic acid, followed  
523 by repeated thawing and refreezing. After two such cycles, 5 $\mu$ L of the sample was removed for  
524 spotting for TLC. The samples were spotted on polyethyleneimine-cellulose (PEI) plastic-baked  
525 TLC plates (J.T. Baker) and chromatographed in 1.5M KH<sub>2</sub>PO<sub>4</sub> (pH 3.4). TLC plates were then  
526 dried, and exposed to a phosphor screen (GE Healthcare, Chicago, IL) overnight. The plates  
527 were imaged using Typhoon FLA 9000 imager (GE Healthcare, Chicago, IL) and analyzed using  
528 ImageJ.

529

### 530 **Antibiotic fitness assay**

531 Pneumococcal cells were grown to mid-exponential phase at an OD<sub>600</sub> ~0.5 in fresh Columbia  
532 broth. Serial dilutions were performed and the cells were plated on either TSA-II blood agar  
533 plates or Columbia agar plates with 0.025  $\mu$ g/ml of penicillin G, and incubated at 37°C and 5%  
534 CO<sub>2</sub> overnight. Percent of viable cells was calculated as the ratio of viable CFUs on antibiotic  
535 plates relative to viable CFUs on blood agar plates.

536

### 537 **Phagocytosis assay**

538 J774A.1 cells (#ATCC® TIB-67™, ATCC, Manassas, Virginia) were grown and maintained in  
539 Roswell Park Memorial Institute media (RPMI; Gibco, Gaithersburg, MD) supplemented with 10%  
540 fetal bovine serum (Thermo Fisher Scientific, Waltham, MA). J774A.1 cells were certified by  
541 IDEXX BioAnalytics (Columbia, MO) to be free of bacterial, fungal or mycoplasma contamination.

542 To test the phagocytosis of wild type and the different pneumococci mutants,  $1 \times 10^6$  J774A.1 cells  
543 were seeded per well in a tissue culture coated 6-well plate (Corning Inc, Corning, NY) and  
544 allowed to adhere overnight. Cells were infected in triplicate with  $25\mu\text{l}$  of pneumococcal  
545 suspension containing  $\sim 3 \times 10^7$  CFU resulting in a multiplicity of infection (MOI) of 10 and incubated  
546 at  $37^\circ\text{C}$  for 1 hour. Post incubation, cells were washed three times with PBS, and incubated for  
547 either 30, 60, 120 or 240 minutes in RPMI culture medium containing  $10\mu\text{g}/\text{ml}$  penicillin and  
548  $200\mu\text{g}/\text{ml}$  gentamicin to kill extracellular pneumococci. Cells were then washed five times with  
549 PBS and phagocytosed pneumococci were harvested by treating the infected J774A.1 cells with  
550 0.025% saponin for 15 minutes at  $23^\circ\text{C}$ . Recovered bacteria were washed in PBS three times  
551 and assessed by flow cytometry. For flow cytometry, pneumococci cells were labelled with cell  
552 permeant SYTO13 green fluorescent DNA binding dye (Thermo Fisher Scientific, Waltham, MA)  
553 according to the manufacturer's instruction prior to infecting J774A.1 cells. Infected J774A.1 cells  
554 were manually scrapped, washed and analyzed on Accuri C6 flow cytometer (BD Biosciences,  
555 San Jose, CA) connected to an Intellicyt HyperCyt autosampler (IntelliCyt Corp., Albuquerque,  
556 NM) using green channel (488 nm). Data were processed and interpreted using FlowJo software  
557 (FlowJo LLC, Ashland, Oregon).

558

559 **Confocal microscopy**

560 J774A.1 cells were seeded on 12 mm collagen type-I coated glass coverslips (Electron  
561 Microscopy Services, Hatfield, PA) and infected with SYTO13 labeled wild type and the different  
562 pneumococci mutants with an MOI of 10 as described above. After 1 hour of infection with labelled  
563 pneumococci, J774A.1 cells were washed five times with PBS and treated with  $10\mu\text{g}/\text{ml}$  penicillin  
564 and  $200\mu\text{g}/\text{ml}$  gentamicin for 1 hour to kill extracellular bacteria. Cells were then washed three  
565 times with PBS and fixed with 3.33% freshly prepared paraformaldehyde (Electron Microscopy

566 Services, Hatfield, PA) for 20 min at 23°C. Excess fixative was quenched by adding an equal  
567 volume of 1% (w/v) BSA in PBS for 5 min followed by three washes with PBS. To visualize F-actin  
568 and nuclei, cells were stained with Alexa Fluor™ 647-Phalloidin (Thermo Fisher Scientific,  
569 Waltham, MA) (5:200 in PBS) and Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA)  
570 (1:1000 in PBS), respectively. Imaging was performed using a Carl Zeiss LSM 880 confocal  
571 microscope with fixed settings and the images were analyzed using ZEN Black software (Carl  
572 Zeiss Microscopy, Thornwood, NY).

573

574 **Statistical tests**

575 The statistical differences were calculated using ANOVA. Comparison among different groups  
576 was performed using Tukey's post-test. *p* values of less than 0.05 were considered to be  
577 statistically significant.

578

579 **Analysis of the *S. pneumoniae* genomes for AlaXp**

580 A Blastp search was implemented in NCBI. As query we use the AlaXp sequences from *Bacillus*  
581 sp (GenBank WP\_000206094.1). Using default parameters, we screened the following NCBI  
582 genomes: (1) *Staphylococcus aureus* (*taxid*:1280), *Streptococcus thermophilus* (*taxid*:1308),  
583 *Streptococcus agalactiae* (*taxid*:1311), *Streptococcus salivarius* (*taxid*:1304), *Enterococcus*  
584 *faecalis* (*taxid*:1351), and *Lactobacillus virides* (*taxid*:1629). All top hits had p-value below  
585 1e-15 and approximately 30% percent identity to the query sequence, except for *Weissella*  
586 *virides* and some Enterococci strains that displayed p-value ~1e-9 and percent identity  
587 around 25%. Hits were analyzed to establish the starting residue on the query. In all these  
588 genomes this number ranged from 489-499, consistent with AlaRS. None of these genomes

589 revealed a hit that matched the AlaXp query in size as well as sequence (although a few partial  
590 sequences were identified that appear to correspond to fractions of the AlaRS).

591

## 592 **ACKNOWLEDGEMENTS**

593 We thank Prof. Alexander Tomasz for introducing us to the study of MurMN through stimulating  
594 discussions and challenging questions. We also thank him for providing the R6D strain used in  
595 this study. We thank Rory Eutsey and Karina Mueller-Brown for their assistance with laboratory  
596 experiments, Manning Huang for help with data visualization, Dr. Aaron Mitchell for productive  
597 advice throughout the development of this project, and Dr. John Woolford for a careful reading  
598 of this manuscript.

599

## 600 **FUNDING**

601 This work was supported by NIH grant R00-DC-011322 to NLH, the Stupakoff Scientific  
602 Achievement Award to SDA, as well as support from the Eberly Family Trust and the  
603 Department of Biological Sciences at Carnegie Mellon University. SF was supported by  
604 portuguese national funds from PTDC/BIA-MIC/30746/2017 research grant, from UCIBIO  
605 research unit, UID/Multi/04378/2019, and from ONEIDA project (LISBOA-01-0145-FEDER-  
606 016417). The funders had no role in study design, data collection and analyses, decision to  
607 publish, or preparation of the manuscript.

608 **REFERENCES**

- 609 1. Silhavy TJ, Kahne D, Walker S (2010) The Bacterial Cell Envelope. *Cold Spring Harbor*  
610 *Perspectives in Biology* 2:a000414.
- 611 2. Rajagopal M, Walker S (2017) Envelope Structures of Gram-Positive Bacteria. *Curr Top*  
612 *Micrbiol Immunol* 404:1–44.
- 613 3. Koch AL (2003) Bacterial Wall as Target for Attack: Past, Present, and Future Research.  
614 *Clinical Microbiology Reviews* 16(4):673–687.
- 615 4. Sukhithasri V, Nisha N, Biswas L, Kumar VA, Biswas R (2013) Innate immune recognition  
616 of microbial cell wall components and microbial strategies to evade such recognitions.  
617 *Microbiological Research* 168:396–406.
- 618 5. Tomasz A (1981) Surface Components of *Streptococcus pneumoniae*. *Reviews of*  
619 *Infectious Diseases* 3(2):190–211.
- 620 6. Filipe SR, Tomasz A (2000) Inhibition of the expression of penicillin resistance in  
621 *Streptococcus pneumoniae* by inactivation of cell wall muropeptide branching genes.  
622 *Proceedings of the National Academy of Sciences* 97(9):4891–4896.
- 623 7. Filipe SR, Severina E, Tomasz A (2001) Functional Analysis of *Streptococcus pneumoniae*  
624 MurM Reveals the Region Responsible for Its Specificity in the Synthesis of Branched Cell  
625 Wall Peptides. *The Journal of Biological Chemistry* 276(43):39618–39628.
- 626 8. Filipe SR, Pinho MG, Tomasz A (2000) Characterization of the murMN operon involved in  
627 the synthesis of branched peptidoglycan peptides in *Streptococcus pneumoniae*. *The*  
628 *Journal of Biological Chemistry* 275(36):27768–27774.
- 629 9. Filipe SR, Severina E, Tomasz A (2000) Distribution of the mosaic structured murM genes  
630 among natural populations of *Streptococcus pneumoniae*. *Journal of Bacteriology*  
631 182(23):6798–6805.
- 632 10. Smith AM, Klugman KP (2001) Alterations in MurM, a cell wall muropeptide branching  
633 enzyme, increase high-level penicillin and cephalosporin resistance in *Streptococcus*  
634 *pneumoniae*. *Antimicrobial Agents and Chemotherapy* 45(8):2393–2396.
- 635 11. Smith AM, Klugman KP (2000) Non-Penicillin-Binding Protein Mediated High-Level  
636 Penicillin and Cephalosporin Resistance in a Hungarian Clone of *Streptococcus*  
637 *pneumoniae*. *Microbial Drug Resistance* 6(2):105–110.
- 638 12. Shepherd J, Ibba M (2013) Lipid II-independent trans editing of mischarged tRNAs by the  
639 penicillin resistance factor MurM. *The Journal of Biological Chemistry* 288(36):25915–  
640 25923.
- 641 13. Shepherd J (2011) Characterisation of Pneumococcal Peptidoglycan Cross-linking  
642 Enzymology. PhD Thesis (University of Warwick).
- 643 14. Potrykus K, Cashel M (2008) (p)ppGpp: Still Magical? *Annual Review of Microbiology*  
644 62:35–51.

- 645 15. Poole K (2012) Bacterial Stress Responses as Determinants of Antimicrobial Resistance. *J*  
646 *Antimicrob Chemother* 67:2067–2089.
- 647 16. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K (2015) Recent functional  
648 insights into the role of (p)ppGpp in bacterial physiology. *Nature Reviews Microbiology*  
649 13(5):298–309.
- 650 17. Liu K, Bittner AN, Wang JD (2015) Diversity in (p)ppGpp metabolism and effectors. *Current*  
651 *Opinion in Microbiology* 24:72–79.
- 652 18. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS (2010) ppGpp Conjures Bacterial  
653 Virulence. *Microbiology and Molecular Biology Reviews* 74(2):171–199.
- 654 19. Dalebroux ZD, Swanson MS (2012) ppGpp: magic beyond RNA polymerase. *Nature*  
655 *Reviews Microbiology* 10:203–212.
- 656 20. Maisonneuve E, Gerdes K (2014) Molecular Mechanisms Underlying Bacterial Persisters.  
657 *Cell* 157:539–548.
- 658 21. Atkinson GC, Tenson T, Hauryliuk V (2011) The RelA/SpoT Homolog (RSH) superfamily:  
659 Distribution and functional evolution of ppgpp synthetases and hydrolases across the tree  
660 of life. *PLoS ONE* 6(8):e23479.
- 661 22. Haseltine WA, Block R (1973) Synthesis of Guanosine Tetra- and Pentaphosphate  
662 Requires the Presence of a Codon-Specific, Uncharged Transfer Ribonucleic Acid in the  
663 Acceptor Site of Ribosomes. *Proceedings of the National Academy of Sciences*  
664 70(5):1564–1568.
- 665 23. Pedersen FS, Lund E, Kjeldgaard NO (1973) Codon specific, tRNA dependent in vitro  
666 synthesis of ppGpp and pppGpp. *Nature: New biology* 243(122):13–15.
- 667 24. Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH (2002) Dissection of the  
668 mechanism for the stringent factor RelA. *Molecular Cell* 10:779–788.
- 669 25. Jenvert R-MK, Schiavone LH (2005) Characterization of the tRNA and ribosome-  
670 dependent pppGpp-synthesis by recombinant stringent factor from *Escherichia coli*. *FEBS*  
671 *Journal* 272:685–695.
- 672 26. Filipe SR, Severina E, Tomasz A (2002) The murMN operon: A functional link between  
673 antibiotic resistance and antibiotic tolerance in *Streptococcus pneumoniae*. *Proceedings of*  
674 *the National Academy of Sciences of the United States of America* 99(3):1550–1555.
- 675 27. Shepherd J, Ibba M (2014) Relaxed substrate specificity leads to extensive tRNA  
676 mischarging by *Streptococcus pneumoniae* class I and class II aminoacyl-tRNA  
677 synthetases. *mBio* 5(5):e01656–14.
- 678 28. Tsui WC, Fersht AR (1981) Nucleic Acids Research. *Nucleic Acids Research* 9(18):4627–  
679 4637.
- 680 29. Schimmel P (2011) Mistranslation and its control by tRNA synthetases. *Philosophical*  
681 *Transactions of the Royal Society B: Biological Sciences* 366(1580):2965–2971.

- 682 30. Ahel I, Korencic D, Ibba M, Soll D (2003) Trans-editing of mischarged tRNAs. *Proceedings*  
683 *of the National Academy of Sciences* 100(26):15422–15427.
- 684 31. Beebe K, Mock M, Merriman E, Schimmel P (2008) Distinct domains of tRNA synthetase  
685 recognize the same base pair. *Nature* 451(7174):90–93.
- 686 32. Chong YE, Yang X-L, Schimmel P (2008) Natural homolog of tRNA synthetase editing  
687 domain rescues conditional lethality caused by mistranslation. *The Journal of Biological*  
688 *Chemistry* 283(44):30073–30078.
- 689 33. Guo M, et al. (2009) Paradox of mistranslation of serine for alanine caused by AlaRS  
690 recognition dilemma. *Nature* 462(7274):808–812.
- 691 34. Shepherd J, Ibba M (2015) Bacterial transfer RNAs. *FEMS Microbiology Reviews*  
692 39(3):280–300.
- 693 35. Guo M, et al. (2009) The C-Ala Domain Brings Together Editing and Aminoacylation  
694 Functions on One tRNA. *Science* 325(5941):744–747.
- 695 36. Cashel M, Gentry D, Hernandez V, Vinella D (1996) The stringent response. *Escherichia*  
696 *Coli and Salmonella: Cellular and Molecular Biology*, eds Neidhardt F, et al. (ASM Press;  
697 Washington, D.C. Washington, D.C), pp 1458–1496.
- 698 37. Kazmierczak KM, Wayne KJ, Rechtsteiner A, Winkler ME (2009) Roles of relSpn in  
699 stringent response, global regulation and virulence of serotype 2 Streptococcus  
700 pneumoniae D39. *Molecular Microbiology* 72(3):590–611.
- 701 38. Giudicelli S, Tomasz A (1984) Attachment of pneumococcal autolysin to wall teichoic  
702 acids, an essential step in enzymatic wall degradation. *Journal of Bacteriology*  
703 158(3):1188–1190.
- 704 39. Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR (2000) Role of novel  
705 choline binding proteins in virulence of Streptococcus pneumoniae. *Infection and Immunity*  
706 68(10):5690–5695.
- 707 40. Maestro B, Sanz J (2016) Choline Binding Proteins from Streptococcus pneumoniae: A  
708 Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. *Antibiotics*  
709 5(2):21.
- 710 41. Holtje J-V, Tomasz A (1975) Lipoteichoic acid: a specific inhibitor of autolysin activity in  
711 pneumococcus. *Proceedings of the National Academy of Sciences of the United States of*  
712 *America* 72(5):1690–1694.
- 713 42. Briese T, Hakenbeck R (1985) Interaction of the pneumococcal amidase with lipoteichoic  
714 acid and choline. *European Journal of Biochemistry* 146(2):417–427.
- 715 43. Garcia JL, Diaz E, Romero A, Garcia P (1994) Carboxy-terminal deletion analysis of the  
716 major pneumococcal autolysin. *Journal of Bacteriology* 176(13):4066–4072.
- 717 44. Lardner A (2001) The effects of extracellular pH on immune function. *Journal of Leukocyte*  
718 *Biology* 69:522–530.

- 719 45. Park S-Y, Kim I-S (2013) Identification of macrophage genes responsive to extracellular  
720 acidification. *Inflammation Research* 62(4):399–406.
- 721 46. Ramos-Sevillano E, et al. (2015) Pleiotropic effects of cell wall amidase LytA on  
722 *Streptococcus pneumoniae* sensitivity to the host immune response. *Infection and*  
723 *Immunity* 83(2):591–603.
- 724 47. Giannouli S, Kyritsis A, Malissovas N, Becker HD, Stathopoulos C (2009) On the role of an  
725 unusual tRNAGly isoacceptor in *Staphylococcus aureus*. *Biochimie* 91(3):344–351.
- 726 48. Maloney E, et al. (2009) The two-domain LysX protein of *Mycobacterium tuberculosis* is  
727 required for production of lysinylated phosphatidylglycerol and resistance to cationic  
728 antimicrobial peptides. *PLoS Pathogens* 5(7):e1000534.
- 729 49. Raina M, Ibba M (2014) tRNAs as regulators of biological processes. *Frontiers in Genetics*  
730 5:171.
- 731 50. Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J (2006) New horizons for  
732 (p)ppGpp in bacterial and plant physiology. *Trends in Microbiology* 14(1):45–54.
- 733 51. Wolz C, Geiger T, Goerke C (2010) The synthesis and function of the alarmone (p)ppGpp  
734 in firmicutes. *International Journal of Medical Microbiology* 300:142–147.
- 735 52. Chapeville F, et al. (1962) On the role of soluble ribonucleic acid in coding for amino acids.  
736 *Proceedings of the National Academy of Sciences of the United States of America*  
737 48(1):1086–1092.
- 738 53. Prather NE, Murgola EJ, Mims BH (1984) Nucleotide substitution in the amino acid  
739 acceptor stem of lysine transfer RNA causes missense suppression. *Journal of Molecular*  
740 *Biology* 172(2):177–184.
- 741 54. Normanly J, Kleina LG, Masson J-M, Abelson J, Miller JH (1990) Construction of  
742 *Escherichia coli* Amber Suppressor tRNA Genes: III. Determination of tRNA Specificity.  
743 *Journal of Molecular Biology* 213(4):719–726.
- 744 55. Tsai F, Curran JF (1998) tRNA2/(Gln) mutants that translate the CGA arginine codon as  
745 glutamine in *Escherichia coli*. *RNA* 4(12):1514–1522.
- 746 56. Dale T, Uhlenbeck OC (2005) Amino acid specificity in translation. *TRENDS in*  
747 *Biochemical Sciences* 30(12):659–665.
- 748 57. LaRiviere FJ, Wolfson AD, Uhlenbeck OC (2001) Uniform Binding of Aminoacyl-tRNAs to  
749 Elongation Factor Tu by Thermodynamic Compensation. *Science* 294(5540):165–168.
- 750 58. Dale T, Sanderson LE, Uhlenbeck OC (2004) The affinity of elongation factor Tu for an  
751 aminoacyl-tRNA is modulated by the esterified amino acid. *Biochemistry* 43(20):6159–  
752 6166.
- 753 59. Asahara H, Uhlenbeck OC (2002) The tRNA Specificity of *Thermus thermophilus* EF-Tu.  
754 *Proceedings of the National Academy of Sciences* 99(6):3499–3504.

- 755 60. Asahara H, Uhlenbeck OC (2005) Predicting the binding affinities of misacylated tRNAs for  
756 *Thermus thermophilus* EF-Tu·GTP. *Biochemistry* 44(33):11254–11261.
- 757 61. Li Y, et al. (2015) Identification of pneumococcal colonization determinants in the stringent  
758 response pathway facilitated by genomic diversity. *BMC Genomics* 16(1):369.
- 759 62. Martín-Galiano AJ, et al. (2005) Transcriptional analysis of the acid tolerance response in  
760 *Streptococcus pneumoniae*. *Microbiology* 151(12):3935–3946.
- 761 63. Piñas GE, Cortes PR, Orio AGA, Echenique J (2008) Acidic stress induces autolysis by a  
762 CSP- independent ComE pathway in *Streptococcus pneumoniae*. *Microbiology*  
763 154(5):1300–1308.
- 764 64. Cortes PR, Piñas GE, Cian MB, Yandar N, Echenique J (2015) Stress-triggered signaling  
765 affecting survival or suicide of *Streptococcus pneumoniae*. *International Journal of Medical*  
766 *Microbiology* 305(1):157–169.
- 767 65. Piñas GE, et al. (2018) *Crosstalk between the serine/threonine kinase StkP and the*  
768 *response regulator ComE controls the stress response and intracellular survival of*  
769 *Streptococcus pneumoniae* doi:10.1371/journal.ppat.1007118.
- 770 66. Mellroth P, et al. (2012) LytA, major autolysin of *Streptococcus pneumoniae*, requires  
771 access to nascent peptidoglycan. *The Journal of Biological Chemistry* 287(14):11018–  
772 11029.
- 773 67. Tomasz A, Moreillon P, Pozzi G (1988) Insertional inactivation of the major autolysin gene  
774 of *Streptococcus pneumoniae*. *Journal of Bacteriology* 170(12):5931–5934.
- 775 68. Sadowy E, Kuch A, Gniadkowski M, Hryniewicz W (2010) Expansion and evolution of the  
776 streptococcus pneumoniae Spain 9V-ST156 clonal complex in Poland. *Antimicrobial*  
777 *Agents and Chemotherapy* 54(5):1720–1727.
- 778 69. Cafini F, et al. (2006) Alterations of the penicillin-binding proteins and murM alleles of  
779 clinical *Streptococcus pneumoniae* isolates with high-level resistance to amoxicillin in  
780 Spain. *Journal of Antimicrobial Chemotherapy* 57(2):224–229.
- 781 70. Jensen A, Valdórsson O, Frimodt-Møller N, Hollingshead S, Kilian M (2015) Commensal  
782 Streptococci Serve as a Reservoir for  $\beta$ -Lactam Resistance Genes in *Streptococcus*  
783 *pneumoniae*. *Antimicrobial Agents and Chemotherapy* 59(6):3529–3540.
- 784 71. Severin A, Tomasz A (1996) Naturally occurring peptidoglycan variants of *Streptococcus*  
785 *pneumoniae*. *Journal of Bacteriology* 178(1):168–174.
- 786 72. Paixão L, et al. (2015) Host glycan sugar-specific pathways in streptococcus pneumonia:  
787 Galactose as a key sugar in colonisation and infection. *PLoS ONE* 10(3):e0121042.
- 788 73. Carvalho SM, Kuipers OP, Neves AR (2013) Environmental and Nutritional Factors That  
789 Affect Growth and Metabolism of the Pneumococcal Serotype 2 Strain D39 and Its  
790 Nonencapsulated Derivative Strain R6. *PLoS ONE* 8(3):e58492.

- 791 74. Aggarwal SD, et al. (2018) Function of BriC peptide in the pneumococcal competence and  
792 virulence portfolio. *PLOS Pathogens* 14(10):e1007328.
- 793 75. Hiller NL, et al. (2011) Differences in Genotype and Virulence among Four Multidrug-  
794 Resistant *Streptococcus pneumoniae* Isolates Belonging to the PMEN1 Clone. *PLoS ONE*  
795 6(12):e28850.
- 796 76. Zähner D, Hakenbeck R (2000) The *Streptococcus pneumoniae* beta-galactosidase is a  
797 surface protein. *Journal of Bacteriology* 182(20):5919–5921.
- 798

799 **FIGURE LEGENDS**

800

801 **Fig. 1. Growth defects observed in the absence of *murMN*.** **(A)** Representative growth  
802 curves for wild-type and  $\Delta murMN$  strains grown in normal (●) and acidic conditions (▲). Growth  
803 curves were started at an  $OD_{600}$  of 0.05 (at least  $n=3$ ). **(B)** Representative growth curves for  
804 wild-type,  $\Delta murMN$  and  $\Delta murMN:murMN$  strains grown in acidic conditions (▲). Growth curves  
805 were started at an  $OD_{600}$  of 0.05 (at least  $n=3$ ). **(C)** Box-and-whisker plot depicting median and  
806 range of maximum growth of wild-type,  $\Delta murMN$  and  $\Delta murMN:murMN$  strains grown in acidic  
807 conditions. 'ns' denotes non-significant comparison and \*\*\*\*  $p<0.0001$  relative to wild-type strain  
808 by ANOVA followed by Tukey's post-test.

809

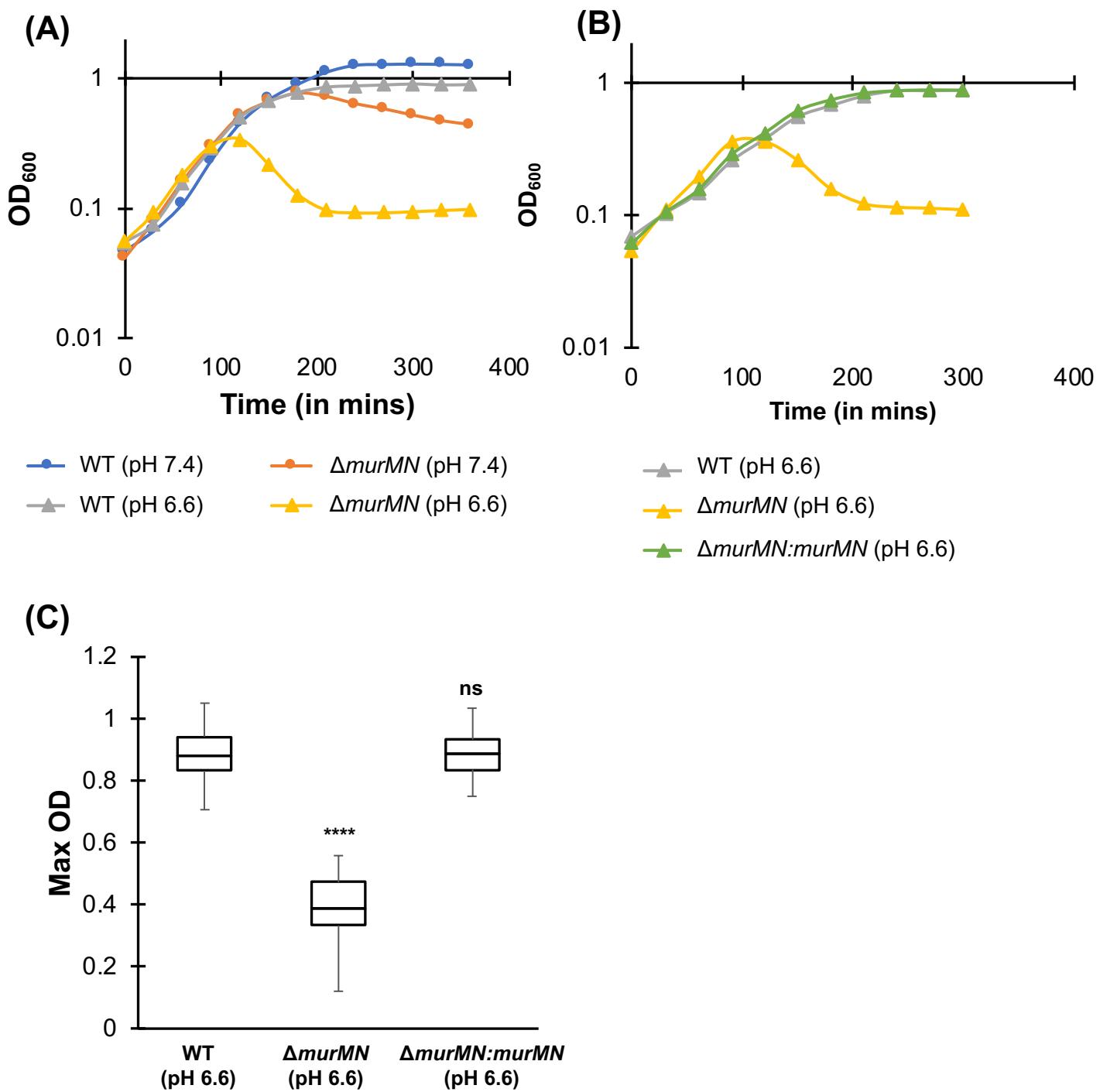
810 **Fig. 2. Analysis of peptidoglycan structure of cells grown in normal and acidic**  
811 **conditions.** HPLC profiles of the stem peptide compositions of peptidoglycan from **(A.i)** wild-  
812 type and **(A.ii)**  $\Delta murMN$  strains grown in normal and acidic pH. **(B)** Structures of the cell wall  
813 stem peptides that comprise pneumococcal peptidoglycans.

814

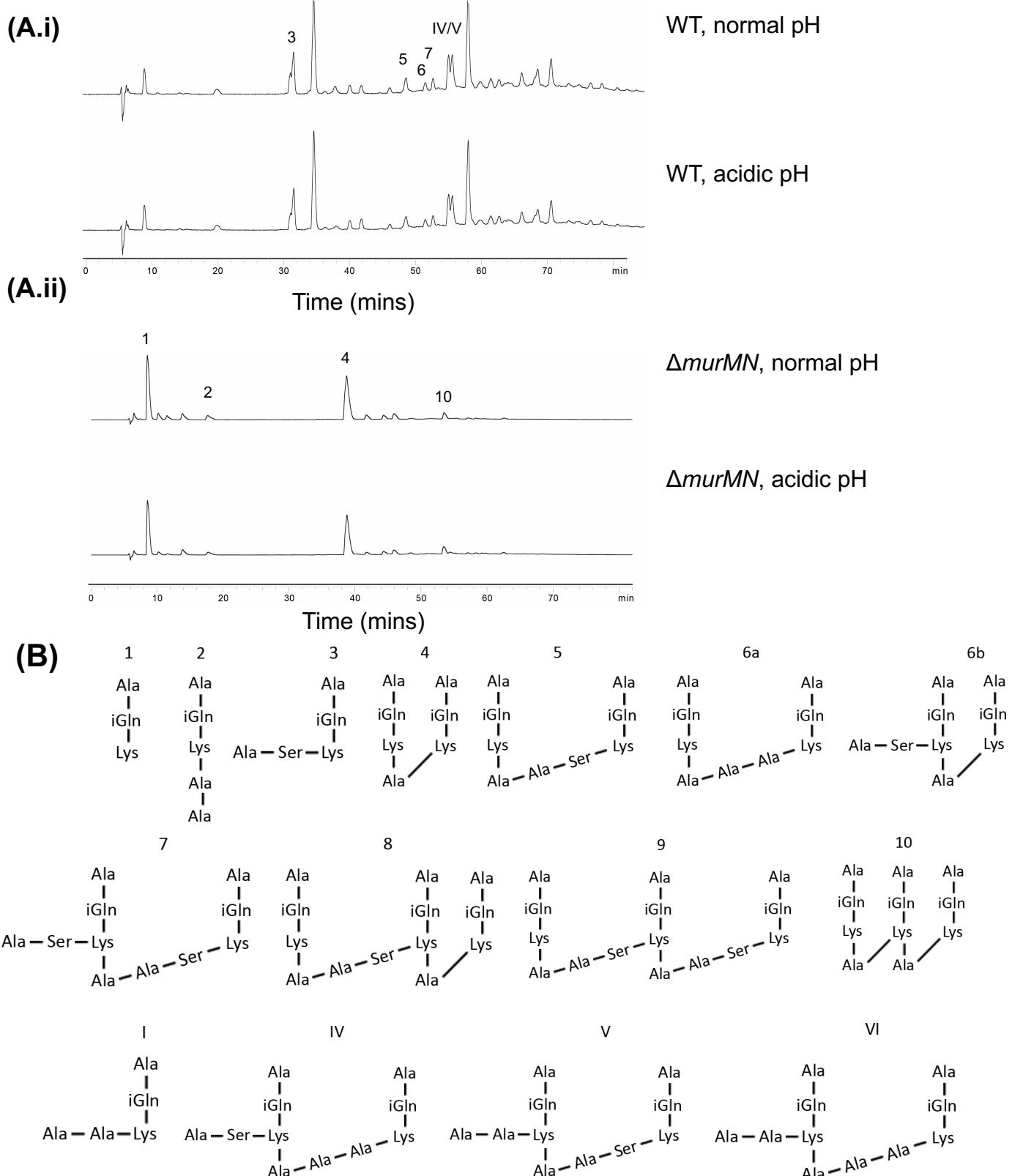
815 **Fig. 3. Analysis of translation quality control function of MurM** **(A)** Schematic  
816 representation of the domain architecture of full-length and ectopically expressed editing  
817 domains of AlaRS. **(B)** Different tRNA moieties that can be deacylated by MurM (underlined). *In*  
818 *blue*: Mischarged tRNA moieties that can be edited by AlaRS<sub>editing</sub> protein. *In green*: All other  
819 mischarged tRNA moieties that can be edited by MurM but not AlaRS<sub>editing</sub>. Schematic based on  
820 findings from previous work (12, 27). **(C)** Representative growth curve for wild-type,  $\Delta murMN$   
821 and  $\Delta murMN::alaRS_{editing}$  strains grown in acidic conditions (▲). Growth curves were started at  
822 an  $OD_{600}$  of 0.05 (at least  $n=3$ ).

823

824 **Fig. 4. MurMN regulates stringent response pathway.** **(A)** Schematic of (p)ppGpp production  
825 and hydrolysis. **(B)** Thin-liquid chromatography showing  $^{32}P$  being incorporated as GTP or  
826 alarmones (ppGpp or pppGpp) in wild-type,  $\Delta murMN$  and  $\Delta murMN\Delta rsh$  strains grown in acidic  
827 conditions. Ratio of alarmone to GTP in  $\Delta murMN$  is 3.7-fold times that in the wild-type. **(C)**  
828 Representative growth curve for wild-type,  $\Delta murMN$ ,  $\Delta rsh$  and  $\Delta murMN\Delta rsh$  strains grown in  
829 acidic conditions (▲). To circumvent the long lag phase of strains from  $\Delta rsh$  background, strains  
830 were grown to log phase ( $\sim OD_{600} 0.2$ ), collected by centrifugation and growth curves started at  
831 an  $OD_{600}$  of 0.1 (at least  $n=3$ ).


832

833 **Fig. 5. LytA-mediated autolysis is triggered in  $\Delta murMN$  cells.** **(A)** Representative growth  
834 curve for wild-type and  $\Delta murMN$  strains grown in acidic conditions (▲), either in the absence or  
835 presence of 2% choline chloride. Growth curves were started at an  $OD_{600}$  of 0.05. **(B)**  
836 Representative growth curve for wild-type,  $\Delta murMN$ ,  $\Delta lytA$  and  $\Delta murMN\Delta lytA$  strains grown in  
837 acidic conditions (▲). Growth curves were started at an  $OD_{600}$  of 0.05. (at least  $n=3$ ) **(C)**  
838 Schematic representing change in the distribution of LytA (triangles). When strains are growing  
839 in exponential phase, LytA is localized mainly intracellularly (*left*) but when they reach stationary  
840 phase, LytA is exported to the surface resulting in autolysis (*right*), based on findings from  
841 Mellroth *et al.* (66).


842

843 **Fig. 6. MurMN controls LytA-mediated evasion from phagocytosis.** Internalization of  
844 pneumococcal cells with J774A.1 macrophages. **(A)** Confocal microscopy images depicting  
845 bacterial internalization after 60mins. *In blue*: macrophage nuclei, *red*: bacterial cells, *green*:  
846 actin. **(B)** Quantification of J774A.1 macrophages positive for pneumococci after 30mins, as  
847 separated by flow cytometry. 'ns' denotes non-significant comparisons, \*\*\*  $p<0.001$ , and  
848 \*\*\*\*  $p<0.0001$  relative to wild-type; ^^^^  $p<0.0001$  relative to  $\Delta$ murMN, by ANOVA followed by  
849 Tukey's post-test. Graph also shows expected LytA activity for each strain, '+' denotes basal  
850 levels, '++' denotes increased levels and '-' denotes absence.

# Figure 1



## Figure 2



**Figure 3**

(A)

## Aminoacylation

## Editing

### C-terminal

## Full length AlaRS

1 437 873

## Editing domain AlaRS

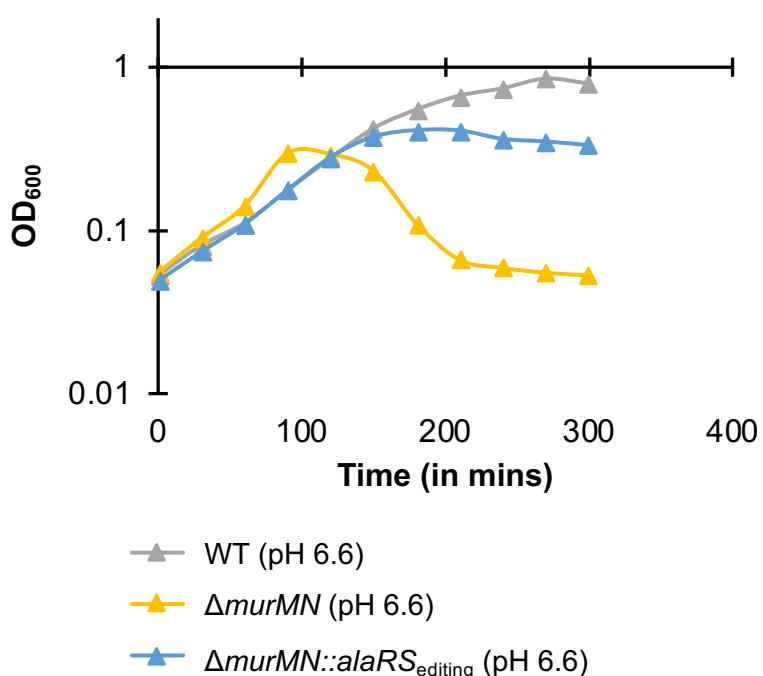
The diagram consists of two solid gray rectangles. A horizontal black line connects their right edges. The left rectangle is wider than the right one. The entire diagram is centered on a white background.

(B)

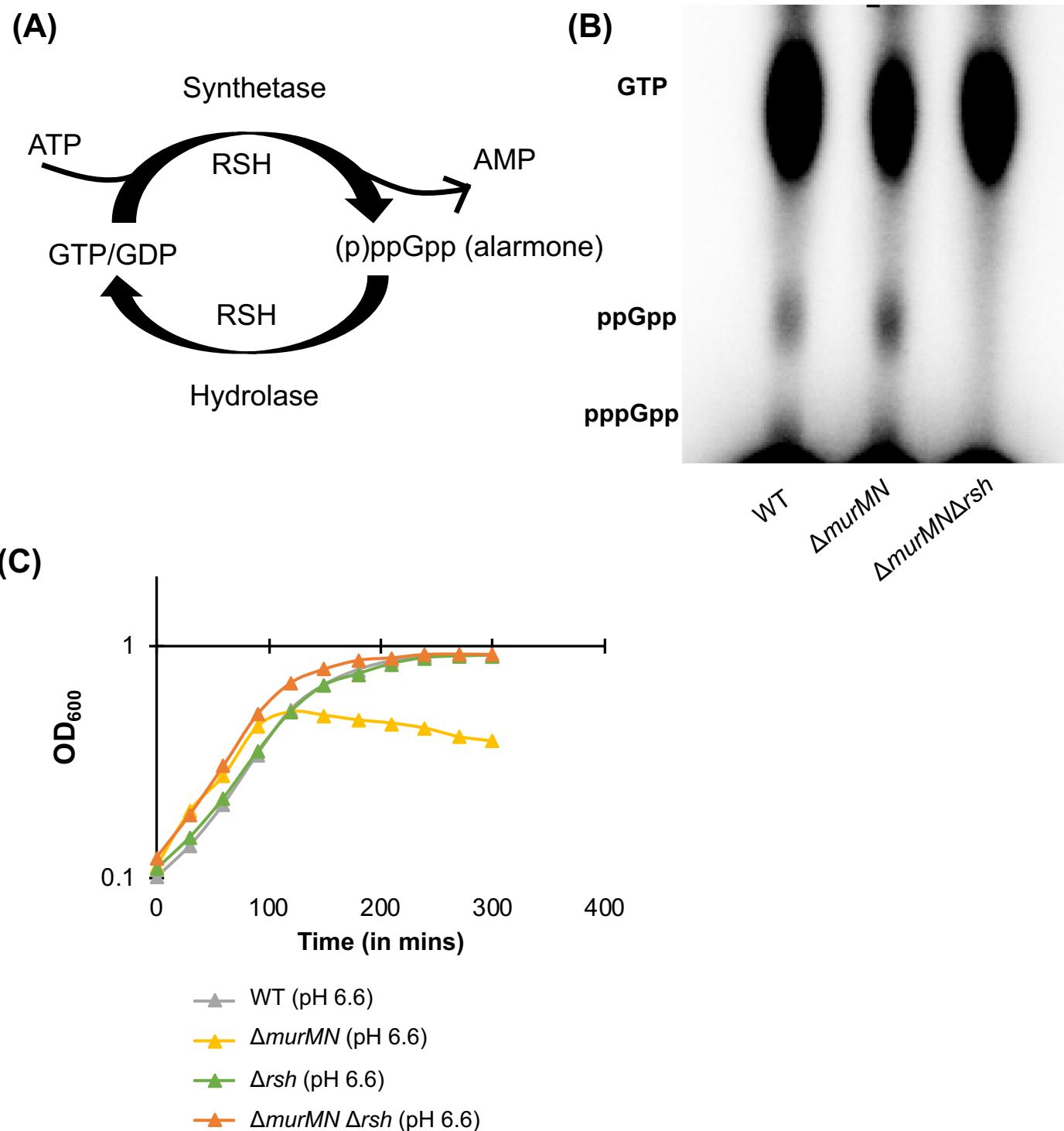
MurM

tRNA<sub>Ala</sub>  
tRNA<sub>Ser</sub>  
tRNA<sub>Phe</sub>

Ala-tRNA<sub>Ala</sub>  
Ala-tRNA<sub>Ser</sub>  
Ala-tRNAPhe

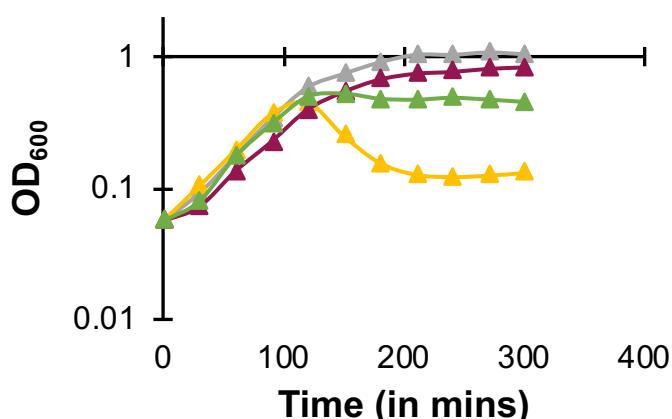

Ser-tRNASer

Ala-tRNAPhe

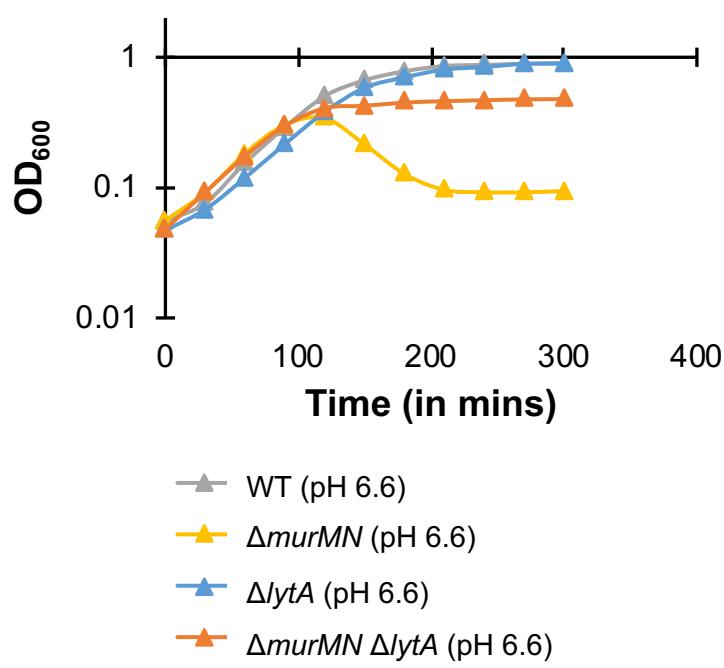

tRNA<sub>Lys</sub>  
Ala-tRNALys

Ser-tRNALys

(C)

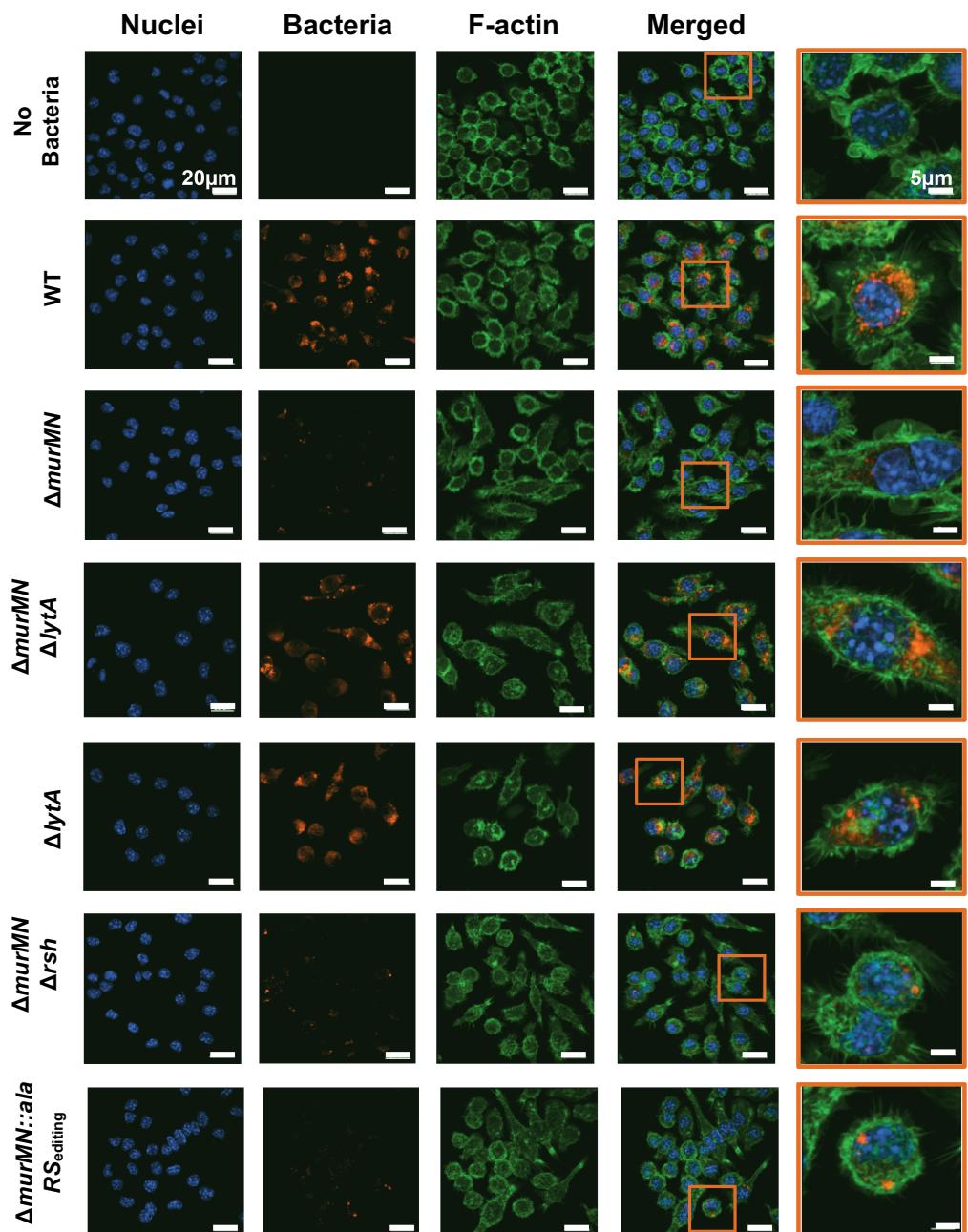



## Figure 4

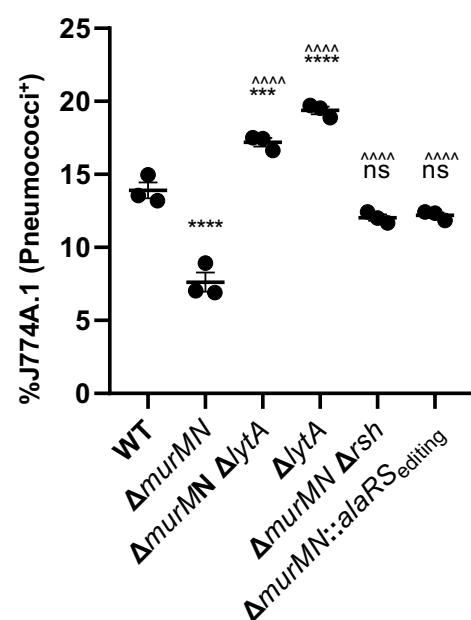



# Figure 5


(A)




(B)




(C)



**Figure 6****(A)****(B)**

Expected LytA Activity      +    ++    -    -    +    +



**Table 1: Percentage Viable CFUs of Different Strains after Growth in Penicillin G.** Table represents percentage viability from three independent biological replicates.

| Strain                          | Penicillin 0.025 µg/ml |             |             |
|---------------------------------|------------------------|-------------|-------------|
|                                 | Replicate 1            | Replicate 2 | Replicate 3 |
| $\Delta murMN$                  | 0                      | 0           | 0           |
| $\Delta murMN::alaRS_{editing}$ | 16                     | 40          | 30          |
| $\Delta murMN \Delta rsh$       | 5                      | 10          | 53          |
| WT                              | 68                     | 89          | 94          |
| WT:: $alaRS_{editing}$          | 98                     | 72          | 83          |
| $\Delta rsh$                    | 44                     | 123         | 76          |