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25 Abstract

26

27  Individuals vary in their immune response and, as a result, some are more susceptible to

28  infectious disease than others. Little is known about which components of immune pathways
29 areresponsiblefor this variation, but understanding these underlying processes could alow
30 usto predict the outcome of infection for an individual, and to manage their health more

31 effectively. In this study, we describe transcriptome-wide variation in immune response (to a
32 standardised chalenge) in awild population of field voles (Microtus agrestis). We find that
33 thisvariation can be categorised into three main types. We also identify markers, across these
34  three categories, which display particularly strong individual variation in response. This work
35 shows how asimple standardised challenge performed on anatural population can reveal

36  complex patterns of natural variation in immune response.

37
38 Introduction

39

40 Individuals vary in their immune response. Within a population, some individuals may fail to
41  make protective immune responses following either natural infection or vaccination and so
42  areespecialy vulnerable to infectious disease'™. Defining the patterns of such variability will
43  enhance our ability to manage the health of individuals — especially those that are most

44 susceptible to infectious disease in human, livestock or wildlife populations.

45

46  Studiesin laboratory mice are the cornerstone of immunology and have provided a detailed
47  understanding of the molecular and cellular pathways by which immune responses are

48  effected. Thisimpressive mechanistic understanding, however, has only been achieved by

49  minimising genetic and environmental variation within a laboratory setting. Where laboratory
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50 studies have examined the effects of variability —in genetics, microbiota or diet — both

51 qualitative and quantitative differences in immune responses have been observed, with

52  consequent effects on infection® . Nevertheless, natural variability cannot be fully

53  reproduced in the laboratory, which has led to a recent effort to characterise the immune

54  responsein wild populations of mice or other rodents. Recent work in mice from agricultural
55  and other anthropogenic settings is consistent with the expectation that exposure to complex
56  environments greatly atersimmune function®. New populations of memory T cells, present
57  only in non-laboratory mice, have also been identified®.

58

59  One commonly used measure of an immune response is to assess the amount of one or more
60 markers (e.g. transcripts or proteins) produced by a population of cells following stimulation
61 by animmune agonist. From this ex vivo assay, one can gain insight into the types of immune
62  responsethat could be made to a pathogen in vivo. Such responses depend on the cell types,
63  thetime points and the immune agonist used. Nevertheless, for any molecular marker with
64  such aresponse, individuals, in natural populations especialy, could exhibit different marker
65 abundances prior to and/or following stimulation, leading to differences in their response to
66  stimulation (here defined as the difference between marker abundances prior to and following
67  stimulation). Furthermore, the most useful (and interesting) markers, in terms of

68  understanding why individuals vary in their ability to mount a successful immune response,
69  will bethose for which response is most variable among individuals. In the laboratory, cell
70 populations are usually controlled, or at least well defined, so a difference in the abundance
71  of aparticular marker can be attributed to differences in the activity of a particular cell type.
72  However, natural variability in the abundance of a marker, and by extension in the response
73  of individualsin the wild, could result from (i) differences in the composition of cell

74  populations, and/or (ii) differencesin the activity levels of particular cell types. Both of these
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75 components have the potential to shape the way an individual responds to immune challenge
76  inthewild. Our intention here is not to distinguish between the two, but rather to propose a
77  categorisation of responses, however generated.

78

79  Weuseawild population of field voles (Microtus agrestis) to examine naturally occurring
80 patterns of individual variation in immune response, across the transcriptome, as afirst step
81 towards furthering our understanding of the processes driving these patterns. The field

82  population we study, in Kielder Forest Northumberland, has been the subject of extensive

83  previous study on population ecology and pathogen dynamics'® ™. Therefore, it allows usto
84  place our existing understanding of more established immunological mechanisms (largely

85 derived from the closely related laboratory mouse, Mus musculus) into a well-described, real-
86  world context.

87

88  We describe three main categories of immune response: (i) uncorrelated response, (ii)

89  constant response and (iii) baseline-dependent response (depicted in Fig. 1). We also identify
90 markers, across these categories, which show particularly high inter-individual variability in
91 response. We suggest that such categorisation is useful in organising natural immune

92  variation, since little is known about which components of immune pathways are responsible
93 for natural variability in immune response, or about the nature and possible causes of such
94  variahility. Indeed, this categorisation is not limited to the components of conventional

95 immune pathways. The ability of an immune response to effect protection against infection,
96 for example, will be supported by a variety of non-immune functions, that will also be

97  activated following stimulation by an agonist, and vary to a greater or lesser extent among
98 individuals within anatural population. By identifying the components (whether

99  conventionaly immunological or not) that are likely to be responsible for natural variability
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100 inimmune response, and by describing the nature of their variability, we are laying the

101  groundwork for exploring the processes, whether genetic or environmental, which drive inter-
102  individual variation in immune response.

103

104 Reaults

105

106  Stimulation with an immune agonist causes a widespr ead response

107  Spleen cells from sixty-two field voles were split into two populations per individual vole.
108  One population was stimulated with anti-CD3 and anti-CD28 antibodies, while the other was
109  kept as an unstimulated control (hereafter referred to as the baseline). 1150 transcripts (5% of
110 all genesin thefield vole genome and 85% of informative genes, those genes which were
111  more strongly expressed; see Methods) fell into one or more of the response categories set
112 outinFig. 1. As expected, given that these antibodies are known to stimulate T-cell

113  proliferation*, they were enriched with transcripts (hereafter markers) associated with the T-
114  cell receptor (TCR) signalling pathway (n = 27; p < 0.001; Functional Enrichment Analysis
115 performed in DAVID; see Methods) and other T cell-related terms: positive regulation of T-
116  cell proliferation (n = 12; p < 0.03), TCR complex (n = 7; p < 0.001), positive thymic T-cell
117  selection (n=7; p < 0.01), negative thymic T-cell selection (n = 6; p = 0.03) and alpha-beta
118 TCR complex (n=5; p < 0.001). For the mgority of these markers, asignificant positive
119 linear relationship was found between baseline and stimulated abundance (n = 844). Only a
120 single marker, Fam193b, demonstrated a significant negative linear relationship between
121  baseline and stimulated abundance.

122

123

124
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125 Therearethree main categories of immuneresponse

126  Three main categories of immune response were identified based on the dependence of an
127  individua’s response on its baseline abundance. Each of these categories demonstrates a
128  unique pattern (Fig. 1):

129

130 Uncorreated response: markers for which individuals taken from the wild differ in their
131  baseline abundance, but the responses of different individuals are variable and independent of
132  their baseline, such that the slope of the relationship between baseline and stimulated

133  abundanceis not significantly different from zero.

134

135 Constant response: markers for which individuals taken from the wild aso differ in their
136  baseline abundance, but the responses of different individuals are (approximately) constant
137  and independent of their baseline, such that the slope of the relationship between baseline and
138  stimulated abundance is not significantly different from one and the intercept (indicating the
139 level of response) is significantly greater than zero.

140

141 Baseline-dependent response: markers for which individuals taken from the wild again
142  differ in their baseline abundance, but the responses of different individuals vary as a

143  function of their baseline level, either as alinear function of their baseline level (slope

144  dgnificantly different from one), or as a quadratic function of their baseline level, where
145  stimulated levels either increase exponentially as afunction of baseline levels or become
146  saturated at some upper limit.

147
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148 Wealso identified markers, across these three categories, for which variability in baseline
149  and stimulated samples was significantly different, leading to high inter-individual variability
150 in response (see Methods). These can be divided into two categories (Fig. 1):

151

152  Convergent response: markers for which variability in baseline abundance is significantly
153  greater than variability in stimulated abundance.

154

155 Divergent response: markers for which variability in stimulated abundance is significantly
156  greater than variability in baseline abundance.

157

158 Thebasdine-dependent response category is most common and is significantly enriched
159 in components of conventional immune pathways

160  The baseline-dependent response category was the most common (Table 1), and included a
161  majority of markers for which stimulated levels were alinear function of baseline levels (n =
162  539), and aremainder for which they were a quadratic function (n = 160). The mgjority of
163  quadratic response markers showed evidence for saturation (n = 138), indicating some upper
164  limit on stimulated abundance. The general ontology term for immunity was enriched in the
165 linear response category of markers (n = 20; p < 0.01). The TCR signaling pathway was

166  enriched in the quadratic response category (n = 7; p = 0.01; Fig. 2).

167

168 Theuncorreated response category isleast common and lacks enrichment in

169 components of conventional immune pathways

170 A number of markers showed no evidence for arelationship between baseline and stimulated
171  abundance (n = 47; Table 1). For the majority of these, mean abundance was significantly

172  greater for stimulated than for baseline samples (n = 39), suggesting that these markers were
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173  (on average) responding to stimulation, but to an individually variable degree, independent of
174  baseline levels. These markers lacked any enrichment for immune-related terms (Fig. 2).

175

176 A number of markers, including Zap70, show particularly high inter-individual

177  variability in response

178  For anumber of markers, variability in baseline and stimulated abundance was significantly
179  different, leading to high inter-individual variability in response (n = 244). The vast mgority
180  of these markers showed a divergent (n = 237), rather than a convergent (n = 7) response

181 (Table 1). Within the (stimulated) TCR signalling pathway, the highest level of variability in
182 individual response, and the highest level of divergence, was demonstrated by Zap70 (Fig. 3).
183  All convergent markers fell into one of the three main immune response categories. However,
184  over athird of divergent markers (n = 98), did not fall into any of these categories, appearing
185 instead as markers which (on average) did not respond to stimulation (Table 1). Mean

186  abundances for these markers were also not significantly different between stimulated and
187  baseline samples.

188

189  Juveniles show moreinter-individual variability in response than adults

190  Anage-specific analysis, run separately on samples from mature (n = 43) and juvenile (n =
191 19) field voles, showed that higher inter-individual variability in immune response (whether
192  divergent or convergent) was more common among juvenile voles (no. divergent markers =
193  108; no. convergent markers = 6) than mature voles (randomly sampled 1000 times as more
194  samples available; mean no. divergent markers = 50, empirical 95% interval = 0—-338.2; mean
195 no. of convergent markers = 0.11, empirical 95% interval = 0-1).

196

197
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198 Responseto stimulation is not limited to components of conventional immune pathways
199  Non-immune related terms were enriched in the baseline-dependent response category,

200  including: insulin signalling pathway (n = 9; p = 0.05) and thyroid hormone signalling

201  pathway (n = 8; p = 0.05). The top convergent response marker, Pdk1, is aso a component of
202  theinsulin signalling pathway (Fig. 2).

203
204 Discussion

205

206  The need to better understand variation in immune response in natural populationsis now
207  widely accepted™®, Our understanding of immune responses in laboratory settings comes
208 from animals that vary little either genetically or in prior experience. By contrast, animalsin
209 natural populations vary (perhaps extensively) in both of these. In this study, we describe
210 natura variation in immune response in awild population of rodents, and find that it can be
211  categorised into alimited number of types. Weidentify three main categories of immune

212  response: uncorrelated response, constant response and baseline-dependent response. We also
213  identify markers, across these categories, which show particularly high inter-individual

214  variability in response. Our work shows how asimple stimulatory assay performed on a

215 natural population can reveal underlying patterns of natural variation among individualsin
216  immune response.

217

218 The baseline-dependent response category is the largest. Markersin this category show a
219 relationship between baseline and stimulated abundance across individuals, and their

220 responseto stimulation is (to alesser or agreater extent) dependent on their baseline level. In
221  some cases, individuals already expressing the greatest abundance of a marker in their natural

222  setting went on to exhibit the greatest response to stimulation by an agonist. In others, the
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223  opposite wastrue, and these individuas exhibited the smallest response to stimulation.

224 Similarly, previous work on humans has identified baseline (transcriptional) predictors of
225  influenza vaccination response™®®°. These differencesin baseline level could be driven by
226  either genetic variation or individual differences in past experience. In humans, genetic

227  determinants of baselineimmune cell population frequencies have been identified™. Even
228  though the stimulation we describe here was not antigen specific, previous challenge by a
229  parasite might also lead to changesin the baseline T-cell population within an individua’s
230  spleen, affecting its response to any subsequent challenge. In fact, we find that voles infected
231  with Babesia microti (ablood parasite, common in our population®?) have larger spleens than
232 uninfected voles™. This prior experience may prime an individual, enabling a greater

233 response to subsequent challenge (e.g. slope greater than one; Fig. 1). However, individuals
234  may also have an upper limit on the number of immue cells they have available®®. An

235 individual that is already mounting an immune response to a parasite, and has alarge number
236  of activated T cells, could therefore respond less to a similar challenge than an

237  ‘immunologically naive’ individual (slope less than one; Fig. 1). Membership of the baseline-
238  dependent response category recapitulates the known biology of the immune response (being
239  highly enriched for immune ontogeny terms). In doing so, it validates the approach we use
240  here, as away of identifying markers of immune significance.

241

242  In some cases, individuals varied in their natural abundance of a marker but their response
243  was unrelated to this. They did nevertheless respond to stimulation, with the majority of these
244 markers occurring at asignificantly higher mean abundance in stimulated samples thanin
245  baseline samples. This uncorrelated response category, which contains a moderate number of
246  markers, also lacks any enrichment for immune-related ontology terms. This suggests that

247  markersin this category are not conventional immune markers but could be of immune

10
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248  dignificance. We warn against omitting such markers from studies of immune response in the
249  laboratory. They could play an important part in our understanding of the immune response,
250 indicating for example, genetic variation in response among individuals, which is

251  independent of baseline level.

252

253  Cutting across this categorisation, alarge number of markers displayed a pattern in which
254  variation between individuals was particularly strong. We describe two types of such

255  markers, both of which could be used in future studies as indicators of natural variability in
256  immune response. Markers in the less common, convergent, response category showed much
257  greater variation naturally than following stimulation. This pattern may be characteristic of
258  markers showing variable levels of prior activation, coupled with some maximum or

259  optimum abundance, and resulting in a stabilisation of the immune response across the

260  population following stimulation. We found that convergent patterns were more common
261 among juvenile voles. This could suggest that they are more constrained in the energy they
262 haveavailable (as aresult of the competing energetic demands of growth and development)
263  or the number of immune cells they have available (as aresult of a developing immune

264  system). Either resource constraint could result in a maximum abundance, making them more
265 inclined to converge. Due to the costly nature of the immune response, individuals often

266  trade-off their investment in different arms of the immune system® . Different types of

267  immune response are therefore likely to be associated with different optimum abundances (or
268  regions) and an individual already mounting an immune response, but to a different type of
269 challenge (associated with different cell types), may respond by down-regulating expression.
270

271  Divergent markers, which were more common, showed much greater variation following

272  stimulation than there was naturally. This pattern may be characteristic of (but not limited to)

11
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273  markers showing genetic variation in response to the agonist, independent of baseline levels
274  e.g. subsets of animals that appear similar but respond more strongly to stimulation than

275  others. Our own recent work, where we found an association between polymorphismin a
276  single gene and amarker of amore tolerant immune response®’, is an example of such

277  genetic variation in immune response. Further supporting this hypothesis, here, we found
278  more divergent markers among juvenile voles than mature voles. Y ounger voles are expected
279  to have less variable exposure histories, as aresult of their shorter life spans, making it easier
280  to detect genetic effects. Equally, though, divergent patterns could be the result of differences
281 inearly life experiences. One would also expect these to be more easily detectablein

282  juveniles.

283

284  Thedivergent category (predominantly) included markers for which individuals made (on
285  average) the same response to stimulation and markers that did not respond (on average) to
286  stimulation. Standard differential expression analysis would miss the individual variation
287  present in the former group, and would fail to pick up the latter group of markers altogether.
288 Bothwarn against looking at average (population-level) response, and point instead, to the
289  value of looking at individual-level differencesin immune response. Thisis particularly

290 important because divergent markers may act as critical regulators of pathways. For example,
291  Zap70, which demonstrates particularly high levels of variability in individual response and
292 iscentraly located in the TCR signalling pathway, interacts with many other markers (Fig.
293  3). We suggest that Zap70 expression could be used as a marker of response in larger studies.
294  Indeed, it is already linked to major seasonal immune variation in wild fish?® and is being
295  used as a prognostic marker for B-cell chronic lymphocytic leukemiain humans, with

296 potential implications for determining a patient’s treatment path (recently reviewed in Liu et

297  al.?). Other potential prognostic (or diagnostic) factors which may have been missed using

12
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298 standard differential expression analyses may be present in this category and warrant further
299  investigation.

300

301 Theimmune response categories we describe here are based on spleen cells stimulated with
302  anti-CD28 and anti-CD3 antibodies and sampled at 24 hours. However, the relative

303  frequency of the response categories reported here may vary depending on the choice of
304  agonist and/or time point. For example, markers are known to follow different response

305 trajectories, with some immediately responding and reaching peak activation, and others
306 taking longer to reach this point®. Sampling at alater time point, then, when the ‘slower’
307 markers have reached peak activation, may lead to more convergence than reported here. In
308  order to fully account for this tempora variation, multiple time points need to be averaged
309 across. We argue that both time-specific and averaged responses are of functional

310 significance, but hope others will extend our work. We use RNASeq here in order to give a
311 broad view of the immune response. Single-cell RNASeq could be used to quantify

312 differencesinindividual response resulting solely from differences in cell-specific activity.
313  Previous work has shown that transcript levels generally correlate with protein levels across
314  genes™. However, more work is needed to confirm these response categories at the functional
315 level® In future, Q-PCR or protein-level data could be used in order to include weakly

316  expressed markers, which were excluded here as a result of the heteroscedasticity inherent in
317 RNASeqdata

318

319 Markersthat responded to stimulation were not limited to immune pathways as

320 conventionally defined. They included, for example, markers involved in the insulin

321 signalling pathway. Thisisin line with previous studies, which suggest that insulin plays a

322  key rolein coordinating an organism’s response to infection, influencing, in particular, the

13
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323  alocation of resources™>*. One of these markers, Pdk1, was also among the top convergent
324  markers. Thiscould be representative of the high levels of variability in the (baseline)

325 nutritional status of individualsin anatural population, coupled with an upper limit on the
326  processes involved in glucose metabolism.

327

328 Theimmune categories we presented here, therefore, highlight markers not traditionally

329  associated with immune functions, and offer a promising avenue for identifying potential
330 prognostic (or diagnostic) factors for disease, like Zap70. They also point to both genetics
331 and prior experience as drivers of natural variation in immune response. Our future work will
332  further decompose this natural variation into that driven by these two components.

333
334 Methods

335

336 Field methods

337  Sixty-two field voles were collected between July and October 2015 to assay expression by
338 RNASeq. These voles came from four sitesin Kielder Forest, Northumberland (55°130N,
339  2°330W). Each site contained atrapping grid of regularly spaced traps (at approx. 5 m

340 intervals) and was also used for other components of alarger field study (for more details see
341 Wanelik et al.”).

342

343  Ethicsstatement

344  All animal procedures, carried out as part of this field study, were performed with approval
345  from the University of Liverpool Welfare Committee and under the authority of the UK

346  Home Office (Animals (Scientific Procedures) Act 1986) project licence number PPL

14
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70/8210 to SP. Voles were killed by arising concentration of CO, followed by

exsanguination.

Cell culture methods

Splenocyte cultures from each vole were split into two populations, one of which was
stimulated with anti-CD3 antibodies (Hamster Anti-Mouse CD3e, Clone 500A2 from BD
Pharmingen) and anti-CD28 antibodies (Hamster Anti-Mouse CD28, Clone 37.51 from BD
Tombo Biosciences) at concentrations of 2 ug/ml and of 1 pg/ml respectively for 24hr, and
the other was left as an unstimulated control to act as areference level. We refer to this
reference level as the baseline, and control samples as baseline samples. However, it is
important to note that this level will vary for an individual, not only on aday to day basis, but
throughout its life. Culture conditions were otherwise equivalent to those used in Jackson et
al. (2011)*. Costimulation with anti-CD3 and anti-CD28 antibodies was used to selectively
promote the proliferation of T cells**, our assumption being that this would reflect the
potential response of T-cell populationsin vivo. Cell populations within splenocyte cultures

were variable but left undefined.

RNASeq preparation and mapping

RNA was extracted using Invitrogen PureLink kits. Following extraction, cDNA libraries
were prepared using Illumina RiboZero kits and libraries were constructed with NEBNext
Ultradirectional RNA library prep kit according to the manufacturers protocols. Samples
were sequenced to produce 2 x 75 bp paired-end reads on an Illumina HiSeq4000 platform.
Adaptor sequences were removed with CUTADAPT version 1.2. and further trimmed with
SICKLE version 1.200 (minimum window quality score of 20). Thisresulted in amean

library size of 18 million (range = 5-50 million) paired-end reads.

15
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372

373  High-quality reads were mapped against a draft genome for M. agrestis (GenBank Accession
374 no. L1QJO0000000) using TOPHAT version 2.1.0, and a set of predicted gene models was
375  generated using BRAKER. Mapped reads were counted using FEATURECOUNTS. Further
376  analysiswas performed on counts of mapped reads for each genein R version 3.4.2%°. These
377  count datawere initialy filtered to remove unexpressed genes (those genes with fewer than
378  three counts per million across al samples; n = 13). Following filtering, library sizes were
379  recalculated and data were normalised to represent counts per million (cpm). These data were
380 found to be correlated with quantitative PCR (Q-PCR) data (see Supplementary Fig. 1). No
381 correction for gene length was necessary as all analyses were based on comparisons across
382  (rather than within) samples. Transcript abundance for a particular gene here represents a
383  single, functional measure of its activity across some, undefined, cell population. In order to
384  maximisethe power of our analysisto identify biologically relevant patterns, we focussed on
385 those genes which were expressed at an informative level in the spleen prior to and/or

386 following stimulation (n = 1350 or 6%). Genes expressed at a mean level greater than 200
387 cpmwere considered informative. As weakly expressed genes were removed (minimising
388  heteroscedasticity), log-transformation of data was unnecessary (Supplementary Fig. 2).

389

390 Statistical analysis

391  Genesfor which aresponse to stimulation was observed across individuals were identified,
392 and, as elaborated in the Results, categorised on the basis of (i) the dependence of an

393 individual’s response on its baseline level, and (ii) the degree of inter-individual variability in
394  response across individuals.

395
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396 Baseline-dependence of response. The dependence of an individual’s response on its
397 Dbasdline level was quantified by testing the relationship between that individual’s baseline
398  abundance (cpmyase) and its stimulated abundance (cpmsim) using alinear regression, taking
399 theform
400
401 CPMgiim ~ CPMpace
402
403 aswell asaquadratic regression, taking the form
404

CPMgtim ~ CPMpgge + CPMpgse?
405
406  For approximately one third of genes (n = 466), the residuals from both of these regressions
407  deviated significantly from the assumptions of normality and/or homoscedasticity, and a non-
408 parametric Kendall-Theil linear regression was fitted instead. Regression fits varied from
409  geneto gene (R? ranging from <0.001 to 0.85).
410
411  Inter-individual variability in response. Inter-individual variability in response was
412  quantified by comparing the coefficient of variation (CV) for baseline abundances across
413 individuals (CVpase) and the CV for stimulated abundances across individuals (CVgim). AS
414  responseis defined as the difference between baseline and stimulated abundance, a large
415 differencein their CVs, either
416

CVhase > CVstim

417

418 or
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CVstim > CVhase
419
420 indicates ahigh level of variability in response. A relationship between gene-wise mean
421  expression levelsand CV istypicaly found in RNASeq data, with low mean transcript
422  abundance being strongly associated with high variability®’. As we restricted our analysis to
423  informative genes only, excluding those genes with low mean abundance, it was not
424  necessary to account for this relationship (Supplementary Fig. 2). Asymptotic tests for the
425  equality of CVswere run using the cvequality package. All p-values were corrected for
426  multiple testing using the Benjamini-Hochberg method™.
427
428 Functional annotation. Functional enrichment analyses were run using The Database for
429  Annotation, Visualization and Integrated Discovery (DAVID) version 6.8% %, Benjamini-
430 Hochberg corrected p-values and gene counts are reported alongside ontology terms,
431 including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to indicate their
432 level of enrichment™™,
433
434  Age-specific analysis. In order to begin to investigate the relative importance of genetic
435 variation versus prior stimulation for shaping patterns of variation in immune response, the
436  same analysis was performed separately on juvenile and mature voles. As we had more
437  samplesfrom mature voles (n = 43) than juvenile voles (n = 19), we randomly sampled the
438 mature population (with replacement) 1000 times and averaged across these samples. The
439  number (juveniles) or mean number (matures) of genes in each of these age classesis
440  presented in the text.
441

442
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558 Figure captions

559

560 Fig. 1 Different categories of immune response. These are based on two overlapping sets
561 of criteria, baseline-dependence of response (blue) and inter-individual variability in response
562  (yellow background). Arrows represent individual immune responses. No response (for

563 reference): markers for which individuals (on average) show no response to stimulation

564  (intercept not significantly different from zero; slope not significantly different from one).
565  Uncorrelated response: markers for which responses of different individuals are variable and

566  independent of their baseline level (slope not significantly different from zero). Constant
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567  response: markers for which the responses of different individuals response are

568  (approximately) constant and independent of their baseline (intercept significantly greater
569 than zero; slope not significantly different from one). Baseline-dependent response: markers
570  for which responses of different individuals vary as afunction of their baseline level, either
571 asalinear function of their baseline (slope significantly different from one; slope greater than
572  oneisdepicted but could equally be less than one), or as a quadratic function of their baseline
573 (asaturating function is depicted but could equally be exponential). Convergent response:
574  markersfor which the coefficient of variation (CV) for baseline abundances is significantly
575  greater than the CV for stimulated abundances across individuals (CVpase > CVgim).

576  Divergent response: markers for which CV for stimulated abundances is significantly greater
577  than CV for baseline abundances across individuals (CV gim > CVpase). Both convergent and
578  divergent markers depicted as, but not limited to, markers for which response is uncorrelated.
579

580 Fig. 2 Top 10 markersand enriched ontology termsin each immuneresponse category.
581  Each box represents a category of immune response (as in Fig. 1). For each category,

582  top 10 annotated markers for which we had the most confidence in their categorisation

583  (markers were ranked on R? and p-values) are listed, one or two of these are represented in
584  plots showing stimulated versus baseline abundances across individuals (solid line indicates
585  significant relationship between baseline and stimulated abundance; dashed line indicates
586 slope equal to one for reference). In the case of the convergent category, which only included
587 atotal of six annotated markers, all markers are listed. Ontology terms of interest, from an
588 enrichment analysis preformed on all markers within a category (where possible), are also
589 included (immune-related termsin black).

590
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Fig. 3Map of the T-cell receptor signalling KEGG pathway for Mus musculus, with the
colour of nodesrepresenting level of inter-individual variability in response to
stimulation with anti-CD3 and anti-CD28 antibodies in Microtus agrestis. Namely the p-
value from an asymptotic test for the equality of variance in gene expression levels for
baseline and stimulated samples (range = < 0.001-0.97). Dark blue indicates high inter-
individual variability in response, whereas light blue or white indicates low inter-individual
variability in response. Grey nodes represent genes for which no information is available,
either because they are unannotated in the M. agrestis genome, or because they are weakly

expressed in the spleen.
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616 Tables

617

618 Table 1l Tablesummarising the number of markersfound in each of the three main
619 categories of immuneresponse. For each of these categories, the number of convergent
620 and divergent markersisshown.

621

Immuneresponse Total no. No. No.
category markers  convergent divergent

Uncorrelated 47 2 1
Constant 306 0 91
Baseline-dependent 699 5 47
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