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Abstract

We describe a novel Bayesian method for estimating protein concentration and phosphorylation site

occupancy ratios from mass spectrometry experiments. Our variance model assigns standard devia-

tions to all quantitative ratios, even when only a single peptide is observed, increasing the number of

quantifiable observations in a sample compared to conventional methods. We further demonstrate

the application of this method using a dataset investigating the impact of the PRKAR1A-RET gene

fusion in immortalized thyroid cells.

Main text

Typically, the analysis of data generated by mass spectrometry is hampered by few available repli-

cates, therefore harsh filtering applied to ensure statistical significance results in the loss of a substan-
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tial amount of data points. This effect is exacerbated when considering analysis of post-translational

modifications, which are usually measured as a single peptide, as opposed to proteins that are mea-

sured as the aggregate of multiple peptides. Moreover, uncertainties can only be measured reliably

when enough measurements are available and are often ignored altogether. In order to provide ac-

curate uncertainties on the measurement of protein and phosphorylation site ratios, we developed

a Bayesian noise model of the experimental and instrumental errors, and derived a likelihood ex-

pression of protein concentration and phosphorylation site occupancies, sampled using a Bayesian

Markov Chain Monte Carlo approach. Through the propagation of effective measurement numbers

this model can more accurately derive significance from a low number of observations. In order

to model log ratios (sample versus control) of protein concentration (c) and occupancy of post-

translational modification sites (o and o′ representing the proportion of proteins where the site is

modified in the sample and control, respectively), we established the following formula, which mod-

els the average ratio (µ) of a peptide i (with potentially multiple post-translational modifications)

as a function of the parameters c, ō and ō′:

µi(c, ō, ō
′) = c+

∑
s

Iis

[
log

(
1− o′s
1− os

)
+ tis

(
log

(
o′s

1− o′s

)
− log

(
os

1− os

))]
, (1)

where Iis and tis are indicator matrices specifying which sites are covered and modified, respectively.

Together with an appropriate noise model, this function could be sampled and compared to

experimentally measured peptide ratios with Markov Chain Monte Carlo (Figure 1A-D) resulting in

a distribution of likely values for the parameters. To validate the accuracy of our quantitative model

we analyzed the UPS1 spike-in standard dataset1; a mixture of 48 recombinant proteins spiked at

several known concentrations to a fixed background of yeast lysate. After applying normalization,

we calculated peptide log ratios to the 12.5 fmol/µg sample, peptide standard deviation and the

number of effective observations (Figure 1E). Samples with less than 2.5 fmol/µg were discarded as

they contained very few identified UPS1 peptides. We then randomly generated 100 artificial proteins

from the remaining peptides with random Gaussian average ratios and sampled these with the Monte

Carlo likelihood model, the results of which are shown in Figure 1F. The model produced relatively

conservative estimates of the true ratios, and ratios with large uncertainties were drawn towards 0.

Overall the correlation of known to predicted concentration ratios was 0.938 validating the accuracy

of our method. To further validate our model we reanalyzed previously published phosphoproteomic

analyses investigating epidermal growth factor stimulation2 and insulin signaling3. In all cases

the Monte Carlo model was able to quantify, with measures of uncertainty, more proteins and

phosphorylation sites than conventional methods, with the most significant increases seen in sparse

data with few replicates (Figure S1).
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In order to demonstrate the applicability of this method for analyzing complex large-scale data,

we investigated the effects of the PRKAR1A-RET chromosomal translocation in immortalized thy-

roid cells using global phospho-proteomics. Fusion kinases are commonly observed in both blood

and solid tumors in cancer patients, and many have been shown to be recurrent4. The best known

of these is the BCR-ABL fusion, a driver for chronic myeloid leukemia, which led to the develop-

ment of the first targeted therapy for cancer: Imatinib/Gleevac4. Given that gene fusions have the

potential to be relevant therapeutic targets it is perhaps surprising that the underlying signaling

network alterations driving cancer progression are still only described, to some degree, for a handful

of gene fusions. It would seem likely that mass spectrometry analysis of fusion-induced signaling

network rearrangements could go some way towards filling this void. However, a limitation to such

studies is that often peptides ’fall out’ of the analysis due to limitations of instrumentation and

sample preparation. Thus, data analytical methods that can help capture low-stoichiometry events

are critically needed.

The PRKAR1A-RET fusion kinase has been observed in multiple thyroid cancer patients retain-

ing the regulatory and cyclic NMP binding domains of the PRKAR1A protein on the N-terminus

and the full tyrosine kinase domain from the RET kinase on the C-terminus5. In order to create

the most physiologically relevant model we recreated this fusion using CRISPR-Cas9 in thyroid

cells. As primary human epithelial cells senesce after only a few divisions in culture we used SV-

40 immortalized thyroid cells (Nthy-ori 3-16) that are suitable for large-scale mass spectrometry

experiments, but have low colony formation ability and are non-tumorigenic in mice. Following

expression of the PRKAR1A-RET fusion, cells were tested in an anchorage-independent growth

assay. Strikingly, we observed a significant increase in colony formation in the cells expressing the

PRKAR1A-RET rearrangement compared to control cells (Figure S1). This would suggest that the

engineered fusion event, either directly or indirectly, induced malignant transformation in our cell

model. Mass spectrometry analysis of the cells and colonies expressing the PRKAR1A-RET gene

fusion identified 1 985 159 peptides, 248 536 of which were phosphorylated, over the entire presented

dataset. This corresponded to 5759 unique proteins and 11 435 unique, high-confidence, phosphory-

lation sites; 5672 of the unique proteins were observed with two or more peptides. From these data

our Monte Carlo model was able to quantify ratios, calculated from sample thyroid cells expressing

the PRKAR1A-RET fusion to control thyroid cells expressing Cas9 protein alone, for 94% of the

observed proteins (5411) and 70% of the observed phosphorylation sites (8032), significantly more

than was possible using conventional analysis methods (MaxQuant).

We noted that a remarkably similar phosphorylation site occupancy signal was observed in each

fusion-expressing cell line (Figure 2), suggesting that the changes to signaling networks driven by this
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chromosomal rearrangement are highly conserved. Given that the cells grown in colony formation

assays were also distinct from fusion-kinase expressing cells at the level of both the proteome and

phospho-proteome this would suggest that additional signaling network rearrangements occurred

driving tumorigenesis in cells that displayed anchorage-independent growth. In particular we noted

that the concentration of PRKAR1A was found to be downregulated in the transformed cells relative

to colonies formed without the fusion construct. In order to determine which cellular processes were

regulated following PRKAR1A-RET fusion functional annotations were assigned using the hallmark

gene set collection of the Molecular Signature Database7, based on coherently expressed genes rep-

resentative of biological processes8. Processes that were significantly enriched in cells expressing

the PRKAR1A-RET fusion are shown in Figure S2 and Table S1. In particular, we noted that

in cells expressing the PRKAR1A-RET fusion there was enrichment for signaling via PI3K-AKT-

mTOR, which has previously been shown to affect cell proliferation, viability and iodide uptake

in thyroid cells9, and Myc, which is known to be involved in the majority of human cancers and

leads to the acquisition of hallmark cancer characteristics such as uncontrolled proliferation10. Inter-

estingly we observed that additional signaling pathways were modulated in the colonies expressing

PRKAR1A-RET, including P53, alterations in which are known to contribute to carcinogenesis in

thyroid tissue11. Given the significant number of additional phosphorylation sites quantified by the

Monte Carlo model (most likely due to the sparcity of the data, which has fewer biological replicates

than the other analyzed datasets) we used DAVID12 to determine whether there was enrichment

of specific signaling pathways which were only quantified by Monte Carlo analysis. We observed

significant enrichment of proteins associated with spliceosome (P=0.0026) and glycolysis (P=0.018)

pathways, both of which are considered relevant targets for novel cancer therapeutics13,14. Given

this, and the known importance of kinases in cancer15 in general, it would seem highly likely that

the additional information provided by the Monte Carlo model would aid biological analysis of the

role of the PRKAR1A-RET fusion kinase.

These data demonstrate the ability of our model to estimate protein concentration and phospho-

site occupancies and to provide an accurate estimate of the uncertainty of those parameters. We

believe that a more rigorous modeling of uncertainties is a critical step towards more precise models,

which will allow more informed interpretation of quantitative mass spectrometry data. While the

model presented here is based on peptide ratios, this method could also be applied to model peptide

intensities. This would enable the modeling of additional missing data points due to intensities

that are below the detection threshold of the mass spectrometer. Similar models could be used for

datasets generated using other quantification methods such as TMT or SILAC. Moving forward we

expect that likelihood-based algorithms taking full advantage of measurement uncertainties could
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aid in the design of new mass-spectrometers by searching for bottlenecks and limitations in the ion

path of the instruments. In addition, we have demonstrated the application of this model to a study

sampling the proteomic and phospho-proteomic network changes upon endogenous expression of a

chimeric gene found in solid tumors. This analysis confirms the regulation of proteins known to be

involved in the progression of thyroid cancers. Furthermore, our analysis shows that cells harboring

the induced fusion are enriched for processes essential for tumorigenesis.

Methods

Cell lines and vectors

SV40 immortalized primary cells (Nthy-ori 3-1) from thyroid follicular epithelial tissue were pur-

chased from Sigma and cultured in RPMI 1640 medium supplemented with 2 mM l-glutamine, 10%

fetal bovine serum and 1% penicillin/streptomycin solution (all ThermoFisher Scientific) in a humid-

ified environment at 37◦C with 5% CO2. HEK-293T cells were cultured in Dulbecco’s Modified Eagle

Medium, supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. pCMV-VSV-

G, psPAX2, pCW-Cas9 Dox-inducible lentiviral vector and pLX-sgRNA lentiviral vector containing

AAVS1-targeting sgRNA were all obtained from Addgene.

Determination of targeted breakpoint location

The empirically observed breakpoint of the translocation event was verified using COSMIC16 and

ChiTars17 and the introns selected by following the principle of last observed- and first observed exons

given several documented cases of the same translocation, with varying numbers of exons detected

in the partner genes. Only one combination of introns targeted for CRISPR-Cas9-mediated cleavage

was retained, using the intron following the last seen exon of the head partner and the intron

preceding the first observed exon of the tail moiety.

CRISPR sgRNA target selection and cloning

All SpCas9 Protospacer Adjacent Motif (PAM) sites within selected introns were scored using the

method described by Doench et al.18. The two top-scoring guide sequences were retained for each

translocation partner. A ’G’ was prepended to the guide sequence (GX20 sgRNA), with the benefit of

diminishing off-targets at the cost of cutting efficiency18. Top-scoring guide sequences were verified

by submission to the CRISPR Design webtool (http://crispr.mit.edu/)19. Selected sgRNAs were

verified with the updated off-target prediction algorithm GUIDE-seq20. The pLX-sgRNA vector was

digested with Xba1, Nde1 for 2 hrs at 37◦C, ran on a 0.5% agarose gel followed by gel extraction and
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purification. The DNA digest was further used to clone a new vector allowing for facile insertion of

sgRNA oligonucleotides via Gibson reactions. In order to select for successful transduction of the

second sgRNA, the vector was further modified to replace the blasticidin resistance with hygromycin.

HEK-293 infection

2x106 HEK-293T packaging cells were seeded in a 75cm2 cell culture flask in growth medium without

antibiotics. The following day, cells were transfected with pCMV-VSV-G, psPAX2, and pCW-Cas9

vectors using MirusBio TransIT-LT1 transfection reagent. After 24 hours medium was removed and

fresh medium containing 10mg/ml bovine serum albumin was added. 24 hours later medium was

harvested and residual cells were removed by filtration.

Viral pCW-Cas9 transduction

Nthy-ori 3-1 cells were seeded at 300 000 cells/well in a 6-well plate. The following day, protamine

sulfate was added to flasks to a final concentration of 8 µg/ml and cells were transduced with the

Cas9 construct with increasing volumes of virus-containing harvested medium: 0, 2, 5, 10, 20, 50,

75, 100, 150, 200, 250 µL. After overnight incubation, growth medium was refreshed. Cells with

increasing viral titers were seeded in 96-well tissue culture plates at 5000 and 10 000 cells/well in 200

µL of media. Growth media was replaced with medium supplemented with 0.8 µg/mL puromycin the

following morning. Alamar Blue was added to the wells and the percent viable cells were measured

at 570 nm after 5 hours and 24 hours. The lowest viral titer at which cells were viable post selection

was chosen, and cells were further maintained in puromycin-containing media.

Viral modified pLX-sgRNA transduction

Medium containing viral sgRNA vectors was harvested as previously described for each individual

sgRNA. 1x106 Thy-Cas9 cells were seeded per 25 cm2 cell culture plate. The following morning

harvested medium was added to growth medium in increasing volumes, at equal volumes between

the two sgRNAs of a given combination. Cells were split twice and selected for 14 days in medium

supplemented with 0.8 µg/mL puromycin, 10 µg/mL blasticidin or 200 µg/mL hygromycin. The

condition with lowest viral volume mediating resistance was retained for further experiments.

Cas9 expression induction

Doxycycline at a final concentration of 1 µg/mL was administered for 1 week to 4x105 cells seeded in a

100mm tissue culture dish. Doxycycline-containing medium was refreshed after 4 days. Immediately
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thereafter individual clones were generated via single cell cloning and expanded.

Translocation detection PCR

RNA was extracted from cells at various passages following single cell cloning using a Qiagen RNA

extraction kit according to the manufacturers instructions. Clones were screened for translocations

and the cDNA breakpoint determined by RT-PCR in a 96-well AB Veriti Fast Thermal Cycler using

the Quantitect SYBR green RT-PCR kit (Qiagen) according to the manufacturers instructions with

an annealing temperature of 56◦C for 30 seconds, an extension at 72◦C for 60 seconds, and a final

extension for 5 minutes at 72◦C. The forward primer was AGACAATGGCCGCTTTAGCCA and

the reverse primer was CAGGGAGCCGTATTTGGCGT. Sanger sequencing was used to confirm

the sequence of bands at the expected weight.

Anchorage-independent growth assay

Transformation was verified using a soft agar colony formation assay21. 6-well tissue culture plates

were coated with growth medium containing 1% agarose, and triplicate dishes were inoculated

with 10 000 or 2000 cells suspended in RPMI-1640 medium containing 0.8% agarose and 15% fetal

bovine serum, for counting and colony picking, respectively. Colony formation was assessed after 2

weeks. Image analysis was performed using ImageJ, with plugins ColonyArea22 and ColonyCounter

(https://imagej.nih.gov/ij/plugins/colony-counter.html).

Mass spectrometry lysis and sample preparation

Biological replicates were generated by selecting several fusion-containing cell lines as well as several

cell lines following colony formation. Protein was harvested by lysing a 150 mm dish at 80-90%

confluency in 1 mL of modified RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% Na-

deoxycholate, 1 mM EDTA) supplemented with phosphatase inhibitors (5 mM b-glycerophosphate,

5 mM NaF, 1 mM Na3VO4 and protease inhibitors (Roche cOmplete ULTRA Tablets, EDTA-free,

#05892791001), sonicated, and centrifuged for 20 minutes at 4300G. Ice-cold acetone was added to

the supernatant to achieve a final concentration of 80% acetone, and protein was left to precipitate

overnight at -20◦C. Precipitated protein was pelleted by centrifugation at 1800G for 5 minutes

and solubilized in 6 M urea, 2 M thiourea, 10 mM HEPES pH 8.0. Protein was quantified using

the Bradford assay and 650 µg of each sample were reduced with 1 mM DTT, alkylated with 5

mM ClAA, and digested with the endopeptidase Lys-C (1:200 v/v, Wako #129-02541) for 3 hours.

Samples were diluted to a 1 mg/mL protein concentration using 50 mM ammonium bicarbonate
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and incubated overnight with trypsin (1:200 v/v, Sigma #T6567). Digested samples were acidified

and urea removed using a Sep-Pak C18 96-well plate (Waters #186002320). An aliquot of 50

µg of eluted peptides was set aside for proteome analysis as well as peptide quantitation (using

a Pierce quantitative colorimetric peptide assay, Thermo #23275) in order to equalize injection

load for label-free LC-MS/MS analysis. The remainder was lyophilized, aliquots of 200 µg made

up in 1 M glycolic acid, 80% ACN, 5% TFA, and enriched for phosphopeptides using MagReSyn

Ti-IMAC beads (#MR-TIM010 ReSyn Biosciences) according to the manufacturers instructions.

Enriched peptides were subjected to a final C18 clean-up prior to data acquisition. All samples were

processed as technical duplicates.

MS data acquisition

All spectra were acquired on an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific)

operated in data-dependent mode coupled to an EASY-nLC 1200 (Thermo Fisher Scientific) liquid

chromatography pump and separated on a 50cm reversed phase column (Thermo, PepMap RSLC

C18, 2uM, 100 AA, 75umx50cm). Proteome samples (non-enriched) were eluted over a linear gra-

dient ranging from 0-11% ACN over 70 min, 11-20% ACN for 80 min, 21-30% ACN for 50 min,

31-48% ACN for 30 min, followed by 76% ACN for the final 10 min with a flow rate of 250 nL/min.

Phosphopeptide-enriched samples were eluted over a linear gradient ranging from 0-18% ACN over

195 min, 18-26% ACN for 30min, 26-76% ACN for 10min, followed by 76% ACN for the final 5 min

with a flow rate of 250 nL/min. Survey full scan MS spectra were acquired in the Orbitrap at a

resolution of 120 000 from m/z 350-2000, AGC target of 4x105 ions, and maximum injection time of

20 ms. Precursors were filtered based on a charge state of 2 and monoisotopic peak assignment, and

dynamic exclusion was applied for 45 seconds. A decision tree method allowed fragmentation for

ITMS2 via ETD or HCD, depending on charge state and m/z. Precursor ions were isolated with the

quadrupole set to an isolation width of 1.6 m/z. MS2 spectra fragmented by ETD and HCD (35%

collision energy) were acquired in the ion trap with an AGC target of 1x104. Maximum injection

time for HCD and ETD was 200 ms for phosphopeptide-enriched samples, and 80ms for proteome

samples.

Fasta file generation

DNA was extracted from the parental cell line using the Qiagen QIAamp DNA Mini kit, according

to the manufacturers instructions. Whole exome sequencing was performed by GENEWIZ with a

target average exome coverage of 89x. Reads were filtered using Trimmomatic23 with the following

parameters: headcrop = 3, minlen = 30, trailing = 3. Trimmed reads were aligned to the hg19

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2019. ; https://doi.org/10.1101/621961doi: bioRxiv preprint 

https://doi.org/10.1101/621961
http://creativecommons.org/licenses/by-nd/4.0/


reference genome using Burrows-Wheeler transform24. The Genome Analysis Toolkit base quality

score recalibration was applied25 along with indel realignment, duplicate removal, and SNP and

INDEL discovery and genotyping across all samples simultaneously using standard hard filtering

parameters according to Genome Analysis Toolkit best practice recommendations26. The Ensembl

Variant Effect Predictor27 with Ensembl v. 88 was used to predict the effect of the mutations on the

protein sequence. In order to find non-reference, mutated peptides in the mass spectrometry data,

we increased the search Fasta file with mutations affecting the protein sequence that passed a high

sensitivity filter: QD ≤1.5, FS ≥ 60, MQ ≥ 40, MQRankSum ≤ -12.5, ReadPosRankSum ≤ -8.0,

and DP at least 5 per sample on average.

Spectral search and quantification

All label-free raw data were searched using MaxQuant 1.5.1.228 against the human (or Mouse in the

case of Humphrey et al.) Ensembl database (v88), for the PRKAR1A-RET fusion kinase dataset

the mutant proteins identified by whole exome sequencing as well as the sequence of the fusion

product were also included. Default settings were used with the exception of a minimum peptide

length of 6 amino acids. STY phosphorylation was added as a variable modification. An FDR of

0.01 was applied at the level of proteins, peptides and modifications. Phosphosites were filtered for

a localization score of at least 0.9.

UPS1 benchmark

Data was downloaded from ProteomeXchange (PXD001819) and searched with MaxQuant 1.5.1.228

against the yeast protein database from Ensembl 89 and the UPS spike-in Fasta file obtained from

Sigma-Aldrich.

Post-spectral search data processing

Mass spectrometry spectra were identified by MaxQuant28 and assigned a sequence and modification

status. This was then used to identify the quantitative information obtained from the sequence

of MS1 spectra over chromatography time, in the form of an Extracted Ion Chromatogram (XIC)

measurement of intensity. We then investigated the XIC intensity of a modified peptide with a known

sequence, in the corresponding sample and mass spectrometry run (and raw file). We extracted

quantitative information regarding ion intensities from the evidence.txt file. We filtered out peptides

that were associated with multiple identifications in the msms.txt file, had a score < 40, were

identified in the reverse database or came from known contaminants. We also filtered all modified
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peptides with a localization probability < 0.9.

Calculating average intensity

A peptide P could be observed in multiple XIC in a single run. We defined the aggregated intensity

of peptide Pp,s,r, where p was the sequence of the peptide, s was the sample and r was the run, as:

Ip,s,r =
∑

XICp,s,r (2)

When we observed the peptide in multiple replicates we further summarized the mean intensity I:

Ip,s =

N∑
r=1

Ip,s,r=i

N
(3)

For normalization purposes we also calculated an average intensity over a mass spectrometry run.

However because intensities are not normally distributed but approximately follow a log-normal

distribution, the log intensities were summarized instead thusly:

ln Is,r =

∑
p

ln Ip=i,s,r

n

Is,r = eln Is,r

(4)

Ratios calculation

We defined the log-ratio of a peptide concentration from a sample s to the control s = u as:

rps = ln
Ips

Ip(s=u)

rps = f(Ips, Ip(s=u))

(5)

where Ip(s=u) is the intensity of a peptide p in the control sample u.

Error propagation

In order to propagate the standard deviation σx, when calculating a log-ratio by a pair of intensities

we applied the general Gaussian error propagation, which reads for a function f(x,y) depending on

the two variables x and y:

errf(x,y) =

√(
∂f

∂x
errx

)2

+

(
∂f

∂y
erry

)2

+ 2
∂f

∂x

∂f

∂y
errxy (6)
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and subsequently in our case for the log-ratio (where the minus is introduced by the partial derivative

of the log-ratio to the denominator):

σrps =

√(
σps
Īps

)2

+

(
σp(s=c)

Īp(s=c)

)2

− 2
1

Īpc

1

Īp(s=c)
Cov(Ips, Ip(s=c)) (7)

Because we considered the replicates to be independent from each other, we could further simplify

the covariance term:

σrps =

√(
σps
Īps

)2

+

(
σp(s=c)

Īp(s=c)

)2

(8)

Normalization

As different amounts of sample could be injected into the mass spectrometer, and because the

chromatography is not expected to be identical in each experiment, different experiments were scaled

before they were compared using a correction factor based on the average intensity (geometric mean)

in order to account for the potential impact of very high intensity peptides within a sample:

ln Is,r =

∑
p

ln Ip=i,s,r

n

ln I =

∑
i=s

∑
j=r

ln Is=i,r=j

n

(9)

And the correction factor S could be expressed as:

Ss,r = ln Is,r − ln I (10)

Peptide intensities could thus be corrected, and a normalized intensity N calculated, as follows:

Np,s,r = eln(Ip,s,r)−Ss,r (11)

Summarization worked as described above by replacing Ip,s,r with Np,s,r.

Variance model

In order to get a baseline estimate of the peptide variance, we established a Bayesian variance

model. We modeled the behaviour of the standard deviation of σrps as a function of abs(rps). Data

was split into bins containing at least 600 data points each along abs(rps), and for each bin we

fit 1/σ2 to a Γ distribution with shape parameter a and rate b. We observed that a ≈ 1, and

1
b ' A · exp(−B · xν), x = | log(r)|
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Likelihood function

The likelihood function was calculated from a given phosphorylation site s, the set of phosphorylation

sites Si for sequence i, the total number of modifiable sites S and the occupancy ratio os = ps/c

on site s, which is the fraction of peptide that is modified. Assuming os values would be mutually

independent, the log concentration ratio, µi, was given by:

exp(µi) = exp(c)
∏
s∈Si

(
o′s
os

)tis (1− o′s
1− os

)1−tis

µi(c, ō, ō
′) =c+

∑
s

Iis

[
log

(
1− o′s
1− os

)
+ tis

(
log

(
o′s

1− o′s

)
− log

(
os

1− os

))] (12)

where c is the protein log concentration ratio between the sample and the reference, ō and ō′ are

the collection of occupancy ratios for the sample and the reference respectively, and tis are indicator

variables signifying whether site s is modified (1) or not (0). Similarly, Iis = 1 if phospho site s

was covered by i and zero otherwise. z = (x̄1, · · · , x̄I) represented the measured log concentration

ratios for the I peptides belonging to the given protein, where each x̄i represented the mean value

taken over ni repeats and with effective posterior Γ parameters of ai and bi and µ̄ = (µ1, · · · , µI)

represented the collection of expected values. Then P (z̄|µ̄) =
∏
i P (zi|µi) where each factor is a

non-standardized t distribution. Defined for convenience as:

ν̃i =
1

2
(νi + 1)

γi =
ni
2bi

Ki = 1 + γi(x̄i − µi)2

(13)

Consequently the likelihood function was given as:

L(c, ō, ō′) = logP (z̄|µ̄(c, ō, ō′))

=
I∑
i=1

(
−ν̃i log [Ki] +

1

2
log(γi)

)

L(c, ō, ō′) =
I∑
i=1

ν̃i log

1 + γi

(
x̄i − c−

∑
s

Iis

[
log

(
1− o′s
1− os

)
+ tis

(
log

(
o′s

1− o′s

)
− log

(
os

1− os

))])2


+
1

2
log(γi)

)
(14)
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Markov Chain Monte Carlo sampling

We optimized the function for each protein separately with Bayesian Markov Chain Monte Carlo

simulations. We used a Jeffrey prior on os with α1 = α2 = 1
2 and an exponential prior with λ = 2

on c.

L(c, ō, ō′) + P (c, ō, ō′) =

I∑
i=1

ν̃i log

1 + γi

(
x̄i − c−

∑
s

Iis

[
log

(
1− o′s
1− os

)
+ tis

(
log

(
o′s

1− o′s

)
− log

(
os

1− os

))])2


+
1

2
log(γi)

)
+Be(os|α1, α2) +Be(os|α1, α2)− 2 |c| (15)

2% of the proposed moves were drawn from the prior distribution of the parameters as described

above. Standard moves were as ct+1 = ct +N (λ = 0, σ = 0.05) for the concentration and os,t+1 =

os,t+N (λ = 0, σ = k) for occupancies, with a standard deviation corrected to propose smaller moves

when os approaches 0 or 1.

k =

(∣∣∣∣ 1

100
Be(os|α1, α2)

(
1

2(1− o)
− 1

2o

)∣∣∣∣+
1

0.05

)−1
(16)

In addition, all moves that would result in os < 10−5 or os > 1− 10−5 were automatically rejected.

In order to ensure a good sampling of the likelihood, we used the effectiveSize Coda R package29

to calculate the effective sample size of the Markov chains. We expressed the number of required

iterations as a function of the number of chains np as:

f(np) = 20/e9.227−1.898∗log(np) ∗ 107 (17)

We rounded f(np) up to the next power of 10 to get the final number of iterations nc. Chains with

nc > 109 were re-initialized after 109 iterations. We used a burn-in time of 30% and saved the state

of the chains 7 ∗ 103 times as output. Proteins with at least one chain with effectiveSize smaller or

equal to 100 were repeated with 10 times more iterations.

Data and software availablility

An R package for performing Markov-Chain Monte Carlo sampling of uncertainties for protein

concentration and phosphorylation site occupancy ratios is available at the following URL, under a

GNU General Public License Version 3: https://github.com/xrobin/MCMS
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Figure legends

Figure 1. Using the likelihood function and minimum information priors (B(0.5, 0.5) and N (0,
√

2)),

the parameters of interest for phosphosite occupancies (ō) and concentration (c) (A) could be com-

pared to the data (B) and noise model Γ(rate, shape). This allowed the expression of the probability

of the parameters, given the data P (c, ō|data), which can then be sampled with Markov-Chain Monte

Carlo (C), and finally converted to probability distributions (D), represented by mean and standard

deviations. (E) illustrates the observed log concentration ratios for an example dataset of spiked

proteins (dots) along with the expected ratio (vertical lines). (F) illustrates the correlation observed

between expected log ratios of protein concentration and the sampled log ratio following Markov-

Chain Monte Carlo modelling for an example dataset of spiked proteins sampled with 1 (red) or 3

(blue) replicates.

Figure 2. Hierarchical clustering of Markov-Chain Monte Carlo modelled data using a Euclidian

distance metric distinctly clustered the fusion-kinase expressing cells from control cells, and fusion-

kinase expressing cells grown in standard cell culture from those grown in colony formation assays.

The concentration of quantified proteins (A), and the occupancy of quantified phosphorylation sites

(B) were expressed as log ratios to thyroid cells expressing Cas9.

Figure S1. Comparison of the number of proteins and phosphorylation sites quantifiable, with

uncertainties, using the Monte Carlo model described here and conventional analyses for increasing

numbers of replicates.

Figure S2. Soft agar colony formation assays were performed to assess the capacity of PRKAR1A-

RET kinase fusion expressing cells for anchorage-independent growth. Changes in colony area (A)

and intensity (B) are shown for triplicate repeats. Control cells did not express the PRKAR1A-RET

kinase fusion.

Figure S3. Cancer hallmark pathways found to be enriched in PRKAR1A-RET kinase fusion

expressing cells following 2D growth (A) and anchorage-independent i.e. 3D growth (B). Nodes were
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found to have significantly modulated concentration or phosphorylation site occupancy following

Markov-Chain Monte Carlo modelling. Edges were obtained form the STRING database of protein-

protein interaction networks30.

Table S1. Further processes enriched in PRKAR1A-RET kinase fusion expressing cells and

colonies. Only processes with a q-value lower than control cells were included.
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The first and second derivatives wrt to x and x′ becomes
∂µi

∂x′
s
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∂o′
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· 1
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s
)2
)2

+
∂µi

∂o′
s

· τ ′
s

(
1 + (τ ′

s
)2
)

∂2µi

∂(xs)2
=

∂2µi

∂(os)2
· 1
4
·
(
1 + τ2

s

)2
+

∂µi
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To avoid degeneracy we can add prior probabilities.

MS-2 analysis
Let P indicate a SILAC pair and CL,H indicate whether co-localization has occured (C = 1) or not (C = 0) for the light
MS-1 peak and heavy MS-1 peak respectively. From those silac pairs where both heavy and light MS-2 spectra has been
observed estimate the four probabilities

P (CL, CH |P) =






pC11 for CL = 1, CH = 1

pC01 for CL = 0, CH = 1

pC10 ...

pC00 ...

Let N = {CL = 0, CH = 0} (no co-localisation problems), so P (N|P) = pC00. Let also ptop
L

, ptop
H

be the probability for the
top-scoring p-peptide according to the MS-2 analysis for L and H respectively. Let Stop indicate the case where the top
scoring p-peptide is the same for the L and H MS-2 analysis. Focusing on all SILAC pairs where there is no colocalization
problems we can assess by global statistics

P (Stop | ptop
L

, ptop
H

,N ,P)

P (ptop
L

, ptop
H

| N ,P)

The effective number of observations, neff

i
, for a p-peptide i in cases where both MS-2 spectra have been obtained is given

by neff

i
= pL(i) · pH(i), where pL,H(i) is the probability of peptide i in the L and H MS-2 analysis, respectively. If only one

MS-2 spectra has been observed, say for L-sample. we can calculate the expected effective number of observations for the
top scoring peptide itop according to the observed ptop

L
and the global statistics derived above. Specifically,

P (ptop
H

,Stop, CH = 0|ptop
L

, CL = 0,P) = P (ptop
H

,Stop | ptop
L

,N ,P)P (CH = 0|ptop
L

, CL = 0,P)

= P (Stop|ptop
L

, ptop
H

,N ,P) · P (ptop
H

|ptop
L

,N ,P) · P (CH = 0|ptop
L

, CL = 0,P)

= P (Stop|ptop
L

, ptop
H

,N ,P) · P (ptop
H

, ptop
L

|N ,P)

P (ptop
L

|N ,P)

P (N|P)

P (CL = 0|P)

= P (Stop|ptop
L

, ptop
H

,N ,P) · P (ptop
H

, ptop
L

|N ,P)

P (ptop
L

|N ,P)
· pC00
pC00 + pC01

Let P̃ (ptop
H

) = P (ptop
H

,Stop, CH = 0|ptop
L

, CL = 0,P) . The expected effective number of observations is then given as

〈neff

i−top
〉(ptop

L
) = ptop

L
· 〈ptop

H
〉 = ptop

L
·
ˆ

ptop
H

· P̃ (ptop
H

)dptop
H

P (c, ō, ō′ | data) = −
∑

i∈pep.
ν̃i log



1 + γi



x̄i − c−
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[
log
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1− o′
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1− os

)
+ tis
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log
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− log
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