

1 Germline-encoded TCR-MHC contacts promote TCR V gene bias in umbilical cord blood T
2 cell repertoire

3 *Kai Gao^{1, 2, 3}, *Lingyan Chen², *Yuanwei Zhang², Yi Zhao^{2, 4}, Ziyun Wan², Jinghua Wu²,
4 Liya Lin², Yashu Kuang³, Jinhua Lu^{3, 5}, Xiuqing Zhang^{1, 2}, Lei Tian², Xiao Liu^{1, 2}, Xiu Qiu^{3, 5, 6}

5

6 ¹School of Future Technology, University of Chinese Academy of Sciences, Beijing, China

7 ²BGI-Shenzhen, Shenzhen, 518083, China

8 ³Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center,

9 Guangzhou Medical University, Guangzhou, 510623, China

10 ⁴School of Biology and Biological Engineering, South China University of Technology,
11 Guangzhou 510006, China

12 ⁵Department of Women and Children's Health Care, Guangzhou Women and Children's
13 Medical Center, Guangzhou Medical University, Guangzhou 510623, China

14 ⁶Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical
15 Center, Guangzhou Medical University, Guangzhou, 510623, China

16

17 *These three authors contributed equally to this work.

18

19 **Running title:** TCR-MHC contacts promote TCR V β gene bias

20

21 **Corresponding authors:**

22 • Lei Tian, Build 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China.

23 Phone: +8613686450096, fax +860755-32960023. tianlei1@genomics.cn

24 • Xiao Liu, Build 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China.

25 Phone: +8613428700710, fax +860755-32960023. liuxiao@genomics.cn

26 • Xiu Qiu, No. 9 Jinsui Road, Guangzhou. Phone: +8602038367162, fax 020-38367162,

27 E-mail: qxiu0161@163.com/xiu.qiu@bigcs.org

28

29 This research was supported by the National Natural Science Foundation of China (81673181

30 and 31700794) and the Shenzhen Municipal Government of China

31 (JCYJ20170817145404433 and JCYJ20170817145428361).

32

33 **Abstract**

34 T cells recognize antigens as peptides bound to major histocompatibility complex (MHC)
35 proteins through T cell receptors (TCRs) on their surface. To recognize a wide range of
36 pathogens, each individual possesses a substantial number of TCRs with an extremely high
37 degree of variability. It remains controversial whether germline-encoded TCR repertoire is
38 shaped by MHC polymorphism and, if so, what is the preference between MHC genetic
39 variants and TCR V gene compatibility. To investigate the “net” genetic association between
40 MHC variations and TRBV genes, we applied quantitative trait locus (QTL) mapping to test
41 the associations between MHC polymorphism and TCR β chain V (TRBV) genes usage using
42 umbilical cord blood (UCB) samples of 201 Chinese newborns. We found TRBV gene and
43 MHC loci that are predisposed to interact with one another differ from previous conclusions.
44 The majority of MHC amino acid residues associated with the TRBV gene usage show spatial
45 proximities in known structures of TCR-pMHC complexes. These results show for the first
46 time that MHC variants bias TRBV gene usage in UCB of Chinese ancestry and indicate that
47 germline-encoded contacts influence TCR-MHC interactions in intact T cell repertoires.

48

49 **Keywords**

50 TRBV gene usage, MHC genetic variations, quantitative trait locus mapping, umbilical cord
51 blood

52

53 **Introduction**

54 T cell immune surveillance is critical for the health of all jawed vertebrates. Most T cells
55 express $\alpha\beta$ TCRs and recognize peptides derived from digested proteins when presented at the
56 cell surface in MHC molecules. How $\alpha\beta$ TCR interacts with peptide-MHC (pMHC) has been
57 a particularly attractive field as it may contribute to developing strategies for manipulating T
58 cell responses in many diseases including immunodeficiencies, tumor, autoimmune, and
59 allergic diseases.

60

61 Looking at the structures, TCR-pMHC interaction is a delicate process. TCR exists in
62 heterodimers and the binding site of each TCR chain can be divided into three
63 complementarity-determining regions (CDRs), called CDR1, 2, and 3. The most variable
64 region CDR3 is formed by somatic recombination of the variable (V), joining (J), and in β
65 chains diversity (D) genes. Less variable regions CDR1 and CDR2 loop sequences are constant
66 for each type of chain, and are therefore referred to as “germline-derived”. Unlike CDR3,
67 CDR1 and CDR2 regions are encoded by only TCR V genes. As such, the T cell repertoire of
68 each individual may have a potential number of 10^{18} TCRs¹. Human MHC genes are also
69 known as human leukocyte antigen (HLA) genes. HLA genes are extremely polymorphic with
70 more than 12000 known alleles and MHC haplotypes are highly variable in different ethnic
71 groups^{2,3}. Each individual inherits one set of MHC genes from a parent including classical
72 MHC class I loci (HLA-A, -B, and -C) and classical MHC class II loci (HLA-DP, -DQ, and
73 -DR). In the dozens of structures of TCR-pMHC complexes that have been solved, CDR1 and
74 CDR2 loops are shown to be in contact with the conserved α -helical residues of the MHC

75 molecules, and the highly variable CDR3 loops primarily interact with the peptide⁴⁻⁶.

76

77 Recently, biased $\alpha\beta$ TCR repertoires and TCR ‘signatures’ raised against specific antigens
78 have been observed in various diseases, especially in virus infections, autoimmune disorders,
79 and tumor⁷. Little is known about whether, and if so how MHC genotype influences the
80 composition of TCR repertoire. Most recently, a genetic study done by Pritchard laboratory
81 showed that MHC gene is the most influential gene of TCR V gene usage using RNA-seq
82 data from a large cohort of European adults⁸. However, some structural and functional studies
83 proposed that neither MHC residues nor germline-encoded TCR sequences are indispensable
84 for TCR-pMHC interaction. As TCR repertoire can change greatly with T-cell turnover and
85 immune responses to environmental insults, it is critical to determine how MHC molecules
86 affect TCR repertoire with confounding factors in control.

87

88 In this study, we attempt to investigate if MHC genetic variations reshape the intact TCR
89 repertoires using umbilical cord blood (UCB) samples from 201 Chinese newborns. UCB
90 samples are used to exclude any influential factors that have yet to be introduced to the TCR
91 repertoires. We sequenced TCR β chain V genes and the MHC region and performed QTL
92 mapping to test the associations between TRBV gene usage and MHC variations at three
93 levels of allele, nucleotide and amino acid. Our results identified TRBV gene and MHC loci
94 that are predisposed to interact with one another. Contacts between MHC and TRBV
95 molecules promote a genotype shift in TRBV gene usage.

96

97 **Results**

98 **TRBV gene usage is influenced by MHC genetic variation**

99 To estimate the usage of TRBV genes, we sequenced TCR β chain V genes using DNA
100 collected from UCB of 201 Chinese newborns. Then we calculated the proportion of reads
101 that mapped uniquely to each $V\beta$ gene of all mapped reads. The MHC region of the same
102 individual was sequenced by target capture sequencing and classical four-digit alleles were
103 imputed from SNP data. A schematic overview of the analysis is presented in **Fig. 1A**.

104

105 We extracted 48 TRBV genes in each of the 201 samples using immune repertoire sequencing
106 data (**Supplementary Fig. 1, Supplementary table 1 and 2**). Undetected TRBV genes are
107 randomly scattered, which is most likely due to individual differences. Unique alleles of 23
108 HLA-A, 46 HLA-B, 21 HLA-C, 28 DRB1, 16 DPB1, 4 DPA1, 14 DQB1, and 15 DQA1 are
109 present in our cohort (**Supplementary Table 3**). We then performed QTL mapping between
110 TRBV usage and MHC alleles. As a control, B cell Immunol Globulin Heavy chain V
111 (IGHV) genes, which are not expected to interact with MHC, were analyzed in a similar
112 pipeline. Our results showed that the frequencies of TRBV genes, but not the IGHV genes,
113 are significantly associated with MHC alleles (**Fig.1B, Supplementary Table 4 and 5**). We
114 then performed QTL mapping using single nucleotide polymorphisms (SNPs)
115 (**Supplementary Table 6 and 7**) and amino acid variations (**Supplementary Table 8 and 9**)
116 corresponding to MHC alleles. Again, only TRBV gene usage is significantly associated with
117 MHC at SNP and amino acid levels (**Fig. 1B**). These are the first genetic evidence that TRBV
118 gene usage is significantly influenced by MHC genes in UCB T cell repertoires.

119

120 **TRBV genes differ in their association with different MHC locus**

121 Next, we aim to find which TRBV genes and MHC variants are most likely to be in strong
122 associations. Our results show that the frequencies of 8.3% (4/48) of TRBV genes can be
123 explained by MHC alleles and the frequencies of 14.6% (7/48) of TRBV genes can be
124 explained by MHC nucleotide and/or amino acid variations (**Fig. 2A**). Among the seven
125 TRBV genes influenced by MHC, TRBV13, TRBV7-6, TRBV7-9, TRBV10-3, and TRBV30
126 are novel; TRBV20-1 and TRBV9 have been described before in European adults⁸. In
127 accordance with the previous report, our results indicate that TCR V genes differ in their
128 compatibilities with MHC polymorphism.

129

130 Looking at the distribution of significant associations at different MHC loci, 9 MHC alleles,
131 114 MHC SNPs and 96 MHC amino acid variations are associated with TRBV usage at
132 FDR<0.05 (Supplementary Table 4, 6, and 8). MHC class I locus HLA-A and MHC class II
133 locus DRB1 each has a larger number of variations associated with TRBV genes than that of
134 any other loci of the same class at both nucleotide and amino acid level (**Fig. 2B and 2C**). If
135 the specificity of TCRs towards MHC molecules depends on only the conservative regions of
136 MHC molecules, then we may expect to find the number of TCR associated MHC molecules
137 to be approximately proportional to the number of MHC variations in each region.
138 Interestingly, HLA-C locus has the minimum number of variations in association with TRBV
139 genes despite the fact that the degree of HLA-C loci diversity is as high as that of HLA-A loci.
140 Although HLA-C shares sequence homology with HLA-A and HLA-B molecules, it is

141 substantially different from other MHC I molecules in many different ways. One of the main
142 feature distinguishing HLA-C is its low expression, that the number of surface HLA-C
143 proteins are estimated to be only ~10% of that of HLA-A and HLA-B molecules⁹⁻¹¹. Thus, it
144 is highly possible TCR usage bias explained by different MHC loci is also shaped by the
145 intrinsic differences in the abundance of surface MHC proteins, suggesting a strong influence
146 from direct physical contacts.

147

148 **Independent MHC residues that bias TRBV gene usage**

149 Due to the strong linkage disequilibrium (LD) structure in the MHC region, it is unclear
150 which MHC variant is responsible for a particular association. Therefore, we performed
151 conditional analysis for each TRBV genes to identify their potential independent MHC amino
152 acid variants. For instance, we examined all TRBV13-associated MHC amino acids. Twenty
153 polymorphic amino acids in HLA-A, five in HLA-B and one in HLA-DRB1 (position 71)
154 showed significant association with TRBV13 (FDR<0.05). Except HLA-A position 97 and
155 HLA-DRB1 position 71, other amino acid positions initially have four potential linkage
156 groups (**Fig. 3A**). Our conditional analysis further confirmed that amino acid position 97 of
157 HLA-A have the strongest association with TRBV13, followed by position 71 of HLA-DRB1
158 (**Fig. 3 B and C**, conditional $P < 0.05$). After conditioning for these two top positions, no
159 other associations reach a significant level.

160

161 Using this method, 11 independent amino acid variants are found to have the highest
162 possibilities of influencing TRBV gene usage (**Fig. 3, Supplementary Fig. 2**). Three of the

163 11 independent amino acid variations, HLA-DRB1 residue 67 and 71, HLA-DQB1 residue 55
164 are associated with type 1 diabetes, multiple sclerosis, hypothyroidism, rheumatoid arthritis,
165 and other inflammatory polyarthritis according to PheWAS database^{12, 13}. We then estimated
166 to what extent these MHC variants can influence each TRBV gene usage variation using
167 multiple linear regression. The results showed that 6-23.3% of the proportion of TRBV
168 variability can be explained by MHC amino acid variations, highlighting an important role of
169 MHC in shaping TCR repertoires (**Fig. 3D, Table 1**).

170

171 **TRBV gene associated MHC amino acids locate in TCR binding pockets**

172 MHC residues near the contact interface between TCR and MHC or located in the
173 polymorphic “pockets” of the peptide-binding grooves are most likely to influence the
174 TCR-pMHC (peptide-major histocompatibility complex) interaction⁶. To see whether TRBV
175 gene associated MHC residues are adjacent to or have direct contacts with TCRs on the
176 molecular structure, we mapped these MHC residues onto protein structures of pMHC
177 complex downloaded from PDB database (**Fig. 4A**). We then collected all structural
178 information of TCR-pMHC complex consisting of 69 HLA-A, 23 HLA-B, 12 HLA-DRB1, 8
179 HLA-DQA1 or 8 HLA-DQB1 and their paired TCR and peptides (**Supplementary Table 10**).
180 The residues with a high possibility of influencing TRBV gene usage tend to be either
181 physically near or in direct contact with the TCR in structures (**Fig. 4B**). For instance,
182 HLA-DRB1 residue at position 67 predicted in our model with the highest association with
183 TRBV20-1 showed contact with TCR in 42% analyzed complex and with peptide in 75%
184 analyzed complex. These results suggest that MHC amino acid residues influence

185 TCR-pMHC interactions via direct physical contacts.

186

187 **Discussion**

188 Our results show that MHC polymorphism plays an important role in shaping UCB TCR
189 repertoires. 14.6% (7/48) of TRBV genes are significantly associated with nucleotide and/or
190 amino acid variations of the MHC molecules. Among these TRBV associated MHC loci, we
191 are able to pinpoint 11 independent influential MHC amino acid residues, the majority of
192 which are located in HLA-A and HLA-DRB1 loci. The structural analysis confirmed that the
193 majority of TRBV associated MHC residues are positioned at the TCR-pMHC contact
194 interfaces of known protein complexes, which indicates that MHC molecules have a higher
195 probability of influencing TRBV gene frequencies through physical contacts. In summary, we
196 conclude that MHC variations sculpt UCB TRBV gene repertoires by favoring more
197 compatible TCR-MHC pairs in thymic selection.

198

199 Our results shed light on the long debate about the basis of TCR specificity for MHC
200 molecules. In 1971, Jerne proposed that TCR and MHC genes coevolve to have inherent
201 predisposition to interact with one another¹⁴. Jerne's idea was further extended that TCRs'
202 biases for MHC are dictated by conserved CDR1 and CDR2 loops encoded by TCR V genes¹⁵,
203 which was later validated in many known TCR-pMHC complexes^{4, 16-19}. In contradiction to
204 this theory, a human TCR complex with an MHC class II molecule demonstrated no
205 dependent of CDR1 and CDR2 for MHC recognition²⁰. In this complex, CDR1 and CDR2
206 have a few contacts with any kind of MHC, and CDR3s have extensive contacts with the

207 peptide and the α helices²⁰. It is currently impossible, or probably unnecessary, to thoroughly
208 exam all possible TCR-pMHC structures to conceive the rules for TCR-pMHC interactions.
209 Our results provided genetic evidence that intrinsic TCR-MHC bias exists in the UCB
210 samples of a relatively large cohort of newborns. A recent study consistent with this idea
211 comes from Pritchard laboratory, which utilized RNA-seq data from adult peripheral blood⁸.
212 In summary, our genetic results are supportive of the inherited reactivity of TCR-MHC
213 molecules.

214

215 Previous studies on the TCR bias for MHC molecules have utilized adult peripheral blood
216 samples of mouse and human. When using adult samples, precautions need to be taken into
217 consideration to exclude confounding factors that may substantially shape T cell repertoire.
218 Two such factors are the thymic involution during aging and prevalent pathogen infections.
219 To minimize any known and unknown confounding factors, we utilized the newborns' UCB
220 samples that allow us to assess the “net” genetic association between TCR and MHC. The
221 results of our UCB data differ from previous data: HLA-A and HLA-B, instead of HLA-C
222 genes, are found to be the most influential MHC class I loci to TRBV gene usage. Although
223 the conservative regions of HLA-C proteins are similar to that of HLA-A and HLA-B proteins,
224 HLA-C is substantially different from other MHC I molecules, especially the surface
225 expression of HLA-C proteins is much lower than those of the HLA-A and HLA-B proteins²¹.

226 In addition, only a minority of CD8T cells are restricted by HLA-C, and they have recently
227 been found to be critical in response to chronic infections such as Epstein-Barr virus and HIV
228 infection²². Therefore, the associations between HLA-C and TCRs found in the circulation of

229 adults may be biologically meaningful, but may also reflect the prevalence of HLA-C
230 restricted T cell responses.

231

232 It is interesting that several MHC loci stand out as more influential than other loci in shaping
233 TRBV genes. There may be important biological meanings in the selective involvement of
234 certain MHC loci in thymic education. The conventional TCR-MHC system is not the only
235 function of the MHC genes or necessarily the original function from an evolution point of
236 view. For instance, many non-classical MHC class I molecules, as well as HLA-C, also
237 function as a ligand for killer immunoglobulin receptors (KIRs) to regulate nature killer (NK)
238 cell activities. Crystal structures of the KIR2DL2-HLA-Cw3 and KIR2DL1-HLA-Cw4
239 complexes revealed the precise contacting site of HLA-C with KIR molecules, which is
240 predicted to result in KIR competing with TCR for HLA-C interaction¹¹. Similarly, in the risk
241 predictions of MHC mismatching transplantations, HLA-A, -B, -C and -DRB1 mismatches
242 are associated with higher risks of graft-versus-host response than those of other classical
243 MHC loci²³. Together, these results suggest a modification to the applicable MHC loci of the
244 coevolution theory.

245

246 With regard to the TRBV genes, we found seven MHC biased TRBV genes among which,
247 TRBV13, TRBV7-6, TRBV7-9, TRBV10-3, and TRBV30 are first reported, and TRBV20-1
248 and TRBV9 have been described before in European adults⁸. Notably, structures that
249 composed of TRBV13 has been extensively studied in mouse. Complexes that include
250 TRBV13-2 show that amino acids in its CDR2 loop react with related sites on the MHCII α 1

251 helix despite various docking angles of the TCR, and TRBV13-1 CDR1 and CDR2 loops
252 have more than one docking site on $\alpha 1$ helix and shifts according to docking positions²⁴. A
253 dynamic interplay between TCR and MHC molecules has gathered more and more evidence.
254 It is possible that we could eventually construct a list of conserved interactions between TCR
255 and MHC with genetic studies, even though, the two molecules may not interact in a
256 conventional way.

257

258 In summary, our results showed that TCR V β genes are significantly associated with the
259 MHC genotypes in the UCB from a cohort of 201 Chinese newborns. Our structure analysis
260 suggests that MHC amino acid residues associated with the TRBV gene usage are in contact
261 or adjacent with the TCR β chains in physical structure showing the substantial potential of
262 MHC to influence TCR in protein-protein interaction. Our results confirm and extend our
263 knowledge of TCR-MHC association and contribute to the richness of side-by-side
264 comparisons of population-based studies as a strategy to further understanding the nature of
265 TCR-MHC interactions and its implications in human.

266

267 **Methods**

268 **Umbilical cord blood collection and DNA isolation**

269 6ml umbilical cord blood was collected from the unborn placenta of full-term deliveries in
270 each of 201 healthy newborns at Guangzhou Women and Children's Medical Center
271 (Guangzhou city, Guangdong, China). The sample collection was performed in accordance
272 with the ethical standards of the Ethics Committee of Guangzhou Women and Children's

273 Medical Center (GWCMC), and written informed consent was obtained from all participating
274 pregnant women. The buffy coat of cord blood was freshly isolated with density gradient
275 centrifugation and DNA was extracted using HiPure Blood DNA Mini Kit (Magen) according
276 to the manufacturer's protocol. DNA concentration and integrity were measured by Qubit 3.0
277 fluorometer (Life Technologies, Paisley, UK) and agarose gel (Agilent) electrophoresis.

278

279 **Immune repertoire library preparation and sequencing**

280 1.2ug DNA sample was partitioned to construct a library for TCR β (TRB) chain and immune
281 globulin heavy (IGH) chain sequencing using a two-step-PCR method. Firstly, buffy coat
282 DNA was subjected to Multiplex PCR (MPCR) using published primers and cycling
283 conditions ²⁵ to enrich rearranged complementarity determining region 3 (CDR3) of the
284 variable regions of TRB/IGH chain. The second PCR introduced the sequencing primers,
285 Illumina primers P5 and P7, into the first PCR products. IGH and TRB genes were sequenced
286 on the HiSeq 4000 (Illumina, La Jolla, CA) with the standard paired-end 150 and paired-end
287 100 protocol, respectively. Base calling was performed according to the manufacturer's
288 instruction.

289

290 **MHC region capture, library construction and sequencing**

291 MHC region capture sequencing was performed using the similar protocol reported before²⁶
292 with the same design of MHC capture probes named as 110729_HG19_MHC_L2R_D03_EZ,
293 whose product information is provided on the Roche NimbleGen website
294 (<https://sequencing.roche.com/en/technology-research/research/immunogenetics.html>).

295 However, sequencing adaptors are modified to fit BGISEQ-500 sequencer (BGI-Shenzhen,
296 Shenzhen, China). In brief, 1ug shotgun library was hybridized to the capture probes
297 following the manufacturer's protocols (Roche NimbleGen) and the captured target fragments
298 were amplified using AccuPrime® Pfx DNA Polymerase (Invitrogen). The PCR products of
299 captured DNA were purified and quantified by Qubit® dsDNA BR Assay Kits (Invitrogen),
300 and then used to construct sequencing library guided by the manufacturer's protocol
301 (BGISEQ-500) ²⁷ including cyclizing and digestion with enzymes and quantified by Qubit®
302 ssDNA Assay Kit (Invitrogen). Finally, libraries were sequenced with standard paired-end 50
303 reads on the BGISEQ-500 sequencer following manufacturer's instructions ²⁷.

304

305 **Immune repertoire analysis**

306 TRB and IGH Sequencing data were analyzed using IMonitor (version 1.3.0) ²⁵, of which the
307 specific parameters are as the followings: -ec -k 100 (IGH pipeline is 150) -jif 80 -vif 80 -v
308 33 -d . Other parameters are using the defaults. To allow data analysis by QTL mapping,
309 undetectable TRBV and IGHV gene were defined as zero. Log2-transformed usage of TRBV
310 (0.01 pseudo-usage was added to avoid zeroes for TRBV) and IGHV (0.00001 pseudo-usage
311 was added to avoid zeroes for IGHV) were displayed by R code with hierarchical clustering
312 of both rows and columns.

313

314 **Variant calling in raw reads of MHC region.**

315 MHC targeted capture sequencing data was first quality controlled by filtering out reads with
316 more than 50% bad bases that have quality score <=5, then aligned to the human reference

317 genome sequence (UCSC hg19) using BWA ²⁸(version 0.5.9). BAM files were firstly
318 processed by Picard (version 1.54, <http://broadinstitute.github.io/picard>) to sort, merge and
319 mark duplications, and then were managed by Genome Analysis Toolkit²⁹ (GATK, version 3.4)
320 to recalibrate bases, call variants in HaplotypeCaller mode and recalibrate variant quality
321 scores. Only variants labeled as “PASS” by GATK were kept.

322

323 **Imputation of MHC alleles.**

324 Using variants called by GATK, we imputed four-digit classical HLA alleles for HLA-A,
325 HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, HLA-DPB1, HLA-DPA1 and HLA-DQA1 with
326 Beagle³⁰ (version 4.1). The Han-MHC reference panel³¹ (total number of individuals 10,689)
327 was used for imputation. For each sample and each gene, MHC alleles with the highest
328 genotype probability (estimated by Beagle) were selected. SNPs corresponding to MHC
329 alleles were obtained by aligning exon sequences from IMGT/HLA database² to the human
330 reference genome sequence (UCSC hg19) using BWA (version 0.5.9). Amino acid
331 polymorphisms corresponding to MHC alleles were obtained by annotation of SNPs using
332 ANNOVAR³² (version 2017Jul16).

333

334 **QTL mapping**

335 The genetic variations at single nucleotide, amino acid, and four-digit classical MHC
336 haplotypes were coded as allelic dosage counting on the number of reference allele/s (0, 1, 2).
337 We used the MatrixEQTL R package³³ for QTL mapping of TRBV and IGHV genes usage
338 with genetic variations in the MHC region. We applied QTL mapping at three levels of

339 genetic variations. SNPs, polymorphic amino acids and four-digit MHC alleles with a MAF
340 (minor allele frequency) < 0.05 were removed. A threshold of 5% FDR was used to control
341 for the testing burdens of multiple variations at each genetic level.

342

343 **Conditional analysis of associations between TRBV genes usage and MHC amino acid
344 variations.**

345 The Conditional analysis was performed individually for each TRBV gene usage using
346 forward stepwise linear regression. We established the optimal threshold to perform the
347 stepwise conditional regression on amino acid variations with FDR < 0.05 from the QTL
348 mapping and we considered an expanded model that included the dosage variable for target
349 amino acid variant and the most significant amino acid variant (top amino acid variant) as a
350 covariate. If the target amino acid variations had a conditional *P* value < 0.05 , we considered
351 it as an independent signal (second amino acid variant). The multiple linear regression model
352 then expanded to include the top amino acid variant and the second amino acid variant as
353 covariates and test the association of the remaining amino acid variants. Regression stopped
354 when the conditional *P* value of the target amino acid variant was greater than 0.05. We also
355 carried out this type of analysis for the SNPs.

356

357 **Estimating the fraction of variation for each TRBV gene usage that is explained by
358 genetic variation in the MHC locus.**

359 We fitted a linear regression or a multiple linear regression model (when appropriate) with the
360 target TRBV gene usage as a dependent variable and the significant amino acid variants

361 identified from QTL mapping and conditional analyses as independent variables using *lm*
362 function in R. The proportion of variability explained by the corresponding independent
363 amino acid variant was the adjusted R-square derived from the linear regression model. The
364 statistical significance of the overall model was tested using F-tests. These analyses were also
365 performed at the level of SNPs.

366

367 **Structure analysis**

368 Our QTL mapping results of total of 96 MHC amino acid variations were marked onto protein
369 structures of pMHC complexes. Structures of proteins were downloaded from the RCSB PDB
370 (PDB ID: 2BNQ³⁴, PDB ID: 4G9F³⁵, PDB ID: 1EFX³⁶, PDB ID: 4OZF³⁷, PDB ID: 1J8H³⁸)
371 and were plotted with the UCSF Chimera package³⁹. We next collected all structures of TCRs
372 bound to pMHCs and all contacting information between corresponding chains of HLA-A,
373 HLA-B, HLA-DRB1, HLA-DQA1 or HLA-DQB1 and any of the TCR β chains or the
374 presented peptides in the IMGT database² and calculated the frequency of the presence of
375 contacting amino acid position among the analyzed TCR-pMHC complex. The identified 96
376 amino acid variants were then directly compared with TCR β and peptide contacting MHC
377 positions.

378

379 **Acknowledgments**

380 This research was supported by the National Natural Science Foundation of China (81673181
381 and 31700794) and the Shenzhen Municipal Government of China
382 (JCYJ20170817145404433 and JCYJ20170817145428361). The funders had no role in the
383 study design, data collection, and analysis, the decision to publish or the preparation of the
384 manuscript. We also want to thank the donors for providing UCB samples, colleagues
385 of China National GeneBank, BGI-Shenzhen, for their help in producing the solid
386 data, and Yafeng Zhu and Xiaowei Jiang for their help in revising the manuscript.

387

388 **Author Contribution**

389 Xiu Qiu and Xiao Liu conceived and provided overall guidance. Lei Tian redesigned the
390 analysis. Kai Gao, Lingyan Chen and Yuanwei Zhang carried out the analysis. Liya Lin,
391 Jinghua Wu, Yashu Kuang, and Jinhua Lu carried out the experiments. Ziyun Wan and Yi
392 Zhao performed the data curation. Kai Gao and Lei Tian wrote the manuscript. Xiuqing
393 Zhang supervised the implementation of the project.

394

395 **Conflicts of interest**

396 The authors declare no conflict of interest.

397

398 **References**

399 1. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. *Nature*
400 1988; **334**: 395-402.

401 2. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. The IPD and
402 IMGT/HLA database: allele variant databases. *Nucleic Acids Res* 2015; **43**: D423-431.

403 3. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers
404 of MHC restriction of T cell receptors. *Nat Rev Immunol* 2018; **18**: 467-478.

405 4. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved
406 amino acids that control TCR-MHC interaction. *Annu Rev Immunol* 2008; **26**: 171-203.

407 5. Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic
408 selection? *Immunologic research* 2008; **41**: 267-294.

409 6. Garcia KC, Adams EJ. How the T cell receptor sees antigen--a structural view. *Cell*
410 2005; **122**: 333-336.

411 7. Wang CY, Yu PF, He XB, Fang YX, Cheng WY, Jing ZZ. alphabeta T-cell receptor
412 bias in disease and therapy (Review). *International journal of oncology* 2016; **48**:
413 2247-2256.

414 8. Sharon E, Sibener LV, Battle A, Fraser HB, Garcia KC, Pritchard JK. Genetic variation
415 in MHC proteins is associated with T cell receptor expression biases. *Nat Genet* 2016;
416 **48**: 995-1002.

417 9. Snary D, Barnstable CJ, Bodmer WF, Crumpton MJ. Molecular structure of human
418 histocompatibility antigens: the HLA-C series. *Eur J Immunol* 1977; **7**: 580-585.

419 10. Neefjes JJ, Ploegh HL. Allele and locus-specific differences in cell surface expression

420 and the association of HLA class I heavy chain with β 2-microglobulin: differential
421 effects of inhibition of glycosylation on class I subunit association. European Journal of
422 Immunology 1988; **18**: 801-810.

423 11. Blais ME, Dong T, Rowland-Jones S. HLA-C as a mediator of natural killer and T-cell
424 activation: spectator or key player? Immunology 2011; **133**: 1-7.

425 12. Karnes JH, Bastarache L, Shaffer CM, Gaudieri S, Xu Y, Glazer AM et al. Phenome-wide
426 scanning identifies multiple diseases and disease severity phenotypes
427 associated with HLA variants. Sci Transl Med 2017; **9**.

428 13. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD et al. Systematic
429 comparison of phenome-wide association study of electronic medical record data and
430 genome-wide association study data. Nature biotechnology 2013; **31**: 1102-1110.

431 14. Jerne NK. The somatic generation of immune recognition. Eur J Immunol 1971; **1**: 1-9.

432 15. Sim BC, Zerva L, Greene MI, Gascoigne NR. Control of MHC restriction by TCR
433 Valpha CDR1 and CDR2. Science 1996; **273**: 963-966.

434 16. Parrish HL, Deshpande NR, Vasic J, Kuhns MS. Functional evidence for TCR-intrinsic
435 specificity for MHCII. Proc. Natl. Acad. Sci. U. S. A. 2016; **113**: 3000-3005.

436 17. Adams JJ, Narayanan S, Birnbaum ME, Sidhu SS, Blevins SJ, Gee MH et al.
437 Structural interplay between germline interactions and adaptive recognition
438 determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 2016;
439 **17**: 87-94.

440 18. Dai S, Huseby ES, Rubtsova K, Scott-Browne J, Crawford F, Macdonald WA et al.
441 Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor

442 interactions with MHC molecules. *Immunity* 2008; **28**: 324-334.

443 19. Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. Structural evidence for a
444 germline-encoded T cell receptor-major histocompatibility complex interaction 'codon'.
445 *Nat Immunol* 2007; **8**: 975-983.

446 20. Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self
447 peptide-major histocompatibility complex binding by a human autoimmune T cell
448 receptor. *Nat Immunol* 2005; **6**: 490-496.

449 21. Potter TA, Hansen TH, Habbersett R, Ozato K, Ahmed A. Flow microfluorometric
450 analysis of H-2L expression. *J Immunol* 1981; **127**: 580-584.

451 22. Matthews PC, Prendergast A, Leslie A, Crawford H, Payne R, Rousseau C et al.
452 Central role of reverting mutations in HLA associations with human immunodeficiency
453 virus set point. *Journal of virology* 2008; **82**: 8548-8559.

454 23. Morishima Y, Kashiwase K, Matsuo K, Azuma F, Morishima S, Onizuka M et al.
455 Biological significance of HLA locus matching in unrelated donor bone marrow
456 transplantation. *Blood* 2015; **125**: 1189.

457 24. Silberman D, Krovi SH, Tuttle KD, Crooks J, Reisdorph R, White J et al. Class II major
458 histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen
459 receptors. *Proc. Natl. Acad. Sci. U. S. A.* 2016; **113**: E5608-5617.

460 25. Zhang W, Du Y, Su Z, Wang C, Zeng X, Zhang R et al. IMonitor: A Robust Pipeline for
461 TCR and BCR Repertoire Analysis. *Genetics* 2015; **201**: 459-472.

462 26. Cao H, Wu J, Wang Y, Jiang H, Zhang T, Liu X et al. An integrated tool to study MHC
463 region: accurate SNV detection and HLA genes typing in human MHC region using

targeted high-throughput sequencing. *PLoS One* 2013; **8**: e69388.

464 27. Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H et al. A reference human genome
465 dataset of the BGISEQ-500 sequencer. *Gigascience* 2017; **6**: 1-9.

466 28. Li H. Aligning sequence reads, clone sequences and assembly contigs with
467 BWA-MEM. 2013; **1303**.

468 29. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A
469 et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit
470 best practices pipeline. *Current protocols in bioinformatics* 2013; **43**: 11.10.11-33.

471 30. Browning BL, Browning SR. Genotype Imputation with Millions of Reference Samples.
472 *American journal of human genetics* 2016; **98**: 116-126.

473 31. Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X et al. Deep sequencing of the MHC
474 region in the Chinese population contributes to studies of complex disease. *Nat Genet*
475 2016; **48**: 740-746.

476 32. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants
477 from high-throughput sequencing data. *Nucleic Acids Res* 2010; **38**: e164.

478 33. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
479 *Bioinformatics (Oxford, England)* 2012; **28**: 1353-1358.

480 34. Chen JL, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, Choi EM et al.
481 Structural and kinetic basis for heightened immunogenicity of T cell vaccines. *J Exp
482 Med* 2005; **201**: 1243-1255.

483 35. Ladell K, Hashimoto M, Iglesias MC, Wilmann PG, McLaren JE, Gras S et al. A
484 molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T

485

486 cells. *Immunity* 2013; **38**: 425-436.

487 36. Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD. Crystal structure of an NK
488 cell immunoglobulin-like receptor in complex with its class I MHC ligand. *Nature* 2000;
489 **405**: 537-543.

490 37. Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M et al. T-cell
491 receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease.
492 *Nature structural & molecular biology* 2014; **21**: 480-488.

493 38. Hennecke J, Wiley DC. Structure of a complex of the human alpha/beta T cell receptor
494 (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex
495 class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR
496 cross-restriction and alloreactivity. *J Exp Med* 2002; **195**: 571-581.

497 39. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al.
498 UCSF Chimera--a visualization system for exploratory research and analysis. *Journal
499 of computational chemistry* 2004; **25**: 1605-1612.

500

501

502 **Figure legends**

503 **Figure 1 The frequencies of TRBV genes is significantly associated with variations in the**
504 **MHC locus.** **(A)** Schematic overview of the analysis. Usage of TCR β chain V genes was
505 estimated by mapping buffy coat DNA sequencing reads to the human TRBV gene database.
506 MHC alleles were imputed with Beagle. SNPs were called using BWA (version 0.5.9). Amino
507 acid polymorphisms corresponding to MHC alleles were obtained by annotation of SNPs
508 using ANNOVAR. The associations of V β usage with nucleotide and amino acid genotypes
509 were tested by QTL mapping using linear regression model. **(B)** QQ plots for the associations
510 between MHC alleles/SNPs/amino acid variations and the usage of TRBV genes (up) or
511 IGHV genes (down). The red line refers to a normal distribution; each black dot represents
512 one allele/SNP/amino acid variation. Estimated inflation factor lambda is provided if it is
513 statistically significant.

514

515 **Figure 2 TRBV genes differ in their association with different MHC locus.** **(A)** TRBV
516 gene usage explained by MHC alleles (yellow), nucleotide, and amino acid variations of the
517 MHC alleles (blue). The associations of V β gene usage with the number of nucleotide
518 variations **(B)**, and with the number of amino acid variations **(C)** (FDR ≤ 0.05). SNPs are
519 binned according to their genomic position.

520

521 **Figure 3 Independent associations between TRBV usage and amino acids variations in**
522 **MHC alleles.** **(A)** The heat map representing a color-coded correlation matrix of all the 26
523 MHC amino acids that are significantly associated with TRBV13 usage (FDR ≤ 0.05). The

524 frequencies of TRBV13 influence by the two independent amino acid variations at HLA-A
525 residue 97 (**B**) and HLA-DRB1 residue 71 (**C**). (**D**) Variation of TRBV gene usage explained
526 by MHC amino acids variations of the MHC alleles. Values were adjusted R-square derived
527 from linear regression model. A star indicates that the total proportion of variation explained
528 by the MHC gene components was significant at 5% FDR.

529

530 **Figure 4 The associated MHC residues tend to be at the TCR-pMHC interface. (A)**
531 Mapping MHC amino acids biasing the TRBV genes usage (red and yellow) onto a structure
532 of MHC genes (cyan) with CDR1 β chain (orange) and CDR2 β chain (green) (PDB ID from
533 left to right: 2BNQ, 4G9F, 4OZF, and 1J8H). (**B**) Comparison of the Log10-transformed P
534 values for the QTL analysis (left in each panel) and the frequency with which these amino
535 acids physically contact the TCR (middle in each panel) or the Peptide (right in each panel) in
536 solved complexes (from left to right: 69 HLA-A complexes, 23 HLA-B complexes, 8
537 HLA-DQA1 complexes, 8 HLA-DQB1 complexes, and 12 HLA-DRB1 complexes).

538

539 **Supplementary Figure 1 The frequencies of TRBV and IGHV genes.** Log2-transformed
540 frequencies of TRBV (**A**) and IGHV (**B**). 0.01 and 0.00001 pseudo-usage was added to avoid
541 zeroes for TRBV and IGHV, respectively. Rows and columns were clustered using
542 hierarchical clustering.

543

544 **Supplementary Figure 2 Independent associations between other TRBV genes and**
545 **amino acid variations in MHC alleles.** Heat map representing color-coded correlation

546 matrix of the MHC amino acids that are significantly associated with the frequencies of
547 TRBV13 (**A**) TRBV7-9 (**B**), TRBV10-3 (**C**), TRBV7-6 (**D**), and TRBV9(**E**) (FDR ≤ 0.05),
548 and their frequencies influence by the independent amino acid variations. (**F**) The frequencies
549 of TRBV30 gene has a single association with DQB1 residue 55.

550

551 **Table. 1 Usage variation of TRBV genes explained by independent amino acid variations**
552 **in the MHC locus.**

553 **Supplementary Table 1. TRBV gene usage matrix.**

554 **Supplementary Table 2. IGHV gene usage matrix.**

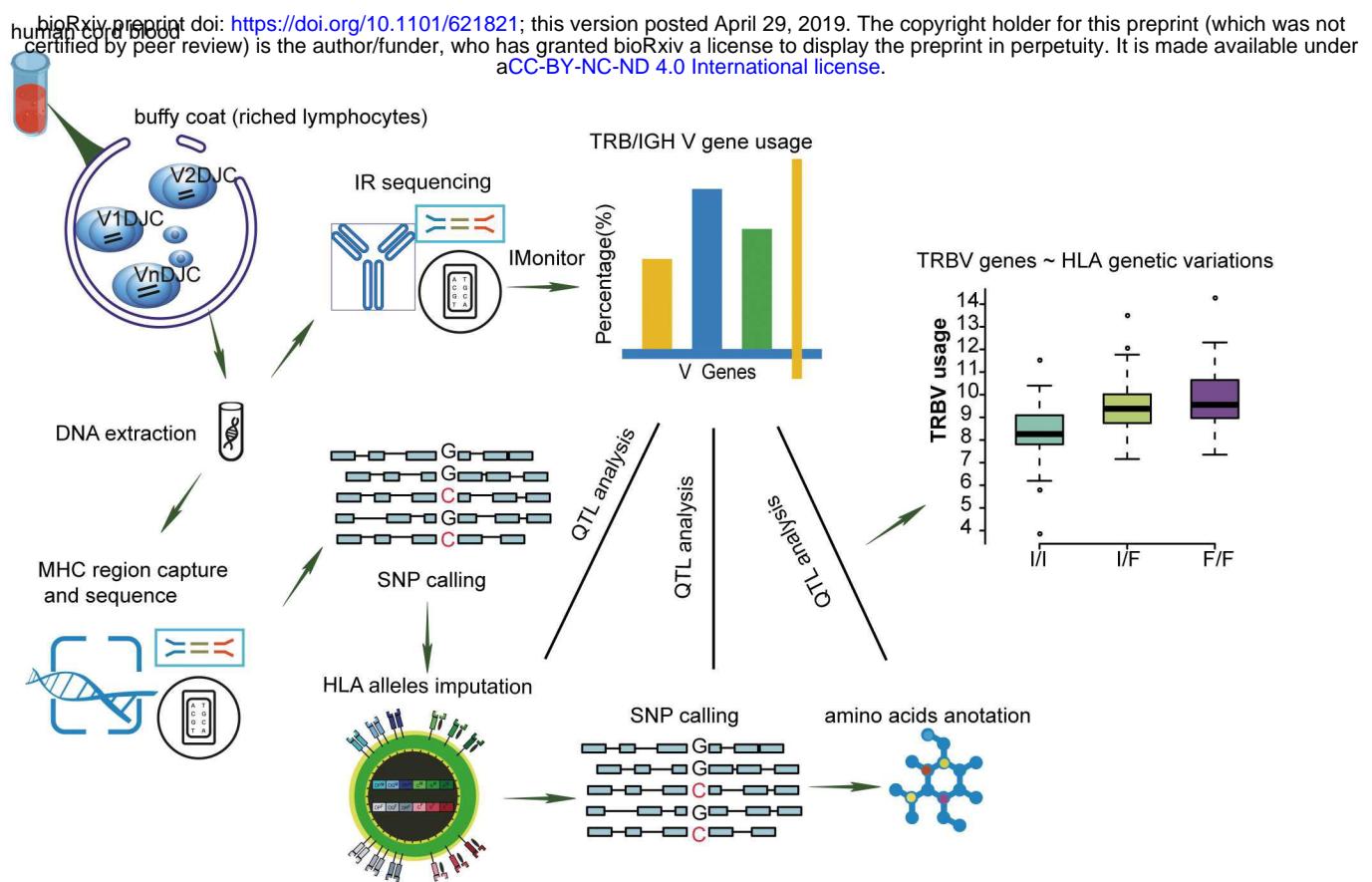
555 **Supplementary Table 3. All imputed alleles of eight MHC genes of 201 samples.**

556 **Supplementary Table 4. Results of QTL analysis between MHC alleles and TRBV gene**
557 **usage.**

558 **Supplementary Table 5. Results of QTL analysis between MHC alleles and IGHV gene**
559 **usage.**

560 **Supplementary Table 6. Results of QTL analysis between MHC SNPs and TRBV gene**
561 **usage.**

562 **Supplementary Table 7. Results of QTL analysis between MHC SNPs and IGHV gene**
563 **usage.**


564 **Supplementary Table 8. Results of QTL analysis between MHC amino acids and TRBV**
565 **gene usage.**

566 **Supplementary Table 9. Results of QTL analysis between MHC amino acids and IGHV**
567 **gene usage.**

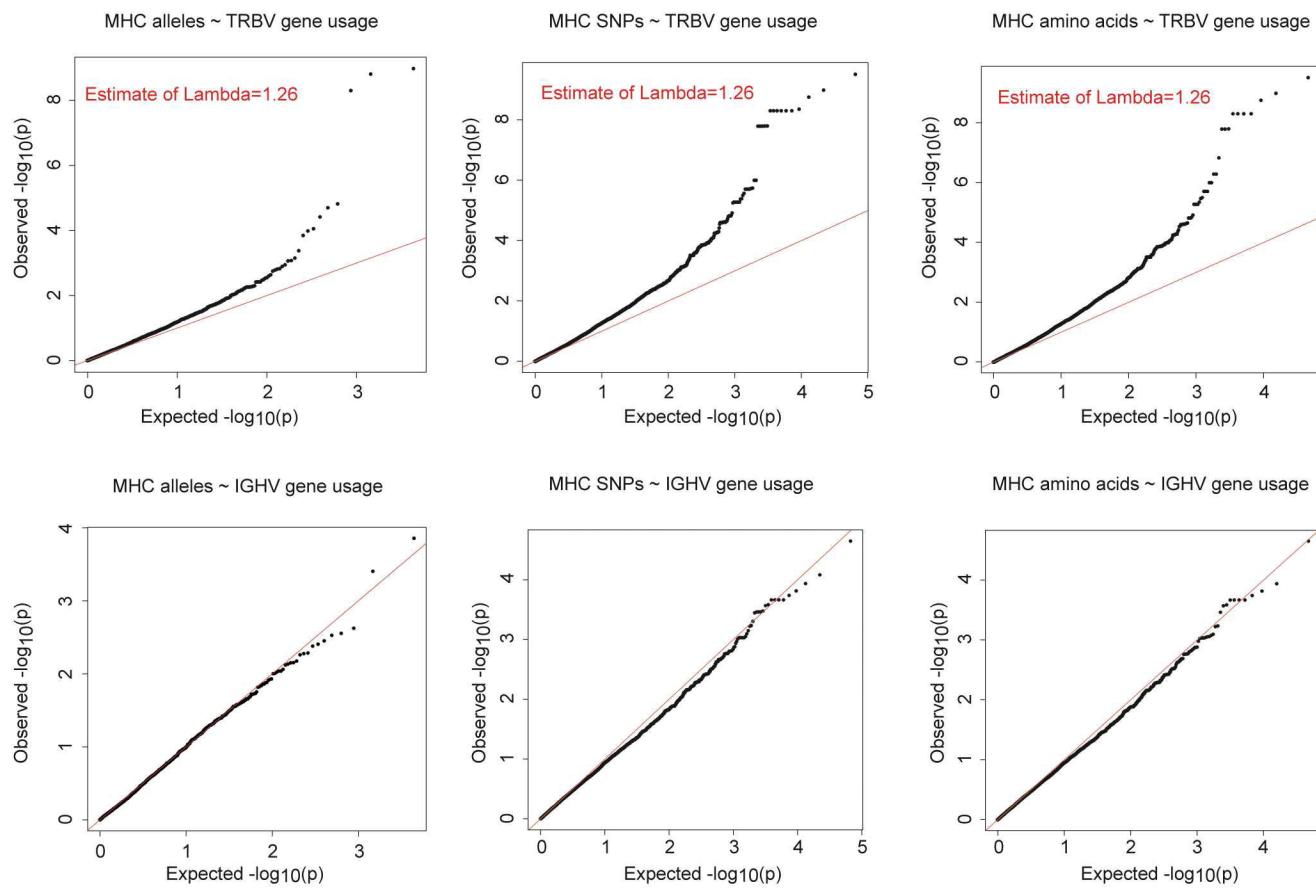
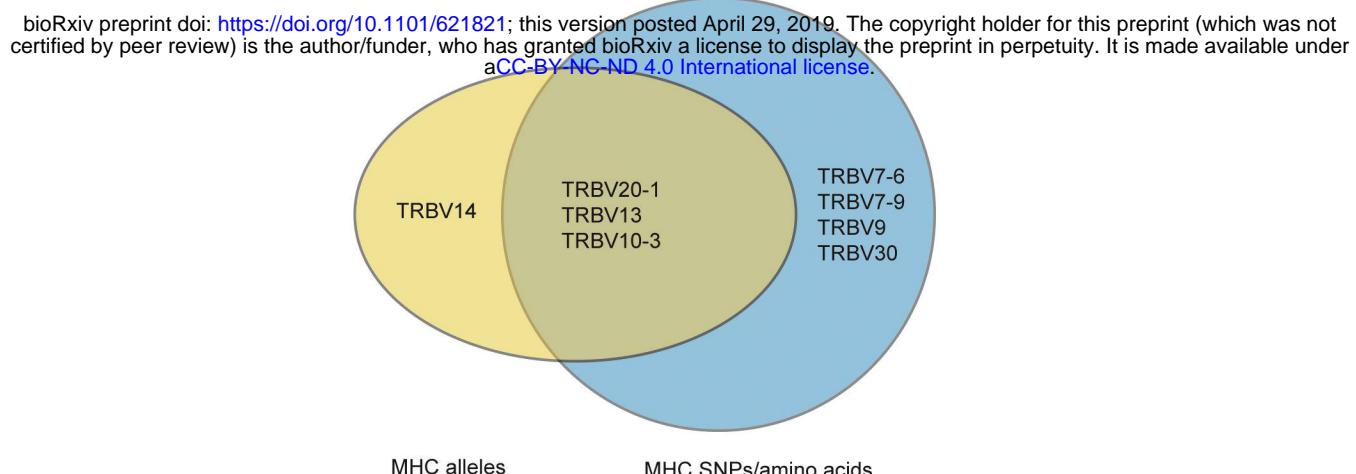

568 **Supplementary Table 10. A list of PDB accession codes, MHC alleles and TCR V β -gene**
569 **used in the analysis of TCR-pMHC complexes.**

Figure 1

A



B

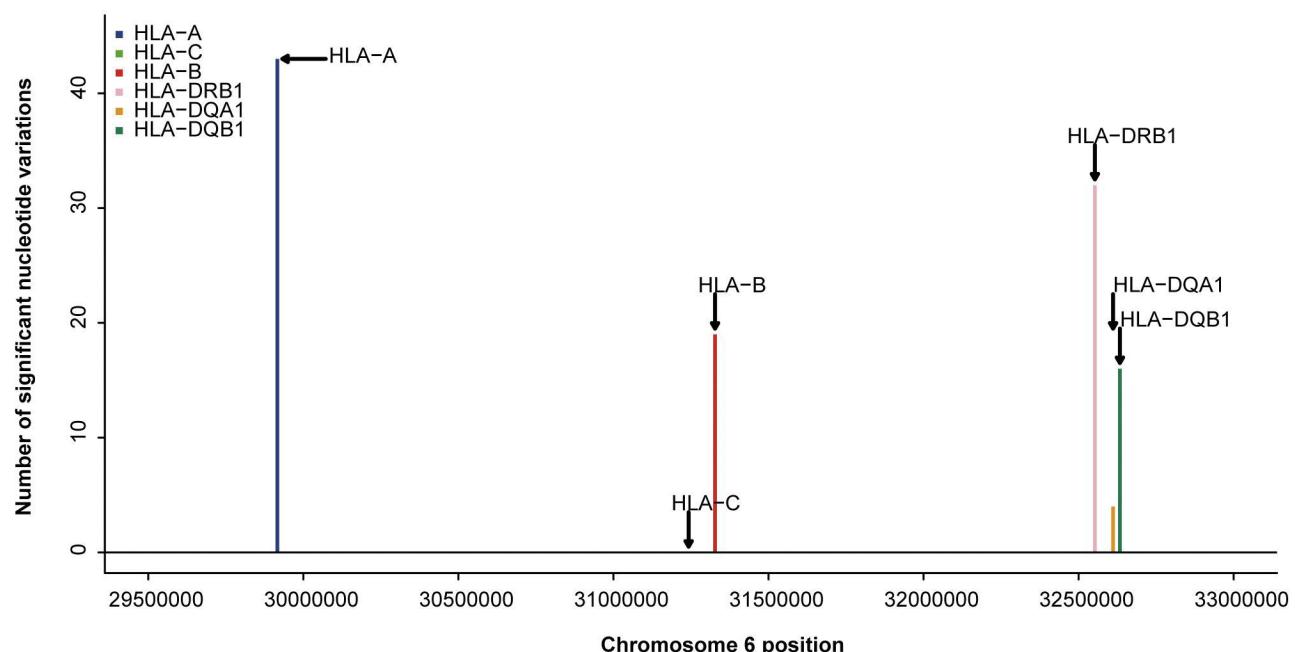
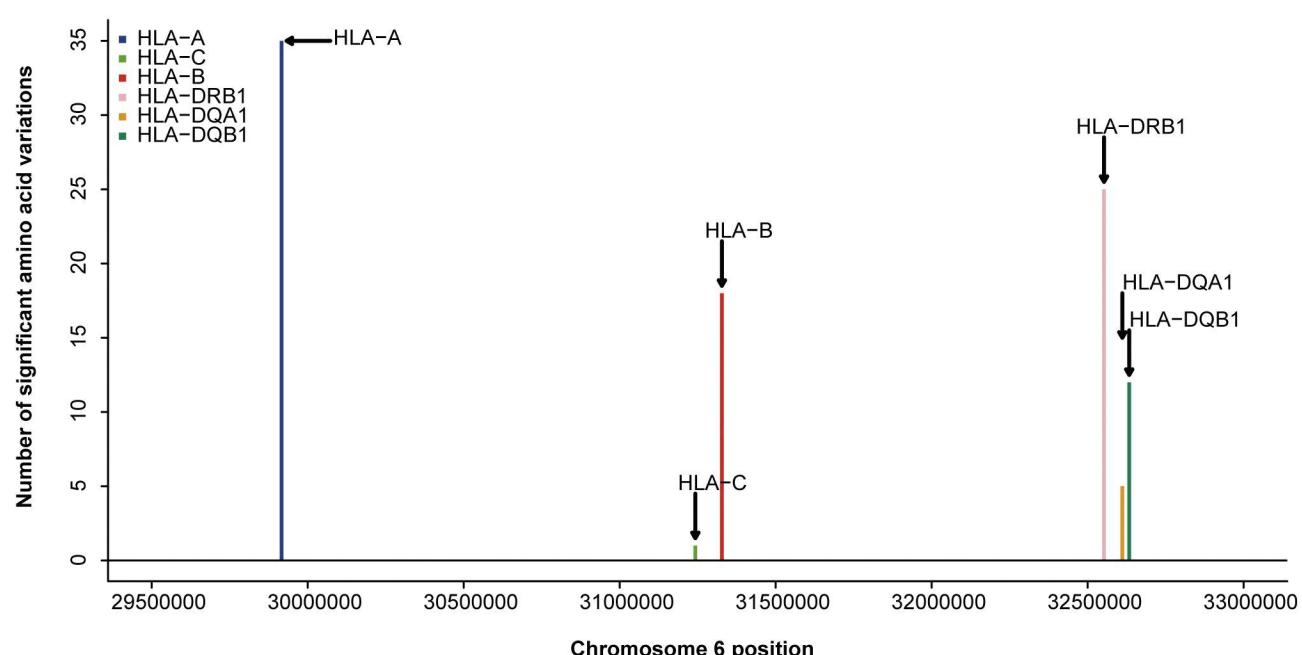
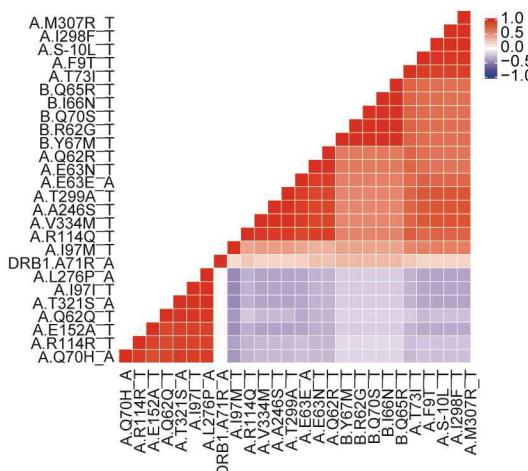
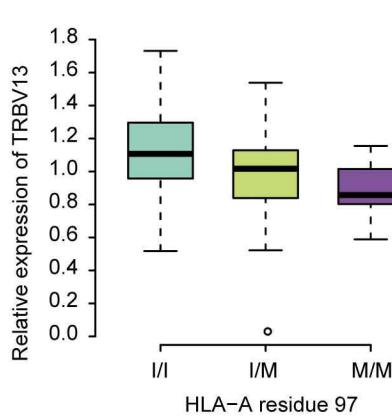


Figure 2

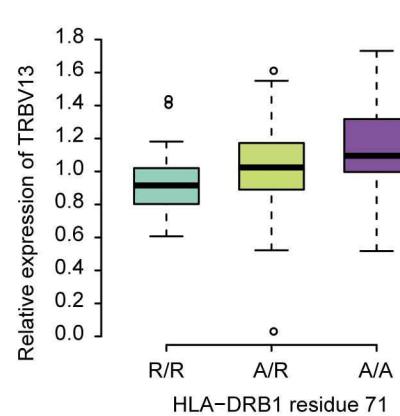

A

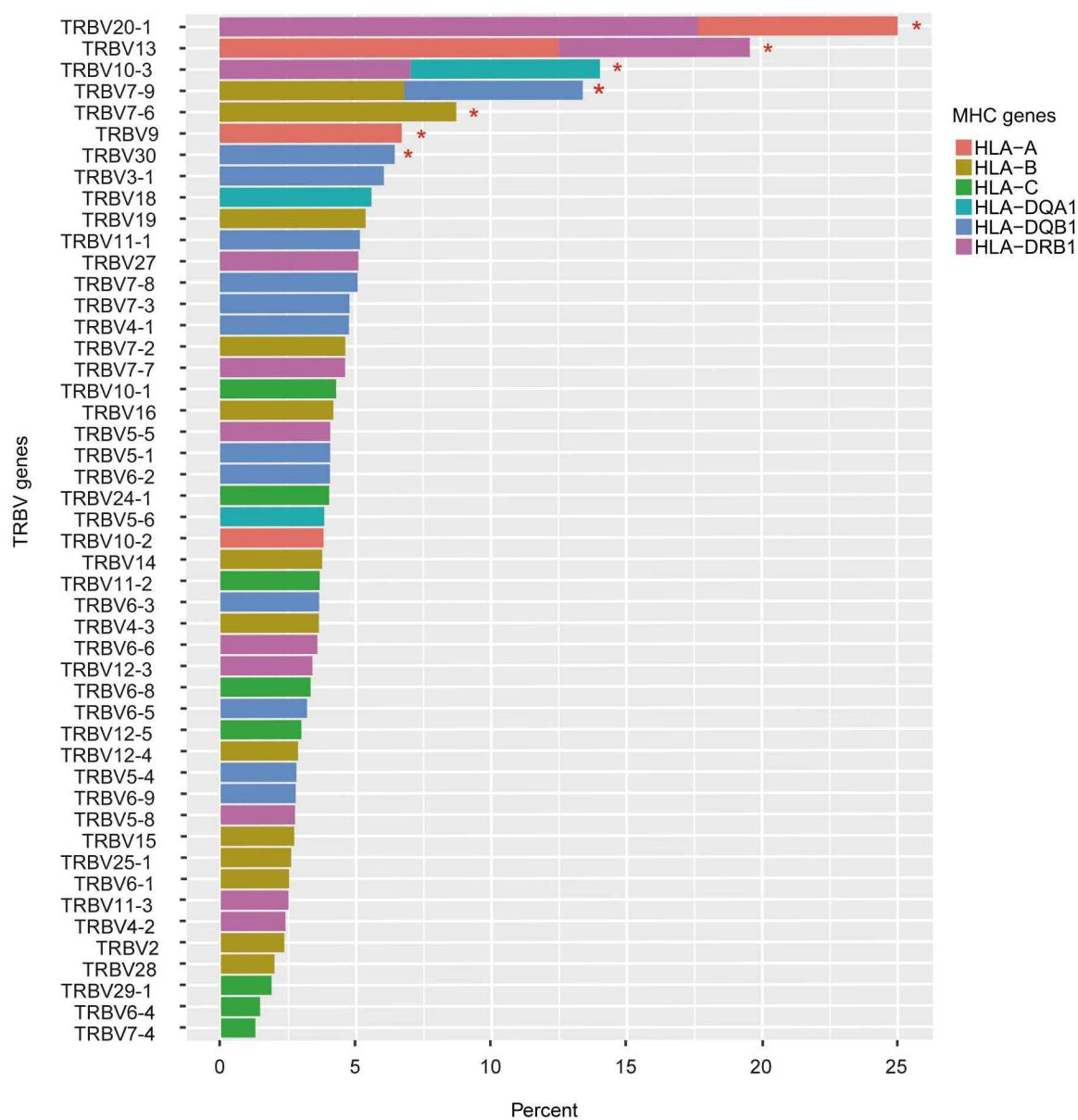
B


C

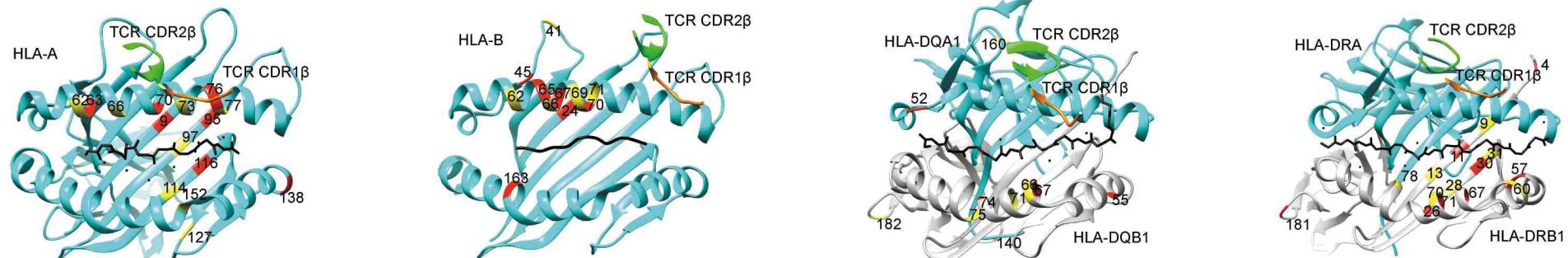
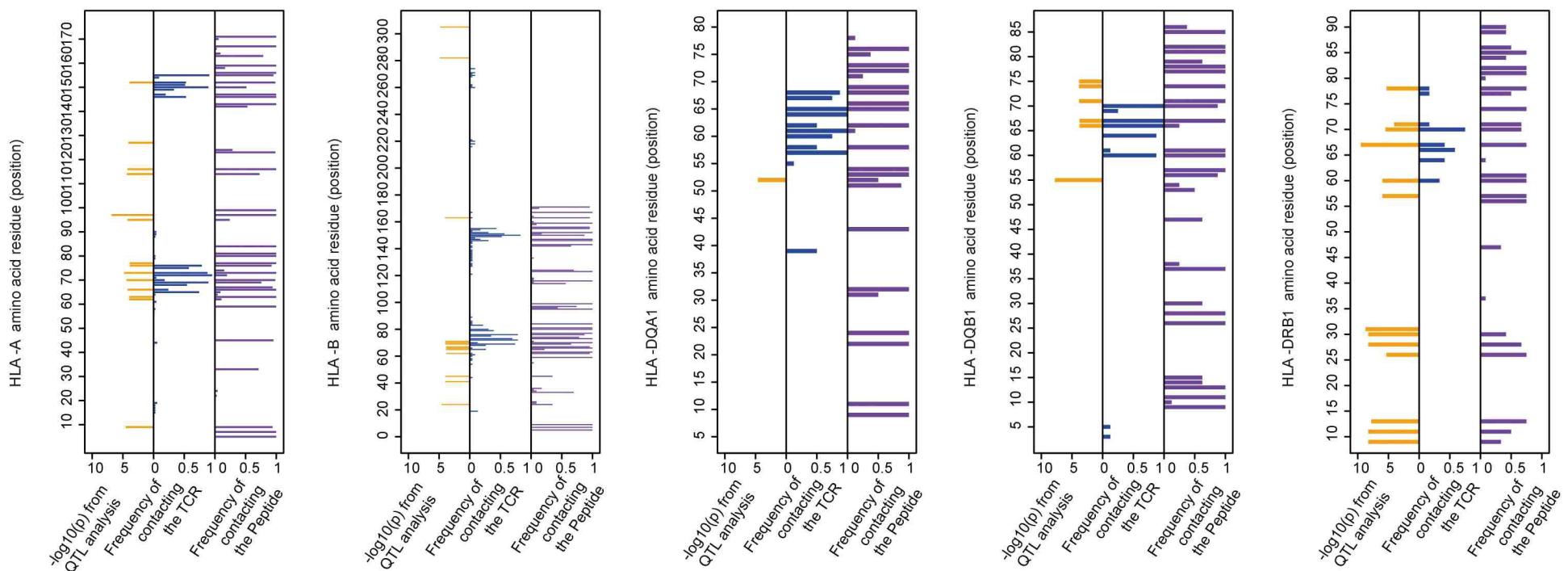

Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/621821>; this version posted April 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A


B

C

D

TRBV Gene ID	Top Signal	Second Signal	% of Variance explained by top signal	% of Variance explained by second signal	% of Total variance explained
TRBV20-1	HLA-DRB1.I67F	HLA-A.D116Y	17.68110065	7.374011699	23.30052674
TRBV13 *	HLA-A.I97M	HLA-DRB1.A71R	12.5520188	7.0425016	17.07336994
TRBV7-6*	HLA-B.V282I	NA	8.74398907	NA	8.74398907
TRBV7-9*	HLA-B.E45K	HLA-DQB1.L75V	6.829646821	6.589435636	12.40109952
TRBV10-3*	HLA-DRB1.D57S	HLA-DQA1.A199T	7.061965751	6.994849504	15.62058733
TRBV9	HLA-A.L276P	NA	6.729255542	NA	6.729255542
TRBV30*	HLA-DQB1.R55P	NA	6.468371558	NA	6.468371558

*novel TRBV genes associated with MHC amino acid variations

Figure 4**A****B**