

1 Distinct evolutionary trajectories of neuronal and hair 2 cell nicotinic acetylcholine receptors

3 Irina Marcovich¹, Marcelo J. Moglie¹, Agustín E. Carpaneto Freixas¹, Anabella P. Trigila¹, Lucia F.
4 Franchini¹, Paola V. Plazas², Marcela Lipovsek^{*1,3} and Ana Belén Elgoyhen^{*1,2}

5

6 ¹ Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”
7 (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires,
8 Argentina.

9 ² Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires,
10 Argentina.

11 ³Centre for Developmental Neurobiology, King's College London, Institute of Psychiatry, Psychology
12 and Neuroscience, Guy's Campus, London SE1 1UL.

13

14 * These authors contributed equally.

15

16 Correspondence should be addressed to Marcela Lipovsek (marcela.lipovsek@kcl.ac.uk)

17

18 **ABSTRACT**

19 The expansion and pruning of ion channel families has played a crucial role in the evolution of
20 nervous systems. Remarkably, with a highly conserved vertebrate complement, nicotinic
21 acetylcholine receptors (nAChRs) are unique among ligand-gated ion channels in that members of
22 the family have distinct roles in synaptic transmission in non-overlapping domains, either in the
23 nervous system, the inner ear hair cells or the neuromuscular junction. Here, we performed a
24 comprehensive analysis of vertebrate nAChRs sequences, single cell expression patterns and
25 comparative functional properties of receptors from three representative tetrapod species. We
26 show that hair cell nAChRs underwent a distinct evolutionary trajectory to that of neuronal
27 receptors. These were most likely shaped by different co-expression patterns and co-assembly rules
28 of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence
29 conservation, coupled to greater co-expression variance and conservation of functional properties
30 across tetrapod clades. In contrast, hair cell $\alpha 9\alpha 10$ nAChRs exhibited greater sequence divergence,
31 narrow co-expression pattern and great variability of functional properties across species. These
32 results point to differential substrates for random change within the family of gene paralogs that
33 relate to the segregated roles of nAChRs in synaptic transmission.

34

35 **Significance statement**

36 Our work exploits several peculiarities of the family of vertebrate nicotinic acetylcholine receptors
37 (nAChRs) to explore the evolutionary trajectories of a ligand-gated ion channel family. By performing
38 a comprehensive comparative analysis of nAChR subunits coding sequences, single cell expression
39 patterns and functional properties we found a contrasting evolutionary history between nAChRs
40 with widespread expression in the nervous system compared to those with isolated expression in
41 the inner ear. Evolutionary changes were focused on differences in co-expression and co-assembly
42 patterns for the former and coding sequences in the latter. This multidisciplinary approach provides
43 further insight into the evolutionary processes that shaped the nervous and sensory systems of
44 extant animals.

45

46 **INTRODUCTION**

47 The superfamily of pentameric ligand-gated ion channels (LGIC) has an extended evolutionary
48 history and is present in all three life domains (1-3). Extant members of the superfamily include
49 eukaryote Cys-loop receptors that respond to acetylcholine (ACh), γ -aminobutyric acid (GABA),
50 glycine or serotonin, invertebrate LGICs that respond to GABA, glutamate, ACh, serotonin and
51 histamine, as well as prokaryote pH and GABA sensitive receptors, among others (1, 3-8). Nicotinic
52 acetylcholine receptors (nAChRs) are a major branch of the Cys-loop LGIC superfamily (7, 9). To date,
53 17 different nAChR subunits have been described in the main vertebrate clades: $\alpha 1-\alpha 10$, $\beta 1-\beta 4$, δ , ϵ
54 and γ (7, 8). These paralogous genes are proposed to derive from 5 paralogs, with the entire
55 complement of extant subunits present in the vertebrate ancestor (10). Vertebrate nAChRs are non-
56 selective cation channels that participate in numerous processes, most prominently neuromuscular
57 junction (11, 12), inner ear efferent (13) and neuronal (14, 15) synaptic transmission.

58 Functional nAChRs are homomeric, comprising five identical subunits, or heteromeric, formed by at
59 least two different subunits (7, 15, 16). The rules that govern the combinatorial assembly of
60 functional nAChRs are complex and for the most part unknown. Some nAChR subunits can combine
61 with other numerous, albeit specific, subunits. In contrast, some subunits can only form functional
62 receptors with a limited subset (7, 16). This segregation has given rise to subgroups of vertebrate
63 nAChRs named for their initially described tissue of origin and main functional location. Thus,
64 neuronal nAChRs are formed by multiple combinations of $\alpha 2-\alpha 7$ (and $\alpha 8$ in non-mammals) and $\beta 2-$
65 $\beta 4$ subunits, comprising a wide combinatorial range with alternative stoichiometries (15-17). Muscle
66 receptors show tighter co-assembly rules. They have a typical $\alpha 1_2\beta 1\gamma\delta$ (or $\alpha 1_2\beta 1\epsilon\delta$) stoichiometry
67 and do not co-assemble with non-muscle subunits (16, 18). Finally, the hair cell nAChR has a very
68 strict co-assembly constraint, being formed exclusively by $\alpha 9$ and $\alpha 10$ subunits (19-21). While $\alpha 9$
69 subunits can form functional homomeric receptors (22, 23), these are unlikely to play a major role in
70 inner ear hair cells *in vivo* (24). Although the $\alpha 9$ and $\alpha 10$ subunits were initially classified as a
71 neuronal, the $\alpha 9\alpha 10$ receptor does not appear to be functionally present in the brain (25). A
72 consequence of the differences in co-assembly rules between the three subgroups of nAChRs is that,
73 while muscle cells can toggle between at least two receptor variants and neurons are capable of
74 expressing a great diversity of nAChRs, hair cells express only one type.

75 The complement of nAChR subunits is highly conserved across vertebrates and even more so in
76 tetrapods (1, 10). This suggests a high gene family-wide negative selection pressure for the loss of
77 paralogs and highlights the functional relevance of each individual subunit across the vertebrate
78 clade. However, given the major differences in co-expression patterns and co-assembly rules that

79 distinguish the subgroups of nAChRs, in particular the contrast between neuronal and hair cell
80 receptors, distinct evolutionary trajectories most likely took place in different members of the
81 family. On the one hand, if only one (functionally isolated) receptor is expressed by a given cell type,
82 then selection pressure could have acted on stochastic changes of the coding sequence of
83 component subunits that altered receptor function. Such changes would not have resulted in
84 deleterious effects on other nAChRs given the restricted expression pattern of the subunits. The
85 aforesaid process could have dominated the evolutionary history of the hair cell $\alpha 9\alpha 10$ receptor. On
86 the other hand, widely expressed subunits that co-assemble into functional receptors with multiple
87 others have been most probably subjected to strong negative selection pressure. Changes in the
88 coding sequence that lead to changes in functional properties may have had deleterious effects on
89 alternative receptor combinations expressed in different cell types. In this case, functional
90 diversification could have arisen from stochastic changes in the expression patterns of receptor
91 subunits, resulting in a given cell changing the subtype of receptor it expresses, while preserving
92 individual subunit functionality. Such processes could have dominated the evolutionary history of
93 neuronal nAChRs. These contrasting theoretical scenarios bring forward three predictions for the
94 evolutionary history of nAChRs across the vertebrate clade. First, isolated (hair cell) subunits may
95 show coding sequence divergence while widespread (neuronal) subunits a high degree of coding
96 sequence conservation. Second, isolated subunits may show low co-expression variation while
97 widespread subunits a great variability in co-expression patterns. Finally, isolated receptors may
98 present divergent functional properties across species resulting from changes in coding sequences,
99 while widespread receptors may show highly conserved functional properties when formed by the
100 same subunits.

101 To test these predictions, we studied the molecular evolution and the variability in expression
102 pattern, coupled to co-assembly potential, of vertebrate nAChR subunits. Furthermore, we
103 performed a comprehensive comparative analysis of the functional properties of the hair cell
104 ($\alpha 9\alpha 10$) and the two main neuronal ($\alpha 7$ and $\alpha 4\beta 2$) nAChRs from three representative species of
105 tetrapods. In close agreement with the aforementioned predictions, neuronal subunits showed high
106 degree of sequence conservation and great variability in co-expression patterns. Additionally, the
107 functional properties of both $\alpha 7$ and $\alpha 4\beta 2$ receptors did not differ across tetrapods. In contrast, the
108 isolated hair cell $\alpha 9\alpha 10$ nAChRs showed the highest degree of sequence divergence and no co-
109 expression variability. Moreover, the functional properties of $\alpha 9\alpha 10$ receptors from representative
110 species of tetrapods showed unprecedented divergence, potentially echoing the evolutionary history
111 of vertebrate auditory systems. In summary, here we present strong evidence supporting the notion
112 that, within the family of paralog genes coding for nAChR subunits, receptors belonging to different

113 subgroups (hair cell or neuronal) underwent different evolutionary trajectories along the tetrapod
114 lineage that were potentially shaped by their different co-expression patterns and co-assembly rules.
115 Furthermore, we propose that it is the difference in the most probable substrate for random change
116 and subsequent selection pressure that separate the contrasting evolutionary histories of nAChRs
117 subgroups.

118

119 **RESULTS**

120 **Amino acid sequence divergence and co-expression patterns differentiate neuronal from hair cell**
121 **nAChR subunits**

122 The comparative analysis of gene paralogs provides the opportunity to test predictions about the
123 evolutionary history of a gene family. To study the degree of conservation of coding sequences in
124 subgroups of nAChRs we performed an exhaustive evaluation of sequence divergence of vertebrate
125 nAChR subunits. The analysis included amino acid sequences from 11 species of birds, reptiles and
126 amphibians, all groups that were notably under-represented in previous work (1, 26-30) and are of
127 particular importance to help resolve differences between clades. Overall, we analysed 392
128 sequences from 17 nAChR subunits belonging to 29 vertebrate species (Table S1). Based on
129 sequence identity, the family of nAChR subunits can be split into four groups: α , non- α , $\alpha 7$ -like and
130 $\alpha 9$ -like (Fig. 1 and S1-S2). As previously reported with smaller datasets (26, 28), the present
131 extended analysis showed that $\alpha 10$ subunits are unique in presenting a segregated grouping of
132 orthologues with non-mammalian $\alpha 10$ subunits as a sister group to all $\alpha 9$ subunits, and mammalian
133 $\alpha 10$ subunits an outgroup to the $\alpha 9$ /non-mammalian $\alpha 10$ branch (Fig. 1). This may relate to the
134 overall low %seqID of all vertebrate $\alpha 10$ subunits, coupled to high sequence conservation within
135 individual clades (Table S2). Interestingly, a close inspection of the cumulative distribution of within
136 and between-clade %seqID suggests that both $\alpha 9$ and $\alpha 10$ hair cell subunits may have accumulated a
137 high proportion of their overall aminoacid changes at the mammalian/sauropsid split, while
138 sequence divergence in neuronal subunits appears distributed throughout the phylogeny (Fig S3). To
139 further test this, we searched for site-specific evolutionary shifts in aminoacid biochemical state
140 between clades ((31) and SI methods) and found that both $\alpha 9$ and $\alpha 10$ subunits have a high number
141 of sites showing potential functionally significant aminoacid changes when comparing the
142 mammalian vs sauropsid clades (Fig. 1B – red bars and Table S3). In contrast, neuronal subunits fail
143 to show between-clade functional divergence at the sequence level (Fig. 1B and Table S3). Overall,
144 the extended molecular evolution analysis of nAChR subunits showed that while neuronal subunits
145 were highly conserved across all vertebrate clades, $\alpha 9$ and $\alpha 10$ hair cell subunits showed a greater
146 degree of between-clade sequence divergence that differentiates mammalian and sauropsid
147 subunits.

148 The capability to co-assemble into functional receptors and the co-expression of nAChR subunits
149 within a given cell delineate the complement of receptors that shape its nicotinic ACh response.
150 Numerous heterologous expression experiments and subunit-specific pharmacological studies have
151 outlined a comprehensive repertoire of functionally validated pentameric assemblies (Table S6 and

152 references therein). However, no systematic gene expression analysis that explores the potential
153 spectrum of nAChRs in a given cell type has been performed. In order to evaluate co-expression
154 patterns, we performed a meta-analysis of gene expression data from 10 recent single-cell
155 transcriptomic studies (Table S4). First, from the gene expression matrices we identified the
156 repertoire of nAChR subunits detected in each single cell (Fig. S4). Subsequently, we used a Bayesian
157 approach (32) to estimate the likelihood of a gene being expressed at any given average level in a
158 given cell type (Table S5, Fig. 2 and Fig. S5). We next combined this data with the catalogue of
159 validated nAChR pentamers (Table S6) and outlined the potential complement of pentameric
160 receptors present in each cell type, by identifying the subunit combinations that are present within a
161 10-fold, 100-fold or 1000-fold range of expression level or altogether absent (Fig. S6A). As expected,
162 neurons express a range of neuronal nAChR variants with major neuronal types identified by their
163 well characterised nAChRs. For example, visceral motor neurons from thoracic sympathetic ganglia
164 express receptors containing $\alpha 3$ and $\beta 4$ subunits, while cortical neurons express receptors
165 containing $\alpha 4$, $\beta 2$ and $\alpha 7$ subunits. Ventral midbrain dopaminergic neurons express high levels of the
166 $\alpha 6$ subunit, together with $\beta 2$ and $\beta 3$ subunits and variable levels of $\alpha 3$, $\alpha 4$ and $\alpha 5$ subunits.
167 Receptors containing the $\alpha 2$ subunit are observed in different types of retinal neurons (Fig. 2). Also,
168 GABAergic, glutamatergic and dopaminergic neurons from hypothalamus, ventral midbrain and/or
169 sympathetic ganglia present noticeably different potential complements of nAChRs (Fig. S6A).
170 Differences in potential nAChRs composition can be observed even between closely related cell
171 types. For example, two subtypes of cortical pyramidal neurons that differ on their projection targets
172 (33) show a significant difference in the expression level of the $\alpha 5$ subunit (Fig. S6B), indicating they
173 could differ on the ratio of $\alpha 4\beta 2/\alpha 4\alpha 5\beta 2$ receptors on the plasma membrane. Finally, inner ear hair
174 cells co-express high levels of $\alpha 9$ and $\alpha 10$ subunits (Fig. 2 and S6C).
175 Taken together the analysis of aminoacid sequences and co-expression patterns indicates that,
176 whereas the $\alpha 9$ and $\alpha 10$ subunits have a restricted expression pattern, they also have the highest
177 clade-specific sequence divergence. On the contrary, neuronal nAChRs present higher sequence
178 conservation together with a widespread expression pattern.

179 **Divergence of biophysical properties differentiates neuronal from hair cell nAChRs**

180 The restricted co-expression pattern of hair cell $\alpha 9$ and $\alpha 10$ nAChR subunits (Fig. 2) and their
181 exclusive co-assembly with each other (19-21), together with their higher level of between-clade
182 sequence divergence (Fig. 1 and S3), indicate the potential for functional innovations across clades
183 through coding sequence changes. In contrast, the high conservation of neuronal subunits (Fig. 1 and
184 Table S3) may have resulted in highly conserved functional properties of neuronal receptors

185 assembled from the same subunits. We experimentally tested this prediction by performing a
186 comprehensive side-by-side comparison of the functional properties of the two main neuronal, $\alpha 4\beta 2$
187 and $\alpha 7$ nAChRs, and the hair cell $\alpha 9\alpha 10$ nAChR from three representative species of tetrapod clades.
188 To this end, we injected *Xenopus laevis* oocytes with the corresponding cRNAs and characterised the
189 biophysical properties of ACh responses.

190 Oocytes injected with rat (*Rattus norvegicus*), chicken (*Gallus gallus*) or frog (*Xenopus tropicalis*) $\alpha 4$
191 and $\beta 2$ cRNAs responded to ACh and showed the characteristic two-component ACh dose-response
192 curves that correspond to the well described $(\alpha 4)_3(\beta 2)_2$ and $(\alpha 4)_2(\beta 2)_3$ prevalent stoichiometries (Fig.
193 3A, Table S8 and (34)). Oocytes injected with rat, chicken or frog $\alpha 7$ cRNA responded to ACh with
194 similar apparent affinities (Fig. 3A, Table S8). Finally, rat, chicken and frog $\alpha 9$ and $\alpha 10$ subunits
195 formed functional heteromeric $\alpha 9\alpha 10$ nAChRs that responded to ACh in a concentration-dependent
196 manner (Fig. 3A and (19, 28)). The frog $\alpha 9\alpha 10$ receptor exhibited a significantly higher apparent
197 affinity than its amniote counterparts ($p = 0.0026$ (vs rat), $p = 0.0060$ (vs chick) – Fig. 3A and Table
198 S8).

199 While the $\alpha 4$ and $\beta 2$ subunits participate exclusively in heteropentameric receptor assemblies, rat
200 $\alpha 9$ (Fig. 3B and (22)), chicken $\alpha 9$ (Fig. 3B and (23)) and frog $\alpha 9$ (Fig. 3B) subunits assembled into
201 functional homomeric receptors. In contrast, rat $\alpha 10$ subunits cannot form functional receptors on
202 their own (Fig. 3B and (19)). Surprisingly, both chicken $\alpha 10$ (Fig. 3B and (23)) and frog $\alpha 10$ (Fig. 3B)
203 subunits assembled into functional homomeric receptors.

204 A defining feature of nAChRs is their desensitisation upon prolonged exposure to the agonist (35).
205 Rat and chicken neuronal $\alpha 4\beta 2$ receptors are characterised by slow desensitisation kinetics (28, 36).
206 As shown in Fig. 4, 70-80% of the maximum current amplitude remained 20 seconds after the peak
207 response to 100 μ M ACh. Similarly, frog $\alpha 4\beta 2$ receptors depicted slow desensitisation profiles, with
208 no significant differences when compared to that of rat ($p = 0.7326$) and chicken $\alpha 4\beta 2$ ($p = 0.7204$)
209 nAChRs (Table S8 and Fig. 4). The frog $\alpha 7$ nAChRs showed fast desensitisation with 2-3% of current
210 remaining 5 seconds after the peak response to 1 mM ACh, similar to that of rat $\alpha 7$ ($p = 0.3743$) and
211 chicken $\alpha 7$ ($p = 0.2496$) nAChRs (Table S8 and Fig. 4).

212 The conserved desensitisation profiles observed for both types of neuronal receptors was in stark
213 contrast with that of $\alpha 9\alpha 10$ receptors. While rat and chicken $\alpha 9\alpha 10$ receptors showed similar and
214 somewhat slow desensitization, with 60-65% of current remaining 20 seconds after the peak
215 response to ACh ($p = 0.9999$), frog $\alpha 9\alpha 10$ nAChRs exhibited significantly higher desensitization when
216 compared to rat $\alpha 9\alpha 10$ ($p=0.0051$) and chicken $\alpha 9\alpha 10$ ($p=0.0042$) receptors (Fig. 4 and Table S7).

217 Neuronal nAChRs are potentiated by extracellular divalent cations such as Ca^{2+} via an allosteric and
218 voltage-independent mechanism (37, 38). The rat $\alpha 9\alpha 10$ nAChR, on the other hand, is both
219 potentiated and blocked by physiological concentrations of extracellular divalent cations (39).
220 Blockage occurs in the milimolar range, is voltage dependent and proposed to occur as a result of
221 calcium permeation (39). To perform a comparative analysis of calcium modulation on rat, chicken
222 and frog $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ receptors, responses to near- EC_{50} concentrations of ACh were
223 recorded in normal Ringer's solution at a range of Ca^{2+} concentrations and normalised to the
224 response at 1.8 mM Ca^{2+} . For the neuronal $\alpha 4\beta 2$ and $\alpha 7$ receptors from all three species, a similar
225 potentiation pattern was observed, with increasingly higher responses to ACh at greater Ca^{2+}
226 concentrations (Fig. 5 – top and middle panels). In contrast, responses of $\alpha 9\alpha 10$ nAChRs from rat,
227 chicken and frog exhibited differential modulation by extracellular Ca^{2+} . As previously reported for
228 the rat $\alpha 9\alpha 10$ receptor, responses to ACh were potentiated and blocked by extracellular Ca^{2+} (Fig. 5 -
229 bottom left panel and (39)). The chicken $\alpha 9\alpha 10$ receptor also showed peak potentiation of the ACh
230 response at 0.5 mM extracellular Ca^{2+} . However, no evident block was observed at higher
231 concentrations of the cation (Fig. 5 - bottom middle panel). Finally, the frog $\alpha 9\alpha 10$ receptor showed
232 potentiation of ACh responses at all Ca^{2+} concentrations assayed, with maximal responses detected
233 at 3 mM Ca^{2+} (Fig. 5 - bottom right panel).

234 Calcium permeation through nAChRs holds great functional significance for the activation of calcium
235 dependent conductances and intracellular signalling pathways (14). Receptors containing the $\alpha 7$
236 subunit have high calcium permeability (40) whereas receptors containing $\alpha 4\beta 2$ subunits have a
237 lower contribution of calcium to the total current (28, 41). Amniote inner ear hair cell $\alpha 9\alpha 10$ nAChRs
238 show differences in the extent of calcium permeability (23, 28). In order to perform a comparative
239 analysis of the extent of the calcium component of ACh responses, we studied the differential
240 activation of the oocyte's endogenous calcium-activated chloride current ($\text{I}_{\text{Cl,Ca}}$). In oocytes
241 expressing a recombinant receptor with high calcium permeability, the $\text{I}_{\text{Cl,Ca}}$ is strongly activated
242 upon ACh application (42). Incubation of oocytes with the membrane-permeant fast Ca^{2+} chelator
243 BAPTA-AM subsequently abolishes the Cl^- component of the total measured current (43). Fig. 6
244 shows representative responses to ACh before and after a 3-hour incubation with BAPTA-AM for
245 $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ nAChRs from rat, chicken and frog. Whereas ACh-evoked currents were only
246 slightly affected in all $\alpha 4\beta 2$ nAChRs denoting no major calcium influx (70-80% of current remaining
247 after BAPTA incubation, Fig. 6, left panel), all $\alpha 7$ receptors showed a strong reduction of the ACh
248 response after BAPTA incubation (30-40% of current remaining after BAPTA), indicating significant
249 calcium permeation (Fig. 6, middle panel). Thus, no inter-species differences in the proportion of
250 calcium current for both the low calcium permeant $\alpha 4\beta 2$ and the highly calcium permeant $\alpha 7$

251 neuronal receptors were observed (Table S8). Conversely, and as previously reported (23, 28), we
252 observed a marked difference in the extent of calcium current between the rat and chicken $\alpha 9\alpha 10$
253 receptors ($p = 0.0299$ – Fig. 6, right panels and Table S8). Moreover, the percentage of remaining
254 response after BAPTA-AM incubation for the frog $\alpha 9\alpha 10$ receptor (Fig. 6, right panels) was similar to
255 that of the rat receptor ($p = 0.9999$ – Table S8) and significantly different from that of the chicken
256 $\alpha 9\alpha 10$ nAChR ($p = 0.0013$ – Table S8).

257 Neuronal nAChRs are characterised by a strong inward rectification, with negligible current at
258 depolarized potentials (40, 41). This is proposed to be a relevant feature for their roles as pre-
259 synaptic modulators of neuronal transmission (41). On the other hand, amniote $\alpha 9\alpha 10$ nAChRs
260 exhibit a peculiar current-voltage (I-V) relationship due to a considerable outward current at positive
261 potentials (19, 28). In order to perform a comparative analysis of the rectification profiles of
262 neuronal and hair cell nAChRs we obtained I-V curves and determined the ratio of current elicited at
263 +40 mV to that at -90 mV (I_{+40}/I_{-90}). All neuronal nAChRs exhibited I-V curves with marked inward
264 rectification with no significant inter-species differences for either $\alpha 4\beta 2$ or $\alpha 7$ tetrapod receptors,
265 presenting I_{+40}/I_{-90} values below 1 (Fig. 7, left and middle panels and Table S8). On the contrary, each
266 of the hair cell $\alpha 9\alpha 10$ nAChRs analysed presented a unique I-V profile. As previously reported, rat
267 $\alpha 9\alpha 10$ receptors showed significant outward current at depolarised potentials and greater inward
268 current at hyperpolarised potentials with a I_{+40}/I_{-90} ratio close to 1 (Fig. 7, right panels and (19)). The
269 chicken $\alpha 9\alpha 10$ receptor showed outward current similar to that of the rat $\alpha 9\alpha 10$ receptor, but the
270 inward current was smaller (Fig. 7, top right panel), resulting in a significantly higher I_{+40}/I_{-90} ratio ($p =$
271 0.0229 – Table S8). Surprisingly, the frog $\alpha 9\alpha 10$ receptor showed an I-V profile similar to that of
272 neuronal nAChRs, with strong inward rectification, almost no outward current at depolarised
273 potentials (Fig. 7, right panels) and a I_{+40}/I_{-90} below 1, significantly different to that obtained for chick
274 ($p = 0.0406$ – Table S8) and rat ($p < 0.0001$ – Table S9) $\alpha 9\alpha 10$ receptors.

275 **Comparative functional analysis of neuronal and hair cell nAChRs shows distinct evolutionary
276 trajectories**

277 Altogether, the characterisation of individual functional properties of tetrapod nAChRs showed a
278 stark contrast between neuronal and hair cell nAChRs. In order to concomitantly analyse the
279 diversification, or conservation of receptor function, we performed principal component analysis
280 (PCA) on all the functional variables measured on $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ receptors from the three
281 species (Table S10). The first two principal components accounted for 82% of the variability (Fig. 8).
282 Moreover, the distribution of receptors in PCA space reflected their overall functional differences
283 and similarities. Both neuronal $\alpha 4\beta 2$ and $\alpha 7$ receptors occupied distinct regions, more distant in PC1

284 than in PC2 denoting that these receptors differ more on ACh apparent affinity, desensitisation and
285 calcium permeability than they do on rectification and calcium modulation (Fig. 8 - inset). Also, $\alpha 4\beta 2$
286 and $\alpha 7$ receptors from the different species were located very close together, reflecting the lack of
287 inter-species differences in functional properties. In contrast, the hair cell $\alpha 9\alpha 10$ receptors from the
288 different species were distant from each other in PCA space, denoting their extensive functional
289 divergence (Fig. 8). Interestingly, the frog $\alpha 9\alpha 10$ nAChR was closer to the $\alpha 7$ receptors than to its
290 amniote counterparts, highlighting the overall functional similarity between the amphibian $\alpha 9\alpha 10$
291 and $\alpha 7$ nAChRs.

292 Amino acid sequence phylogenies, co-expression/co-assembly patterns and functional experiments
293 support the hypothesis of differential evolutionary trajectories for neuronal and hair cell receptors.
294 Further insight could be attained by the evaluation of the receptors present in the last common
295 ancestor of rat and chicken (amniote ancestor) and of rat, chicken and frog (tetrapod ancestor). To
296 tackle this, we inferred the character state for the functional properties of the $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$
297 ancestral receptors (see SI methods). We then projected this predicted functional states onto the
298 functional PCA space of the extant receptors (Fig. 8). As expected, the predicted ancestral $\alpha 4\beta 2$ and
299 $\alpha 7$ amniote and tetrapod receptors were located close to their extant counterparts. In contrast, the
300 predicted ancestral states of the $\alpha 9\alpha 10$ receptors were localised halfway between the frog $\alpha 9\alpha 10$
301 and the amniote chicken and rat $\alpha 9\alpha 10$ extant receptors, potentially reflecting the functional
302 evolutionary trajectory of the hair cell receptor. Thus, the ancestral tetrapod $\alpha 9\alpha 10$ receptor may
303 have functionally resembled the extant frog $\alpha 9\alpha 10$ receptor and neuronal $\alpha 7$ receptors, mainly on
304 properties with heavier loading on PC2 (i.e., rectification and calcium permeability). Moreover, the
305 ancestral amniote $\alpha 9\alpha 10$ receptor may have had functional properties that more closely resembled
306 those of neuronal $\alpha 4\beta 2$ receptors, in particular for properties with heavier loading on PC1 (i.e., ACh
307 apparent affinity, desensitization and calcium modulation). In summary, the data portrayed in Fig. 8
308 describes a plausible scenario for the functional evolutionary trajectories undertaken by two
309 neuronal and the hair cell nAChRs within the tetrapod lineage.

310

311 **Discussion**

312 The expansion of ion channel families on the vertebrate stem branch was mostly driven by two
313 rounds of whole genome duplications (44). This has played a crucial role in the evolution of nervous
314 systems and provided raw material that enabled the diversification of cell types (45) resulting in the
315 complexity reached by vertebrate brains (e.g.(46)). Among the different ion channel families, Cys-
316 loop receptors are within those that underwent the greatest expansion (45). The entire extant
317 complement of nAChRs, which includes 17 different subunits (α 1- α 10, β 1- β 4, δ , ε and γ), was already
318 present in the last common ancestor of all vertebrates (10). With the exception of some fish species
319 that acquired α 11, β 1.2 and β 5 subunits, for which no expression or functional data has yet been
320 reported (10), and the loss of the α 7-like α 8 subunits in mammals, the complement of original
321 vertebrate nAChR subunits has been remarkably conserved. Moreover, nAChRs are unique in that
322 subgroups of the family have distinct roles in synaptic transmission in non-overlapping domains,
323 either in the nervous system, inner ear hair cells or the neuromuscular junction (13, 14, 18). In this
324 work, we performed in-depth analyses of coding sequence molecular evolution, subunit co-
325 expression patterns and comparative functional properties of neuronal and hair cell receptors to
326 explore the potential impact of these segregation of nAChRs subgroups on their respective
327 evolutionary histories. We found that neuronal subunits showed high degree of coding sequence
328 conservation, coupled to greater co-expression variability and conservation of functional properties
329 across tetrapod clades. In contrast, the hair cell α 9 α 10 nAChR showed greater sequence divergence,
330 a highly restricted co-expression pattern and a great degree of variability of functional properties
331 across species. These results indicate that along the tetrapod lineage neuronal and hair cell nAChRs
332 underwent alternative evolutionary trajectories.

333 *Functional conservation of neuronal nAChRs*

334 The observation that the biophysical functional properties of neuronal α 4 β 2 and α 7 nAChRs were
335 conserved in the three tetrapod species analysed, relates to their high degree of amino acid
336 sequence conservation (Fig. 1 and Tables S2-S3). Cholinergic innervation is pervasive, with almost
337 every area of the brain being influenced by nicotinic signalling (14). Moreover, the expression of
338 neuronal nAChR subunits is widespread in the central and peripheral nervous system (Fig. 2), where
339 they assemble in multiple combinations (Table S6). Thus, randomly acquired changes in the coding
340 sequence of a given subunit might be deleterious for receptor function in a multitude of
341 heteropentameric assemblies present in diverse neuronal types. Such changes would therefore be
342 under strong negative selection pressure. This is in agreement with the low degree of divergence
343 observed for neuronal subunits and the absence of signatures of positive selection in the protein-

344 coding sequences of $\alpha 4$, $\beta 2$ and $\alpha 7$ subunits (28) and other brain expressed genes (47). However,
345 neurons could alternatively resort to re-shuffling of the complement of nAChR subunits being
346 expressed to attain functional divergence. Therefore, and as for most brain expressed genes (47, 48),
347 random changes in non-coding regions that lead to differential expression patterns across brain
348 areas or species may have played a substantial role in delineating the evolutionary trajectories of
349 neuronal nAChRs.

350 *Differential co-expression patterns of neuronal and hair cell nAChRs*

351 Our meta-analysis of expression patterns across the mouse brain highlights numerous instances of
352 potential functional variability and diversification, even between closely related neuronal types (Fig.
353 2, S4-S6). For instance, cholinergic input controls dopaminergic neuron firing patterns in the
354 midbrain (49). Here co-expression of nAChR subunits greatly differs across the four subtypes of
355 dopaminergic neurons in the ventral tegmental area (VTA) ((50) and Fig. 2), indicating that they may
356 express differential levels of functionally distinct $\alpha 4\beta 2$ containing ($\alpha 4\beta 2^*$) receptors. Inclusion of the
357 $\alpha 5$ subunit can alter $\alpha 4\beta 2^*$ receptor properties substantially, increasing ACh sensitivity,
358 desensitization kinetics and Ca^{2+} permeability (51-53). In addition, incorporation of the $\beta 3$ subunit to
359 the $\alpha 4\beta 2^*$ receptor also increases ACh sensitivity, without significantly affecting Ca^{2+} permeability
360 (51, 53). Moreover, VTA dopaminergic neurons also showed expression of the $\alpha 6$ and $\alpha 3$ subunits,
361 both of which can co-assemble with $\alpha 4$, $\alpha 5$ and/or $\beta 2$ subunits, greatly enhancing the complexity of
362 individual nAChRs-mediated responses of VTA dopaminergic neurons to modulatory cholinergic
363 input. Another interesting example is provided by layer VI cortical pyramidal neurons, whose activity
364 is modulated by a dense cholinergic innervation from the basal forebrain. Here, ACh elicits robust
365 excitatory responses acting on $\alpha 4\beta 2^*$ nAChRs, with layer VI being one of the few cortical areas that
366 express the accessory $\alpha 5$ nAChR subunit (54). Cortical neurons that project to both the ventral
367 posteromedial nucleus (VPM) and the posteromedial complex of the thalamus express significantly
368 higher levels of the $\alpha 5$ subunit than neurons projecting to the VPM only (Fig. S6A). This suggests
369 VPM-only projecting neurons could have a lower density of $\alpha 4\alpha 5\beta 2$ compared to $\alpha 4\beta 2$ nAChRs,
370 potentially contributing to differential cholinergic modulation of these subtypes of layer VI neurons,
371 that also show differences in excitability (55).

372 Hair cells of the inner ear express high levels of $\alpha 9$ and $\alpha 10$ subunits, along with a number of
373 neuronal ($\beta 2$ and $\beta 4$) and muscle ($\alpha 1$, $\beta 1$, γ/ε) subunits (Fig. 2 and (20, 56)). $\alpha 9\alpha 10$ nAChRs mediate
374 fast efferent neurotransmission to cochlear and vestibular hair cells in the inner ear (13) and are
375 characterised by unique pharmacological and biophysical properties (19, 22, 39, 57). Most notably,
376 nicotine, the diagnostic agonist of the nAChRs family, does not act as an agonist of $\alpha 9\alpha 10$ receptors,

377 but as a competitive antagonist (19). In inner ear hair cells, no responses to nicotine application are
378 detected (20, 58), indicating that functional muscle or neuronal nAChRs are not present at the
379 plasma membrane. The presence of neuronal and muscle subunits mRNA may result from redundant
380 or residual transcriptional regulation mechanisms. Moreover, similar “leaky” expression of muscle
381 subunits was detected in a number of neuronal types (Fig. 2).

382 Expression of $\alpha 9$ and $\alpha 10$ subunit is restricted to inner ear hair cells, with a few interesting
383 exceptions. In the inner ear, spiral ganglion neurons (SGNs) provide afferent innervation to cochlear
384 hair cells and express a range of neuronal nAChR subunits (Fig. 2 and (59, 60)). Interestingly, low
385 levels of $\alpha 9$ and $\alpha 10$ subunits are present in SGNs (Fig. 2 and (61)) with similarly low co-expression
386 detected by two independent single-cell RNA sequencing studies (62, 63). If this low level of $\alpha 9$ and
387 $\alpha 10$ mRNA proves to be more than “transcriptional noise”, then SGNs may be unique among
388 neurons in expressing the hair cell $\alpha 9\alpha 10$ receptor. This might be related to the shared
389 developmental origin of SGNs and hair cells at the otic placode (64, 65) and could open the
390 possibility that in addition to neuronal nAChRs, which are thought to partly mediate the nicotinic
391 effect of lateral olivocochlear terminals on afferent dendrites (66), $\alpha 9\alpha 10$ nAChRs may also play a
392 role. Finally, in dorsal root ganglia neurons, $\alpha 9$ expression was not detected, while $\alpha 10$ is present at
393 very low levels in only a few subtypes (Fig. 2 and (67)). These observations support those reported
394 by qPCR and functional assays (68) and provide further evidence that the participation of $\alpha 9^*$
395 nAChRs in pain processes is not due to its presence in dorsal root ganglia neurons (68, 69).

396 Of note, $\alpha 9$ and $\alpha 10$, together with other nAChR subunits, are expressed in other peripheral, non-
397 neuronal, tissues (17, 70). A plausible autocrine/paracrine effect of ACh in these cells can be served
398 by a multiple and redundant battery of nAChRs that might play a signalling function in these
399 peripheral tissues (71, 72). Due to the redundancy in pathways for ACh signalling, it is unlikely that
400 the function of $\alpha 9\alpha 10$ nAChRs in these peripheral tissues provided the selection forces that shaped
401 the accumulation of non-synonymous changes on this receptor.

402 *The $\alpha 9\alpha 10$ nAChR and the evolution of the efferent olivocochlear system*

403 The observations that $\alpha 9$ and $\alpha 10$ genes are only co-ordinately transcribed in inner ear hair cells,
404 together with their ability to only form functional heteromeric receptors when co-assembled with
405 each other but not with other nAChR subunits (19, 20, 22), support our hypothesis that evolutionary
406 changes in the hair cell receptors may have been focused at the coding sequence. Accordingly,
407 vertebrate $\alpha 9$ and $\alpha 10$ subunits exhibit significant sequence divergence (Table S3 and Fig. 1), with
408 mammalian $\alpha 10$ subunits showing a higher than expected accumulation of non-synonymous
409 substitutions that were positively selected (26, 28). In addition, both $\alpha 9$ and $\alpha 10$ subunits show a

410 high number of clade-specific (mammalian vs sauropsid) functionally relevant aminoacid changes
411 (Fig. 1, Table S3 and (23)). Consequently, the biophysical properties of $\alpha 9\alpha 10$ receptors drastically
412 changed across vertebrate species (Fig. 8 and (23, 28)). Since the primary function of the $\alpha 9\alpha 10$
413 receptor is at the postsynaptic side of the olivocochlear synapse, it can be hypothesised that clade
414 specific differences in efferent modulation of hair cell activity could have shaped the functional
415 properties of $\alpha 9\alpha 10$ receptors. Upon the transition to land, the hearing organs of tetrapods
416 underwent parallel evolutionary processes, mainly due to the independent emergence of the
417 tympanic middle ear, at least five times, in separate groups of amniotes (73). This was followed by
418 the independent elongation of the auditory sensory epithelia that extended the hearing range to
419 higher frequencies and the elaboration of passive and active sound amplification mechanisms that
420 lead to the fine tuning of sound detection (73, 74). More importantly, mammals and sauropsids
421 underwent a parallel diversification of hair cell types, segregating, partially in birds but completely in
422 mammals, the phonoreception and sound amplification functions (75). Efferent innervation to hair
423 cells, mediated by $\alpha 9\alpha 10$ nAChRs, is an ancestral feature common to all vertebrate species (76). In
424 the auditory epithelia it modulates sound amplification and followed the hair cell diversification
425 pattern: in birds it mainly targets short hair cells, while in mammals it targets outer hair cells (75).
426 The latter developed a clade-specific sound amplification mechanism driven by the motor protein
427 prestin and termed somatic electromotility (74). Prestin, together with βV giant spectrin, a major
428 component of the outer hair cells' cortical cytoskeleton which is necessary for electromotility, show
429 signatures of positive selection in the mammalian clade that may relate to the acquisition of somatic
430 electromotility (26, 77). Thus, the mammalian clade-specific evolutionary processes observed in both
431 the $\alpha 9$ and $\alpha 10$ subunits (23, 26, 28) may be related to overall changes in the efferent olivocochlear
432 systems of this clade that is tasked with the modulation of prestin-driven somatic electromotility. A
433 recent high throughput evolutionary analysis identified 167 inner ear expressed genes with
434 signatures of positive selection in the mammalian lineage (78). These inner ear genes, including
435 those encoding the $\alpha 9$ and $\alpha 10$ nAChR subunits, can be considered as hotspots for evolutionary
436 innovation in the auditory system across species.

437 Such a scenario provides a context for evaluating the relationship between evolutionary trajectories
438 and the functional role of $\alpha 9\alpha 10$ receptors. In mammals, the high calcium influx through $\alpha 9\alpha 10$
439 receptors activates large conductance, voltage and low-calcium-sensitive BK potassium channels
440 mediating hyperpolarization of outer hair cells in higher frequency regions of the cochlea (79). In
441 contrast, in short hair cells from the chicken basilar papillae, hyperpolarization is served by the ACh-
442 dependent activation of high calcium sensitive SK potassium channels (80, 81). Moreover, in contrast
443 to adult mammalian hair cells where efferent fibres directly contact outer hair cells, but not the

444 inner hair cells that release glutamate to activate afferent auditory fibres, efferent innervation in
445 birds and amphibians co-exists with afferent innervation in the same hair cells. Calcium influx in
446 these hair cells could therefore result in efferent-triggered, ACh-mediated release of glutamate to
447 auditory afferents due to calcium spill over, bypassing sound mechanotransduction. Thus, limiting
448 the extent of calcium influx through $\alpha 9\alpha 10$ nAChRs may be paramount to avoid confounding sensory
449 inputs. In this hypothetical scenario, the low calcium permeability of the avian $\alpha 9\alpha 10$ nAChR or the
450 very high desensitization kinetics of the amphibian $\alpha 9\alpha 10$ nAChR that restrict calcium load could be
451 related to the aforementioned selection pressure.

452 *Subgroups of nAChRs and differential sources of functional divergence*

453 Our observations on expression pattern, coding sequence and functional divergence support the
454 notion that $\alpha 9$ and $\alpha 10$ are not a subtype of brain nicotinic subunit (for review see (25)), but form a
455 group of their own, characterised by unique expression profile, pharmacological and biophysical
456 properties (19, 22, 39, 57) and evolutionary history.

457 The contrasting evolutionary trajectories of neuronal and hair cell receptors, with functional
458 variability stemming from combinatorial co-expression for the former and changes in coding
459 sequence for the latter, support the notion of differential substrates for random change and ensuing
460 functional divergence. For neuronal subunits, the source of random variability may have been
461 rooted on changes in regulatory sequences. In contrast, for the hair cell receptor, random changes in
462 the coding sequence were fixed throughout the evolutionary history of the tetrapod lineage.
463 Interestingly, muscle subunits showed relatively low levels of coding sequence conservation (Fig. 1)
464 and, via combinatorial co-assembly, muscle cells can toggle between at least two receptor variants
465 (18). This places muscle receptors in between the two extremes of hair cell (isolated) and neuronal
466 (widespread) receptors. A comparative functional study of muscle receptors would further test our
467 hypothesis, with the prediction that a modest level of functional divergence may be encountered,
468 but outweighed by the functional differences between muscle receptor variants.

469 In summary, the present work provides evidence supporting different evolutionary trajectories for
470 neuronal and hair cell nAChRs. These may have resulted from the differential substrates for random
471 change that dominated evolutionary processes in each receptor subgroup: diversity of co-
472 expression/co-assembly patterns for neuronal subunits, changes in coding sequence for hair cell
473 subunits. It results salient that among ligand-gated ion channels these alternative evolutionary
474 trajectories are a particular feature of the nAChRs family of Cys-loop receptors. Thus, this is not
475 observed for ionotropic glutamate and GABA_A receptors, whose 18 (82) and 19 (83) member
476 subunits, respectively, are all expressed in the central nervous system. Finally, the simultaneous

477 analysing of coding sequences, expression patterns and protein functional properties generated new
478 insights into the evolutionary history of gene paralogues, thus providing further context for the role
479 of nAChRs in neuronal and hair cell synaptic transmission.

480

481 **Methods**

482 All experimental protocols were carried out in accordance with the guides for the care and use of
483 laboratory animals of the National Institutes of Health and the Institutional Animal Care and Use
484 Committee of the Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr.
485 Héctor N. Torres”.

486 **Phylogenetic analysis of vertebrate nAChRs subunits**

487 All sequences were downloaded from GenBank (www.ncbi.nlm.nih.gov/genbank), UCSC
488 (<http://genome.ucsc.edu/>) and Ensembl (www.ensembl.org) databases. Sequence alignment was
489 performed using *ClustalW* on the MEGA7 software (84). Phylogenetic trees were inferred using the
490 minimum evolution method (85). A detailed description of the alignment procedures, sequence
491 identity analysis and phylogeny constructions are available in SI Methods.

492 **Functional divergence analysis**

493 The coefficient of type II functional divergence (θ_{II}), its standard error and the site-specific posterior
494 probabilities were calculated for each nicotinic subunit between the mammalian and sauropsid
495 clades using DIVERGE 3.0 (31). A detailed description of the analysis strategy is available in SI
496 methods.

497 **Analysis of nAChR subunit expression in single-cell RNAseq (scRNAseq) datasets**

498 A meta-analysis of single cell gene expression data from 10 studies was performed to describe the
499 expression patterns of nAChR subunits across cell types. Probability distributions of mean expression
500 level for all nAChR subunit genes detected in all the cell types analysed were obtained using the *scde*
501 package (32). We combined this with a comprehensive catalogue of experimentally validated
502 subunit combinations and identified the subunit combinations that were present, in each cell type or
503 absent all together. A detailed description of the datasets used and analysis strategy is available in SI
504 methods.

505 **Expression of recombinant receptors in *Xenopus laevis* oocytes and electrophysiological
506 recordings**

507 The plasmids used for heterologous expression in *Xenopus laevis* oocytes are described in SI
508 Methods. Electrophysiological recordings from *Xenopus laevis* oocytes were obtained as described
509 previously (22, 57) and are described in more detail in SI Methods. A detailed description of the
510 protocols used to evaluate nAChR functional properties and statistical analysis is available in SI
511 methods.

512 **Principal component analysis of functional properties and inference of character state of**
513 **functional properties of ancestral receptors**

514 Principal Component Analysis was performed on the experimental values obtained for the functional
515 properties of extant nAChRs implementing custom routines written in R v3.4.1 and run in RStudio
516 software v1.0.153 (see SI methods). The pipeline for the inference of the ancestral character state of
517 biophysical properties is described in detail in SI methods. Briefly, sequences corresponding to the
518 amniote and tetrapod ancestors were reconstructed for the different subunits. Distances were then
519 used to compute branch lengths on receptor trees. The latter, together with the biophysical
520 properties of extant receptors were used to infer the properties of ancestral receptors using the APE
521 package v5.2 (86). Finally, these were projected onto the PCA space of extant receptors.

522

523 **Acknowledgments**

524 This work was supported by Agencia Nacional de Promoción Científicas y Técnicas, Argentina, the
525 Scientific Grand Prize of the Fondation Pour l'Audition and NIH Grant R01 DC001508 (Paul Fuchs PI
526 and ABE co-PI) to ABE.

527

528 **References**

- 529 1. Dent JA (2006) Evidence for a diverse Cys-loop ligand-gated ion channel superfamily in early
530 bilateria. *Journal of Molecular Evolution* 62(5):523-535.
- 531 2. Jaiteh M, Taly A, & Hénin J (2016) Evolution of pentameric ligand-gated ion channels: Pro-
532 loop receptors. *PLoS ONE* 11(3):1-24.
- 533 3. Tasneem A, Iyer LM, Jakobsson E, & Aravind L (2005) Identification of the prokaryotic ligand-
534 gated ion channels and their implications for the mechanisms and origins of animal Cys-loop
535 ion channels. *Genome biology* 6(1):R4-R4.
- 536 4. Cully DF, *et al.* (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel
537 from *Caenorhabditis elegans*. *Nature* 371(6499):707-711.
- 538 5. Hervé Thany S (2010) *Insect Nicotinic Acetylcholine Receptors* pp 1323-1330.
- 539 6. Hilf RJC & Dutzler R (2009) Structure of a potentially open state of a proton-activated
540 pentameric ligand-gated ion channel. *Nature* 457(7225):115-118.
- 541 7. Karlin A (2002) Ion channel structure: Emerging structure of the Nicotinic Acetylcholine
542 receptors. *Nature Reviews Neuroscience* 3(2):102-114.
- 543 8. Spurny R, *et al.* (2012) Pentameric ligand-gated ion channel ELIC is activated by GABA and
544 modulated by benzodiazepines. *Proc.Natl.Acad.Sci.U.S.A.* 109(44):3028-3034.
- 545 9. Corringer PJ, *et al.* (2012) Structure and pharmacology of pentameric receptor channels:
546 From bacteria to brain. *Structure* 20(6):941-956.
- 547 10. Pedersen JE, Bergqvist CA, & Larhammar D (2019) Evolution of vertebrate nicotinic
548 acetylcholine receptors. *BMC Evolutionary Biology* 19(1):1-21.
- 549 11. Kalamida D, *et al.* (2007) Muscle and neuronal nicotinic acetylcholine receptors: Structure,
550 function and pathogenicity. *FEBS Journal* 274(15):3799-3845.
- 551 12. Steinbach JH (1989) Structural and functional diversity in vertebrate skeletal muscle nicotinic
552 acetylcholine receptors. *Ann Rev Physiol* (51):353-365.
- 553 13. Elgoyhen AB & Katz E (2012) The efferent medial olivocochlear-hair cell synapse. *Journal of
554 Physiology Paris* 106(1-2):47-56.
- 555 14. Dani JA & Bertrand D (2007) Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic
556 Mechanisms of the Central Nervous System. *Annu. Rev. Pharmacol. Toxicol* 47:699-729.
- 557 15. Zoli M, Pistillo F, & Gotti C (2015) Diversity of native nicotinic receptor subtypes in
558 mammalian brain. *Neuropharmacology* 96(PB):302-311.
- 559 16. Millar NS & Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors.
560 *Neuropharmacology* 56(1):237-246.
- 561 17. Zoli M, Pucci S, Vilella A, & Gotti C (2018) Neuronal and Extraneuronal Nicotinic
562 Acetylcholine Receptors. *Current neuropharmacology* 16(4):338-349.
- 563 18. Mishina M, *et al.* (1986) Molecular distinction between fetal and adult forms of muscle
564 acetylcholine receptor. *Nature* 321(6068):406-411.
- 565 19. Elgoyhen AB, *et al.* (2001) $\alpha 10$: a Determinant of Nicotinic Cholinergic Receptor Function in
566 Mammalian Vestibular and Cochlear Mechanosensory Hair Cells. *Proc.Natl.Acad.Sci.U.S.A.*
567 98(6):3501-3506.
- 568 20. Scheffer D, *et al.* (2007) The $\alpha 1$ subunit of nicotinic acetylcholine receptors in the inner ear:
569 transcriptional regulation by ATOH1 and co-expression with the γ subunit in hair cells.
570 *Journal of Neurochemistry* 0(0):071027034430002-???
- 571 21. Sgard F, *et al.* (2002) A novel human nicotinic receptor subunit, alpha10, that confers
572 functionality to the alpha9-subunit. *Molecular Pharmacology* 61(1):150-159.
- 573 22. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, & Heinemann S (1994) $\alpha 9$: an acetylcholine
574 receptor with novel pharmacological properties expressed in rat cochlear hair cells. *Cell*
575 79(4):705-715.
- 576 23. Lipovsek M, *et al.* (2014) Tracking the molecular evolution of calcium permeability in a
577 nicotinic acetylcholine receptor. *Mol Biol Evol* 31(12):3250-3265.

- 578 24. Vetter DE, *et al.* (2007) The $\alpha 10$ nicotinic acetylcholine receptor subunit is required for
579 normal synaptic function and integrity of the olivocochlear system. *Proc.Natl.Acad.Sci.U.S.A.*
580 104(51):20594-20599.
- 581 25. Morley BJ, Whiteaker P, & Elgoyen AB (2018) Commentary: Nicotinic Acetylcholine
582 Receptor $\alpha 9$ and $\alpha 10$ Subunits Are Expressed in the Brain of Mice. *Frontiers in Cellular*
583 *Neuroscience* 12(May):10-13.
- 584 26. Franchini LF & Elgoyen AB (2006) Adaptive evolution in mammalian proteins involved in
585 cochlear outer hair cell electromotility. *Molecular Phylogenetics and Evolution* 41(3):622-
586 635.
- 587 27. Le Novère N, Corringer P-J, & Changeux J-P (2002) The diversity of subunit composition in
588 nAChRs: evolutionary origins, physiologic and pharmacologic consequences. *Journal of*
589 *neurobiology* 53(4):447-456.
- 590 28. Lipovsek M, *et al.* (2012) Phylogenetic differences in calcium permeability of the auditory
591 hair cell cholinergic nicotinic receptor. *Proc.Natl.Acad.Sci.U.S.A.* 109(11):4308-4313.
- 592 29. Ortells M & Lunt GG (1995) History of the Ligand-Gated Superfamily of Receptors. *Trends*
593 *neuroscience* 18(3):121-127.
- 594 30. Tsunoyama K & Gojobori T (1998) Evolution of Nicotinic Acetylcholine Receptor Subunits.
595 *Mol Biol Evol* 15(5):518-527.
- 596 31. Gu X, *et al.* (2013) An update of DIVERGE software for functional divergence analysis of
597 protein family. *Mol Biol Evol* 30(7):1713-1719.
- 598 32. Kharchenko PV, Silberstein L, & Scadden DT (2014) Bayesian approach to single-cell
599 differential expression analysis. *Nature Methods* 11(7):740-742.
- 600 33. Chevée M, Robertson JDJ, Cannon GH, Brown SP, & Goff LA (2018) Variation in Activity State,
601 Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical
602 Projection Neurons. *Cell Reports* 22(2):441-455.
- 603 34. Moroni M, Zwart R, Sher E, Cassels BK, & Bermudez I (2006) $\alpha 4\beta 2$ Nicotinic receptors with
604 high and low acetylcholine sensitivity: Pharmacology, stoichiometry, and sensitivity to long-
605 term exposure to nicotine. *Mol Pharmacol.* 70(2):755-768.
- 606 35. Quick MW & Lester RAJ (2002) Desensitization of neuronal nicotinic receptors. *Journal of*
607 *Neurobiology* 53(4):457-478.
- 608 36. Mazzaferro S, Bermudez I, & Sine SM (2017) $\alpha 4\beta 2$ Nicotinic Acetylcholine Receptors:
609 Relationship between subunit stoichiometry and function at the single channel level. *The*
610 *Journal of biological chemistry* 292(7):2729-2740.
- 611 37. Mulle C, Léna C, & Changeux JP (1992) Potentiation of nicotinic receptor response by
612 external calcium in rat central neurons. *Neuron* 8(5):937-945.
- 613 38. Vernino S, Amador M, Luetje CW, Patrick J, & Dani JA (1992) Calcium modulation and high
614 calcium permeability of neuronal nicotinic acetylcholine receptors. *Neuron* 8(1):127-134.
- 615 39. Weisstaub N, Vetter DE, Elgoyen AB, & Katz E (2002) The $\alpha 9\alpha 10$ nicotinic acetylcholine
616 receptor is permeable to and is modulated by divalent cations. *Hearing Research* 167(1-
617 2):122-135.
- 618 40. Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, & Patrick JW (1993) Molecular cloning,
619 functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly
620 permeable to calcium. *J Neuroscience* 13(2):596-604.
- 621 41. Haghghi AP & Cooper E (2000) A molecular link between inward rectification and calcium
622 permeability of neuronal nicotinic acetylcholine $\alpha 3\beta 4$ and $\alpha 4\beta 2$ receptors. *J Neuroscience*
623 20(2):529-541.
- 624 42. Barish ME (1983) A transient calcium-dependent choloride current in the immature *Xenopus*
625 oocytes. *J Physiol* 342:309-325.
- 626 43. Gerzanich V, Anand R, & Lindstrom JM (1994) Homomers of $\alpha 8$ and $\alpha 7$ subunits of nicotinic
627 receptors exhibit similar channel but contrasting binding site properties. *Molecular*
628 *Pharmacology* 45(2):212 LP-- 220.

- 629 44. Roux J, Liu J, & Robinson-Rechavi M (2017) Selective constraints on coding sequences of
630 nervous system genes are a major determinant of duplicate gene retention in vertebrates.
Mol Biol Evol 34(11):2773-2791.
- 632 45. Liebeskind BJ, Hillis DM, & Zakon HH (2015) Convergence of ion channel genome content in
633 early animal evolution. *Proc.Natl.Acad.Sci.U.S.A.* 112(8):E846--E851.
- 634 46. Sugino K, *et al.* (2019) Mapping the transcriptional diversity of genetically and anatomically
635 defined cell populations in the mouse brain. *eLife* 8.
- 636 47. Haygood R, Babbitt CC, Fedrigo O, & Wray GA (2010) Contrasts between adaptive coding and
637 noncoding changes during human evolution. *Proc.Natl.Acad.Sci.U.S.A.* 107(17):7853-7857.
- 638 48. Hoekstra HE & Coyne JA (2007) The locus of evolution: evo devo and the genetics of
639 adaptation. *Evolution* 61(5):995-1016.
- 640 49. Mameli-Engvall M, *et al.* (2006) Hierarchical Control of Dopamine Neuron-Firing Patterns by
641 Nicotinic Receptors. *Neuron* 50(6):911-921.
- 642 50. La Manno G, *et al.* (2016) Molecular diversity of midbrain development in resource
643 molecular diversity of midbrain development in mouse, human and stem cells. *Cell* 167:566-
644 580.
- 645 51. Kuryatov A, Onksen J, & Lindstrom J (2008) Roles of accessory subunits in alpha4beta2(*)
646 nicotinic receptors. *Molecular Pharmacology* 74(1):132-143.
- 647 52. Ramirez-Latorre J, *et al.* (1996) Functional contributions of α 5 subunit to neuronal
648 acetylcholine receptor channels. *Nature* 380(6572):347-351.
- 649 53. Tapia L, Kuryatov A, & Lindstrom J (2007) Ca²⁺ Permeability of the $(\alpha 4)3(\beta 2)2$ Stoichiometry
650 Greatly Exceeds That of $(\alpha 4)2(\beta 2)3$ Human Acetylcholine Receptors. *Molecular
651 Pharmacology* 71(3):769-776.
- 652 54. Proulx E, Piva M, Tian MK, Bailey CDC, & Lambe EK (2014) Nicotinic acetylcholine receptors
653 in attention circuitry: The role of layer VI neurons of prefrontal cortex. *Cellular and
654 Molecular Life Sciences* 71(7):1225-1244.
- 655 55. Landisman CE & Connors BW (2007) VPM and PoM nuclei of the rat somatosensory
656 thalamus: Intrinsic neuronal properties and corticothalamic feedback. *Cerebral Cortex*
657 17(12):2853-2865.
- 658 56. Roux I, Wu JS, McIntosh JM, & Glowatzki E (2016) Assessment of the expression and role of
659 the $\alpha 1$ -nAChR subunit in efferent cholinergic function during the development of the
660 mammalian cochlea. *Journal of Neurophysiology* 116(2):479-492.
- 661 57. Katz E, *et al.* (2000) High calcium permeability and calcium block of the $\alpha 9$ nicotinic
662 acetylcholine receptor. *Hearing Research* 141:117-128.
- 663 58. Gomez-Casati ME, Fuchs PA, Elgoyen AB, & Katz E (2005) Biophysical and pharmacological
664 characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells. *J Physiol*
665 566(Pt 1):103-118.
- 666 59. Hiel H, Elgoyen AB, Drescher DG, & Morley BJ (1996) Expression of nicotinic acetylcholine
667 receptor mRNA in the adult rat peripheral vestibular system. *Brain Research* 738(2):347-352.
- 668 60. Morley BJ, Li HS, Hiel H, Drescher DG, & Elgoyen AB (1998) Identification of the subunits of
669 the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and *in situ* hybridization.
Molecular Brain Research 53(1-2):78-87.
- 671 61. Shrestha BR, *et al.* (2018) Sensory neuron diversity in the inner ear is shaped by activity
672 sensory neuron diversity. *Cell* 174:1229-1246.
- 673 62. Sun S, *et al.* (2018) Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral
674 Ganglion Subtype Specification in the Auditory System. *Cell* 174(5):1247-1263 e1215.
- 675 63. Petitpre C, *et al.* (2018) Neuronal heterogeneity and stereotyped connectivity in the auditory
676 afferent system. *Nature Communications* 9(1):3691.
- 677 64. Arendt D, *et al.* (2016) The origin and evolution of cell types. *Nature reviews. Genetics*
678 17(12):744-757.

- 679 65. Fritzsch B & Beisel KW (2004) Keeping sensory cells and evolving neurons to connect them to
680 the brain: molecular conservation and novelties in vertebrate ear development. *Brain, Behavior and Evolution* 64(3):182-197.
- 681 66. Reijntjes DOJ & Pyott SJ (2016) The afferent signaling complex: Regulation of type I spiral
682 ganglion neuron responses in the auditory periphery. *Hearing Research* 336:1-16.
- 683 67. Usoskin D, et al. (2015) Unbiased classification of sensory neuron types by large-scale single-
684 cell RNA sequencing. *Nature Neuroscience* 18(1):145-153.
- 685 68. Hone AJ, Meyer EL, McIntyre M, & McIntosh JM (2011) Nicotinic acetylcholine receptors in
686 dorsal root ganglion neurons include the $\alpha 6\beta 4^*$ subtype. *The FASEB Journal* 26(2):917-926.
- 687 69. Rau KK, Johnson RD, & Cooper BY (2004) Nicotinic AChR in Subclassified Capsaicin-Sensitive
688 and -Insensitive Nociceptors of the Rat DRG. *Journal of Neurophysiology* 93(3):1358-1371.
- 689 70. McIntosh JM, Absalom N, Chebib M, Elgoyhen AB, & Vincler M (2009) Alpha9 nicotinic
690 acetylcholine receptors and the treatment of pain. *Biochemical Pharmacology* 78(7):693-
691 702.
- 692 71. Zakrzewicz A, et al. (2017) Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit
693 ATP-Induced Release of Monocytic Interleukin-1beta via Different Combinations of Nicotinic
694 Acetylcholine Receptor Subunits alpha7, alpha9 and alpha10. *Frontiers in Cellular
695 Neuroscience* 11:189.
- 696 72. Criado M (2018) Acetylcholine nicotinic receptor subtypes in chromaffin cells. *Pflugers Archiv : European journal of physiology* 470(1):13-20.
- 697 73. Manley GA (2017) Comparative Auditory Neuroscience: Understanding the Evolution and
698 Function of Ears. *Journal of the Association for Research in Otolaryngology : JARO* 18(1):1-24.
- 699 74. Dallos P (2008) Cochlear amplification, outer hair cells and prestin. *Current opinion in
700 neurobiology* 18(4):370-376.
- 701 75. Koppl C (2011) Birds--same thing, but different? Convergent evolution in the avian and
702 mammalian auditory systems provides informative comparative models. *Hearing Research*
703 273(1-2):65-71.
- 704 76. Sienknecht UJ, Köppl C, & Fritzsch B (2014) Evolution and development of hair cell polarity
705 and efferent function in the inner ear. *Brain, Behavior and Evolution* 83(2):150-161.
- 706 77. Cortese M, et al. (2017) Spectrin β V adaptive mutations and changes in subcellular location
707 correlate with emergence of hair cell electromotility in mammals.
708 *Proc.Natl.Acad.Sci.U.S.A.* 114(8):2054-2059.
- 709 78. Pisciottano F, Cinalli AR, Stopiello M, & Castagna VC (2019) Positive Selection and Adaptation
710 of Novel Inner Ear Genes in the Mammalian Lineage. *Mol Biol Evol.*
- 711 79. Wersinger E, McLean WJ, Fuchs PA, & Pyott SJ (2010) BK Channels Mediate Cholinergic
712 Inhibition of High Frequency Cochlear Hair Cells. *PLoS ONE* 5(11):e13836-e13836.
- 713 80. Fuchs PA & Murrow B (1992) Cholinergic inhibition of short (outer) hair cells of the chick's
714 cochlea. *J Neuroscience* 12(3):800-809.
- 715 81. Samaranayake H, Saunders JC, Greene MI, & Navaratnam DS (2004) Ca^{2+} and K^+ (BK)
716 channels in chick hair cells are clustered and colocalized with apical-basal and tonotopic
717 gradients. *J Physiol* 560(1):13-20.
- 718 82. Traynelis SF, et al. (2010) Glutamate receptor ion channels: Structure, regulation, and
719 function. *Pharmacological Reviews* 62(3):405-496.
- 720 83. Tsang SY, Ng SK, Xu Z, & Xue H (2007) The evolution of GABA_A receptor-like genes. *Mol Biol
721 Evol* 24(2):599-610.
- 722 84. Kumar S, Stecher G, & Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis
723 Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33(7):1870-1874.
- 724 85. Rzhetsky A & Nei M (1992) A simple method for estimating and testing minimum-evolution
725 trees. *Mol Biol Evol* 9(5):945-967.
- 726 86. Paradis E, Claude J, & Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R
727 language. *Bioinformatics* 20(2):289-290.
- 728 729

730

731

732

733 **Figure legends**

734 **Figure 1. Hair cell nAChR subunits show greater sequence divergence than neuronal subunits. A.**
735 Phylogenetic relationships between vertebrate nicotinic subunits. The branches corresponding to
736 the same subunits of different species were collapsed up to the node at which one subunit separates
737 from its closest neighbour. The complete tree is shown in Fig. S1. Triangles length denotes the
738 divergence on sequence identity from the subunit node. Triangles were coloured according to the
739 average percentage of sequence identity between all pairs of sequences (%seqID, Table S2) within
740 the branch. Numbers in branches indicate the bootstrap value obtained after 1,000 replicates. Scale
741 bar indicates the number of amino acid substitutions per site. B. Posterior probabilities for type II
742 functional divergence between mammalian and sauropsid clades, for each site along individual
743 nAChR subunits. Grey lines, posterior probability ≤ 0.65 . Red lines, posterior probability < 0.65 .
744 Bottom right, diagram of a nAChR subunit extracellular, 4 transmembrane and intracellular domains
745 along aminoacid position.

746 **Figure 2. Hair cell nAChR subunits are co-expressed in inner ear hair cells, while neuronal subunits**
747 **show widespread and variable co-expression patterns.** Normalised mean expression level for
748 nAChR subunits across mouse neuronal and sensory cell types. Circle sizes indicate the mean
749 expression level for each cell type, normalised to the highest value observed within each dataset. For
750 detailed explanations of individual cell types refer to main text, SI methods section or the original
751 publications.

752 **Figure 3. Hair cell nAChRs show differences in ACh apparent affinity, while neuronal nAChRs have**
753 **similar ACh sensitivity. A.** Concentration-response curves for neuronal $\alpha 4\beta 2$ and $\alpha 7$ nAChRs and hair
754 cell $\alpha 9\alpha 10$ nAChRs from three tetrapod species. Values are mean \pm S.E.M. Lines are best fit to the
755 Hill equation ($n = 4-9$). Representative responses evoked by 10 μ M ($\alpha 4\beta 2$, rat and chick $\alpha 9\alpha 10$) or
756 100 μ M ($\alpha 7$, frog $\alpha 9\alpha 10$) ACh are shown next to their respective plots. Scale bars: $\alpha 4\beta 2$: 100 nA, 10
757 sec; $\alpha 7$: 50 nA, 5 sec; $\alpha 9\alpha 10$: 50 nA, 10 sec. **B.** Representative responses evoked by ACh in oocytes
758 injected with rat, chicken or frog homomeric $\alpha 9$ and $\alpha 10$ subunits ($n=2-20$).

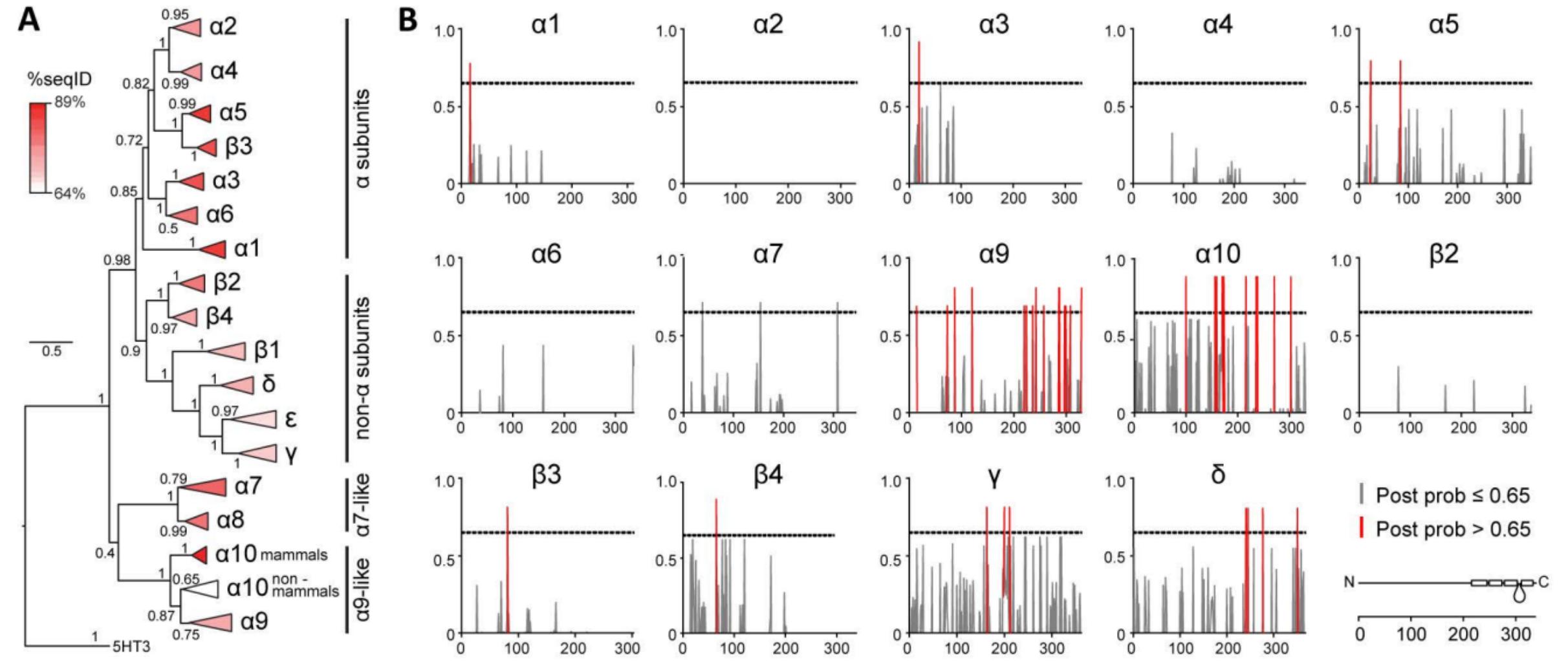
759 **Figure 4. Hair cell nAChRs differ in their desensitization patterns, while neuronal receptors show**
760 **similar profiles.** *Top panels.* Representative responses of $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ nAChRs to a 60
761 seconds (for $\alpha 4\beta 2$ and $\alpha 9\alpha 10$) or 30 seconds (for $\alpha 7$) application of 100 μ M ACh for all $\alpha 4\beta 2$ and
762 amniotes $\alpha 9\alpha 10$, and 1 mM ACh for all $\alpha 7$ and frog $\alpha 9\alpha 10$ nAChRs. *Bottom panels.* Percentage of
763 current remaining 20 seconds ($\alpha 9\alpha 10$ and $\alpha 4\beta 2$) or 5 seconds ($\alpha 7$) after the peak response, relative
764 to the maximum current amplitude elicited by ACh. Bars represent mean \pm S.E.M., open circles

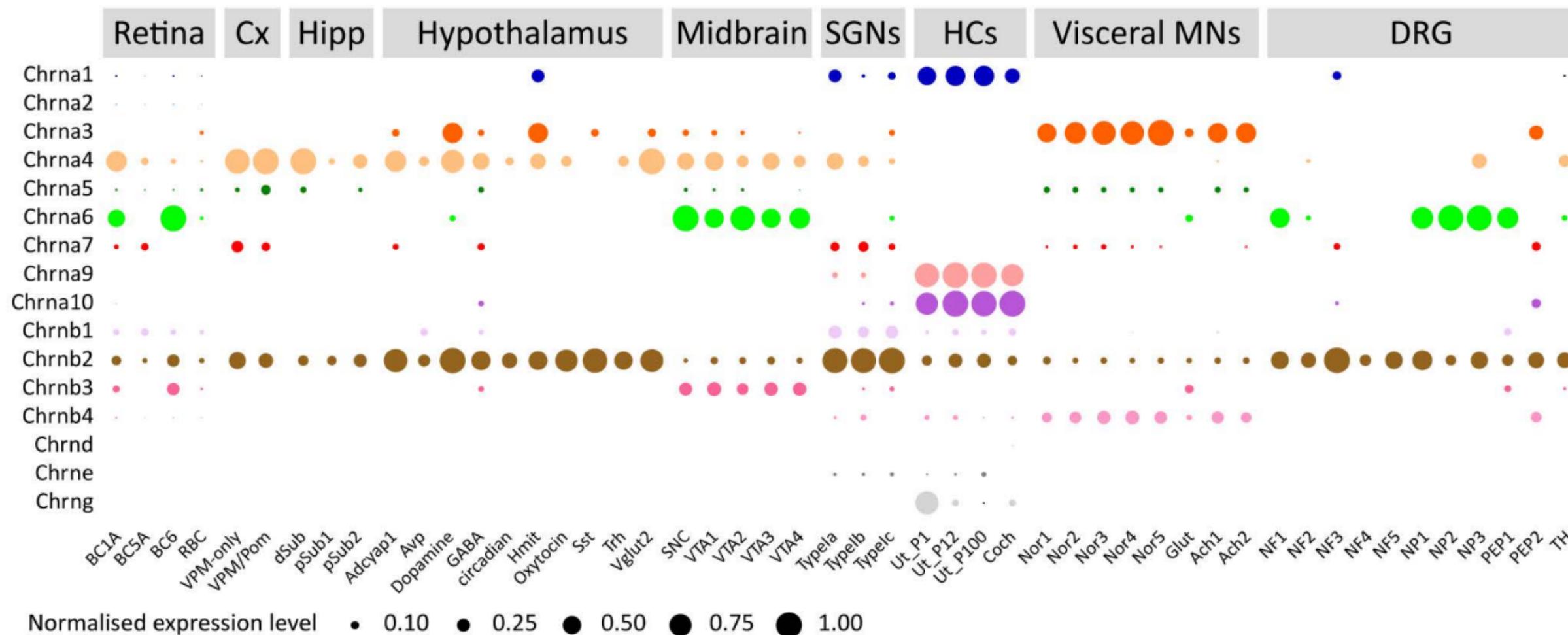
765 represent individual oocytes ($n = 4-10$). $**p < 0.01$, One-Way ANOVA followed by Dunn's test ($\alpha 4\beta 2$
766 nAChRs) or Kruskal-Wallis followed by Holm Sidak's test ($\alpha 7$ and $\alpha 9\alpha 10$ nAChRs).

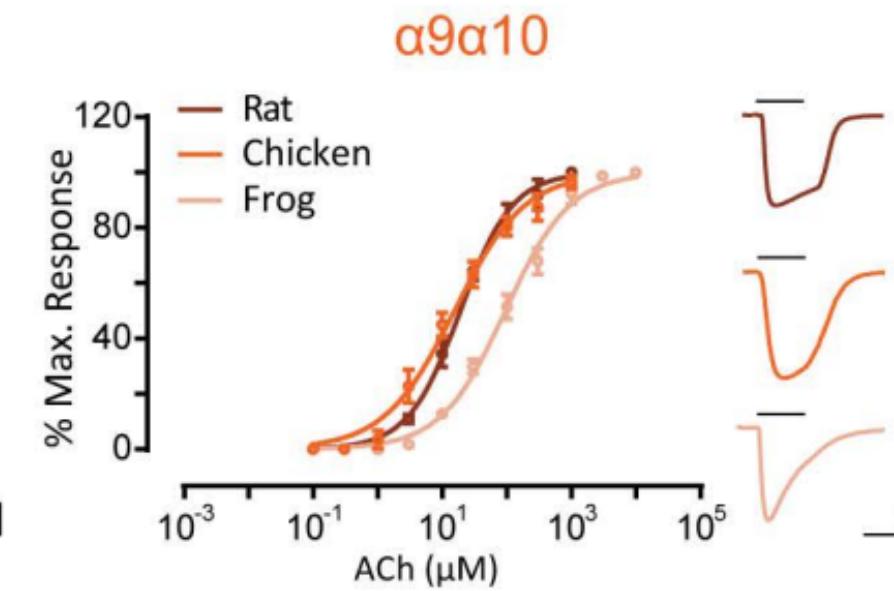
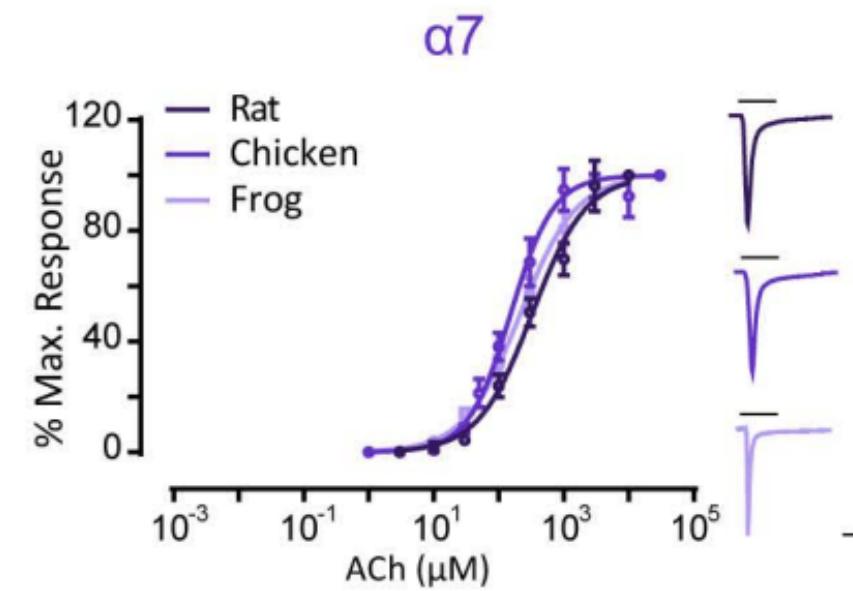
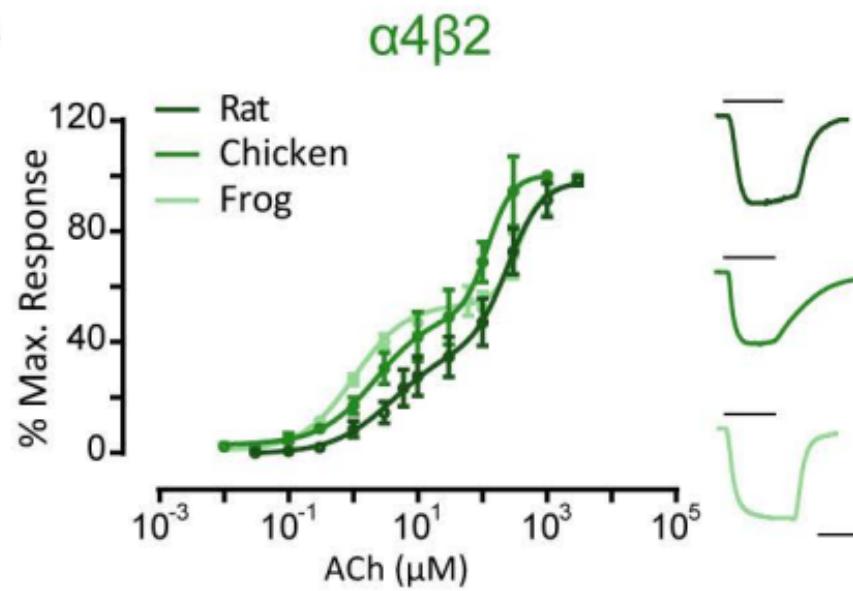
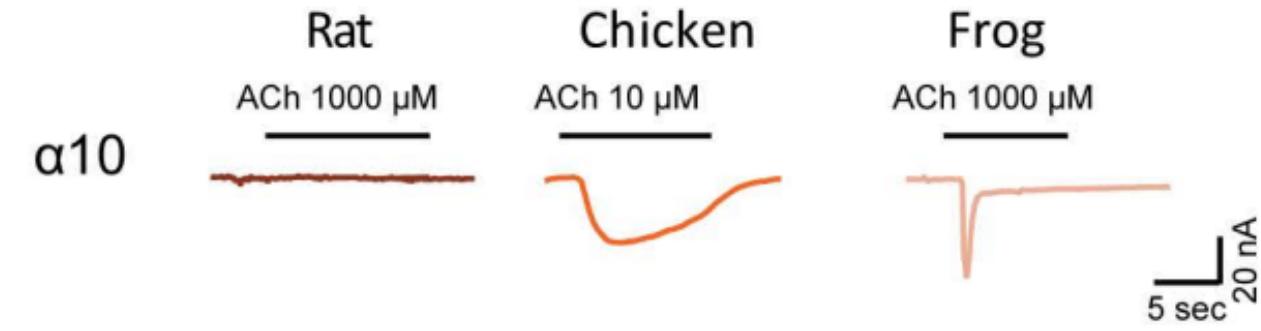
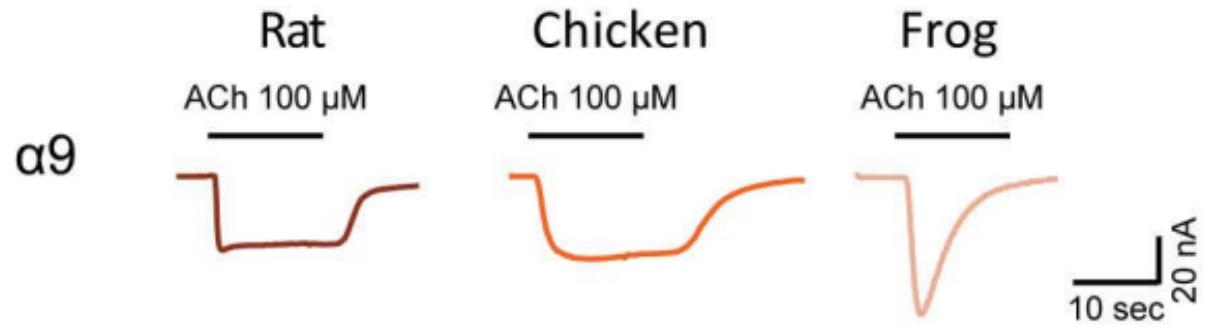
767 **Figure 5. Extracellular Ca^{2+} potentiates neuronal nAChRs but differentially modulates $\alpha 9\alpha 10$**
768 **nAChRs.** ACh response amplitude as a function of extracellular Ca^{2+} concentration. ACh was applied
769 at near-EC₅₀ concentrations (10 μM ACh for all $\alpha 4\beta 2$, rat and chick $\alpha 9\alpha 10$ nAChRs and 100 μM ACh
770 for all $\alpha 7$ and frog $\alpha 9\alpha 10$ nAChRs). Current amplitudes recorded at different Ca^{2+} concentrations in
771 each oocyte were normalized to the response obtained at 1.8 mM Ca^{2+} in the same oocyte. $V_h: -90$
772 mV. Bars represent mean \pm S.E.M., open circles represent individual oocytes ($n = 4-12$). $*p < 0.05$,
773 $**p < 0.01$, $***p < 0.005$, $****p < 0.0001$, Paired *t*-test (rat and frog $\alpha 4\beta 2$ nAChRs and all $\alpha 7$ and $\alpha 9\alpha 10$
774 nAChRs) or Wilcoxon matched pair test (chick $\alpha 4\beta 2$ nAChR) – comparing 0.5 mM Ca^{2+} vs 3 mM Ca^{2+} .

775 **Figure 6. Unlike neuronal nAChRs, $\alpha 9\alpha 10$ nAChRs exhibit differential Ca^{2+} contribution to the total**
776 **inward current. Top panels.** Representative responses to near-EC₅₀ concentration of ACh (10 μM
777 ACh for all $\alpha 4\beta 2$ and amniotes $\alpha 9\alpha 10$ nAChRs and 100 μM ACh for all $\alpha 7$ and frog $\alpha 9\alpha 10$ nAChRs) in
778 oocytes expressing $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ nAChRs, before (grey traces) and after (colour traces) a 3
779 hour incubation with BAPTA-AM ($V_h = -70$ mV). **Bottom panels.** Percentage of the initial response
780 remaining after BAPTA incubation. Bars represent mean \pm S.E.M., open circles represent individual
781 oocytes ($n = 4-10$). $****p < 0.0001$, One-Way ANOVA followed by Dunn's test ($\alpha 4\beta 2$ and $\alpha 7$ nAChRs)
782 or Kruskal-Wallis followed by Holm Sidak's test ($\alpha 9\alpha 10$ nAChRs).

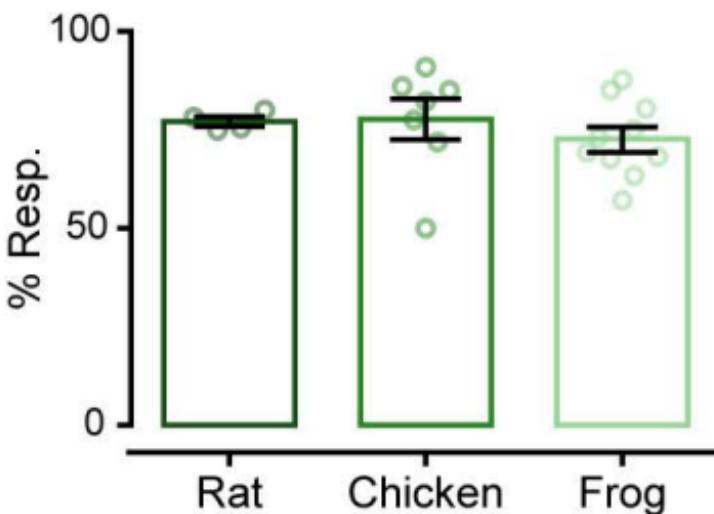
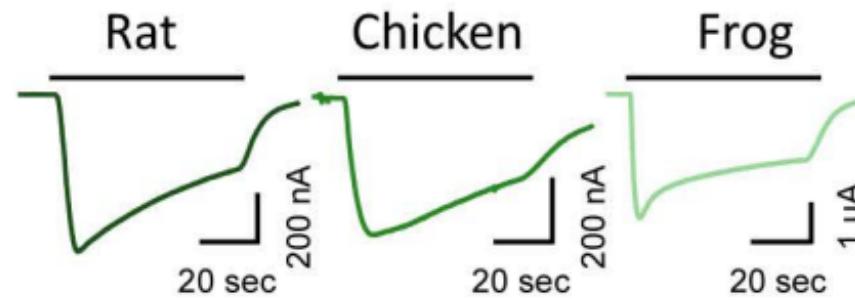
783 **Figure 7. Hair cell, but not neuronal, nAChRs show differential current-voltage relationships across**
784 **species. Top panels.** Representative I-V curves obtained by the application of voltage ramps (-120 to
785 +50mV, 2 seconds) at the plateau response to 3 μM ACh for $\alpha 4\beta 2$ and $\alpha 9\alpha 10$ or by the application of
786 100 μM ACh at different holding potentials for $\alpha 7$ nAChRs. Values were normalized to the maximal
787 agonist response obtained for each receptor. **Bottom panels.** Ratio of current amplitude at +40 mV
788 relative to -90 mV for each oocyte. Bars represent mean \pm S.E.M., open circles represent individual
789 oocytes ($n = 5-11$). $*p < 0.05$ $****p < 0.0001$, One-Way ANOVA followed by Dunn's test ($\alpha 4\beta 2$ and $\alpha 7$
790 nAChRs) or Kruskal-Wallis followed by Holm Sidak's test ($\alpha 9\alpha 10$ nAChRs).

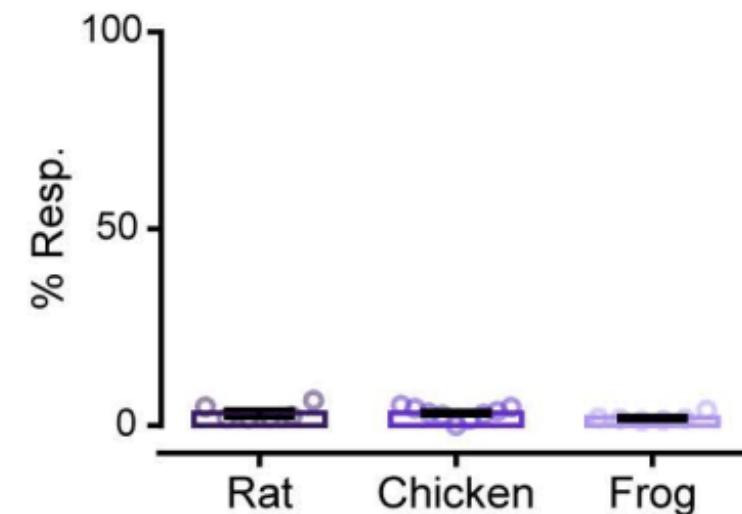
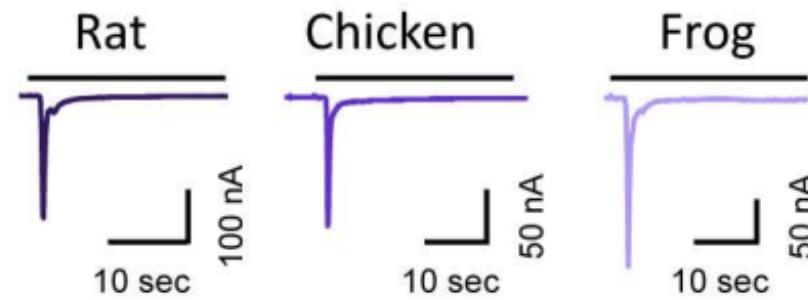

791 **Figure 8. Hair cell nAChRs show great functional divergence, while functional properties of**
792 **neuronal nAChRs are conserved.**


793 PCA was conducted using the experimentally determined biophysical properties (Table S8). Square
794 symbols represent rat nAChRs, circles represent chick nAChRs and triangles represent frog nAChRs,
795 $\alpha 4\beta 2$ nAChRs are shown in shades of green, $\alpha 7$ nAChRs in shades of purple and $\alpha 9\alpha 10$ nAChRs in
796 shades of orange. The projected locations of inferred functional states are shown for amniote (stars)

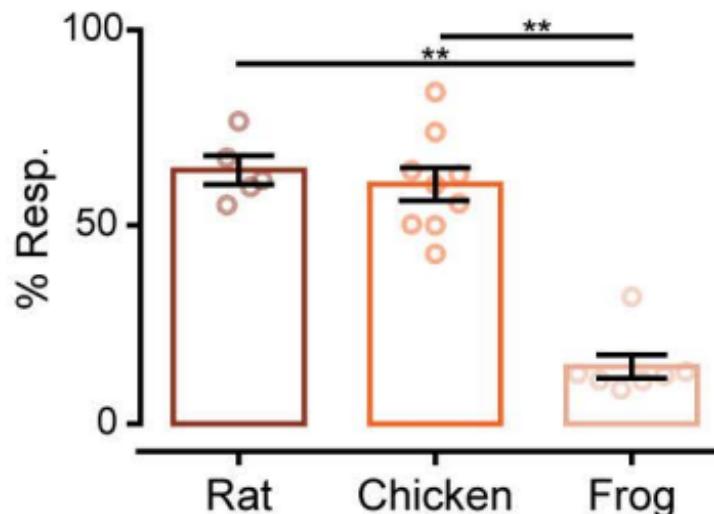
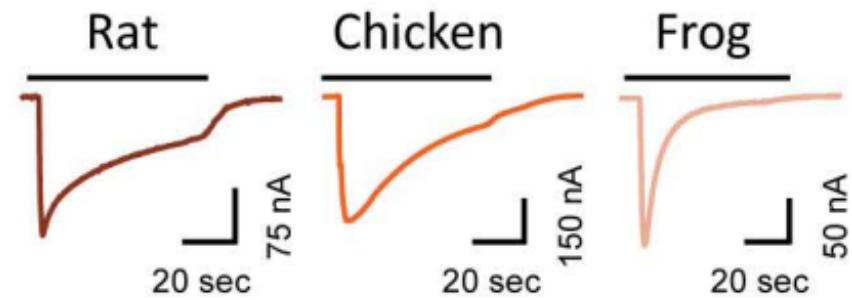





797 and tetrapod (crosses) ancestral receptors and coloured in yellow ($\alpha 4\beta 2$), blue ($\alpha 7$) or pink ($\alpha 9\alpha 10$).

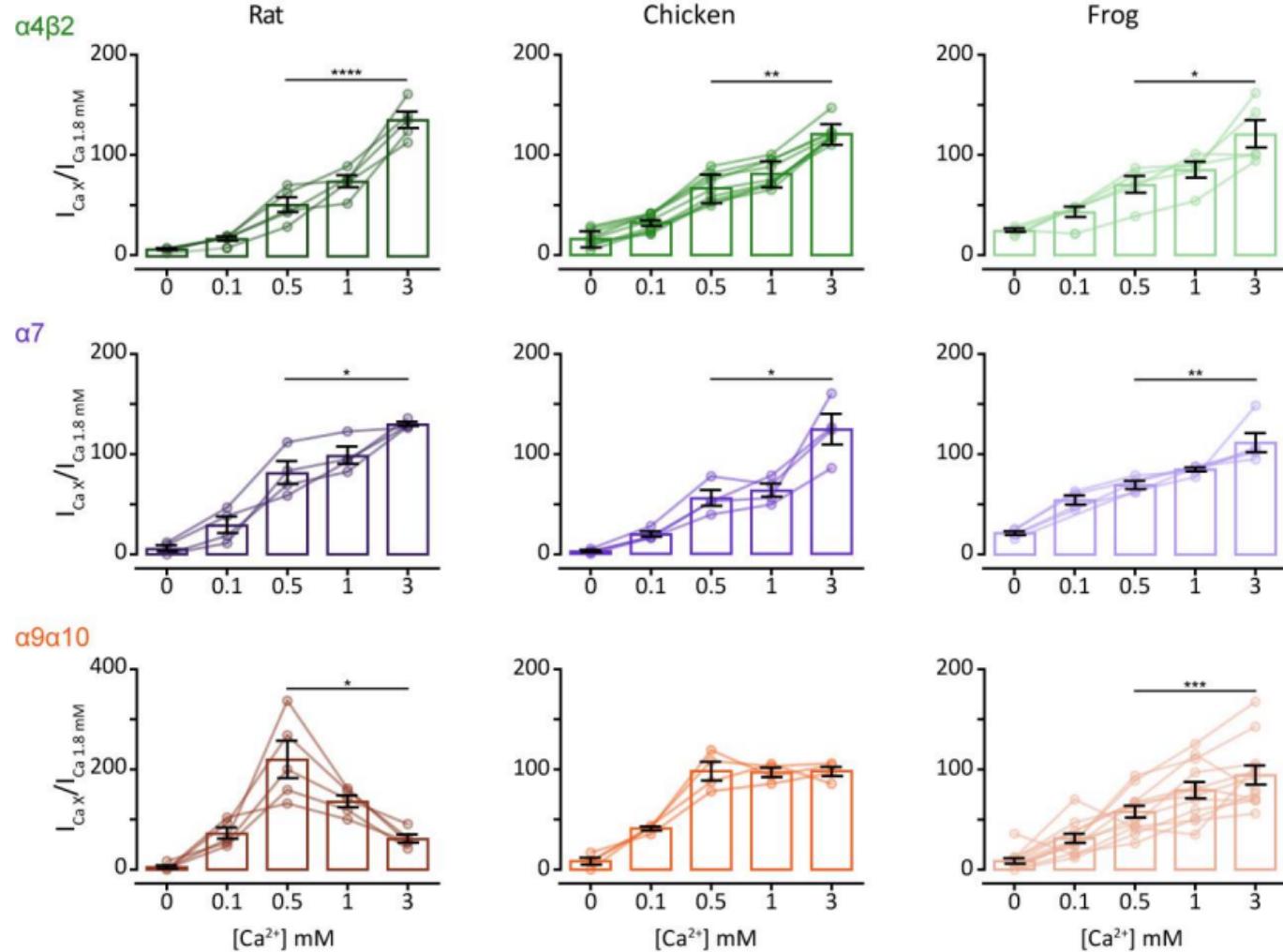
798 *Inset.* Biplot of the relative contribution of the five biophysical properties to PC1 and PC2.



799

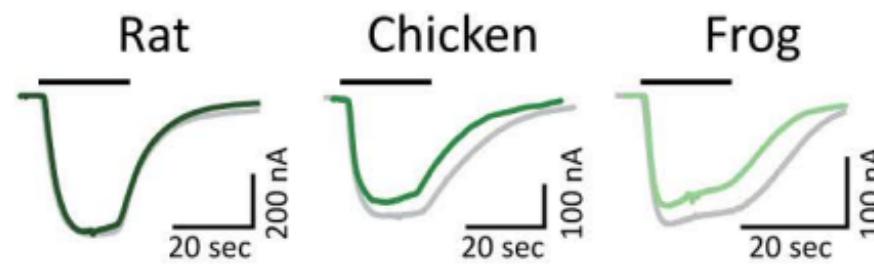



A**B**

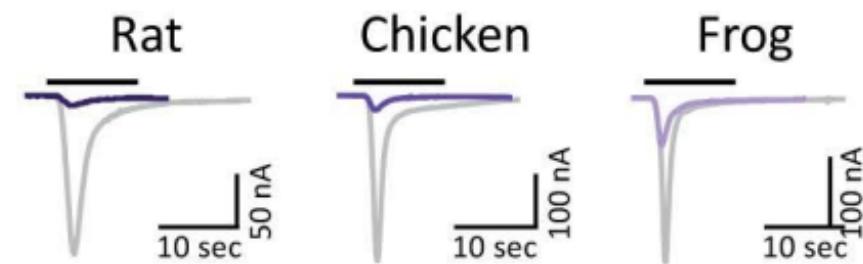


$\alpha 4\beta 2$

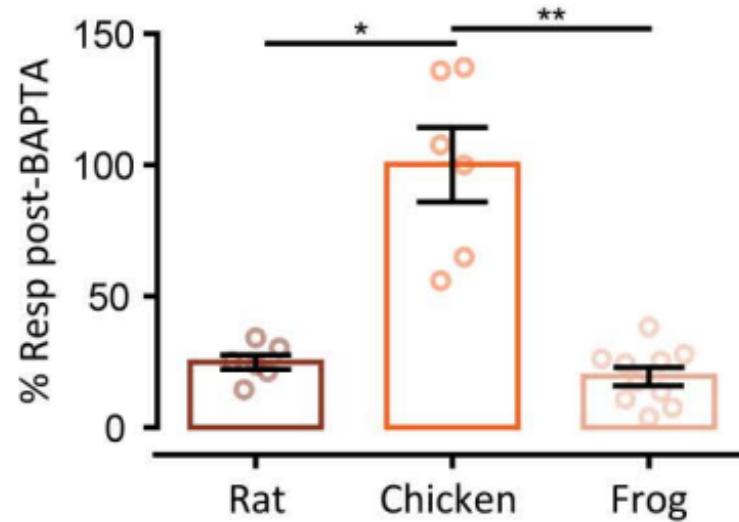
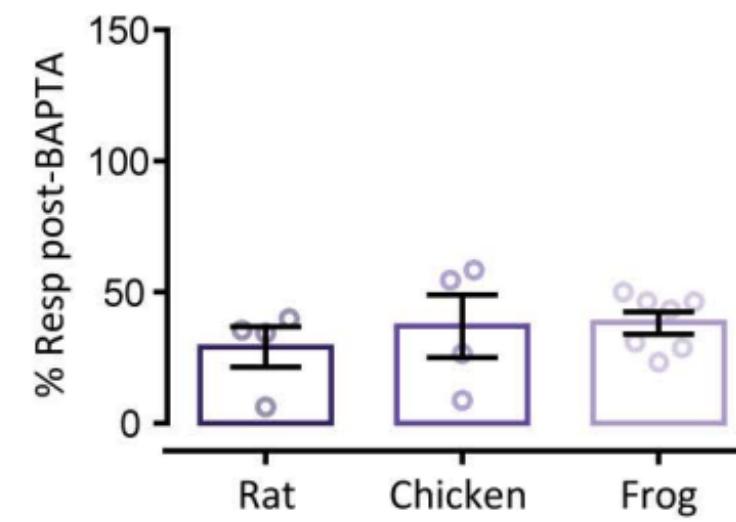
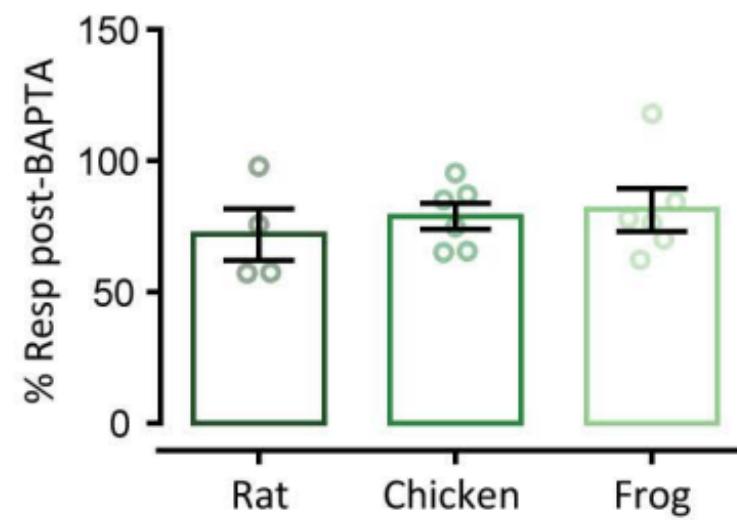
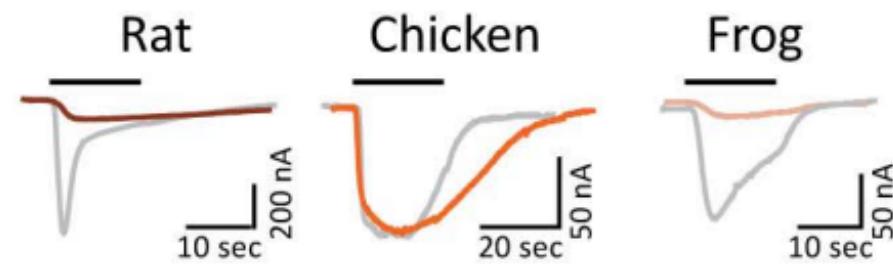


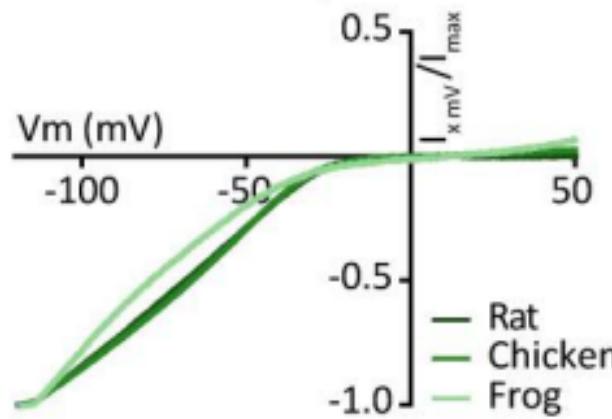
$\alpha 7$

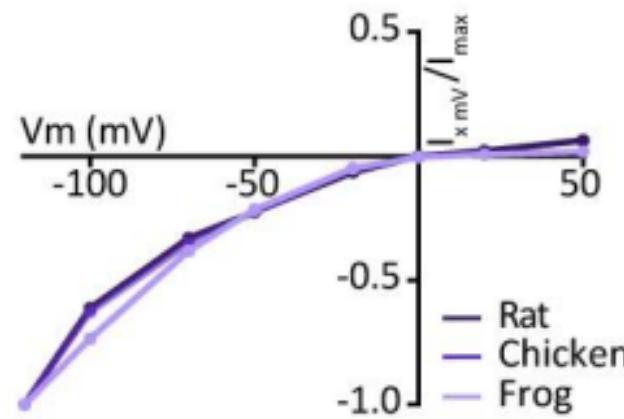


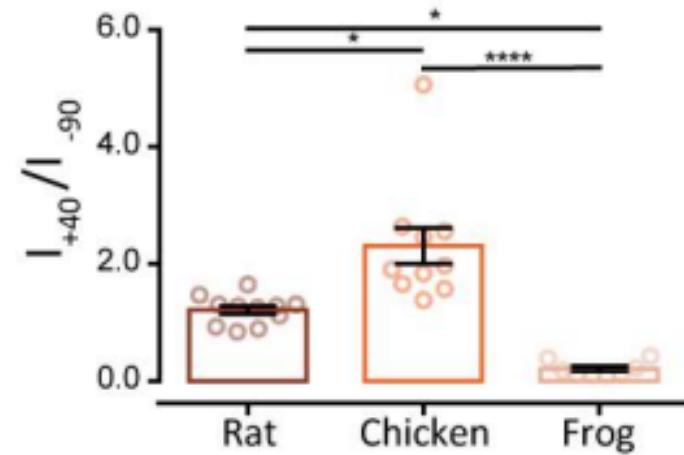
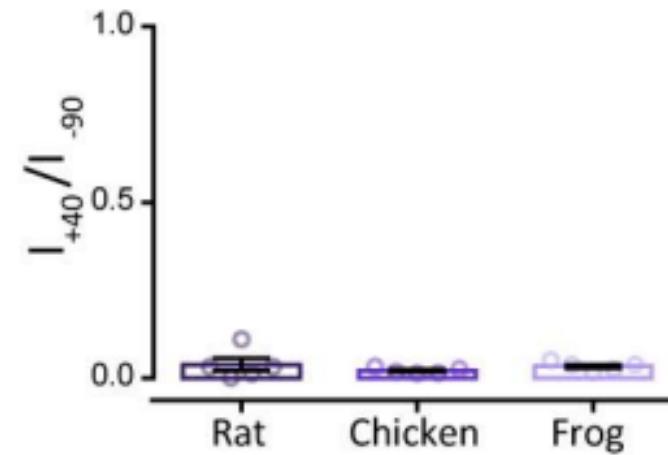
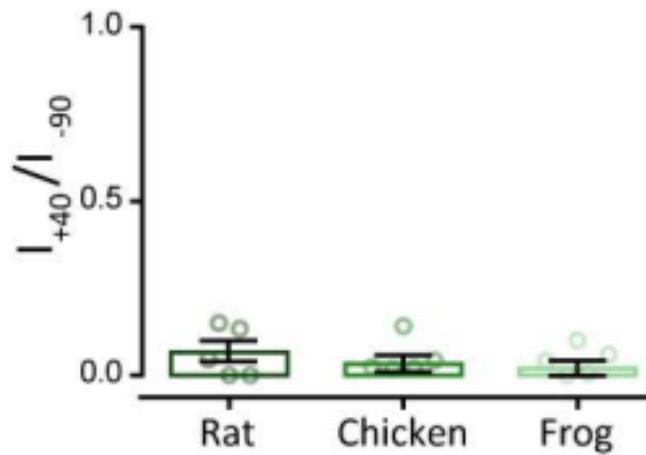
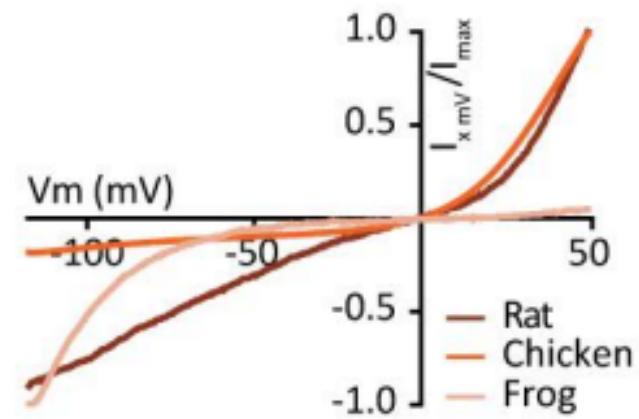
$\alpha 9\alpha 10$

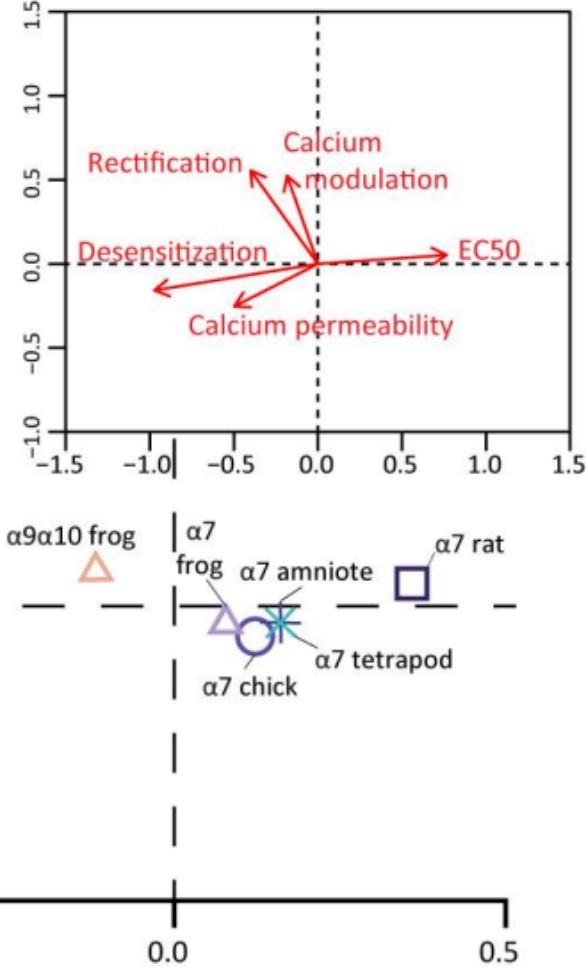
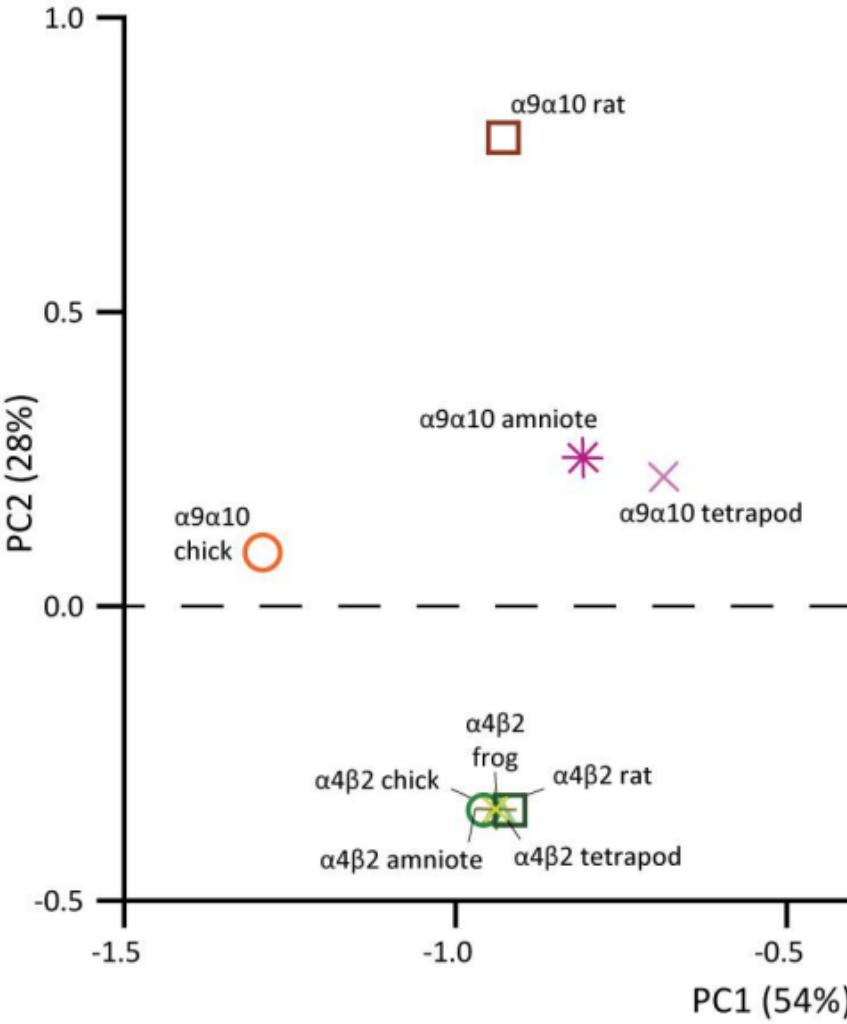






$\alpha 4\beta 2$


$\alpha 7$


$\alpha 9\alpha 10$





$\alpha 4\beta 2$

$\alpha 7$

$\alpha 9\alpha 10$

Supplementary Information for

Distinct evolutionary trajectories of neuronal and hair cell nicotinic acetylcholine receptors

Irina Marcovich¹, Marcelo J. Moglie¹, Agustín E. Carpaneto Freixas¹, Anabella P. Trigila¹, Lucia F. Franchini¹, Paola V. Plazas², Marcela Lipovsek^{*1,3} and Ana Belén Elgoyhen^{*1,2}

¹ Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

² Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.

³ Centre for Developmental Neurobiology, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Guy’s Campus, London SE1 1UL.

* These authors contributed equally.

Correspondence should be addressed to Marcela Lipovsek (marcela.lipovsek@kcl.ac.uk)

This PDF file includes:

Supplementary text: supplementary methods

Figures S1 to S9

Tables S1 to S11

Legends for Datasets S1 to S5

SI References

Other supplementary materials for this manuscript include the following:

Datasets S1 to S5

Supplementary methods

All experimental protocols were carried out in accordance with the guides for the care and use of laboratory animals of the National Institutes of Health and the Institutional Animal Care and Use Committee of the Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor N. Torres”.

Phylogenetic analysis of vertebrate nAChRs subunits

All sequences were downloaded from GenBank (www.ncbi.nlm.nih.gov/genbank), UCSC (<http://genome.ucsc.edu/>) and Ensembl (www.ensembl.org) databases. The signal peptides of all sequences were excluded from the analysis since they are not present in the mature functional protein. Accession numbers are listed in Table S1. All sequences were visually inspected, and missing and/or incorrect exons were obtained from the NCBI Genome Project traces database (<http://blast.ncbi.nlm.nih.gov/Blast.cgi>). Sequence alignment was performed using *ClustalW* on the MEGA7 software (www.megasoftware.net; (1)), with the following parameters: for pairwise alignments, gap opening penalty: 10, gap extension penalty: 0.1; for multiple alignments, gap opening penalty: 10, gap extension penalty: 0.2. Protein weight matrix: Gonnet. Residue specific and hydrophilic penalties: ON. Gap separation distance: 4. End gap separation: OFF and no negative matrix was used. The delay divergent cutoff was 30%. The full alignment for the nicotinic subunits from representative vertebrate species is available in Supplementary File 1 in fasta format.

The phylogenetic tree of all nAChR subunits was built using the MEGA7 software. Positions containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons. The final dataset contained a total of 773 positions. The evolutionary distances (i.e., number of amino acid substitutions per site) were computed using the JTT matrix-based method (2). The neighbour-joining algorithm (3) was used to generate the initial tree and branch support was obtained by bootstrap test (1000 replicates) (4). The evolutionary history was inferred using the minimum evolution method (5). A first tree was generated with variation rate among sites modelled by a gamma distribution (Figure S1) and a second tree assuming uniform variation rates among sites (Figure S2). Overall, tree topology was similar between both methods.

Average percentage sequence identity was calculated for each subunit using the percentage of sequence identity between each pair of sequences (Supplementary File 2) from the same category for all sequences and for within or between mammalian and/or sauropsid sequences. For α 10 subunits, the average percentage of sequence identity was also calculated for the non-mammalian paraphyletic group. Values obtained are summarised in Table S2.

The cumulative distribution of percentage sequence identity between pairs of sequences from all amniotes and within or between mammalian and/or sauropsid species was plotted for each subunit (Fig. S3).

Functional divergence analysis

The DIVERGE 3.0 software was used to statistically test for functional diversification of nAChR subunits between the mammalian and sauropsid clades. DIVERGE predicts amino acid sites that may be involved in between-clade functional divergence against the background of neutral evolution (6). In particular, it estimates the type II functional divergence coefficient (θ_{II}) that indicates site-specific evolutionary shifts in aminoacid biochemical state between clades and then uses a Bayesian approach to compute the posterior probability that each individual site contributes to the clade-specific functional diversification. Type II sites represent aminoacids that are highly conserved in each clade, but in a biochemically different state (i.e., positively charged in clade 1 and negatively charged in clade 2).

Multiple alignments of protein sequences for each individual subunit were generated using the MEGA7 software as described above. The highly variable amino-terminal signal peptides and intracellular domains were excluded from the analysis. Phylogenetic trees, with a topology corresponding to the species tree, were constructed for each nicotinic subunit by Maximum Likelihood and the JTT matrix-based method (2). The rates among sites were modelled as a gamma distribution. All positions with less than 95% site coverage were eliminated. α 8, β 1 and ϵ nAChR subunits were not included in the analysis due to lack of mammalian and/or sauropsid sequences to perform suitable comparisons.

Multiple alignments of protein sequences and their corresponding phylogenetic trees (Supplementary File 3) were used as input data for DIVERGE 3.0 type II functional divergence analysis (7), with default parameters. θ_{II} and site-specific posterior probabilities were calculated for each subunit. A θ_{II} value significantly greater than 0 ($P < 0.05$) indicates that residues conserved within each group have undergone radical changes in amino acid identity between groups (6). z-scores were used to test the significant difference of θ_{II} coefficients against the null hypothesis ($\theta_{II} = 0$) that implies no sites are present in the protein that reflect between-clade functional divergence (Table S3). Site-specific posterior probabilities were computed for all sites along each subunit (Supplementary File 3). Sites with posterior probabilities greater than 0.65 for each subunit are highlighted in Figure 1B.

Analysis of nAChR subunit expression in single-cell RNAseq (scRNAseq) datasets

Processed gene expression data tables were obtained from 10 scRNAseq studies that evaluated gene expression in retina (8) inner ear sensory epithelium (9, 10) and spiral ganglion (11), ventral midbrain (12), hippocampus (13), cortex (14), hypothalamus (15), visceral motor neurons (16) and dorsal root ganglia (17). Accession numbers, cell types inferred and number of cells analysed are summarised in Table S4. For all datasets, we used the published gene expression quantification and cell type labels. Each dataset was analysed separately. For the retina dataset we used the Smart-Seq2 sequencing data from Vsx2-GFP positive cells (8). For the gene expression quantification we only analysed four cell types that had a minimum number of cells in the dataset that allowed reliable fitting to the error models: BC1A, BC5A, BC6 and RBC. From the layer VI somatosensory cortex dataset (13) we used a subset of the expression matrix that corresponds to day 0 (i.e. control, undisturbed neurons) of their experimental manipulation. For the hypothalamic neurons dataset (15) we used a subset that contained only neurons from untreated (control) mice and only quantified gene expression on the 10 broad cell types identified. From the ventral midbrain dopaminergic neurons dataset (12) we used a subset comprising DAT1-Cre/tdTomato positive neurons from P28 mice. For the SGNs dataset we used a subset comprising Type I neurons from wild type mice (11). For the utricle hair cell datasets we used the normalised expression data of (10). For the cochlear hair cell data we used the normalised expression data from (9) and continued our analysis with only the 10 cochlear hair cells identified. For the visceral motor neurons dataset (16) we excluded the neurons that were “unclassified” from further analysis. For the dorsal root ganglia dataset (17) we used a subset containing only successfully classified neurons that were collected at room temperature. Inspection of all datasets for batch effects was performed using the *scater* package (version 1.10.1) (18). Single cell expression of nAChR subunits was initially evaluated on violin plots (Fig. S4). All data analysis was implemented in R (version 3.5.1) and Bioconductor (version 3.8) (<http://www.bioconductor.org/>), running on RStudio (version 1.1.456) (<http://www.rstudio.com/>).

The publicly available expression matrices for a number of the datasets contained raw counts (retina, hippocampus, hypothalamus, midbrain, visceral motor neurons). For each of these dataset individually, we performed a normalisation step using the *scran* package (version 1.10.2) (19) that computes pool-based size factors that are subsequently deconvolved to obtain cell-based size factors.

The normalised expression matrices and cell type information were used as input to quantify cell-type specific gene expression. Analysis was performed using the *scde* package (version 1.99.1) (20). We modelled the gene expression measurements from each individual cell as a weighted mixture of negative binomial and low-magnitude Poisson distributions. The former accounts for the correlated component in which a transcript is detected and quantified, while the latter accounts for drop-out

events in which a transcript fails to amplify when present. The weighting of the two distributions is determined by the level of gene expression in the cell population (20). We then used these error models to estimate the likelihood (joint posterior probability) of a gene being expressed at any given average level in a given cell type (20). Probability distributions for all nAChR subunit genes detected in all the cell types analysed are shown in Fig S5. This whole transcriptome analysis provides accurate estimations of gene expression levels, thus allowing for the comparison of individual genes within a given cell type (i.e. the complement of nAChR subunits) or the analysis of expression level differences between cell types (i.e. change in expression level of nAChR subunits between neuronal subtypes). Inferred mean expression values are summarised in Table S5. We combined the information about the complement of nAChR subunits for each cell type with a comprehensive catalogue of experimentally validated subunit combinations (Table S6 and references therein). We identified the subunit combinations that were present, in each cell type, within a 10-fold, 10 to 100-fold or 100 to 1000 fold range of expression level or absent all together. Admittedly, this analysis approach overlooks the complexities of post-translational modifications, receptor assembly, role of chaperone proteins and transport to the plasma membrane. However, it provides conservative estimates of the maximum potential of combinatorial assembly of subunits and thus a maximum for the repertoire of nAChR assemblies that could be present at the cell membrane.

Expression of recombinant receptors in *Xenopus laevis* oocytes and electrophysiological recordings

Rat and chick α 9 and α 10 cDNAs subcloned into pSGEM, a modified pGEMHE vector suitable for *Xenopus laevis* oocyte expression studies, were described previously (21-23). Rat α 4, β 2 and α 7 subunit cDNAs subcloned into pBS SK(-) (Agilent Technologies, Santa Clara, CA) were kindly provided by Dr. Jim Boulter (University of California, Los Angeles, CA). Chicken α 4 and β 2 subunit cDNAs subcloned into pCI (Promega, Madison, WI) were kindly provided by Dr. Isabel Bermudez-Díaz (Oxford Brookes University, Oxford, UK). Chicken α 7 subunit cDNA cloned into pMXT was kindly provided by Dr. Jon Lindstrom (University of Pennsylvania) and was then subcloned into pSGEM between HindIII and SalI sites. Frog α 4, β 2, α 7, α 9 and α 10 subunits were cloned from whole brain *Xenopus tropicalis* cDNA. Total RNA was prepared from whole brains using the RNAqueous – Micro kit AM1931 (Ambion, Thermo Fisher Scientific, Boston, MA). First strand cDNA synthesis was performed using an oligodT and the ProtoScript Taq RT-PCR kit (New England Biolabs, Ipswich, MA). Second strand synthesis was performed with the NEBNext mRNA Second Strand Synthesis Module kit – E6111S (New England Biolabs, Ipswich, MA). Full length cDNAs for each subunit were PCR amplified (MultiGene 60 OptiMaxTM Thermal Cycler - Labnet International Inc. Edison, NJ) using specific primers (Table S7). PCR products were sequenced and subcloned into pSGEM between EcoRI and Xhol sites for α 9, α 7 and β 2 nAChRs subunits, between HindIII and Xhol sites for the α 10 subunit

and between EcoRI and HindIII sites for the $\alpha 4$ subunit. All expression plasmids are readily available upon request.

Capped cRNAs were *in vitro* transcribed from linearized plasmid DNA templates using the Ribomax™ Large Scale RNA Production System-T7 (Promega, Madison, WI). The maintenance of *Xenopus laevis*, as well as the preparation and cRNA injection of stage V and VI oocytes, has been described in detail elsewhere (Katz et al., 2000). Briefly, oocytes were injected with 50 nl of RNase-free water containing 0.01–1.0 ng of cRNAs (at a 1 : 1 molar ratio for $\alpha 9\alpha 10$ and $\alpha 4\beta 2$ receptors) and maintained in Barth's solution (in mM): NaCl 88, Ca(NO₃)₂ 0.33, CaCl₂ 0.41, KCl 1, MgSO₄ 0.82, NaHCO₃ 2.4, HEPES 10, at 18°C.

Electrophysiological recordings were performed 2 – 6 days after cRNA injection under two-electrode voltage clamp with an Oocyte Clamp OC-725B or C amplifier (Warner Instruments Corp., Hamden, CT). Recordings were filtered at a corner frequency of 10 Hz using a 900BT Tunable Active Filter (Frequency Devices Inc., Ottawa, IL). Data acquisition was performed using a Patch Panel PP-50 LAB/1 interface (Warner Instruments Corp., Hamden, CT) at a rate of 10 points per second. Both voltage and current electrodes were filled with 3M KCl and had resistances of $\sim 1\text{M}\Omega$. Data were analysed using Clampfit from the pClamp 6.1 software (Molecular Devices, Sunnyvale, CA). During electrophysiological recordings, oocytes were continuously superfused (10 ml min⁻¹) with normal frog saline composed of (in mM): 115 NaCl, 2.5 KCl, 1.8 CaCl₂ and 10 HEPES buffer, pH 7.2. In order to minimize the activation of the oocyte's native Ca²⁺-sensitive chloride current ($I_{\text{Cl}_{\text{Ca}}}$) by inward Ca²⁺ current through the nAChRs, all experiments, unless otherwise stated, were carried out in oocytes incubated with the membrane permeant Ca²⁺ chelator 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM; 100 μM) for 3 h prior to electrophysiological recordings. This treatment was previously shown to effectively chelate intracellular Ca²⁺ ions and, therefore, to impair the activation of the $I_{\text{Cl}_{\text{Ca}}}$ (24). All recordings were performed at -70 mV holding potential, unless otherwise stated.

Biophysical properties of nAChRs

Concentration-response curves were obtained by measuring responses to increasing concentrations of ACh. Current amplitudes were normalized to the maximal agonist response in each oocyte. The mean and S.E.M. values of the responses are represented. Agonist concentration-response curves were iteratively fitted, using Prism 6 software (GraphPad Software Inc., La Jolla, CA), with the equation: $I/I_{\text{max}} = A_{\text{H}} / (A_{\text{H}} + EC_{50}\text{nH})$, where I is the peak inward current evoked by the agonist at concentration A_{H} ; I_{max} is current evoked by the concentration of agonist eliciting a maximal

response; EC₅₀ is the concentration of agonist inducing half-maximal current response and nH is the Hill coefficient.

Desensitisation of ACh evoked currents was evaluated via prolonged agonist applications. The percentage of current remaining 5 seconds (for $\alpha 7$ nAChRs) or 20 seconds (for $\alpha 4\beta 2$ and $\alpha 9\alpha 10$ nAChRs) after the peak of the response was determined for each oocyte.

The effects of extracellular Ca²⁺ on the ionic currents through nAChRs were studied by measuring the amplitudes of the responses to a near-EC₅₀ concentration of ACh (10 μ M for all $\alpha 4\beta 2$ and amniote $\alpha 9\alpha 10$ nAChRs, and 100 μ M for all $\alpha 7$ and frog $\alpha 9\alpha 10$ nAChRs) on extracellular Ca²⁺ ranging from nominally 0 to 3 mM at a holding potential of -90 mV (25). These experiments were carried out in oocytes injected with 7.5 ng of an oligonucleotide (5'-GCTTTAGTAATTCCCATCCTGCCATGTTTC-3') antisense to connexinC38 mRNA (26, 27) to minimise the activation of the oocyte's nonselective inward current through a hemigap junction channel that results from the reduction of external divalent cation concentration. Current amplitudes at each Ca²⁺ concentration were normalized to that obtained in the same oocyte at a 1.8 mM Ca²⁺.

I-V relationships were obtained by applying 2 seconds voltage ramps from -120 to +50 mV from a holding potential of -70 mV, at the plateau response to 3 μ M ACh. Leakage correction was performed by digital subtraction of the I-V curve obtained by the same voltage ramp protocol prior to the application of ACh. Generation of voltage protocols and data acquisition were performed using a Patch Panel PP-50 LAB/1 interface (Warner Instruments Corp., Hamden, CT) at a rate of 10 points per second and the pClamp 7.0 software (Axon Instruments Corp., Union City, CA). Current values were normalized to the maximum amplitude value obtained for each oocyte. The fast desensitising $\alpha 7$ receptors had negligible plateau currents. For these receptors, responses to 100 μ M ACh were obtained at different holding potentials and normalised to the amplitude response at -120 mV in the same oocyte.

Table S8 summarises the biophysical properties and statistical comparisons from rat, chicken and frog $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ receptors.

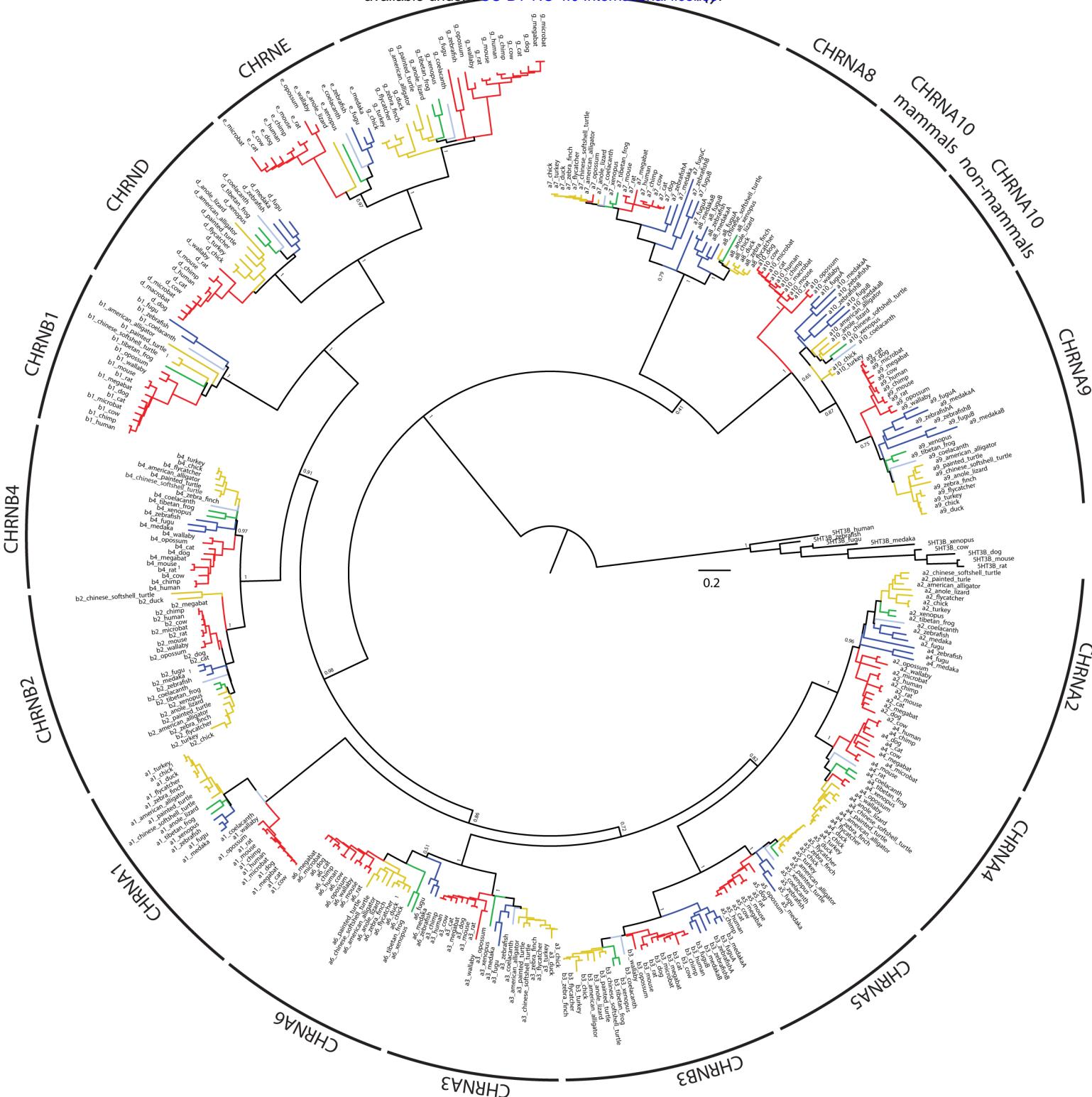
Statistical analysis

Shapiro-Wilks normality test was conducted using custom routines written in R v3.4.1 (R Development Core Team, 2008), through RStudio software v1.0.153. Statistical significance was determined using either parametric paired *t*-test or One-way ANOVA followed by Holm-Sidak's test, or nonparametric Wilcoxon or Kruskal-Wallis tests followed by Dunn's tests conducted using Prism 6 software (GraphPad Software Inc., La Jolla, CA). A p< 0.05 was considered significant.

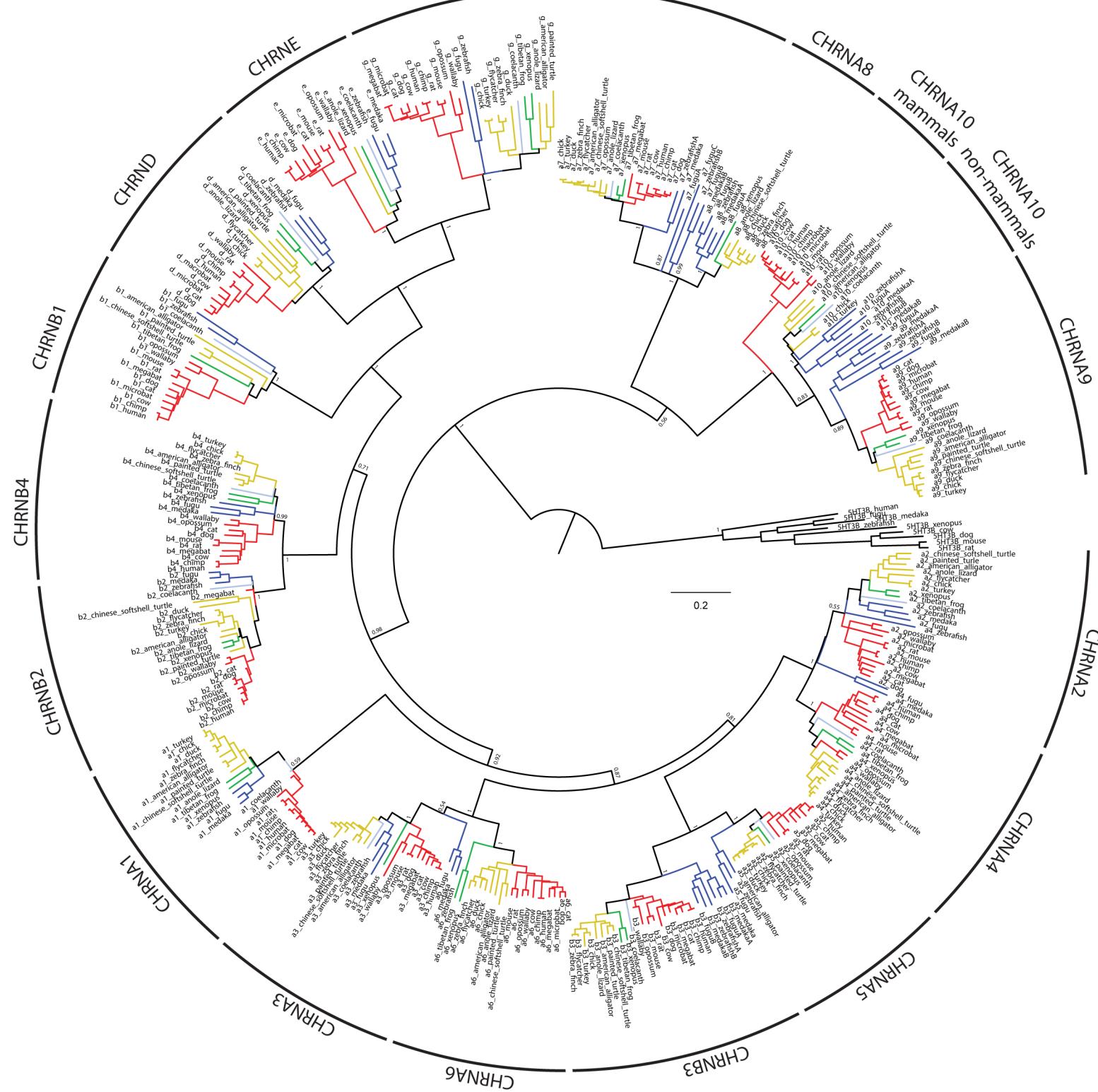
Reagents

All drugs were obtained from Sigma-Aldrich (Buenos Aires, Argentina). ACh chloride was dissolved in distilled water as 100 mM stocks and stored aliquoted at -20°C. BAPTA-AM was stored at -20°C as aliquots of a 100 mM stock solution in dimethylsulfoxide, thawed and diluted into Barth's solution shortly before incubation of the oocytes. ACh solutions in Ringer's saline were freshly prepared immediately before application.

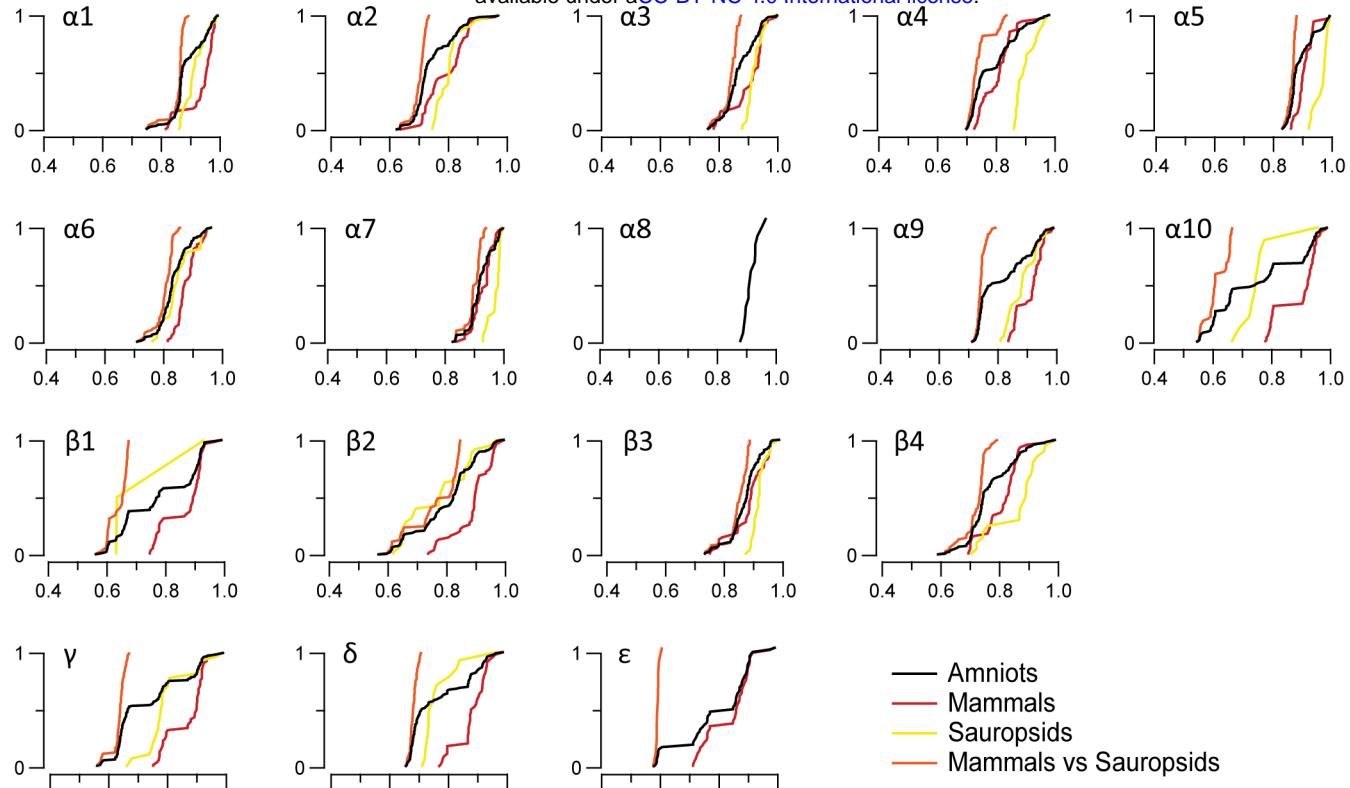
Principal component analysis of functional properties


Principal Component Analysis was performed on the experimental values obtained for the functional properties of extant nAChRs implementing custom routines written in R v3.4.1 and run in RStudio software v1.0.153. Each of the experimental variables was normalized to the maximum value recorded to allow for equal weighting of the properties (Table S9). The loadings of the empirical variables on the five principal components (PC) generated are shown in Table S10, alongside the proportion of the total variability explained by each component. The loadings of each biophysical property on each principal component are also shown on the vectors biplot (Figure 8 – inset).

Inference of character state of functional properties of ancestral receptors


The pipeline followed to infer the ancestral character state of biophysical properties of nAChRs is schematized on Fig. S7. Briefly, we first reconstructed the ancestral tetrapods and amniote DNA sequences of the $\alpha 4$, $\alpha 7$, $\alpha 9$, $\alpha 10$ and $\beta 2$ nAChRs subunits (Supplementary File 4). For that purpose, we used the same orthologue sequences that were used to construct the phylogenetic tree of Figure 1, together with a species tree with no branch lengths obtained from Ensembl (<https://www.ensembl.org/info/about/speciestree.html>). Inferred ancestral DNA sequences for the amniote and tetrapod nodes (Supplementary File 4) were obtained, for all three codon positions, by the maximum likelihood method (28) under the Tamura-Nei model (29), on the MEGA7 software (1). The initial tree corresponds to the provided Species Tree with very strong restriction to branch swap. The rates among sites were treated as a gamma distribution. All positions with less than 95% site coverage were eliminated.

Subsequently, multiple alignments including extant rat, chick and frog and ancestral amniote and tetrapod aminoacid sequences were performed using MEGA7 for each studied nAChR (Supplementary File 5). The sequence identity was used to assign branch length values to $\alpha 7$, $\alpha 4\beta 2$ and $\alpha 9\alpha 10$ nAChRs trees, corresponding to 1-SeqID (Table S11). Theoretical concatemeric constructions were built for the heteromeric $\alpha 9\alpha 10$ nAChRs considering the described prevalent $(\alpha 9)_2(\alpha 10)_3$ stoichiometry (Plazas et al., 2005). For the $\alpha 4\beta 2$ nAChRs, the high sensitivity $(\alpha 4)_2(\beta 2)_3$ stoichiometry was used to generate the theoretical concatemeric receptor (Supplementary File 5).


The resulting trees (Fig. S8) were used, together with the biophysical properties experimentally determined for the extant receptors (Table S8) as input data for ancestral character inference. ACh sensitivity (EC_{50} values), desensitization rates (% of remaining I 20 sec after ACh peak), Ca^{2+} modulation (I elicited by ACh at Ca 0.5 mM/ Ca 3 mM), Ca^{2+} permeability (% of remaining I after BAPTA treatment) and rectification profile ($I_{+40\text{ mV}}/I_{-90\text{ mV}}$) for the ancestral amniote and tetrapod receptors were inferred using the *ace* function from the *APE* package v5.2 (30) implemented in R v3.4.1 and RStudio v1.0.153. We used the Brownian motion model (31) (Schluter et al., 1997), where characters evolve following a random walk fitted by maximum likelihood (32) for the ancestral character estimations of continuous traits. Reconstructed ancestral states are shown in Fig. S9. Finally, using the loadings of the biophysical properties on PC1 and 2 (Table S10 and Figure 8 – inset), and the normalized *in silico* reconstructed biophysical properties inferred for the ancestral receptors we calculated their position on the bidimensional PCA space (Figure 8).

Supplementary Figure 1. Complete minimum evolution phylogenetic tree corresponding to the collapsed tree shown in Figure 1, obtained with variation rates among sites modelled by a gamma distribution. Red branches, mammals; yellow branches, sauropsids; green branches, amphibians; blue branches, fish; light blue branches, coelacanth. The trees were built using minimum evolution method and pairwise deletion for missing sites. The optimal tree with a sum of branch length of 47.32565515 is shown. For clarity, the percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown only next to the branches that separate different subunits. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the tree.

Supplementary Figure 2. Complete minimum evolution phylogenetic tree obtained assuming uniform variation rates among branches. Red branches, mammals; yellow branches, sauropsids; green branches, amphibians; blue branches, fish; light blue branches, coelacanth. The trees were built using minimum evolution method and pairwise deletion for missing sites. The optimal tree with a sum of branch length of 37.49411418 is shown. For clarity, the percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown only next to the branches that separate different subunits. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the tree.

Supplementary Figure 3. Cumulative distributions of sequence identity of individual nAChR subunits.

Cumulative distributions were calculated from the sequence identity values obtained for each pair of subunits included in the following groups: only mammalian sequences (red), only sauropsid sequences (yellow), mammalian versus sauropsid sequences (orange) and all mammalian and sauropsid (amniote) sequences (grey).

Retina - nAChR

Retina - BCaM

Retina - RBC

Cortex - VPM-only

Hypothalamus - Dopamine

Hypothalamus - GABA

Hippocampus - dSub

Hippocampus - pSub1

Hippocampus - pSub2

Hypothalamus - circadian

Hypothalamus - Hmit

Midbrain - SNC

Midbrain - VTA1

Midbrain - VTA2

Hypothalamus - Oxytocin

Hypothalamus - Sst

SGN - TypeIa

Midbrain - VTA3

Midbrain - VTA4

Hypothalamus - Trh

Hypothalamus - Vglut2

SGN - TypeIb

Utricle hair cells - P1

Utricle hair cells - P12

Utricle hair cells - P100

Cochlear hair cells - P1

SGN - TypeIc

Symp ganglion - Nor1

Symp ganglion - Nor2

Symp ganglion - Nor3

Symp ganglion - Nor4

DRG - NF1

Symp ganglion - Nor

Symp ganglion - Glut

Symp ganglion - Ach1

Symp ganglion - Ach2

DRG - NF2

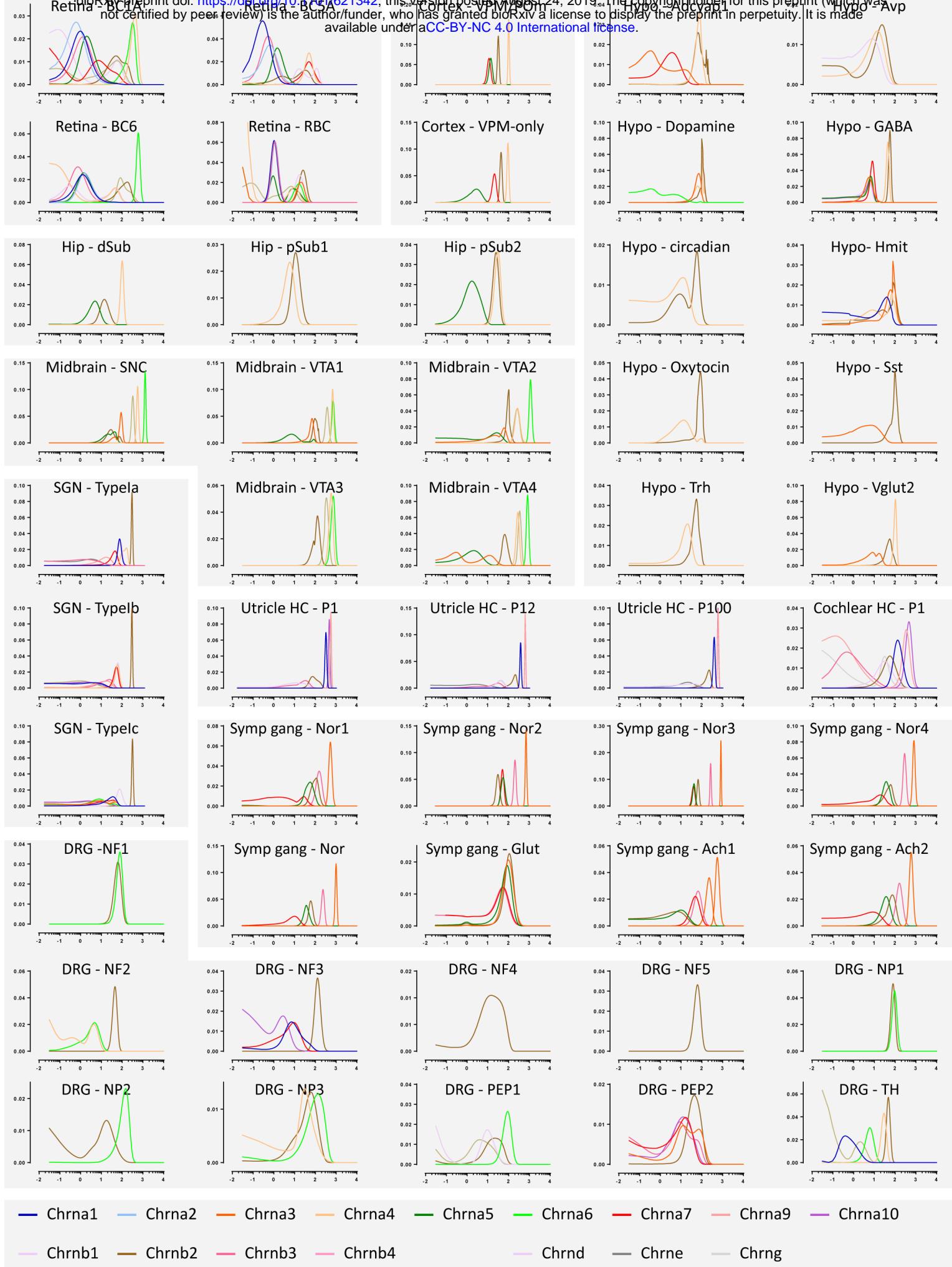
DRG - NF3

DRG - NF4

DRG - NF5

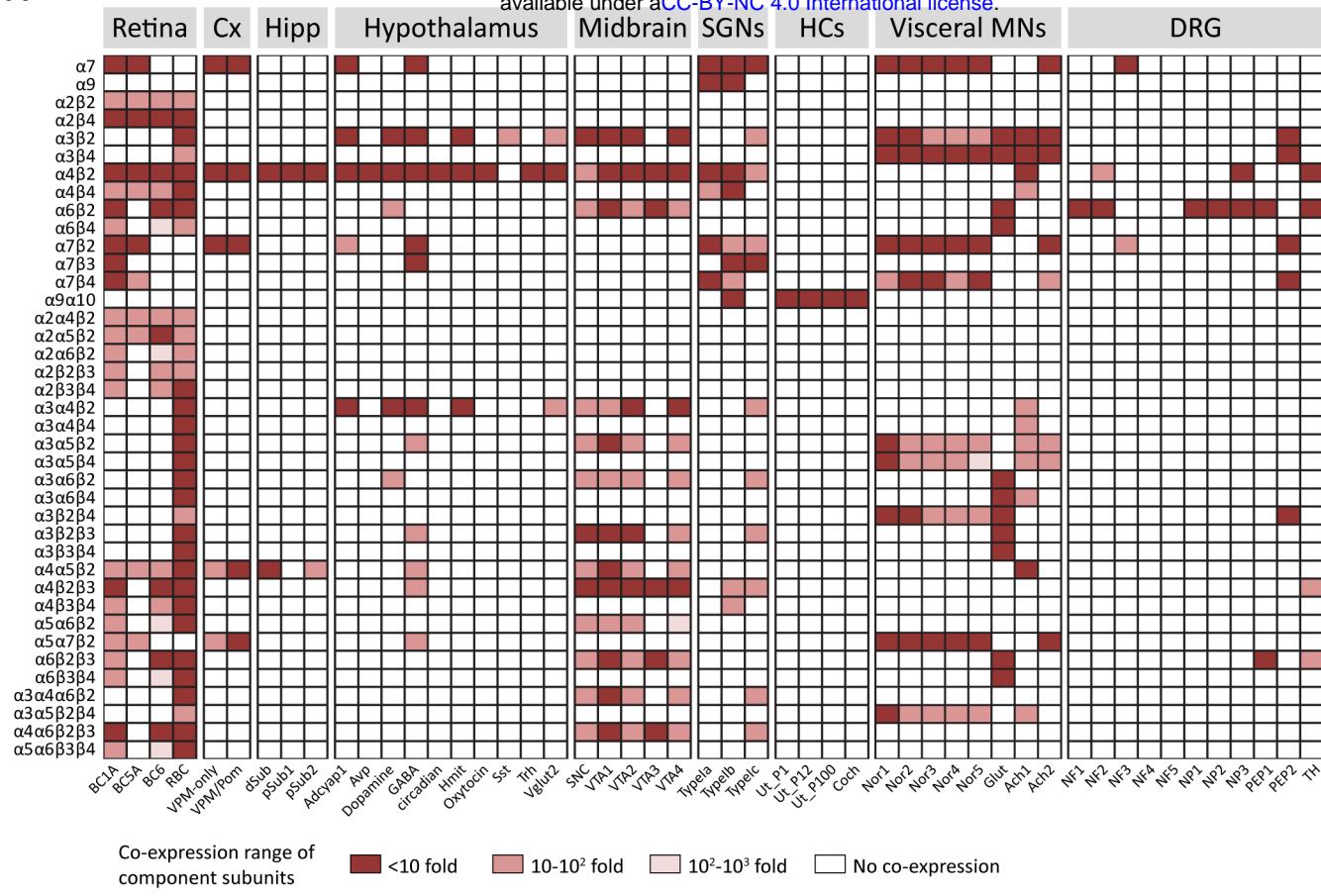
DRG - NP1

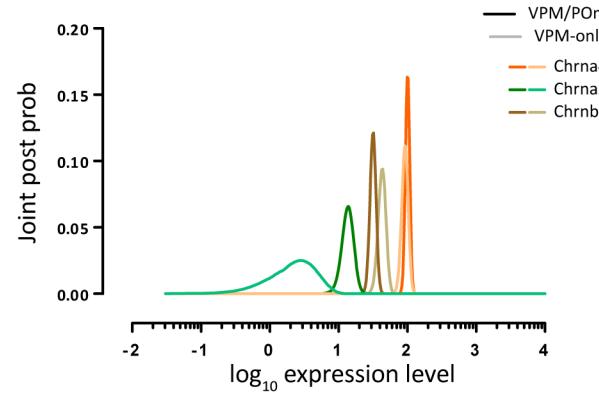
DRG - NP2


DRG - NP3

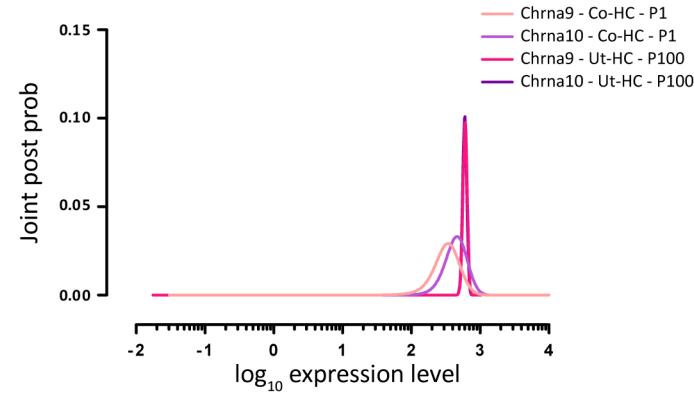
DRG - PEP1

DRG - PEP2


DRG - TH

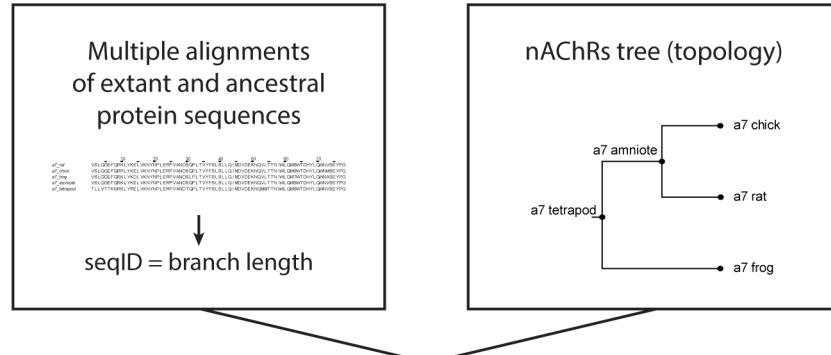


Supplementary Figure 5. Joint posterior probabilities of gene expression levels inferred for the nAChR subunits expressed in the cell types and datasets analysed (see SI Methods for details).

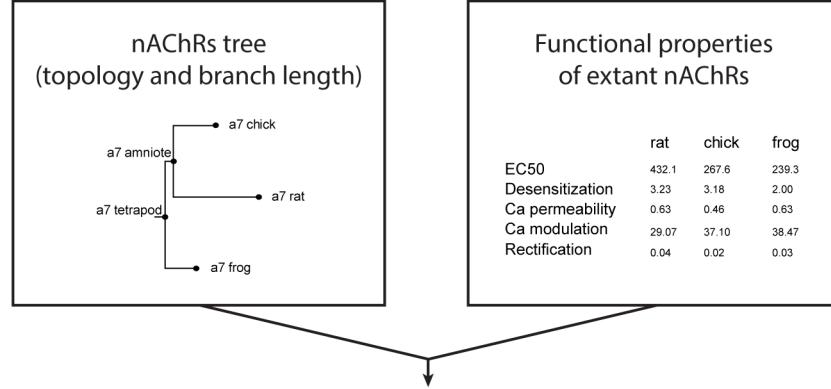

A

B

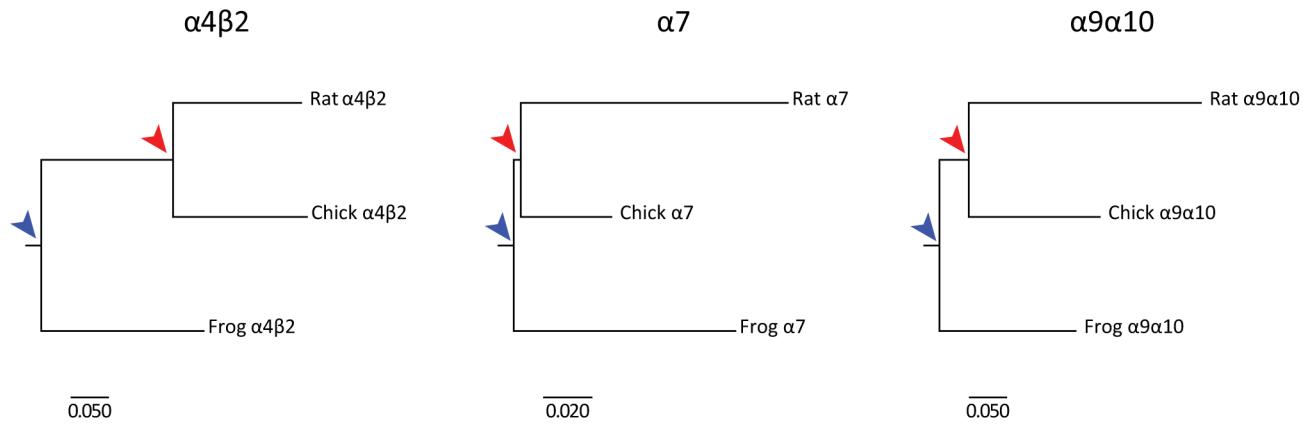
C



Supplementary Figure 6. A. Co-expression of subunits comprising known nAChR assemblies. Dark red squares, all component subunits are co-expressed within a 10-fold range of expression level. Light red squares, all component subunits are co-expressed within a 100-fold range of expression level. Pink squares, all component subunits are expressed within a 1000-fold range of expression level. White squares, at least one subunit of that receptor assembly is not expressed in that cell type. **B.** Estimated joint posterior probability distributions for expression levels of Chrna4, Chrna5 and Chrnb2 in VPM-only and VPM/POm projecting layer VI neurons. **C.** Estimated joint posterior probability distributions for expression levels of Chrna9 and Chrna10 in inner ear cochlear hair cells (P1) and utricle hair cells (P100).


1. Ancestral DNA sequence reconstruction

2. nAChRs tree generation



3. Ancestral character state inference

INFERRED FUNCTIONAL PROPERTIES OF ANCESTRAL RECEPTORS

Supplementary Figure 7. Experimental workflow detailing the steps followed for the inference of ancestral character states of the functional properties of tetrapod and amniote ancestral $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ receptors.

Supplementary Figure 8. nAChRs trees used for the inference of ancestral state states. The tree topology corresponds to the species phylogenetic relationship. The branch lengths correspond to those determined from aminoacid sequence identity analysis between rat-amniote, chick-amniote, amniote-tetrapod and frog-tetrapod pairs of subunits. For the heteromeric $\alpha 4\beta 2$ receptors, branch lengths were calculated assuming a $(\alpha 4)2(\beta 2)3$ assembly. For the heteromeric $\alpha 9\alpha 10$ receptors branch lengths were calculated assuming a $(\alpha 9)2(\alpha 10)3$ stoichiometry (Plazas et al., 2005). Blue arrows, tetrapod ancestor. Red arrows, amniote ancestor.

Supplementary Figure 9. Inferred ancestral character states for amniote and tetrapod α9α10, α4β2 and α7 nAChRs. The biophysical properties of ancestral receptors inferred by maximum likelihood are shown in black. The values in grey correspond to the biophysical properties of extant receptors determined experimentally (Table S7) and used as input for the inference of ancestral character state. The symbols next to each receptor correspond to the symbols in Figure 8.

Table S1. Accession numbers for sequences used in the phylogenetic analysis.

	CHRNA1	CHRNA2	CHRNA3	CHRNA4	CHRNAS	CHRNA6	CHRNA7	CHRNA8	CHRNA9	CHRNA10	CHRNB 1	CHRNB 2	CHRNB 3	CHRNB 4	CHRNND	CHRNE	CHRNQ	5HT3B
Opossum	ENSMODG000000094 14	ENSMODG00000 0015940	ENSMODG00000 0011883	ENSMODG00000 0016860	ENSMODG00000 0011857	ENSMODG00000 0010120	ENSMODG00000 0008920	-	ENSMODG00000 0020560	ENSMODG00000 0008246	ENSMODG00000 0006951	ENSMODG00000 0011765	ENSMODG00000 0010082*	ENSMODG00000 0011891	ENSMODG00000 0002646*	ENSMODG00000 0005395	ENSMODG00000 0002666	
Wallaby	ENSMUEG000000036 27*	ENSMUEG000000 004558*	ENSMUEG000000 010338*	ENSMUEG000000 006728*	-	ENSMUEG000000 011281*	ENSMUEG000000 009840*	-	ENSMUEG000000 010143*	ENSMUEG000000 009564*	ENSMUEG000000 008924*	-	ENSMUEG000000 003725*	ENSMUEG000000 011355*	ENSMUEG000000 0101043*	ENSMUEG000000 011484*	ENSMUEG000000 011510*	
Rat	ENSRNOG000000182 86	ENSRNOG000000 017424	ENSRNOG000000 013829	ENSRNOG000000 013610	ENSRNOG000000 012833	ENSRNOG000000 010853	-	ENSRNOG000000 002484	ENSRNOG000000 02093	ENSRNOG000000 014698	ENSRNOG000000 020776	ENSRNOG000000 012448	ENSRNOG000000 014427	ENSRNOG000000 019527	ENSRNOG000000 003777	NM_019145.1		
Mouse	ENSMUSG0000000271 07	ENSMUSG000000 022041	ENSMUSG000000 032303	ENSMUSG000000 027577	ENSMUSG000000 03559	ENSMUSG000000 013491	ENSMUSG000000 030525	-	ENSMUSG000000 029205	ENSMUSG000000 066279	ENSMUSG000000 041189	ENSMUSG000000 027950	ENSMUSG000000 031492	ENSMUSG000000 035200	ENSMUSG000000 026251	ENSMUSG000000 014609	ENSMUSG000000 026253	
Cat	ENSFCA00000001410 3*	ENSFCA000000 028158	ENSFCA000000 001932	ENSFCA000000 030656	ENSFCA000000 001930	ENSFCA000000 022358	ENSFCA000000 036300	-	ENSFCA000000 035547	ENSFCA000000 023105	ENSFCA000000 009612	ENSFCA000000 022169*	ENSFCA000000 010800	ENSFCA000000 001933	ENSFCA000000 030943	ENSFCA000000 038719	ENSFCA000000 005681	
Dog	ENSCAFG0000001328 3	ENSCAFG000000 008499	ENSCAFG000000 001710*	ENSCAFG000000 012893	ENSCAFG000000 001745*	ENSCAFG000000 005444	ENSCAFG000000 010220*	-	ENSCAFG000000 015915	ENSCAFG000000 024527	ENSCAFG000000 016313	ENSCAFG000000 017172	ENSCAFG000000 005460	ENSCAFG000000 023904	ENSCAFG000000 011283	ENSCAFG000000 015838	ENSCAFG000000 024807*	
Cow	ENSBTAG0000001825 3	ENSBTAG000000 002252	ENSBTAG000000 003130	ENSBTAG000000 017198	ENSBTAG000000 013657*	ENSBTAG000000 014056	ENSBTAG000000 015775	-	ENSBTAG000000 015252	ENSBTAG000000 055237	ENSBTAG000000 019242	ENSBTAG000000 007517	ENSBTAG000000 014050	ENSBTAG000000 003132	ENSBTAG000000 011390*	ENSBTAG000000 004908	ENSBTAG000000 045943	
Human	ENSG00000138435 03	ENSG0000001209 44	ENSG0000000806 04	ENSG0000001012 84	ENSG0000001696 34	ENSG0000001474 44	-	ENSG0000001753 43	ENSG0000001743 49	ENSG0000001297 75	ENSG0000001701 16	ENSG0000001607 32	ENSG0000001474 71	ENSG0000001179 02	ENSG0000001359 56	ENSG0000001085 11		
Chimp	ENSPTRG0000001265 8	ENSPTRG000000 20105	ENSPTRG000000 07347	ENSPTRG000000 13735	ENSPTRG000000 07346	ENSPTRG000000 20210	-	ENSPTRG000000 06865	ENSPTRG000000 01939	ENSPTRG000000 08689	ENSPTRG000000 01389	ENSPTRG000000 20209	ENSPTRG000000 07348	ENSPTRG000000 13040	ENSPTRG000000 08612	ENSPTRG000000 22726		
Megabat	ENSPVAG0000000416 4	ENSPVAG000000 014424	ENSPVAG000000 009191	ENSPVAG000000 014109	ENSPVAG000000 009185	ENSPVAG000000 015371*	ENSPVAG000000 017796*	-	ENSPVAG000000 003814	ENSPVAG000000 016436	ENSPVAG000000 005067	ENSPVAG000000 015373	XM_023534307. 015373	ENSPVAG000000 009193	ENSPVAG000000 007491	ENSPVAG000000 000127	ENSPVAG000000 007492*	
Microbat	ENSMLU0000000156 98	ENSMLU000000 001512	ENSMLU000000 001512	Manual search on traces	-	ENSMLU000000 005231	ENSMLU000000 005856	-	ENSMLU000000 00893	ENSMLU000000 013586	ENSMLU000000 009921	ENSMLU000000 007541	ENSMLU000000 027322	ENSMLU000000 011213	ENSMLU000000 015682*	ENSMLU000000 011237		
Chick	ENSGALG0000000930 1	ENSGALG000000 016565	ENSGALG000000 030314	ENSGALG000000 005801	ENSGALG000000 030201	ENSGALG000000 015382	ENSGALG000000 004096	ENSGALG000000 015336	ENSGALG000000 014268	ENSGALG000000 1	-	ENSGALG000000 020707	ENSGALG000000 015384	ENSGALG000000 030035	ENSGALG000000 00796	ENSGALG000000 00796		
Turkey	ENSMGAG0000000097 52	ENSMGAG000000 014105	ENSMGAG000000 030578	ENSMGAG000000 006295	ENSMGAG000000 003610*	-	ENSMGAG000000 005132	ENSMGAG000000 012288	ENSMGAG000000 0006636*	-	ENSMGAG000000 007510	ENSMGAG000000 0003559*	ENSMGAG000000 0008354	ENSMGAG000000 0008414	-	ENSMGAG000000 0008414		
Duck	ENSAPLG0000000780 3*	ENSAPLG000000 09491*	ENSAPLG000000 16121	ENSAPLG000000 07776	ENSAPLG000000 16223*	ENSAPLG000000 12469	ENSAPLG000000 10434	ENSAPLG000000 07724	ENSAPLG000000 13711*	-	-	ENSAPLG000000 09547*	ENSAPLG000000 12846	ENSAPLG000000 16042	-	ENSAPLG000000 15469*		
Flycatcher	ENSAFLG0000000303 4	ENSAFLG000000 03731	ENSAFLG000000 10658	ENSAFLG000000 10418	ENSAFLG000000 10653	ENSAFLG000000 05209	ENSAFLG000000 12362*	ENSAFLG000000 010205	ENSAFLG000000 02853*	ENSAFLG000000 1	-	ENSAFLG000000 012120	ENSAFLG000000 01594	ENSAFLG000000 10665	ENSAFLG000000 07740	-	ENSAFLG000000 07743	
Zebra finch	ENSTGU000000088 27	-	ENSTGU000000 003469	ENSTGU000000 007453	ENSTGU000000 003451*	-	ENSTGU000000 000216*	ENSTGU000000 000135	ENSTGU000000 008712	-	-	ENSTGU000000 0004092	ENSTGU000000 000227	ENSTGU000000 00027	-	ENSTGU000000 00924		
Anole lizard	ENSAACAG000000052 93	ENSAACAG000000 002388	-	ENSAACAG000000 005817	ENSAACAG000000 005512	ENSAACAG000000 008436	ENSAACAG000000 005448	ENSAACAG000000 005448	ENSAACAG000000 011789	ENSAACAG000000 005448	-	ENSAACAG000000 015594	ENSAACAG000000 005630	-	ENSAACAG000000 010984	ENSAACAG000000 014790*		
American alligator	XIM_006267516.3 2	XIM_006274460. 3	XIM_006261354. 1	XIM_019484414. 3	XIM_006261353. 2	XIM_006276967. 2	XIM_014599894. 2	XIM_019478038. 1	XIM_019480144. 1	XIM_006275274. 2	XIM_01497730. 1	XIM_006276963. 2	XIM_014605947. 1	XIM_017709597. .1*	-	NW_00017709597. .1*		
Chinese softshell turtle	ENSPSI0G0000000334 8	ENSPSI0G000000 12597	ENSPSI0G000000 16882	ENSPSI0G000000 12045	-	ENSPSI0G000000 06517	ENSPSI0G000000 10525	ENSPSI0G000000 09608	ENSPSI0G000000 17539	ENSPSI0G000000 2	ENSPSI0G000000 09407	ENSPSI0G000000 06807*	ENSPSI0G000000 17586*	-	ENSPSI0G000000 03627*	ENSPSI0G000000 11304*		
Painted turtle	ENSPCPBG0000000379 8	ENSPCPBG000000 022315	ENSPCPBG000000 024258	ENSPCPBG000000 027193	ENSPCPBG000000 024257	ENSPCPBG000000 027581*	-	ENSPCPBG000000 07539*	ENSPCPBG000000 1	ENSPCPBG000000 004679	ENSPCPBG000000 024641*	ENSPCPBG000000 027579	ENSPCPBG000000 016193	ENSPCPBG000000 016561*	ENSPCPBG000000 016190	-		
Xenopus tropicalis	ENSKETG0000000242 0	ENSKETG000000 17553	ENSKETG000000 31723	ENSKETG000000 23746	ENSKETG000000 23896*	ENSKETG000000 10249*	ENSKETG000000 16395	ENSKETG000000 18003	ENSKETG000000 12803	ENSKETG000000 4	-	ENSKETG000000 03846	ENSKETG000000 10250	ENSKETG000000 33968*	ENSKETG000000 27884	ENSKETG000000 14957	ENSKETG000000 13994*	
Tibetan frog	XIM_018572442.1 1	XIM_018570301. 1	-	XIM_018565101. 1	XIM_018557911. 1	XIM_018564234. 1	-	XIM_018564438. 1	-	XIM_018570082. 1	XIM_018557907. 1	XIM_018570784. 1	XIM_018570082. 1	XIM_018572139. .1	-	XIM_018572139. .1		
Coelacanth	ENSLACG0000000010 9*	ENSLACG000000 03345	ENSLACG000000 1	ENSLACG000000 10383*	ENSLACG000000 02796	-	ENSLACG000000 05760*	-	ENSLACG000000 09570	ENSLACG000000 05922	ENSLACG000000 15217	ENSLACG000000 0288	ENSLACG000000 14838*	ENSLACG000000 15676	ENSLACG000000 02691	ENSLACG000000 15771		
	XM_003961904.2 008002*	ENSTRU000000 004062*	ENSTRU000000 010213	ENSTRU000000 005757	ENSTRU000000 02729.2	ENSTRU000000 016472	ENSTRU000000 002223	ENSTRU000000 010253	ENSTRU000000 003807	ENSTRU000000 1	005762	ENSTRU000000 006363	ENSTRU000000 025609	ENSTRU000000 007762*	ENSTRU000000 016224	ENSTRU000000 014376*	ENSTRU000000 013084	
Fugu	-	-	-	ENSTRU000000 16710.2	ENSTRU000000 NC_018902.1	ENSTRU000000 005961	ENSTRU000000 013071	ENSTRU000000 .1	-	-	ENSTRU000000 01764	-	-	-	-	-		
	-	-	-	-	NC_018896.1	-	-	-	-	-	-	-	-	-	-	-		
Medaka	XM_020713072.2 3	XM_011491375. 1	ENSLRLG000000 013118	ENSLRLG000000 000865*	ENSLRLG000000 020077	ENSLRLG000000 28636.1	ENSLRLG000000 018774	ENSLRLG000000 003203	ENSLRLG000000 004390	ENSLRLG000000 NC_019871.2	-	ENSLRLG000000 009700	ENSLRLG000000 003226	ENSLRLG000000 013114	ENSLRLG000000 026994	ENSLRLG000000 008035*	ENSLRLG000000 014619	
Zebrafish	ENSDARG000000090 21	NM_001040327. 1	ENSDARG000000 100991	NM_001048063. 1	ENSDARG000000 003420	ENSDARG000000 055559	ENSDARG000000 015152	ENSDARG000000 087224	ENSDARG000000 054680	ENSDARG000000 1	NM_001044804. 1	NM_001253810. 1	ENSDARG000000 01790	ENSDARG000000 052764	ENSDARG000000 101677	ENSDARG000000 019342	ENSDARG000000 034307	ENSDARG000000 061749
	-	-	-	-	ENSDARG000000 101702	ENSDARG000000 099181	ENSDARG000000 1	-	ENSDARG000000 038508	-	-	-	-	-	-	-		

Accession numbers correspond to Ensembl or Genbank databases. * Sequences mended and/or completed using trace fragments obtained from the NCBI Genome Project traces database.

Table S2. Mean percentage sequence identity (%seqID).

	All	Mammals	Mammals-Sauropsid	Sauropsid
CHRNA1	83.98 (26)	93.40 (11)	85.44	88.98 (9)
CHRNA2	73.99 (24)	81.02 (11)	71.68	82.21 (7)
CHRNA3	80.91 (23)	89.78 (10)	83.50	91.79 (8)
CHRNA4	73.63 (26)	80.77 (11)	74.14	90.06 (9)
CHRNA5	84.55 (21)	90.65 (9)	86.18	96.27 (7)
CHRNA6	77.61 (24)	88.09 (11)	80.31	84.93 (8)
CHRNA7	79.22 (26)	92.97 (9)	89.69	96.97 (8)
CHRNA8	77.63 (12)	-	-	91.49 (6)
CHRNA9	72.16 (29)	90.90 (11)	74.23	88.28 (9)
CHRNA10	64.93 (24)	88.98 (11)	61.29	75.38 (5)
CHRNB1	70.47 (18)	86.24 (11)	63.82	73.20 (3)
CHRNB2	77.16 (26)	88.70 (11)	75.83	76.87 (9)
CHRNB3	81.47 (28)	88.41 (11)	84.59	91.83 (8)
CHRNB4	72.12 (23)	80.83 (10)	71.75	85.65 (7)
CHRND	71.54 (22)	87.85 (10)	68.02	76.59 (6)
CHRNE	67.34 (16)	83.08 (10)	58.60	-
CHRNG	69.12 (24)	86.81 (11)	63.41	79.55 (8)

Values were calculated using pairs of sequences of all vertebrates, mammals or sauropsids nAChRs subunits. (n) Indicates the number of orthologues from each subunit included in the calculations.

White background: muscle subunits; light background grey: neuronal subunits; dark grey background: hair cells subunits.

Table S3. Type II functional divergence coefficients for nAChR subunits

	$\theta_{II} \pm SE$	P value	N sites
CHRNA1	0.0082 ± 0.03	0.41	1
CHRNA2	-0.02 ± 0.03	0.23	0
CHRNA3	0.03 ± 0.03	0.19	1
CHRNA4	0.01 ± 0.03	0.33	0
CHRNA5	0.03 ± 0.03	0.12	2
CHRNA6	0.01 ± 0.03	0.41	0
CHRNA7	0.02 ± 0.02	0.16	3
CHRNA9	0.05 ± 0.02	0.038	15
CHRNA10	0.1 ± 0.04	0.0071	10
CHRNB2	0.01 ± 0.02	0.30	0
CHRNB3	0.02 ± 0.03	0.29	1
CHRNB4	0.05 ± 0.03	0.060	1
CHRND	0.03 ± 0.05	0.28	4
CHRNG	0.08 ± 0.05	0.051	3

θ_{II} , coefficient of type II functional divergence. SE, standard error. N sites, number of residues per nicotinic subunit with posterior probabilities for type II functional divergence greater than 0.65.

Table S4. Single-cell RNA sequencing datasets.

Publication	DOI	Accession	Tissue	mean_genes	Cell_types	#Cells
Shekar, et al. 2016	10.1101/621342	GSE81905	Retina	5372	BC1A	14
					BC5A	24
					BC6	17
					RBC	99
Chevee, et al. 2018	10.1101/621342	GSE107632	Somatosensory cortex	5614	VPMonly	130
					VPM/Pom	210
Cembrowski, et al. 2018	10.1101/621342	GSE100449	Hippocampus	5218	dSub	72
					pSub1	69
					pSub2	102
Romanov	10.1101/621342	GSE74672	Hypothalamus	3887	Adcyap1	34
					Avp	25
					Dopamine	41
					GABA	311
					circadian	31
					Hmit	24
					Oxytocin	37
					Sst	38
					Trh	55
					Vglut2	137
LaManno, et al. 2016	10.1101/621342	GSE76381	Ventral midbrain	4106	DA_SNC	73
					DA_VTA1	47
					DA_VTA2	28
					DA_VTA3	26
					DA_VTA4	69
Shrestha, et al. 2018	10.1101/621342	GSE114997	Spiral ganglion	8298	SGN_TypeIa	63
					SGN_TypeIb	71
					SGN_TypeIc	45
McInturff	10.1101/621342	GSE115934	utricle HC	5578	HC_P1	37
					HC_P12	50
					HC_P100	25
Burns	10.1101/621342	GSE71982	inner ear	7143	Co_HC	10
Furlan, et al. 2016	10.1101/621342	GSE78845	Sympathetic ganglion	6297	Nor1	10
					Nor2	39
					Nor3	103
					Nor4	18
					Nor5	23
					Glu	4
					Ach1	8
					Ach2	8
Usoskin	10.1101/621342	GSE59739	DRG	3821	NF1	21
					NF2	43
					NF3	10
					NF4	16
					NF5	24
					NP1	80
					NP2	19
					NP3	10
					PEP1	50
					PEP2	14
					TH	142

Accession information for the datasets used on the analysis of nAChR subunits co-expression patterns. mean_genes, average number of genes per cell detected in each dataset. Cell_types, final cell types, as inferred in each publication, used to estimate the expression levels of nAChR subunit genes. #Cells, number of cells for each cell type present in the final datasets analysed.

Table S5. Mean expression of nAChR subunits genes across cell types.

	Retina				Somatosensory cortex			Hippocampus			Hypothalamus									
	BC1A	BC5A	BC6	RBC	VPM-only	VPM/Pom	dSub	pSub1	pSub2	Adcyap1	Avp	Dopamine	GABA	circadian	Hmit	Oxytocin	Sst	Trh	Vglut2	
Chrna1	3.46	0.72	3.18	1.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	24.85	0.00	0.00	0.00	0.00	
Chrna2	2.93	1.41	3.17	1.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Chrna3	0.00	0.00	0.00	13.35	0.00	0.00	0.00	0.00	0.00	8.33	0.00	62.03	5.92	0.00	59.68	0.00	8.54	0.00	9.97	
Chrna4	382.03	52.93	25.66	6.74	92.58	100.99	99.88	6.10	30.51	68.76	14.87	80.34	43.55	10.23	37.64	17.36	0.00	17.47	100.82	
Chrna5	5.35	2.48	3.18	8.01	3.05	13.80	5.36	0.00	2.68	0.00	0.00	0.00	4.89	0.00	0.00	0.00	0.00	0.00	0.00	
Chrna6	267.64	0.00	601.04	10.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Chrna7	19.29	52.13	0.00	0.00	20.54	11.37	0.00	0.00	0.00	5.39	0.00	0.00	7.56	0.00	0.00	0.00	0.00	0.00	0.00	
Chrna9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Chrna10	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.53	0.00	0.00	0.00	0.00	0.00	0.00	
Chrb1	34.77	55.02	28.26	17.92	0.00	0.00	0.00	0.00	0.00	0.00	8.59	0.00	3.98	0.00	0.00	0.00	0.00	0.00	0.00	
Chrb2	78.90	23.43	134.51	25.77	43.13	31.83	15.83	13.12	24.99	83.16	21.37	99.08	55.77	35.06	53.54	75.05	92.14	50.69	79.18	
Chrb3	43.53	0.46	138.25	5.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.86	0.00	0.00	0.00	0.00	0.00	0.00	
Chrb4	4.68	1.14	2.02	1.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Chrnd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Chrne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Chrng	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

	Ventral midbrain					Spiral ganglion			Inner ear hair cells									
	SNC	VTA1	VTA2	VTA3	VTA4	TypeIa	TypeIb	TypeIc	Utricle_HC_P1	Utricle_HC_P12	Utricle_HC_P100	Cochlear_HC						
Chrna1	0.00	0.00	0.00	0.00	0.00	76.33	5.52	27.55	320.99	376.92	388.80	154.91						
Chrna2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
Chrna3	75.04	61.02	34.75	0.00	9.22	0.00	0.00	16.67	0.00	0.00	0.00	0.00						
Chrna4	559.44	674.74	277.56	568.53	274.87	131.75	57.37	18.66	0.00	0.00	0.00	0.00						
Chrna5	28.65	16.99	19.36	0.00	3.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
Chrna6	1286.75	718.59	1140.92	705.52	821.02	0.00	0.00	11.64	0.00	0.00	0.00	0.00						
Chrna7	0.00	0.00	0.00	0.00	0.00	37.61	49.86	21.04	0.00	0.00	0.00	0.00						
Chrna9	0.00	0.00	0.00	0.00	0.00	15.33	13.61	0.00	554.41	626.98	607.56	350.02						
Chrna10	0.00	0.00	0.00	0.00	0.00	0.00	4.42	7.33	464.02	632.15	599.18	466.89						
Chrb1	0.00	0.00	0.00	0.00	0.00	80.87	59.75	76.27	15.00	39.59	26.26	39.70						
Chrb2	37.12	100.00	91.58	117.53	70.01	298.16	295.47	315.08	96.02	175.77	182.60	62.75						
Chrb3	326.52	370.87	260.30	351.18	344.16	0.00	3.64	11.32	0.00	0.00	0.00	0.00						
Chrb4	0.00	0.00	0.00	0.00	0.00	4.39	18.07	0.00	24.11	22.30	2.31	4.21						
Chrnd	0.00	0.00	0.00	0.00	0.00	4.97	5.00	7.81	0.00	5.92	22.78	0.00						
Chrne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	509.75	40.42	0.00	32.97						

	Visceral motor neurons								Dorsal root ganglia										
	Nor1	Nor2	Nor3	Nor4	Nor5	Glut	Ach1	Ach2	NF1	NF2	NF3	NF4	NF5	NP1	NP2	NP3	PEP1	PEP2	TH
Chrna1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.79
Chrna2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrna3	535.34	689.45	825.02	808.62	988.48	107.72	572.22	596.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.86
Chrna4	0.00	0.00	0.00	0.00	0.00	0.00	9.93	0.00	0.00	3.45	0.00	0.00	0.00	0.00	0.00	44.71	0.00	0.00	28.78
Chrna5	55.99	50.79	41.92	38.86	38.83	0.00	51.51	37.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrna6	0.00	0.00	0.00	0.00	0.00	79.15	0.00	0.00	76.83	4.69	0.00	0.00	95.66	128.57	126.53	89.34	0.00	0.00	6.40
Chrna7	12.13	30.63	39.57	15.58	9.06	0.00	0.00	8.86	0.00	0.00	9.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.08
Chrna9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrna10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.27
Chrb1	0.00	0.00	0.00	0.00	0.00	0.00	7.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrb2	90.59	50.45	60.37	46.26	56.20	42.76	62.82	61.41	62.69	45.23	134.24	25.43	61.54	79.49	21.35	59.17	25.69	50.66	47.42
Chrb3	0.00	0.00	0.00	0.00	0.00	109.59	0.00	0.00	0.00	0.00	0.00	0.00	4.15	0.00	0.00	9.39	0.00	0.00	1.70
Chrb4	154.87	202.31	264.13	290.53	232.07	42.76	222.23	164.63	0.00	0.00	0.00	0.00	0.00	1.81	0.00	0.00	0.00	0.00	23.00
Chrnd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chrng	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Values are means of the estimated joint posterior distributions of gene expression levels inferred for the nAChR subunits expressed in the cell types and datasets analysed.

Table S6. Neuronal nAChRs experimentally validated assemblies.

nAChR subtype	DOI	Reference
$\alpha 7$	10.1016/0896-6273(90)90344-F	Couturier et al., 1990
$\alpha 8$	PMID: 7509438	Gerzanich et al., 1994
$\alpha 9$	10.1016/0092-8674(94)90555-X	Elgoyhen 1994 et al., 1994
$\alpha 10$	10.1093/molbev/msu258	Lipovsek et al., 2014
$\alpha 2\beta 2$	10.1016/0896-6273(88)90208-5	Deneris et al., 1988
$\alpha 2\beta 4$	10.1016/0896-6273(89)90207-9	Duvoisin et al., 1989
$\alpha 3\beta 2$	10.1073/pnas.84.21.7763	Boulter et al., 1987
$\alpha 3\beta 4$	10.1016/0896-6273(89)90207-9	Duvoisin et al., 1989
$\alpha 4\beta 2$	10.1073/pnas.84.21.7763	Boulter et al., 1987
$\alpha 4\beta 4$	10.1016/0896-6273(89)90207-9	Duvoisin et al., 1989
$\alpha 6\beta 2$	10.1046/j.1460-9568.1998.00001.x	Fucile et al., 1998
$\alpha 6\beta 4$	10.1124/mol.106.027326	Tumkosit et al., 2006
$\alpha 7\beta 2$	10.1113/jphysiol.2001.013847	Khiroug et al., 2002
$\alpha 7\beta 3$	10.1074/jbc.274.26.18335	Palma et al., 1999
$\alpha 7\beta 4$	110.1111/j.1471-4159.2012.07931.x	Criado et al., 2012
$\alpha 9\alpha 10$	10.1073/pnas.051622798	Elgoyhen et al., 2001
$\alpha 2\alpha 5\beta 2$	10.1124/mol.63.6.1329	Vailati et al., 2003
$\alpha 2\alpha 6\beta 2$	10.1124/mol.105.015925	Gotti et al., 2005
$\alpha 2\beta 2\beta 3$	10.1111/j.1471-4159.2012.07685.x	Dash et al., 2012
$\alpha 2\beta 3\beta 4$	10.1111/j.1471-4159.2012.07685.x	Dash et al., 2012
$\alpha 3\alpha 4\beta 2$	10.1523/JNEUROSCI.2112-05.2005	Turner et al., 2005
$\alpha 3\alpha 4\beta 4$	10.1523/JNEUROSCI.2112-05.2005	Turner et al., 2005
$\alpha 3\alpha 5\beta 2$	10.1074/jbc.271.30.17656	Wang et al., 1996
$\alpha 3\alpha 5\beta 4$	10.1074/jbc.271.30.17656	Wang et al., 1996
$\alpha 3\alpha 6\beta 2$	10.1016/S0028-3908(00)00144-1	Kuryatov et al., 2000
$\alpha 3\alpha 6\beta 4$	10.1046/j.1460-9568.1998.00001.x	Fucile et al., 1998
$\alpha 3\beta 2\beta 4$	10.1523/JNEUROSCI.2112-05.2005	Turner et al., 2005
$\alpha 3\beta 2\beta 3$	10.1111/j.1471-4159.2012.07685.x	Dash et al., 2012
$\alpha 3\beta 3\beta 4$	10.1074/jbc.273.25.15317	Groot-Kormelink et al., 1998
$\alpha 4\alpha 5\beta 2$	10.1038/380347a0	Ramirez-Latorre et al., 1996
$\alpha 4\beta 2\beta 3$	10.1124/mol.108.046789	Kuryatov et al., 2008
$\alpha 4\beta 3\beta 4$	10.1111/j.1471-4159.2012.07685.x	Dash et al., 2012
$\alpha 5\alpha 6\beta 2$	10.1016/S0028-3908(00)00144-1	Kuryatov et al., 2000
$\alpha 5\alpha 7\beta 2$	10.1111/j.1749-6632.1999.tb11331.x	Girod et al., 1999
$\alpha 6\beta 2\beta 3$	10.1124/mol.106.027326	Tumkosit et al., 2006
$\alpha 6\beta 3\beta 4$	10.1016/S0028-3908(00)00144-1	Kuryatov et al., 2000
$\alpha 3\alpha 4\alpha 6\beta 2$	10.1111/j.1471-4159.2008.05282.x	Cox et al., 2008
$\alpha 3\alpha 5\beta 2\beta 4$	10.1074/jbc.270.9.4424	Conroy and Berg, 1995
$\alpha 4\alpha 6\beta 2\beta 3$	10.1124/mol.110.066159	Kuryatov and Lindstrom, 2010
$\alpha 5\alpha 6\beta 3\beta 4$	10.1124/jpet.104.075069	Grinevich et al., 2005
$\alpha 1\beta 1\gamma\delta$	10.1038/321406a0	Mishina et al., 1986
$\alpha 1\beta 1\delta\epsilon$	10.1038/321406a0	Mishina et al., 1986

Experimentally validated pentameric combinations of nAChR subunits and relevant literature references.

Table S7. Primers used for the cloning of *X. tropicalis* nAChRs subunits.

Primer	Tm (°C)	Sequence (5'-3')
FXtrop.a9	61.4	TAGAATTCATGCACACATTGGCACGTGTTGG
RXtrop.a9	63.1	ATCTCGAGTCACACTGCCTGGCAATAA
FXtrop.a10	62.4	ATAAGCTTCCTGCCAACATGAGACTGC
RXtrop.a10	62.1	ATCTCGAGGGCACCATCATATGGCTTG
FXtrop.a7	61.8	TAGAATTCTTGATCTCTCGATGGGAGGA
RXtrop.a7	61.9	ATCTCGAGTAGAACTGCAGAACCTAACCAA
FXtrop.a4	62.7	ATGAATTGCTCTGCCAACATGGGTG
RXtrop.a4	60.1	TAAAGCTTGGGTCAGTCATATCAAACCAG
FXtrop.b2	61.2	TAGAATTGAGGCGATGAGATGATCCGG
RXtrop.b2	61.3	ATCTCGAGGCCCTCAATGTTCTCAGTT

The restriction sites for EcoRI, Xhol and HindIII used for subsequent subcloning are highlighted in bold. Tm, annealing temperature.

Table S8. Biophysical properties and statistical comparisons from rat, chicken and frog $\alpha 4\beta 2$, $\alpha 7$ and $\alpha 9\alpha 10$ receptors.

Receptor		$\alpha 4\beta 2$		
Species		Rat	Chicken	Frog
ACh sensitivity	Mean \pm S.E.M (n)	3.11 \pm 2.11 (3)	159.76 \pm 35.67 (4)	1.07 \pm 0.15 (6)
	ANOVA (p-value)		EC50_1: Rat vs Chick = 0.1346, Rat vs Frog = 0.1018, Chick vs Frog = 0.6927 ^P	66.00 \pm 9.76 (4)
Desensitization	Mean \pm S.E.M (n)		77.13 \pm 1.21 (4)	77.68 \pm 5.16 (7)
	ANOVA (p-value)			Rat vs Chick = 0.9336, Rat vs Frog = 0.7326, Chick vs Frog = 0.7204 ^P
Ca^{2+} Modulation	Mean \pm S.E.M (n)		0.36 \pm 0.04 (5)	0.55 \pm 0.03 (9)
	ANOVA (p-value)			Rat vs Chick > 0.999, Rat vs Frog > 0.9999, Chick vs Frog > 0.9999 ^P
Ca^{2+} Permeability	Mean \pm S.E.M (n)		72.07 \pm 9.62 (4)	78.75 \pm 5.04 (6)
	ANOVA (p-value)			Rat vs Chick = 0.7999, Rat vs Frog = 0.7892, Chick vs Frog = 0.7999 ^P
Rectification profile	Mean \pm S.E.M (n)		0.07 \pm 0.03 (5)	0.03 \pm 0.03 (6)
	ANOVA (p-value)			Rat vs Chick = 0.6838, Rat vs Frog = 0.4995, Chick vs Frog = 0.9437 ^P
Receptor		$\alpha 7$		
Species		Rat	Chicken	Frog
ACh sensitivity	Mean \pm S.E.M (n)		432.1 \pm 123.45 (8)	267.56 \pm 87.98 (8)
	ANOVA (p-value)			239.27 \pm 33.90 (7)
Desensitization	Mean \pm S.E.M (n)		3.23 \pm 0.79 (6)	3.18 \pm 0.54 (9)
	ANOVA (p-value)			Rat vs Chick > 0.9999, Rat vs Frog = 0.3743, Chick vs Frog = 0.2496 ^{NP}
Ca^{2+} Modulation	Mean \pm S.E.M (n)		0.63 \pm 0.10 (4)	0.46 \pm 0.06 (4)
	ANOVA (p-value)			Rat vs Chick > 0.999, Rat vs Frog > 0.9999, Chick vs Frog > 0.9999 ^P
Ca^{2+} Permeability	Mean \pm S.E.M (n)		29.07 \pm 7.68 (4)	37.10 \pm 11.82 (4)
	ANOVA (p-value)			Rat vs Chick = 0.7447, Rat vs Frog = 0.7447, Chick vs Frog = 0.8931 ^P
Rectification profile	Mean \pm S.E.M (n)		0.04 \pm 0.02 (5)	0.02 \pm 0.003 (5)
	ANOVA (p-value)			Rat vs Chick = 0.5909, Rat vs Frog = 0.9706, Chick vs Frog = 0.7295 ^P
Receptor		$\alpha 9\alpha 10$		
Species		Rat	Chicken	Frog
ACh sensitivity	Mean \pm S.E.M (n)		19.39 \pm 2.08 (9)	17.62 \pm 3.33 (6)
	ANOVA (p-value)			110.89 \pm 25.00 (7)
Desensitization	Mean \pm S.E.M (n)		64.46 \pm 3.65 (5)	60.84 \pm 4.23 (9)
	ANOVA (p-value)			Rat vs Chick > 0.9999, Rat vs Frog = 0.0051**, Chick vs Frog = 0.0042** ^{NP}
Ca^{2+} Modulation	Mean \pm S.E.M (n)		3.76 \pm 0.73 (5)	1.00 \pm 0.07 (4)
	ANOVA (p-value)			Rat vs Chick < 0.0001****, Rat vs Frog < 0.0001****, Chick vs Frog > 0.9981 ^P
Ca^{2+} Permeability	Mean \pm S.E.M (n)		24.89 \pm 2.81 (6)	100.28 \pm 14.02 (6)
	ANOVA (p-value)			Rat vs Chick = 0.0299*, Rat vs Frog > 0.9999, Chick vs Frog = 0.0013** ^{NP}
Rectification profile	Mean \pm S.E.M (n)		1.21 \pm 0.07 (11)	2.31 \pm 0.34 (10)
	ANOVA (p-value)			Rat vs Chick = 0.0229*, Rat vs Frog = 0.0406*, Chick vs Frog < 0.0001**** ^{NP}

Values are shown as mean \pm S.E.M. (n). ^P: parametric, ^{NP}: non-parametric analysis. ACh sensitivity: EC₅₀ value; Desensitization rate: percentage current remaining 20 seconds (5 sec for $\alpha 7$ receptors) after peak response to a 10-fold concentration of EC₅₀ ACh; Ca^{2+} Modulation: current elicited by EC₅₀ ACh at Ca^{2+} 0.5 mM relative to Ca^{2+} 3 mM; Ca^{2+} Permeability: percentage of remaining current after BAPTA-AM treatment; Rectification profile: current recorded at +40 mV relative to that recorded at -90 mV.

Table S9. Normalized biophysical properties

Receptor	ACh sensitivity (EC ₅₀)	Desensitization (%I after ACh peak)	Ca ²⁺ modulation (I _{0.5 mM} /I _{3 mM})	Ca ²⁺ permeability (%I post-BAPTA)	Rectification (I _{+40 mV} /I _{-90 mV})
Rat α9α10	0.045	0.830	1.000	0.248	0.525
Chick α9α10	0.041	0.783	0.266	1.000	1.000
Frog α9α10	0.257	0.187	0.167	0.195	0.091
Rat α4β2	0.007	0.993	0.097	0.719	0.029
Chick α4β2	0.002	1.000	0.146	0.785	0.014
Frog α4β2	0.002	0.936	0.158	0.813	0.008
Rat α7	1.000	0.042	0.167	0.290	0.016
Chick α7	0.619	0.041	0.121	0.370	0.009
Frog α7	0.554	0.026	0.168	0.384	0.015
<hr/>					
Amniote α4β2	0.004	0.985	0.128	0.762	0.019
Tetrapod α4β2	0.003	0.963	0.141	0.785	0.014
Amniote α7	0.679	0.038	0.141	0.357	0.012
Tetrapod α7	0.675	0.037	0.142	0.358	0.012
Amniote α9α10	0.114	0.594	0.409	0.549	0.581
Tetrapod α9α10	0.139	0.522	0.366	0.487	0.494

Normalized biophysical properties from extant receptors used in PCA analysis (top) and normalised inferred biophysical properties from ancestral receptors. Values are normalised relative to the maximum obtained for each parameter.

Table S10. PCA analysis of functional properties.

	PC1	PC2	PC3	PC4	PC5
ACh sensitivity (EC₅₀)	0.55	0.04	0.35	0.72	0.23
Desensitization (%I after ACh peak)	-0.56	-0.11	-0.35	0.41	0.62
Ca²⁺ modulation (I_{0.5 mM}/I_{3 mM})	-0.18	0.77	-0.26	0.36	-0.42
Ca²⁺ permeability (%I post-BAPTA)	-0.46	-0.46	0.37	0.38	-0.55
Rectification (I_{+40 mV}/I_{-90 mV})	-0.36	0.42	0.74	-0.21	0.31
<hr/>					
Proportion of the variability	0.54	0.28	0.14	0.03	0.006
Accumulated proportion	0.54	0.82	0.96	0.99	1.00

Upper panel: loading of each experimental parameter on the five principal components. *Lowe panel:* proportion and accumulated proportion of the variability represented by each principal component.

Table S11. Estimated distances between extant and inferred ancestral $\alpha 9\alpha 10$, $\alpha 4\beta 2$ and $\alpha 7$ nAChRs based on protein sequence identity.

$\alpha 4\beta 2$		
Comparison	seqID	1-seqID
Rat-amniote	0.824	0.176
Chick-amniote	0.816	0.184
Amniote-tetrapod	0.819	0.181
Frog-tetrapod	0.777	0.223

$\alpha 7$		
Comparison	seqID	1-seqID
Rat-amniote	0.888	0.112
Chick-amniote	0.962	0.038
Amniote-tetrapod	0.997	0.003
Frog-tetrapod	0.907	0.093

$\alpha 9\alpha 10$		
Comparison	seqID	1-seqID
Rat-amniote	0.683	0.317
Chick-amniote	0.821	0.179
Amniote-tetrapod	0.96	0.04
Frog-tetrapod	0.814	0.186

Sequence identity (seqID) values between pairs of sequences were calculated using the protein sequence alignments in Supplementary File 3). Distances (1-seqID values) were subsequently used as branch lengths for the receptor trees used for the inference of ancestral character states for each nAChR (Fig. S6).

Supplementary File Legends

Supplementary File 1. Multiple alignment of nAChRs subunits. The alignment includes 392 nAChR subunits sequences from 29 different species together with 9 sequences from 5HT3B vertebrate subunits (outgroup).

Supplementary File 2. Aminoacid sequence identities. Values for all pairwise comparisons for all nAChR subunits from amniotes.

Supplementary File 3. Type II functional divergence analysis using DIVERGE 3.0. For each nAChR subunit analysed, the main tree, cluster-mammalian tree and cluster-sauropsid tree are shown in parenthetical notation. Theta-II values and standard error (SE) were calculated by comparing the designated clusters. Posterior probabilities (Pp) per site were calculated from the Posterior ratio (Pr) values obtained from the type II function by $Pp = Pr / (1+Pr)$, as in Gu et al, 2006.

Supplementary File 4. Sequences used for the reconstruction of ancestral nAChR subunits. DNA sequences from $\alpha 4$, $\alpha 7$, $\alpha 9$, $\alpha 10$ and $\beta 2$ orthologues used to reconstruct DNA sequences from amniote and tetrapod ancestors. The species trees, in parenthetic format, are shown before the sequence alignment, in fasta format. The branch lengths in the species trees were inferred from each alignment and indicate the amount of accumulated changes.

Supplementary File 5. Extant and inferred ancestral nAChRs protein sequences. Protein sequences from rat, chicken, frog, amniote ancestor and tetrapod ancestor, from $\alpha 7$, $(\alpha 4)_2(\beta 2)_3$ and $(\alpha 9)_2(\alpha 10)_3$ nAChRs were aligned and the sequence identity between pairs of receptors was used to calculate the branch lengths assigned to the receptor trees (Supplementary Figure 6) used to infer ancestral character states of biophysical properties (Supplementary Figure 7).

Supplementary Information References

1. Kumar S, Stecher G, & Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33(7):1870-1874.
2. Jones DT, Taylor WR, & Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. *Comput Appl Biosci* 8(3):275-282.
3. Saitou N & Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Mol Biol Evol* 4(4):406-425.
4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39(4):783-791.
5. Rzhetsky A & Nei M (1992) A simple method for estimating and testing minimum-evolution trees. *Mol Biol Evol* 9(5):945-967.
6. Gu X (2006) A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. *Mol Biol Evol* 23(10):1937-1945.
7. Gu X, *et al.* (2013) An update of DIVERGE software for functional divergence analysis of protein family. *Mol Biol Evol* 30(7):1713-1719.
8. Shekhar K, *et al.* (2016) Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. *Cell* 166(5):1308--1323.e1330.
9. Burns JC, Kelly MC, Hoa M, Morell RJ, & Kelley MW (2015) Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. *Nature Communications* 6:1-16.
10. McInturff S, Burns JC, & Kelley MW (2018) Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers. *Biology open* 7(11).
11. Shrestha BR, *et al.* (2018) Sensory neuron diversity in the inner ear is shaped by activity sensory neuron diversity. *Cell* 174:1229-1246.
12. La Manno G, *et al.* (2016) Molecular diversity of midbrain development in resource molecular diversity of midbrain development in mouse, human and stem cells. *Cell* 167:566-580.
13. Cembrowski MS, *et al.* (2018) Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes. *Cell* 173(5):1280--1292.e1218.
14. Chevée M, Robertson JDJ, Cannon GH, Brown SP, & Goff LA (2018) Variation in Activity State, Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical Projection Neurons. *Cell Reports* 22(2):441-455.
15. Romanov RA, *et al.* (2017) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. *Nature Neuroscience* 20(2):176-188.
16. Furlan A, *et al.* (2016) Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. *Nature Neuroscience* 19(10):1331-1340.
17. Usoskin D, *et al.* (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. *Nature Neuroscience* 18(1):145-153.
18. McCarthy DJ, Campbell KR, Lun AT, & Wills QF (2017) Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. *Bioinformatics* 33(8):1179-1186.
19. Lun AT, Bach K, & Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. *Genome biology* 17:75.
20. Kharchenko PV, Silberstein L, & Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. *Nature Methods* 11(7):740-742.
21. Elgoyen AB, Johnson DS, Boulter J, Vetter DE, & Heinemann S (1994) $\alpha 9$: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. *Cell* 79(4):705-715.

22. Elgoyen AB, *et al.* (2001) α 10: a Determinant of Nicotinic Cholinergic Receptor Function in Mammalian Vestibular and Cochlear Mechanosensory Hair Cells. *Proc.Natl.Acad.Sci.U.S.A.* 98(6):3501-3506.
23. Lipovsek M, *et al.* (2012) Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor. *Proc.Natl.Acad.Sci.U.S.A.* 109(11):4308-4313.
24. Gerzanich V, Anand R, & Lindstrom JM (1994) Homomers of α 8 and α 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. *Molecular Pharmacology* 45(2):212 LP-- 220.
25. Weisstaub N, Vetter DE, Elgoyen AB, & Katz E (2002) The α 9 α 10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations. *Hearing Research* 167(1-2):122-135.
26. Arellano RO, Woodward RM, & Miledi R (1995) A monovalent cationic conductance that is blocked by extracellular divalent cations in Xenopus oocytes. *J Physiol* 484 (Pt 3):593-604.
27. Ebihara L (1996) Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. *Biophysical journal* 71(2):742-748.
28. Nei M & Kumar S (2000) *Molecular Evolution and Phylogenetics* (Oxford Press, New York).
29. Tamura K & Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol* 10(3):512-526.
30. Paradis E, Claude J, & Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. *Bioinformatics* 20(2):289-290.
31. Schluter D, Price T, Mooers A, & Ludwig D (1997) Likelihood of Ancestors States in Adaptive Radiation. *Evolution* 51(6):1699-1711.
32. Felsenstein J (1973) Maximum-Likelihood Estimation of Evolutionary Trees from Continuous Characters. *Am J Hum Genet* 25:471-492.