
1 

 

Epigenome-wide analysis uncovers a blood-based DNA methylation biomarker of 

lifetime cannabis use. 

 

Christina A. Markunas1*, Dana B. Hancock1, Zongli Xu2, Bryan C. Quach1, Dale P. 

Sandler2, Eric O. Johnson1,3,†, and Jack A. Taylor2,4,† 

 

1Center for Omics Discovery and Epidemiology, RTI International, Research Triangle 

Park, NC, USA; 2Epidemiology Branch, National Institute of Environmental Health 

Sciences, Research Triangle Park, NC, USA; 3Fellow Program, RTI International, 

Research Triangle Park, NC, USA; 4Epigenetic and Stem Cell Biology Laboratory, 

National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 

USA 

†Contributed equally 

*Corresponding author:  
 
Christina A. Markunas, PhD 
3040 East Cornwallis Rd, PO Box 12194 
Research Triangle Park, NC 27709    
Email: cmarkunas@rti.org 
Telephone: 1-919-541-5837 
 

 

 

 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/620641doi: bioRxiv preprint 

https://doi.org/10.1101/620641
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

ABSTRACT 

Cannabis use is highly prevalent and is associated with adverse and beneficial effects. 

To better understand the full spectrum of health consequences, biomarkers that 

accurately classify cannabis use are needed. DNA methylation (DNAm) is an excellent 

candidate, yet no blood-based epigenome-wide association studies (EWAS) in humans 

exist. We conducted an EWAS of lifetime cannabis use (ever vs. never) using blood-

based DNAm data from a case-cohort study within Sister Study, a prospective cohort of 

women at risk of developing breast cancer (Discovery N=1,730 [855 ever users]; 

Replication N=853 [392 ever users]). We identified and replicated an association with 

lifetime cannabis use at cg15973234 (CEMIP): combined P=3.3×10-8. We found no 

overlap between published blood-based cis-meQTLs of cg15973234 and reported 

lifetime cannabis use-associated SNPs (P<0.05), suggesting that the observed DNAm 

difference was driven by cannabis exposure. We also developed a multi-CpG classifier 

of lifetime cannabis use using penalized regression of top EWAS CpGs. The resulting 

49-CpG classifier produced an area under the curve (AUC)=0.74 (95% confidence 

interval [0.72, 0.76], P=2.00×10-5) in the discovery sample and AUC=0.54 ([0.51, 0.57], 

P=4.64×10-2) in the replication sample. Our EWAS findings provide evidence that blood-

based DNAm is associated with lifetime cannabis use.  
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INTRODUCTION 

Cannabis use is highly prevalent with 45% of Americans aged 12 or older reporting 

lifetime use (defined here as ever-use of cannabis), and 15% reporting use in the past 

year1. These numbers are expected to grow due to increasing legalization of both 

medical and recreational cannabis use. As of 2019, 33 US States have legalized 

cannabis for medical purposes, 11 of which have also legalized recreational use 

(Accessed 08/14/192). Adverse health effects of cannabis use have been reported for 

short-term use (e.g., impaired cognitive and motor function, altered judgement, 

paranoia, and psychosis)3, long-term or heavy use (e.g., increased risk of cannabis use 

disorder, altered brain development, cognitive impairment, chronic bronchitis)3, as well 

as lifetime (ever) use (e.g., psychotic disorder)4. In contrast, evidence exists supporting 

therapeutic benefits for various clinical conditions (e.g., glaucoma, acquired immune 

deficiency syndrome, nausea, chronic pain, inflammation)3. Efforts to better understand 

the full spectrum of cannabis-related health consequences have been hindered as a 

result of under-reporting (e.g., due to social stigma associated with use) and the 

absence of available biomarkers that can accurately quantify cannabis usage patterns.  

Currently available biomarkers of cannabis exposure, such as urinary metabolites, 

suffer limitations. These existing biomarkers have limited windows for detection, are 

largely restricted to acute exposures (e.g., ranging from 3 to >30 days, depending on 

the frequency of cannabis use5), and are unable to quantify cumulative exposure, which 

may prove to be a better indicator of subsequent health outcomes5.  

Epigenetic modifications represent promising candidates for biomarker research. 

DNA methylation (DNAm), the most commonly studied form of epigenetic modification, 
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is defined by the presence of a methyl group (-CH3) most often at the carbon-5 position 

of a cytosine nucleotide in the context of CpG sites (adjacent cytosine and guanine 

nucleotides linked by a phosphate group). DNAm can be influenced by genetic factors, 

disease, environmental exposures, and lifestyle, and can vary across developmental 

stages of life (e.g., infancy, childhood, and adulthood), tissues, and cell types. An 

important feature of exposure-related DNAm changes is that they can either be 

persistent (i.e., stable changes) or reversible (i.e., return to prior state) once the 

exposure is no longer present. This combination of both persistent and reversible 

changes has value for biomarker development and has been observed, for example, in 

relation to tobacco smoking where only a subset of DNAm changes identified between 

current vs. never smokers are also found between former vs. never smokers6,7.  

Research geared towards understanding epigenetic changes related to 

cannabinoids, which encompass endocannabinoids (endogenous ligands), natural 

cannabinoids (derived from cannabis and includes Δ9-tetrahydrocannabinol [THC] and 

cannabidiol), and synthetic cannabinoids, is growing. However, studies have been 

largely based on animal studies and human candidate gene studies8,9, with the only 

epigenome-wide study of cannabis use being performed in human sperm10. While not 

specific to cannabis use, there has also been one blood-based genome-wide 

longitudinal DNAm study in humans which identified early life DNAm changes 

associated with later adolescent substance use (latent factor combining tobacco, 

cannabis and alcohol use)11. To begin to address this gap in the field, we report the first 

blood-based EWAS of lifetime cannabis (ever vs. never) use, conducted using 

discovery (N = 1,730) and replication (N = 853) samples. We extended our EWAS 
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findings by using genetic information to help distinguish genetically- vs. exposure-driven 

effects. We further leveraged our EWAS results to develop the first multi-CpG classifier 

of lifetime cannabis (ever vs. never) use.  

 

METHODS 

Study population  

 The Sister Study is a prospective cohort of 50,884 women ascertained across the 

US between 2003–2009 that was designed to examine environmental and genetic risk 

factors of breast cancer12. Women, aged 35–75 years old, were enrolled if they had a 

sister diagnosed with breast cancer and no personal history of breast cancer at 

baseline. Whole blood samples were collected, along with data from questionnaires and 

interviews covering demographics, lifestyle, family and medical history, and 

environmental exposures.  

 Since the study’s inception, a number of sub-studies have been designed to 

address specific hypotheses related to women’s health. For the current study, we used 

existing DNAm array data from a case-cohort study of 2,878 non-Hispanic white women 

designed to identify blood-based DNAm changes associated with incident breast 

cancer, as described previously13,14. Briefly, the case-cohort study included a random 

sample of 1,336 women from the cohort and 1,542 additional women who later 

developed in situ or invasive breast cancer during follow-up (between enrollment and 

sampling of the case-cohort in 2015). Out of the 2,878 women, 1,616 women (1,542 + 

46 cases from the random sample) were diagnosed with breast cancer during follow-up 

and 1,262 women (1,336 – 46 cases from the random sample) remained clinically 

breast cancer free (see Supplementary Fig. S1 for study design). All women included in 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/620641doi: bioRxiv preprint 

https://doi.org/10.1101/620641
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

this study were clinically breast cancer free at the time of the blood draw used for 

DNAm data generation. 

 Informed written consent was obtained from all Sister Study participants. The 

Sister Study was approved by the Institutional Review Boards (IRBs) of the National 

Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, and 

the Copernicus Group (http://www.cgirb.com/irb-services/). The current study was 

approved by the IRB at RTI International. All research was performed in accordance 

with relevant guidelines and regulations. 

Cannabis assessment  

 Lifetime cannabis use was determined by response to the question, “Have you 

ever smoked marijuana?”, asked along with questions about tobacco smoking during 

the baseline computer-assisted telephone interview. Basing our primary analysis on 

ever-use facilitated our evaluation of genetic data using the largest genome-wide 

association study (GWAS) of cannabis use reported to date (N = 184,765) which 

focused on ever-use only15. Age of initiation (“How old were you the first time you 

smoked marijuana?”), duration of use (“In total, how many years did you smoke 

marijuana?”), and frequency of use (“During the years that you smoked marijuana, on 

average how often did you smoke it?”) were also assessed in the Sister Study and were 

considered for secondary analyses in the current study to characterize top EWAS 

findings. No information was available on time since last use to classify ever cannabis 

users as current vs. former users. Sister Study questionnaires can be accessed at 

https://www.sisterstudystars.org/. 
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DNAm data, quality control (QC), and pre-processing 

 Blood sample collection and DNA extraction have been described previously13,14. 

A total of 2,878 blood samples were assayed using the Illumina HumanMethylation450 

array which covers >450,000 CpG sites targeting promoters, CpG islands, 5’ and 3’ 

untranslated regions, the major histocompatibility complex, and some enhancer 

regions16. 

 Data quality assessment and pre-processing were conducted using the R 

package, ENmix17. A series of diagnostic plots were generated to detect problematic 

samples, arrays, and laboratory plates. The ENmix pipeline was implemented for data 

pre-processing and included the following steps: background correction using the 

ENmix method17; correction of fluorescent dye-bias using the RELIC method18; inter-

array quantile normalization; and correction of probe type bias using the RCP 

(regression on correlated CpGs) method19. Surrogate variables (SVs) of the array 

control probes were generated to adjust for technical artifacts. To control for cellular 

heterogeneity, blood cell type proportions (CD8T cells, CD4T cells, natural killer cells 

[NK], B cell, monocytes [Mono], and granulocytes [Gran]) were estimated following the 

Houseman method20. β-values, corresponding to the ratio of methylated intensities 

relative to the total intensity, were calculated to represent DNAm levels at each CpG. 

 Both sample- and probe-level exclusions were applied. In total, 295 samples 

were excluded due to poor bisulfite conversion efficiency (average bisulfite intensity 

<4000), outlier based on QC diagnostic plots (e.g., DNAm β-value distribution), low call 

rate (> 5% low quality data [Illumina detection P>1×10-6, number of beads <3, or values 

outside 3*Interquartile range (IQR)]), related individuals (one sister from each pair was 
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selected at random for exclusion), missing phenotype data, or date of breast cancer 

diagnosis preceding blood draw. A total of 67,564 probes were excluded: 16,100 probes 

with > 5% low quality data; 14,522 probes with a common SNP (minor allele frequency 

>0.01) at the single base extension site or CpG site; 26,799 cross-reactive probes 

mapping to multiple genomic locations21; 10,143 probes mapping to sex chromosomes. 

In addition, extreme DNAm β-value outliers were removed (outside 3*IQR); missing 

values were imputed using K-nearest neighbor. Following exclusions, the final analysis 

dataset included 2,583 women (Supplementary Fig. S1) and 417,948 CpGs.  

EWAS analysis 

 The Sister Study breast cancer case-cohort sample was randomly divided into 

discovery (2/3 of the overall sample: N = 1,730 [855 ever users]) and replication (1/3 of 

the overall sample: N = 853 [392 ever users]). Characteristics of the case-cohort sample 

used for analysis are provided in Table 1 and Supplementary Table S1.  

 For the EWAS, robust linear regression models were implemented using the R 

package, MASS22, to test the association between lifetime cannabis use (ever [used at 

least once in lifetime] vs. never use) and methylation (β-value) at each CpG site, 

adjusting for age (continuous), incident breast cancer status (event, non-event), tobacco 

smoking (never, former, current), alcohol use (noncurrent, current), laboratory plate, 

DNA extraction method, six control SVs, and six blood cell type proportions. To adjust 

for multiple testing, the false discovery rate (FDR) was controlled at 10% (Benjamini and 

Hochberg)23. Replication analyses were conducted using the same set of covariates. 

For replication, a Bonferroni correction was applied accounting for the number of CpGs 

tested. 
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 A series of sensitivity analyses were conducted to assess other possible 

confounders. We considered the following: current perceived stress (derived from items 

2, 6, 7, and 14 from the 14-item Perceived Stress Scale instrument24; scale 0–20), 

family income while growing up (low income, middle income and well-off), body mass 

index (BMI) as calculated from height and weight measured by examiners at baseline 

(continuous), and self-reported history of depression (yes, no) (Supplementary Table 

S1). To further rule out possible effects due to an association with subsequent breast 

cancer and use of alcohol and/or tobacco, we conducted stratified analyses by these 

variables using the combined sample for significant EWAS findings. EPISTRUCTURE 

was implemented using the python toolset, GLINT25, to rule out genetic confounding for 

significant EWAS findings. More specifically, the first four EPISTRUCTURE components 

(principal components) were computed, while accounting for estimated cell type 

proportions, and included as covariates in the model to adjust for population 

stratification. 

Multi-CpG classifier: development and validation 

We developed a multi-CpG classifier of lifetime cannabis use within the EWAS 

discovery sample (N = 1,730) and validated it using the replication sample (N = 853; 

withheld from model training). Least absolute shrinkage and selection operator (LASSO) 

regression26 was used for model training and variable selection. DNAm β-values were 

adjusted for the same set of covariates used in the EWAS. Instead of including all CpGs 

for model training, we selected subsets of CpGs aiming to reduce the amount of noise 

introduced in the model. As no gold-standard selection criteria exists, two different 

significance thresholds (P<1×10-5 and P<1×10-4) from our discovery lifetime cannabis 
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use EWAS were applied to select CpGs for input into LASSO regression. The R 

package, glmnet27, was used to implement LASSO regression and 10-fold cross 

validation for model selection (based on lambda) in the discovery sample. Details 

regarding the analytical steps and models are provided in Supplementary Methods 

online. Model performance was evaluated in the discovery sample and independent 

replication sample, separately, using the R package, pROC28, to perform a receiver 

operating characteristic (ROC) analysis. We calculated the 95% confidence interval of 

the area under the ROC curve (AUC) using 5,000 bootstrap iterations and derived 

empirical P-values for the AUCs using permutation testing (see Supplementary Methods 

online) 

Follow-up analyses of replicable EWAS findings 

 To further characterize replicable EWAS findings, we examined the relationship 

between DNAm levels and total duration of use among ever users in the combined 

sample (N = 1,239 [N = 855 from discovery + 392 from replication - 8 with missing 

information]). Total duration of use was divided into quartiles (upper [> 5 years of use] 

vs. lower quartile [< 1 year of use]) given the skewed distribution and the fact that less 

than one year of total use was categorized in the same way (i.e., cannot distinguish 

between 1 month vs. 6 months of total use). We also evaluated the effect of age of 

initiation (log transformed) on DNAm levels (N = 1,245 [N = 855 from discovery + 392 

from replication - 2 with missing information]; mean +/- SD: 20.85 ± 6.76 years). These 

secondary evaluations were restricted to these two exposure characteristics given the 

high degree of missing information (23%) and limited variability for frequency of use 

among ever users.  
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 Our EWAS findings could be due to underlying genetic effects or the effect of 

exposure to cannabis. First, to explore whether genetic risk factors for lifetime cannabis 

use could explain our findings, we used the set of eight genome-wide significant single 

nucleotide polymorphisms (SNPs) identified in the most recent lifetime cannabis use 

GWAS meta-analysis (N = 184,765; European ancestry)15 and the BIOS QTL browser29 

to identify CpGs associated with the cannabis use-associated SNPs in blood samples 

(i.e., determine if lifetime cannabis use-associated SNPs are cis-methylation 

quantitative trait loci [cis-meQTLs] in blood). We then examined whether any of the 

CpGs we identified in our EWAS overlapped with these cis-meQTL-CpGs. Of note, cis-

meQTLs provided through the BIOS QTL browser were identified using data on 3,841 

Dutch individuals and modeled without accounting for any phenotype or exposure.  

 Next, we used the BIOS QTL browser29 to identify blood-based cis-meQTLs for 

the lifetime cannabis-use associated CpGs observed in our EWAS. The Sister Study 

participants have been genotyped using the OncoArray that is customized to optimally 

capture cancer-associated SNPs30, but the 230,000 tagging SNP backbone does not 

provide sufficient coverage to directly model cis-meQTL associations with lifetime 

cannabis use in the Sister Study case-cohort sample. As such, we again used results 

from the lifetime cannabis use GWAS meta-analysis (N = 162,082 with 23andMe 

samples removed)15 and performed a look-up of the association between BIOS-

implicated cis-meQTLs and lifetime cannabis use. 
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RESULTS 

EWAS sample characteristics 

 On average, women who reported lifetime cannabis (ever) use were younger and 

more likely to report alcohol and tobacco use (Table 1). The prevalence of current 

tobacco smoking was low (7% of the total sample) and, among ever cannabis users, 

only half identified as a former tobacco smoker. Alcohol use was more prevalent in the 

sample with 10% of ever cannabis users reporting noncurrent use and only 3 individuals 

indicating never use. In addition, ever cannabis users were more likely to grow up in a 

family with higher income levels, have a lower BMI, and have a higher estimated 

proportion of CD8 T cells and a lower proportion of NK cells (Supplementary Table S1). 

However, after controlling for age, the estimated cell type proportions were not 

associated (P>0.05) with lifetime cannabis use. There was also suggestive evidence in 

the discovery sample, but not in the replication sample, for differences between ever 

and never users by self-reported history of depression and current perceived stress 

(Supplementary Table S1). None of the covariates examined, except for the estimated 

proportion of NK cells, were significantly different (P>0.05) between the discovery and 

replication samples (Table 1 and Supplementary Table S1). 

EWAS of lifetime cannabis use: Discovery and Replication 

 We identified one lifetime cannabis use-associated CpG, cg15973234, at 

FDR<0.10 (Figure 1 and Supplementary Table S2 [EWAS results with unadjusted 

P<0.05]). Overall, effects sizes were small (Supplementary Fig. S2), and there was no 

evidence of inflation (λ=1.02; Supplementary Fig. S3). Further adjustment for potential 

confounders, including current perceived stress, family income while growing up, BMI, 
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and history of depression did not substantively affect the overall results, thus the more 

parsimonious model remained our primary model (see Supplementary Fig. S4–S5 for 

model comparisons).  

 The cg15973234-lifetime cannabis use association met a Bonferroni correction in 

the replication sample (PReplication = 0.04, βReplication = -0.005; Table 2) and in the 

combined sample (PCombined = 3.3×10-8, βCombined = -0.008; Table 2). In further testing of 

cg15973234 in the combined sample, we found that it was not associated with total 

duration of use (P = 0.85; β = 0.0005) or age of initiation (P = 0.35; β = 0.01).  

 Additional sensitivity analyses designed to further evaluate possible effects of 

cigarette smoking, alcohol use, incident breast cancer, and genetic ancestry on our 

observed cg15973234 association did not suggest significant confounding 

(Supplementary Table S3).  

 The lifetime cannabis use-associated cg15973234 lies within a CpG island 

spanning the 5’ untranslated region of the cell migration inducing hyaluronidase 1 

(CEMIP) gene. The adjacent CpGs in the island are located within 1kb of cg15973234 

but are not highly correlated with cg15973234 and thus provide minimal support for the 

EWAS signal (Supplementary Table S4). The most highly correlated CpG within the 

region (cg24159335; Pearson correlation [r] with cg15973234 = 0.29) has a similar 

mean DNAm β-value and is nominally associated with lifetime cannabis use with a 

direction of effect consistent with cg15973234 (P = 3.2×10-3; β = -0.003; Supplementary 

Table S4).  
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Blood-based multi-CpG classifiers of lifetime cannabis use 

 Using the top 59 most significant CpGs (EWAS discovery P<1×10-4) as input into 

LASSO regression for model training resulted in a classifier composed of 49 CpGs 

(Supplementary Table S5). We evaluated model performance in the discovery sample 

used for model training and the independent replication sample. The 49-CpG classifier 

produced an AUC = 0.74 (95% confidence interval [0.72, 0.76], P = 2.00×10-5; Figure 2 

and Supplementary Fig. S6) in the discovery sample and AUC = 0.54 ([0.51, 0.57], P = 

4.64×10-2; Figure 2 and Supplementary Fig. S7) in the replication (validation) sample. 

Including only the top 5 most significant CpGs (EWAS discovery P<1×10-5) for model 

training resulted in a 3-CpG classifier with reduced model performance (AUCDiscovery = 

0.59 [0.57, 0.61], P = 2.00×10-5; AUCReplication = 0.51 [0.48, 0.54], P = 0.61; 

Supplementary Table S6 and Supplementary Fig. S8–S10). Our replicable EWAS 

finding, cg15973234, was included in both models. 

Follow-up of replicable EWAS finding 

 None of the eight reported lifetime cannabis use-associated SNPs, from the 

largest GWAS to date (N = 184,765)15, are cis-meQTLs of cg15973234 as they are not 

located on the same chromosome as our EWAS finding. To further assess the 

possibility that there may be other, weaker genetic risk factors of cannabis use driving 

our EWAS finding, we used the BIOS QTL browser and identified two independent cis-

meQTLs for cg15973234 in blood (rs3848177 and rs8025670; FDR<0.05), as 

determined by statistical modeling of cis-meQTL effects29. To assess the genetic 

association between these common SNPs and lifetime cannabis use, we again used 
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results from the lifetime cannabis use GWAS meta-analysis15 and found no association 

(Table 3).  

 

DISCUSSION 

 We report the first blood-based EWAS of cannabis use where we identified and 

replicated a difference between ever and never users in DNAm levels at cg15973234 

(CEMIP). DNAm at this site is not correlated with reported cannabis-associated SNPs15, 

suggesting that our finding is unlikely to be genetically-driven and more likely related to 

the cannabis exposure. Further characterization of the cg15973234-lifetime cannabis 

use association indicated that the finding appears robust to total duration of use and 

age of initiation, suggesting that this CpG within CEMIP acts as a general indicator of 

lifetime cannabis use (i.e., a marker of ever vs. never cannabis use that does not vary 

by duration of use or age at first use).  

CEMIP plays a role in hyaluronan binding and degradation31. Hyaluronan, one of 

the main components of the extracellular matrix, is an important regulator of 

inflammation32 and immune processes33. Although cannabinoids are thought to play a 

role in immunoregulation and have anti-inflammatory properties34, there is little evidence 

to date that those processes are modulated by CEMIP or downstream genes in the 

CEMIP pathway35,36. CEMIP has been associated with various disorders, including 

nonsyndromic hearing loss37, autoimmune disorders31,38, cancer39-41, and psychiatric 

disorders42,43. In particular, CEMIP has been implicated in bipolar disorder and 

schizophrenia43, as a candidate pituitary gland biomarker for schizophrenia42, and as 

differentially expressed in the striatal tissue of a schizophrenia mouse model (Brd1+/−)44. 
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These associations are in line with prior reports describing both epidemiological45,46 and 

genetic associations15 between cannabis use and psychiatric disorders. 

 Our work reports the first multi-CpG classifier of cannabis use. Although the 49-

CpG classifier produced a statistically significant AUC (empirical P<0.05) in both the 

discovery (used for model training) and replication (withheld from model training, used 

for validation) samples, it demonstrated limited discrimination between ever vs. never 

users in the replication sample (AUCReplication=0.54, as compared to AUCDiscovery=0.74). 

While a reduction in model performance between training and validation samples is 

generally expected, these results are also consistent with single CpG association 

results in our discovery vs. replication samples for top EWAS findings (Supplementary 

Table S2). None of the CpGs used for model training in the discovery sample were 

associated (P<0.05) with lifetime cannabis use in the replication sample, apart from the 

CEMIP CpG and one CpG in SIK3 (SIK family kinase 3). Restricting model training to 

only the top 5 CpGs based on the discovery EWAS resulted in a 3-CpG classifier with 

poorer model performance. This pattern of reduced model performance with a smaller 

set of CpGs has been reported previously, for example, with DNAm biomarkers of 

alcohol use47. While efforts to develop multi-CpG classifiers of alcohol use have been 

successful (AUC = 0.90–0.99 for the full model [CpGs plus age, sex, and BMI] as 

compared to AUC = 0.63–0.80 for the null model [age, sex, and BMI]), these classifiers 

were generated using larger training (N = 2,427) and validation samples (N = 920–

2,003) and focused on an extreme phenotype (current heavy alcohol intake vs. non-

drinkers) likely to have much larger effect sizes47.  
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 Our study presents the first replicable blood-based CpG biomarker associated 

with lifetime cannabis use. However, our study has limitations. Our findings may not be 

fully generalizable due to the case-cohort design (i.e., restricted to non-Hispanic 

Caucasian women and further enriched for women who subsequently developed breast 

cancer). Although our study relied on self-reported lifetime cannabis use, which could 

lead to underreporting and misclassification, these factors would tend to bias towards 

the null resulting in loss of statistical power. While self-reported age at first use, duration 

of use, and frequency of use were also collected, we had reduced statistical power (as 

compared to lifetime use) to evaluate DNAm levels at cg15973234 by duration of use 

and age of initiation and we were unable to evaluate dose-response due to the low level 

of response to frequency of use. Further, inaccurate and incomplete recall could affect 

those data, as the average time since first use was 32.6 ± 6.1 years ago with an 

average total duration of use of 4.6 ± 7.2 years. Time since last use was not collected to 

assess recency of use. Finally, we cannot rule out the effect of other illicit drugs (e.g., 

cocaine, opioids) as those data were not collected in the Sister Study. However, we 

expect the prevalence of other illicit drug use to be low in this cohort. We also do not 

suspect that our findings are driven by breast cancer, or the use of tobacco and alcohol 

because our results were robust to stratified analyses. Cg15973234 was not reported as 

one of the 2,098 replicated breast cancer-associated CpGs in the most recent breast 

cancer EWAS48. Further, in the largest EWAS of tobacco smoking to date7, cg15973234 

was not identified as one of the 18,760 CpGs associated with current and/or former 

smoking (FDR<0.05), or in the largest EWAS of alcohol to date47, as one of the 363 

CpGs associated with alcohol consumption (P<1×10-7). 
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 We are also unable to use our results to make any inference regarding the 

neurobiological mechanisms underlying cannabis use. In the case of epigenetic 

biomarkers for substance use there is no a priori expectation that genes dysregulated in 

blood will reflect neurobiological mechanisms underlying substance use. DNAm profiles 

differ across tissues and cell types and studies conducted using a more biologically 

relevant brain tissue (e.g., nucleus accumbens, prefrontal cortex) would be needed to 

inform the neurobiology of cannabis use disorder49. Once brain-based DNAm marks in 

humans (necessitating postmortem tissues) have been identified, however, these 

results could be used to identify blood proxies of exposure for overlapping blood- and 

brain-based DNAm changes related to lifetime cannabis use. 

 Our EWAS results provide evidence that blood-based DNAm can inform 

cannabis use histories. Larger sample sizes and richer phenotype data (e.g., enabling 

us to compare more extreme groups, such as lifetime ‘regular’ users) are needed to 

identify additional CpG biomarkers and to develop stronger, more precise multi-CpG 

classifiers, including ones indicative of cannabis-related health outcomes. 
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FIGURES  

 

 

Figure 1. Discovery EWAS of lifetime cannabis use. CpGs are shown according to their 

position on chromosomes 1–22 (alternating red/blue) and plotted against their -log10P-

values. The dotted horizontal line indicates FDR<0.10. The genomic inflation factor (λ) 

was 1.02. 
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Figure 2. ROC curves for the 49-CpG classifier of lifetime cannabis use in the discovery 

and replication (validation) samples. 
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TABLES 
 

Table 1. Description of NIEHS Sister Study samples (total N = 2,583)a by ever/never lifetime cannabis use. 

Description 
Discovery (N=1,730) Replication (N=853) 

Discovery 
vs. 

Replicationc 

 Never 
(N=875) 

Ever 
(N=855) 

P-valueb 
Never 

(N=461) 
Ever 

(N=392) 
P-valueb P-valueb 

Age at blood draw, 
mean (SD) 

60.43 (8.60) 53.63 (7.45) 2.20×10-16 60.25 (8.53) 53.15 (7.68) 2.20×10-16 0.82 

Incident breast 
cancer, N (%) 

  0.20   0.38 0.77 

Non-event 369 (42.17) 387 (45.26)  192 (41.65) 175 (44.64)   

Event 506 (57.83) 468 (54.74)  269 (58.35) 217 (55.36)   

Tobacco smoke, N 
(%) 

  6.48×10-22   1.86×10-9 0.15 

Never 546 (62.40) 336 (39.30)  299 (64.86) 170 (43.37)   

Former 293 (33.49) 432 (50.53)  140 (30.37) 185 (47.19)   

Current 36 (4.11) 87 (10.18)  22 (4.77) 37 (9.44)   

Alcohol used, N (%) 
  5.65×10-11   3.92×10-8 0.36 

Noncurrent 197 (22.51) 92 (10.76)  99 (21.48) 31 (7.91)   

Current 678 (77.49) 763 (89.24)  362 (78.52) 361 (92.09)   

aFinal dataset post-quality control exclusions 
bP-values are based on a Fisher's exact test and t-test for categorical and continuous variables, respectively. P<0.05 
are shown in bold.  
cTests for differences between the discovery and replication samples 
dNever and former users are combined as there are only N=3 never alcohol users among ever cannabis users 
Abbreviation: SD, standard deviation 
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Table 2. Replication of cg15973234a−lifetime cannabis use association. 

Sister Study Sample N Beta  SE P-value 

Discovery 1,730 -0.009 0.002 1.32×10-7,b 

Replication 853 -0.005 0.003 4.51×10-2 

Combined 2,583 -0.008 0.001 3.32×10-8 
aProbe located within the gene, CEMIP (chr15:81072152; GRCh37/hg19 
build) 

bFDR adjusted P-value = 0.06 

Abbreviation: SE, standard error 

 
 
 
 
 
 
 
Table 3. Independent blood-based cis-meQTLs of cg15973234 are not associated with 
lifetime cannabis use in recent GWAS. 

SNP Gene 
Distance to 

CpGa 
cis-meQTL 

P-valueb 
GWAS meta-analysisc 

        Beta P-value MAF 

rs3848177 CEMIP 0.064 2.37×10-18 -0.0024 0.85 0.16 

rs8025670 ARNT2 188.6 5.95×10-6 -0.0098 0.41 0.18 

aDistance in kilobases 
bN = 3,841; BIOS QTL browser (https://genenetwork.nl/biosqtlbrowser/) 
cResults based on the International Cannabis Consortium (ICC) + UK-Biobank (UKB) 
samples (N = 162,082). These SNPs were not among the top 10K results based on the 
full sample (N = 184,765; ICC + UK Biobank + 23andMe) (Pasman et al. Nat Neurosci 
2018) 

Abbreviation: MAF, minor allele frequency 
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