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ABSTRACT	

Many	studies	have	revealed	the	ability	of	the	endosymbiotic	bacteria	Wolbachia	to	protect	its	arthropod	hosts	

against	diverse	pathogens.	However,	as	Wolbachia	may	also	increase	the	susceptibility	of	its	host	to	infection,	

predicting	 the	 outcome	 of	 a	 particular	 Wolbachia-host-pathogen	 interaction	 remains	 elusive.	 Yet,	

understanding	 such	 interactions	 is	 crucial	 for	 disease	 and	pest	 control	 strategies.	Tetranychus	 urticae	 spider	

mites	are	herbivorous	crop	pests,	causing	severe	damage	on	numerous	economically	important	crops.	Due	to	

the	rapid	evolution	of	pesticide	resistance,	biological	control	strategies	using	generalist	entomopathogenic	are	

being	 developed.	 However,	 although	 spider	 mites	 are	 infected	 with	 various	Wolbachia	 strains	 worldwide,	

whether	 this	endosymbiont	protects	 them	 from	 fungi	 is	as	yet	unknown.	Here,	we	compared	 the	 survival	of	

two	 populations,	 treated	 with	 antibiotics	 or	 harbouring	 different	Wolbachia	 strains,	 after	 exposure	 to	 the	

fungal	 biocontrol	 agents	 Metarhizium	 brunneum	 and	 Beauveria	 bassiana.	 In	 one	 population,	 Wolbachia 

affected	 survival	 in	 absence	 of	 fungi	 but	 not	 in	 their	 presence,	whereas	 in	 the	 other	 population	Wolbachia	

increased	the	mortality	induced	by	B.	bassiana.	To	control	for	potential	effects	of	the	bacterial	community	of	

spider	 mites,	 we	 also	 compared	 the	 susceptibility	 of	 two	 populations	 naturally	 uninfected	 by	Wolbachia,	

treated	 with	 antibiotics	 or	 not.	The	 antibiotic	 treatment	 increased	 the	 susceptibility	 of	 spider	 mites	 to	M.	

brunneum	 in	 one	 naturally	Wolbachia-uninfected	 population,	 but	 it	 had	 no	 effect	 in	 the	 other	 treatments.	

These	 results	 highlight	 the	 complexity	 of	 within-host	 pathogens	 interactions,	 and	 the	 importance	 of	

considering	 the	 whole	 bacterial	 community	 of	 arthropods	 when	 assessing	 the	 effect	 of	 Wolbachia	 in	 a	

particular	system.	
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INTRODUCTION	

The	 maternally-inherited	 bacterium	 Wolbachia,	 first	 identified	 in	 Culex	 pipiens	 mosquitoes	 (Hertig	 and	

Wolbach	 1924),	 is	 to	 date	 the	 best	 studied	 and	 probably	 the	 most	 common	 endosymbiont	 of	 arthropods.	

Indeed,	 it	 is	 estimated	 to	 infect	 up	 to	 52%	 of	 arthropod	 species	 (Weinert	 et	 al.	 2015),	 a	 success	 mainly	

attributed	 to	 its	 ability	 to	 induce	 various	 types	 on	 reproductive	 manipulation	 in	 hosts	 to	 increase	 the	

reproductive	success	of	 infected	 females,	 thereby	 increasing	 its	own	transmission	 (Werren	et	al.	2008).	Such	

manipulations	 include	 induction	 of	 parthenogenetic	 reproduction	 of	 females,	 feminization	 of	 males	 (i.e.	

genotypic	males	develop	as	phenotypic	females),	male	killing	(i.e.	infected	males	die	during	embryogenesis	or	

late	larval	instars	to	the	advantage	of	surviving	infected	female	siblings)	and	cytoplasmic	incompatibility	(CI;	i.e.	

modification	of	male	sperm	so	that	females	cannot	produce	offspring	unless	they	are	infected	with	the	same	

strain	 of	Wolbachia	 as	 their	 mates).	 Such	 ability	 of	Wolbachia	 to	 rapidly	 spread	 within	 and	 among	 host	

populations	 (Engelstadter	 and	 Hurst	 2009),	 has	 thus	 raised	 growing	 interests	 in	 using	 it	 in	 biocontrol	

programmes	(Bourtzis	2008;	Bourtzis	et	al.	2014;	Islam	2007).		

Possible	Wolbachia-based	biocontrol	 strategies	 include	 the	use	of	Wolbachia	 as	microbial	 biocontrol	

agent,	for	instance	to	enhance	productivity	of	natural	predators	and	parasites	such	as	parasitoids	(e.g.	Grenier	

et	 al.	 1998;	 Stouthamer	 1993;	 Stouthamer	 et	 al.	 1999);	 as	 a	 potential	 gene-drive	 vehicle	 for	 population	

replacement	 strategies	 through	 cytoplasmic	 drive	 (i.e.	 provides	 a	mechanism	 for	 the	 autonomous	 spread	 of	

desired	genes	into	targeted	populations;	(Dobson	2003;	Dobson	et	al.	2002;	Durvasula	et	al.	1997;	Sinkins	and	

Godfray	 2004;	 Turelli	 and	 Hoffmann	 1999);	 or	 for	 sterile	 insect	 techniques	 (SIT)	 to	 suppress	 target	 pest	

populations	by	repeated	sweeps	with	infected	individuals	(Calvitti	et	al.	2015;	Laven	1967;	Zhang	et	al.	2015a;	

Zhong	and	Li	2014).	Subsequently,	the	recent	discovery	of	the	ability	of	Wolbachia	to	protects	its	hosts	against	

a	wide	array	of	pathogens,	 including	viruses,	protozoan	parasites,	 fungi,	or	pathogenic	bacteria	 (reviewed	 in	

Cook	 and	McGraw	 2010)	 has	 provided	 new	 avenues	 for	 the	 control	 of	 vector-borne	 diseases	 (reviewed	 by	

Iturbe-Ormaetxe	et	al.	2011;	Vavre	and	Charlat	2012).	For	instance,	deliberate	introductions	of	Wolbachia	into	

Aedes	aegypti	mosquito	populations	are	currently	being	successfully	undertaken	in	several	regions	worldwide	

to	 control	 dengue	 virus	 (e.g.	 Hoffmann	 et	 al.	 2014;	 2011;	 Nguyen	 et	 al.	 2015).	 However,	 such	 ability	 of	

Wolbachia	 to	 interfere	with	diverse	host	pathogens	may	have	undesirable	effects	on	biocontrol	 strategies	 if,	

for	 instance,	 the	 bacterium	 interferes	 with	 parasitic	 biocontrol	 agents,	 a	 possibility	 that	 has	 been	 largely	

overlooked.	 Conversely,	 natural	 Wolbachia	 infections	 in	 several	 host	 species	 may	 also	 increase	 host	

susceptibility	to	parasite	infection	(e.g.	Fytrou	et	al.	2006;	Graham	et	al.	2012;	reviewed	in	Hughes	et	al.	2014),	

raising	 the	 possibility	 that	Wolbachia	 could	 actually	 facilitate	 the	 action	 of	 other	 biocontrol	 agents.	 Hence,	

assessing	 the	 effect	 of	Wolbachia	 infection	 on	 the	 efficiency	 of	 different	 strains	 and/or	 species	 of	 parasitic	

biocontrol	agents	should	be	a	prerequisite	for	the	development	of	efficient	and	long-lasting	control	strategies	
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(Zindel	et	al.	2011).	

Spider	mite	 of	 the	 genus	Tetranychus	 (Acari:	 Tetranychidae)	 are	 ubiquitous	major	 crop	 pests	 of	 c.a.	

1100	plant	species	belonging	to	more	than	140	different	plant	families	(Migeon	and	Dorkeld	2006-2017).	Due	

to	 their	 short	 generation	 time	and	high	 fecundity,	 spider	mites	 rapidly	develop	 resistance	 to	pesticides	 (Van	

Leeuwen	 et	 al.	 2010),	 which	 led	 to	 the	 development	 of	 alternative	 control	 strategies	 such	 as	 the	 use	 of	

essential	 oils	 or	 natural	 enemies	 (e.g.	 predators,	 entomopathogenic	 bacteria	 and	 fungi;	 (Attia	 et	 al.	 2013).	

Among	 them,	 entomopathogenic	 fungi	 have	 been	 successfully	 used	 in	 Integrated	 Pest	 Management	 (IPM)	

programs,	and	commercial	formulations	are	currently	available	to	farmers	in	most	parts	of	the	world	(Skinner	

et	 al.	 2014).	 In	 particular,	 fungi	 such	 as	Beauveria	 bassiana,	Metarhizium	 spp.,	 Isaria	 spp.	 and	 Lecanicillium	

spp.,	 have	 been	 identified	 as	 good	 candidates	 for	 efficient	 spider	 mite	 control	 (e.g.	 Bugeme	 et	 al.	 2008;	

Chandler	et	al.	2005;	Maniania	et	al.	2008;	Shi	et	al.	2008;	Shin	et	al.	2017),	and	their	compatibility	with	other	

control	methods,	such	as	predatory	mites	(e.g.	Dogan	et	al.	2017;	Seiedy	2014;	Seiedy	et	al.	2012;	Seiedy	et	al.	

2013;	Ullah	and	Lim	2017;	Vergel	et	al.	2011;	Wu	et	al.	2016)	or	pesticides	(e.g.	Irigaray	et	al.	2003;	Klingen	and	

Westrum	 2007;	 Shi	 et	 al.	 2005)	 is	 widely	 studied.	 Curiously,	 however,	 the	 interaction	 between	

entomopathogenic	 fungi	 and	 bacterial	 endosymbionts	 of	 spider	 mites	 has,	 to	 our	 knowledge,	 never	 been	

investigated.	This	is	at	odd	with	the	fact	that,	on	the	one	hand,	natural	populations	of	spider	mites	often	carry	

several	 maternally-inherited	 endosymbiotic	 bacteria	 with	 variable	 prevalence,	 Wolbachia	 being	 the	 most	

prevalent	(Gotoh	et	al.	2007;	Liu	et	al.	2006;	Zélé	et	al.	2018b;	Zhang	et	al.	2016);	and,	on	the	other	hand,	

that	Wolbachia	has	been	shown	to	protect	Drosophila	melanogaster	hosts	against	the	mortality	induced	by	B.	

bassiana	(Panteleev	et	al.	2007,	although	no	such	effect	has	been	found	in	D.	simulans;	Fytrou	et	al.	2006).	

To	 examine	 the	 effect	 of	 the	 interaction	 between	Wolbachia	 and	 fungal	 infection	 on	 spider	 mite	

survival,	we	carried	out	a	fully	factorial	experiment	using	two	naturally	Wolbachia-infected	and	two	naturally	

Wolbachia-uninfected	 spider	 mite	 populations	 belonging	 to	 the	 green	 and	 the	 red	 form	 of	 T.	 urticae,	 and	

treated	or	not	with	antibiotics.	We	used	two	generalist	entomopathogenic	 fungi	 species,	Beauveria	bassiana	

and	Metarhizium	brunneum,	as	Beauveria	and	Metarhizium	spp.	are	among	the	most	used	fungi	in	commercial	

production	 (Vega	et	 al.	 2009),	with	wide	geographical	 and	host	 ranges	 (Greif	 and	Currah	2007;	Gurlek	et	 al.	

2018;	Meyling	and	Eilenberg	2007;	Rehner	2005;	Roberts	and	Leger	2004).	The	specific	aims	of	this	work	were	

to	 determine:	 (i)	 whether	 infection	 with	 a	 natural	Wolbachia	 strain	 protects	 spider	 mites	 against	 fungus-

induced	mortality,	 (ii)	whether	 this	effect	depends	on	 the	Wolbachia	 strain	and/or	other	bacteria	present	 in	

spider	mites,	and	(iii)	whether	it	depends	on	the	fungus	species.	We	then	discuss	possible	mechanisms	leading	

to	our	results,	the	importance	of	considering	the	whole	bacterial	community	of	arthropods	when	assessing	the	

effect	of	Wolbachia	in	a	particular	system,	as	well	as	the	potential	consequences	of	the	presence	of	Wolbachia	

for	the	success	of	spider	mite	control	strategies	using	entomopathogenic	fungi.	
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MATERIALS	AND	METHODS	

Spider	mite	populations	and	rearing	

Four	populations	of	Tetranychus	urticae	were	used	in	this	study,	two	(AlRo	and	AMP)	belonging	to	the	red	form	

(also	referred	to	as	T.	cinnabarinus	by	some	authors;	e.g.	Li	et	al.	2009;	Shi	et	al.	2005;	Shi	and	Feng	2004),	and	

two	 (DEF	 and	 TOM)	 belonging	 to	 the	 green	 form.	 These	 populations	 have	 been	 collected	 in	 the	 Iberian	

Peninsula	 from	2010	 to	2017,	on	different	plant	 species.	All	 the	 information	concerning	 these	populations	 is	

summarized	 in	 Table	 S1.	 After	 collection,	 these	 populations	 were	 reared	 in	 the	 laboratory	 under	 standard	

conditions	(24±2ºC,	60%	RH,	16/8h	L/D)	at	high	numbers	(c.a.	500-1000	females	per	population)	in	insect-proof	

cages	containing	bean	plants	(Phaseolus	vulgaris,	cv.	Contender	seedlings	obtained	from	Germisem,	Oliveira	do	

Hospital,	Portugal).	

	

Endosymbiont	infection	

Upon	collection	from	the	field,	the	populations	AMP	(red	form)	and	TOM	(green	form)	were	naturally	infected	

by	two	different	strains	of	Wolbachia,	although	these	strains	are	very	closely	related,	having	1	SNP	difference	

on	 the	 sequences	 of	 both	 the	 fbpA	 and	 coxA	 genes	 in	 the	multilocus	 sequence	 typing	 system	developed	by	

Baldo	 et	 al.	 (2006)	 for	Wolbachia.	 The	 population	 AMP	 is	 infected	 by	 the	Wolbachia	 strain	 ST481	 (isolate	

'Turt_B_wUrtAmp';	 id:	 1858	 in	 the	 PubMLST	 Wolbachia	 MLST	 database	 available	 at	 http://	

www.pubmlst.org/wolbachia/);	 and	 the	 population	 TOM	 is	 infected	 by	 the	Wolbachia	 strain	 ST280	 (isolate	

'Turt_B_wUrtTom';	id:	1857).	The	two	other	populations,	AlRo	(red	form)	and	DEF	(green	form),	were	naturally	

uninfected	 by	Wolbachia	 and	 none	 of	 the	 populations	 used	 in	 this	 study	 carried	 other	maternally-inherited	

bacterial	endosymbionts	(i.e.	Cardinium,	Rickettsia,	Spiroplasma,	Arsenophonus)	at	the	time	of	the	experiment,	

as	confirmed	by	PCR	using	the	methods	described	in	Zélé	et	al.	(2018b;	2018c).	

	

Antibiotic	treatments	

Roughly	 2	months	 (i.e.	 4	 spider	mite	 generations)	 before	 the	onset	 of	 the	 experiment,	 a	 rifampicin	 solution	

(0.05%,	w/v)	was	used	 to	 treat	mites	 (n=70	adult	 females	 initially)	 from	each	population	 for	one	generation	

(Gotoh	et	al.	2005).	This	allowed	to	obtain	Wolbachia-uninfected	AMP	and	TOM	populations	as	well	as	controls	

for	the	antibiotic	treatment	for	the	naturally	uninfected	populations	AlRo	and	DEF.	During	the	treatment,	mites	

were	maintained	in	petri	dishes	containing	bean	leaf	fragments	placed	on	cotton	with	the	antibiotic	solution.	

After	 one	 generation,	 100	 adult	mated	 daughters	 from	 each	 treated	 population	were	 transferred	 in	 insect-

proof	 cages	 containing	 bean	 plants,	 in	 the	 same	 laboratory	 conditions	 than	 the	 untreated	 populations,	 and	

these	 new	populations	were	 allowed	 to	 grow	 for	 3	 successive	 generations	 to	 avoid	 potential	 side	 effects	 of	
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antibiotic	treatment	(Ballard	and	Melvin	2007;	O'Shea	and	Singh	2015;	Zeh	et	al.	2012).	One	generation	before	

the	onset	of	 the	experiment	pools	of	100	 females	were	 taken	 from	each	treated	population	and	checked	by	

PCR	to	confirm	that	they	were	uninfected	by	Wolbachia	as	described	in	Zélé	et	al.	(2018c).		

	

Entomopathogenic	fungi	strains	and	preparation	of	inoculum	

We	used	 the	 strains	V275	 (=	Met52,	 F52,	BIPESCO	5)	of	Metarhizium	brunneum	 and	UPH-1103	of	Beauveria	

bassiana,	 obtained	 from	Swansea	University	 (UK)	 and	 from	Siedlce	University	 (Poland),	 respectively,	 as	 they	

were	 previously	 shown	 to	 have	 the	 potential	 to	 suppress	 T.	 urticae	 populations	 (Dogan	 et	 al.	 2017).	 The	

procedures	 used	 for	 fungal	 growth,	 inoculum	 preparation	 and	 spider	 mite	 infection	 are	 similar	 to	 that	

described	in	Dogan	et	al.	(2017).	Briefly,	the	two	fungi	were	grown	on	Sabouraud	Dextrose	Agar	(SDA)	medium	

at	25	°C	for	2	weeks.	Conidia	were	harvested	from	sporulating	cultures	with	the	aid	of	a	spatula,	washed	with	

sterile	distilled	water	and	filtered	through	4	layers	of	gauze	to	remove	any	hyphae.		

	

Spider	mite	infection	and	survival		

The	experiment	was	conducted	in	a	growth	chamber	under	standard	conditions	(25	±	2°C,	80%	RH,	16/8	h	L/D).	

Roughly	2	weeks	prior	to	the	experiment,	ca.	100	females	were	collected	from	each	mass	culture	and	allowed	

to	lay	eggs	during	4	days	on	detached	bean	leaves	placed	on	water-soaked	cotton.	One	day	prior	to	the	onset	

of	the	experiment,	20	young	adult	mated	females	(hence	with	similar	age)	were	randomly	collected	from	these	

cohorts	and	placed	on	a	9cm2	bean	leaf	disc	placed	on	wet	cotton	(to	ensure	the	leaf	remained	hydrated)	with	

the	abaxial	(underside)	surface	facing	upwards.	On	the	first	day	of	the	experiment,	the	surface	of	the	leaf	discs	

was	sprayed	using	a	hand	sprayer	with	2.5	ml	of	a	spore	suspension	of	M.	brunneum	or	B.	bassiana	 in	0.03%	

(v/v)	 aqueous	 Tween	 20	 at	 1	 ×	 107	 conidia/ml,	 or,	 as	 control,	 with	 0.3%	 aqueous	 Tween	 20	 only.	 Twelve	

replicates	 per	 treatment	 and	 per	 population	 were	 performed	 within	 2	 experimental	 blocks	 of	 one	 day	

difference	(6	replicates	of	each	treatment	per	block).	

	

Statistical	analysis	

Analyses	were	carried	out	using	the	R	statistical	package	(version	3.5.3).	The	general	procedure	for	building	the	

statistical	 models	 was	 as	 follows.	 Survival	 data	 were	 analysed	 using	 Cox	 proportional	 hazards	 mixed-effect	

models	 (coxme,	 kinship	 package).	 Spider-mite	 populations	 (AlRo,	 AMP,	 DEF	 and	 TOM),	 antibiotic	 treatment	

(treated	 with	 rifampicin	 or	 not),	 and	 infection	 treatment	 (sprayed	 with	 BB:	 Beauveria	 bassiana,	with	 MB:	

Metarhizium	 brunneum,	 or	 with	 Tween	 20	 only	 as	 control)	 were	 fitted	 in	 as	 fixed	 explanatory	 variables,	

whereas	 discs	 nested	within	 population	 and	 block	 were	 fitted	 as	 random	 explanatory	 variables.	 To	 explore	

significant	 three-way	 interaction	 between	 the	 three	 fixed	 variables,	 each	 population	 was	 then	 analyzed	
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separately	with	the	same	model	structure,	except	that	the	variable	population	was	removed	from	the	model.	

Hazard	ratios	(HR)	were	then	obtained	from	these	models	as	an	estimate	of	the	difference	between	the	rates	

of	dying	 (i.e.	 the	 instantaneous	 rate	of	 change	 in	 the	 log	number	of	 survivors	per	unit	 time;	 (Crawley	2007)	

between	the	untreated	controls	and	the	BB	or	MB	treatments	for	each	population.		

Because	 the	 timing	of	 infection	 is	 an	 important	 parameter	 for	 the	 fitness	 of	 parasites,	 an	 additional	

early	measurement	of	survival,	the	proportion	of	dead	mites	at	3	days	post	infection	(dpi),	was	obtained	from	

Kaplan–Maier	 estimates	 of	 the	 survival	 distribution	 for	 each	 disc.	We	 chose	 this	 timing	 as	 it	 is	 close	 to	 (or	

already	above)	the	median	survival	upon	infection	in	most	of	the	populations	tested,	and	hence	corresponds	to	

a	threshold	time-point	to	unravel	 important	differences	between	treatments.	The	numbers	of	dead	and	alive	

mites	 at	 3	 dpi	 were	 computed	 using	 the	 function	 cbind	 and	 analysed	 with	 a	 mixed	 model	 glmmadmb	

procedure	 (glmmADMB	 package)	 with	 a	 negative	 binomial	 error	 distribution	 (family	 “nbinom1”	 with	 a	 Øµ	

variance;	 chosen	 based	 on	 the	 Akaike	 information	 criterium)	 to	 correct	 for	 overdispersed	 errors.	 As	 above,	

populations,	infection	and	antibiotic	treatment	were	fitted	in	as	fixed	explanatory	variables,	whereas	block	was	

fitted	as	random	explanatory	variable.	

Maximal	 models,	 including	 all	 higher-order	 interactions,	 were	 simplified	 by	 sequentially	 eliminating	

non-significant	 terms	 and	 interactions	 to	 establish	 a	minimal	model	 (Crawley,	 2007).	 The	 significance	of	 the	

explanatory	variables	was	established	using	using	chi-squared	tests	(Bolker	2008).	The	significant	chi-squared	

values	 given	 in	 the	 text	 are	 for	 the	 minimal	 model,	 whereas	 non-significant	 values	 correspond	 to	 those	

obtained	before	deletion	of	the	variable	from	the	model.		

To	further	explore	significant	 interactions	between	infection	and	antibiotic	treatment	effects	on	both	

HR	 and	 mortality	 at	 3	 dpi,	 the	 two	 factors	 were	 concatenated	 to	 fit	 a	 single	 fixed	 factor	 containing	 all	

treatments	levels	in	the	models.	Multiple	comparisons	were	then	performed	using	General	Linear	Hypotheses	

(glht,	package	multicomp)	with	Bonferroni	corrections.	

	

RESULTS	

Overall,	 we	 found	 a	 significant	 three-way	 interaction	 between	 the	 effect	 of	 the	 infection	 by	 fungi	 (control	

females	sprayed	with	Tween	20	only,	BB:	 females	sprayed	with	B.	bassiana,	or	MB:	females	sprayed	with	M.	

brunneum),	 the	rifampicin	 treatment,	and	the	population	tested,	both	on	the	overall	 survival	of	spider	mites	

(X26=36.16,	 p<0.0001),	 and	 on	 their	mortality	 at	 3	 days	 post-infection	 (dpi;	X26=18.33,	 p=0.005).	 Indeed,	 the	

separate	analyses	of	each	population	revealed	that	the	survival	of	females	from	different	populations,	naturally	

infected	or	uninfected	by	Wolbachia,	was	not	evenly	affected	by	fungal	infection	and	by	rifampicin	treatment.	
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Effect	of	fungal	infection	and	of	antibiotic	treatment	in	the	naturally	Wolbachia-uninfected	population	AlRo	

In	 the	 population	 AlRo,	 we	 found	 a	 significant	 interaction	 between	 infection	 and	 rifampicin	 treatment	

(X22=9.53,	 p=0.009;	 Fig.	 1a),	 which	 was	 due	 to	 a	 stronger	mortality	 induced	 by	M.	 brunneum	 in	 rifampicin-

treated	mites	than	in	untreated	mites	(z=2.80,	p=0.05),	while	B.	bassiana	 induced	the	same	mortality	in	both	

rifampicin-treated	 and	 untreated	 mites	 (z=-1.20,	 p=1.00	 Fig.	 1b;	 Table	 S2).	 In	 both	 cases,	 however,	 M.	

brunneum	 induced	a	stronger	mortality	than	B.	bassiana	(MB	vs.	BB:	z= 6.72,	p<0.0001	and	z= 2.81,	p=0.05	in	

rifampicin-treated	 and	 untreated	mites,	 respectively).	 At	 3	 dpi,	 however,	 no	 significant	 interaction	 between	

infection	and	rifampicin	treatment	(X22=1.78,	p=0.41;	Fig.	1c)	and	no	effect	of	the	antibiotics	(X21=0.90,	p=0.34)	

were	found.	Only	the	effect	of	infection	by	the	two	fungi	species	was	found	to	severely	increase	the	mortality	

of	both	rifampicin-treated	and	untreated	mites	at	this	early	age	of	 infection	(X22=135.68,	p<0.00014;	see	also	

Table	S3	for	multiple	comparisons).	

	

	

	

Figure	1.	Survival	curves	(a),	relative	mortality	(b),	and	survival	at	3	dpi	(c)	of	spider	mites	from	the	naturally	
Wolbachia-uninfected	 population	 AlRo.	 Adult	 females	 were	 treated	 (dashed	 lines,	 dashed	 bars	 and	 empty	
circles)	 or	 not	 (solid	 lines,	 filled	bars	 and	 circles)	with	 rifampicin,	 and	 sprayed	with	B.	 bassiana	 (orange),	M.	
brunneum	(red),	or	Tween	20	only	as	control	(blue).	
	

	

Effect	of	fungal	infection	and	of	antibiotic	treatment	in	the	naturally	Wolbachia-uninfected	population	DEF	

In	 the	 population	DEF,	we	 did	 not	 find	 a	 significant	 interaction	 between	 infection	 and	 rifampicin	 treatment	

(X22=0.65,	p=0.72;	Fig.	2a),	neither	a	 significant	effect	of	 rifampicin	 treatment	 (X21=0.003,	p=0.96),	but	only	a	

significant	effect	of	 fungi	 infection	 (X22=879.17,	p<0.0001).	 Indeed,	both	 fungi	 induced	 the	 same	mortality	 in	

both	 rifampicin-treated	 and	 -untreated	 mites,	 with	 an	 overall	 stronger	 effect	 of	M.	 brunneum	 than	 of	 B.	

bassiana	(Fig.	2b;	see	Table	S4	for	the	results	of	all	comparisons).	Similarly,	at	3	dpi,	no	significant	interaction	

between	infection	and	rifampicin	treatment	(X22=0.40,	p=0.82;	Fig.	2c),	neither	a	significant	effect	of	rifampicin	

treatment	 (X21=0.14,	p=0.71)	was	 found.	As	 for	 the	population	AlRo,	only	 fungi	 infection	affected	the	spider-

mite	survival	(X22=64.89,	p<0.0001;	see	Table	S5	for	the	results	of	all	comparisons).	
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Figure	2.	Survival	curves	(a),	relative	mortality	(b),	and	survival	at	3	dpi	(c)	of	spider	mites	from	the	naturally	
Wolbachia-uninfected	 population	 DEF.	 Adult	 females	 were	 treated	 (dashed	 lines,	 dashed	 bars	 and	 empty	
circles)	 or	 not	 (solid	 lines,	 filled	bars	 and	 circles)	with	 rifampicin,	 and	 sprayed	with	B.	 bassiana	 (orange),	M.	
brunneum	(red),	or	Tween	20	only	as	control	(blue).	
	

	

Effect	of	fungal	infection	and	of	antibiotic	treatment	in	the	naturally	Wolbachia-infected	population	AMP	

In	 the	 population	 AMP,	 we	 found	 a	 significant	 interaction	 between	 infection	 and	 rifampicin	 treatment	

(X22=26.61,	p<0.0001;	Fig.	3a),	which	was	due	to	a	lower	survival	of	Wolbachia-infected	controls	compared	to	

uninfected	controls	(z=-4.92,	p<0.0001),	while	Wolbachia-infected	and	uninfected	mites	had	the	same	survival	

upon	infection	with	both	fungi	species	(for	B.	bassiana:	z=-0.26,	p=1.00;	for	M.	brunneum:	z=1.88,	p=0.55;	Fig.	

3b	and	Table	S6).	Relative	to	their	respective	control,	both	fungi	induced	higher	mortality	in	rifampicin-treated	

mites	(HR=17.87	and	HR=33.39,	 for	BB	and	MB,	respectively)	than	 in	Wolbachia-infected	mites	(HR=8.60	and	

HR=13.21,	respectively).	A	significant	interaction	between	infection	and	rifampicin	treatment	was	also	found	at	

3	dpi	(X22=6.5,	p=0.04;	Fig.	3c).	However,	this	interaction	was	relatively	weak	at	this	time-point,	and	could	not	

be	 explained	 by	 multiple	 comparisons	 between	 factor	 levels.	 Indeed,	 no	 differences	 were	 found	 between	

Wolbachia-infected	and	rifampicin-treated	mites	when	sprayed	with	Tween	20	only,	with	B.	bassiana,	or	with	

M.	brunneum	(see	Table	S7	for	the	results	of	all	comparisons).	

	

	

Figure	3.	Survival	curves	(a),	relative	mortality	(b),	and	survival	at	3	dpi	(c)	of	spider	mites	from	the	naturally	
Wolbachia-infected	population	AMP.	Adult	females	were	treated	(dashed	lines,	dashed	bars	and	empty	circles)	
or	not	(solid	lines,	filled	bars	and	circles)	with	rifampicin,	and	sprayed	with	B.	bassiana	(orange),	M.	brunneum	
(red),	or	Tween	20	only	as	control	(blue).	
	

Control

B.	bassiana

M.	brunneum

rifampicin

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

a

b
c

a

b
c

0.0

1.0

2.0

3.0

4.0

Tween80 B.	bassiana M.	brunneum
Time	(days)

Pr
op

or
tio

n	
su
rv
iv
in
g

Lo
g	
ha
za
rd
	ra

tio

a) b)

0.0

0.2

0.4

0.6

0.8

1.0

Untreated Rifampicin

M
ea
n	
m
or
ta
lit
y	
at
	d
ay
	3

c)

Control

Control

B.	bassiana

M.	brunneum

rifampicin

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
op

or
tio

n	
su
rv
iv
in
g

b

c
d

a

c

d

0.0

1.0

2.0

3.0

4.0

Tween80 B.	bassiana M.	brunneumControl

Lo
g	
ha
za
rd
	ra

tio

Time	(days)

a) b)

0.0

0.2

0.4

0.6

0.8

1.0

Untreated Rifampicin

M
ea
n	
m
or
ta
lit
y	
at
	d
ay
	3

c)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620310doi: bioRxiv preprint 

https://doi.org/10.1101/620310
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

Effect	of	fungal	infection	and	of	antibiotic	treatment	in	the	naturally	Wolbachia-infected	population	TOM	

In	 the	 population	 TOM,	we	 also	 found	 a	 significant	 interaction	 between	 infection	 and	 rifampicin	 treatment	

(X22=26.00,	 p<0.0001;	 Fig.	 4a).	 In	 this	 population,	 the	 effect	 of	B.	 bassiana	was	weaker	 in	 rifampicin-treated	

(HR=3.49)	 than	 Wolbachia-infected	 mites	 (HR=5.53;	 z=-5.54,	 p<0.0001;	 Fig.	 4b	 and	 Table	 S8),	 while	 M.	

brunneum	 had	 the	 same	 effect	 in	 both	 rifampincin-treated	 and	 untreated	 mites	 (HR=6.75	 and	 HR=5.56,	

respectively;	z=1.58,	p=1.00).	Moreover,	whereas	both	fungi	had	the	same	effect	on	non-treated	mites	(MB	vs.	

BB:	 z=0.05,	 p=1.00),	 B.	 bassiana	 decreased	 less	 the	 survival	 of	 rifampicin-treated	 treated	 mites	 than	 M.	

brunneum	 (MB	 vs.	 BB:	 z= -6.88,	 p<0.0001).	 This	 effect	 was	 even	 stronger	 at	 3	 dpi	 (interaction	 between	

infection	and	rifampicin:	X22=15.44,	p<0.001).	At	this	time-point,	B.	bassiana	 induced	the	same	mortality	than	

M.	brunneum	in	Wolbachia-infected	mites	(BB	vs.	Control:	z=6.24,	p<0.0001),	but	did	not	affect	significantly	the	

survival	of	rifampicin-treated	mites	(BB	vs.	Control:	z=0.75,	p=1.00;	Fig.	4c).	

	

	

Figure	4.	Survival	curves	(a),	relative	mortality	(b),	and	survival	at	3	dpi	(c)	of	spider	mites	from	the	naturally	
Wolbachia-infected	population	TOM.	Adult	females	were	treated	(dashed	lines,	dashed	bars	and	empty	circles)	
or	not	(solid	lines,	filled	bars	and	circles)	with	rifampicin,	and	sprayed	with	B.	bassiana	(orange),	M.	brunneum	
(red),	or	Tween	20	only	as	control	(blue).	
	

	

DISCUSSION	

In	 this	 study,	 we	 found	 variable	 effects	 of	 infection	 by	 B.	 bassiana	 and	M.	 brunneum	 following	 antibiotic	

treatment,	 depending	 on	 the	 spider	 mite	 populations	 and	 on	 whether	 they	 were	 naturally	 infected	 by	

Wolbachia	or	not.	Indeed,	the	mortality	induced	by	both	fungi	did	not	differ	between	Wolbachia-infected	and	

uninfected	 mites	 in	 the	 population	 AMP,	 despite	 Wolbachia	 infection	 being	 costly	 in	 absence	 of	 fungal	

infection.	 Similarly,	 the	mortality	 induced	 by	M.	 brunneum	 was	 not	 affected	 by	Wolbachia	 infection	 in	 the	

population	TOM,	but	 that	 induced	by	B.	bassiana	 increased	 in	presence	of	Wolbachia.	 These	 results	 suggest	

that	Wolbachia	may	either	buffer,	or	conversely	increase,	the	effect	of	fungal	infection	depending	on	the	fungi	

species,	the	Wolbachia	strain	and/or	the	host	genetic	background.	Moreover,	in	absence	of	natural	Wolbachia	
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infection,	we	 found	 a	 relatively	 small	 effect	 of	 the	 antibiotic	 treatment	 on	 the	 susceptibility	 of	 the	mites	 to	

infection.	 Indeed,	 the	 antibiotic	 treatment	 had	 no	 effect	 on	 the	 outcome	 of	 infection	 by	 fungi,	 with	 the	

exception	 of	 a	 higher	mortality	 in	 antibiotic-treated	mites	 from	 the	 population	AlRo	when	 infected	with	M.	

brunneum.	 Still,	 this	 effect,	 although	 significant,	 is	 of	 relatively	 low	 amplitude	 and	 in	 the	 opposite	 direction	

than	 that	observed	 in	 the	Wolbachia-infected	population	TOM	 following	B.	bassiana	 infection.	 This	 suggests	

that	 the	 effect	 of	Wolbachia	 in	 the	 population	 TOM	 may	 not	 be	 explained	 by	 an	 alteration	 of	 the	 whole	

bacterial	 community	 in	mites	 following	antibiotic	 treatment.	However,	because	the	effect	of	 fungal	 infection	

and	 antibiotic	 treatment	 vary	 between	 populations	 independently	 of	 the	 presence	 of	Wolbachia,	 we	 draw	

caution	on	the	generalization	of	such	results.	

	 In	different	arthropod	host	 species,	Wolbachia	may	either	protect	 (e.g.	Braquart-Varnier	et	al.	2015;	

Cattel	et	al.	2016;	Hughes	et	al.	2011;	Kambris	et	al.	2009;	Moreira	et	al.	2009;	Panteleev	et	al.	2007;	Teixeira	et	

al.	2008;	Ye	et	al.	2013),	have	no	effect	(e.g.	Tortosa	et	al.	2008;	Wong	et	al.	2011;	Zouache	et	al.	2012),	or	even	

increase	the	susceptibility	 (e.g.	Fytrou	et	al.	2006;	Graham	et	al.	2012;	reviewed	 in	Hughes	et	al.	2014)	of	 its	

arthropod	hosts	to	 infection	depending	on	the	pathogens	tested,	the	Wolbachia	strain	(Chrostek	et	al.	2013;	

Martinez	et	al.	2017;	Osborne	et	al.	2009),	but	also	on	the	host	genetic	background,	although	to	a	lesser	extend	

(Martinez	et	al.	2017).	In	several	of	these	studies	the	effect	of	Wolbachia	on	host	susceptibility	to	infection	by	

other	pathogens	has	been	assessed	following	artificial	Wolbachia	infection	(e.g.	Frentiu	et	al.	2014;	Joubert	et	

al.	2016;	Moreira	et	al.	2009;	Walker	et	al.	2011;	Yeap	et	al.	2011),	which	prevents	a	direct	alteration	of	 the	

host	 bacterial	 community	 but	may	 not	 accurately	 reflect	 the	 effect	 of	 natural	Wolbachia	 infections.	 Indeed,	

novel	Wolbachia	 host	 associations	 are	 often	 costly	 for	 hosts	 (e.g.	 McGraw	 et	 al.	 2002),	 mainly	 due	 to	 the	

activation	 of	 the	 host	 immune	 system	 following	Wolbachia	 infection,	 which	 in	 turn	 prevents	 subsequent	

infections	 by	 other	 pathogens	 (reviewed	 in	 Zug	 and	 Hammerstein	 2015).	 Conversely,	 the	 effect	 of	 natural	

Wolbachia	 infections	 on	 host	 susceptibility	 to	 infection	 by	 other	 pathogens	 is	 usually	 assessed	 by	 using	

antibiotic	 treatments.	 However,	 antibiotics	 do	 not	 affect	 Wolbachia	 only,	 but	 also	 the	 entire	 bacterial	

community	in	hosts	(e.g.	Lehman	et	al.	2009;	Zhu	et	al.	2018;	Zouache	et	al.	2009),	which	raises	the	necessity	to	

assess	the	potential	effect	of	the	antibiotic	treatment	per	se.	

In	 T.	 truncatus	 spider	 mites,	 Zhu	 et	 al.	 (2018)	 showed	 that	 an	 antibiotic	 treatment	 (tetracycline	

hydrochloride	during	three	generations)	strongly	affects	the	composition	of	the	bacterial	community	even	after	

more	than	20	generations	without	antibiotics.	In	particular,	these	authors	showed	that	bacteria	from	different	

families	 strongly	 increased	 in	 proportion	 in	 tetracycline-treated	 mites	 in	 absence	 of	 the	 Anaplasmataceae	

(which	 includes	 Wolbachia).	 Hence,	 the	 lower	 mortality	 observed	 for	 antibiotic-treated	 mites	 following	

infection	 by	 B.	 bassiana	 in	 the	 naturally	 Wolbachia-infected	 population	 TOM	 cannot	 be	 unambiguously	

attributable	 to	Wolbachia	 only.	 This	 result	 could	 be	 explained,	 for	 instance,	 by	 Wolbachia	 outcompeting	

bacteria	that	participate	to	the	host	homeostasis	and	immunity	(reviewed	in	Selosse	et	al.	2014;	Shapira	2016;	
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Vavre	and	Kremer	2014;	Weiss	and	Aksoy	2011),	thereby	 increasing	the	success	of	B.	bassiana	 infection	(i.e.,	

indirect	 facilitation;	 Zélé	 et	 al.	 2018a).	 In	 contrast,	 in	 the	Wolbachia-uninfected	 population	 AlRo,	 antibiotic-

treated	mites	have	a	higher	mortality	 than	untreated	mites	when	 infected	with	M.	brunneum.	One	possible	

explanation	is	that,	in	absence	of	natural	Wolbachia	infection,	the	antibiotic	treatment	affected	differently	the	

bacterial	community,	potentially	eliminating	bacteria	that	interfere	with	M.	brunneum.	

	 The	 apparent	 facilitation	 of	 B.	 bassiana	 by	Wolbachia	 in	 the	 TOM	 population	 may	 also	 be	 due	 to	

Wolbachia	 interacting	 directly	 with	 the	 host	 immune	 system.	 Indeed,	 Wolbachia	 has	 been	 shown	 to	

downregulate	autophagy-associated	genes	in	naturally	infected	hosts,	possibly	as	an	immune	evasion	strategy	

(Chevalier	et	al.	2012;	Kremer	et	al.	2009).	Under	such	scenario,	the	elimination	of	Wolbachia	with	antibiotics	

may	 result	 in	 overall	 higher	 autophagic	 processes	 in	 the	 host,	 to	 which	 B.	 bassiana	 could	 be	 susceptible.	

Moreover,	in	diverse	native	hosts,	including	T.	urticae,	Wolbachia	also	plays	a	role	in	redox	homeostasis	(Zhang	

et	 al.	 2015b;	 reviewed	 by	 Zug	 and	 Hammerstein	 2015).	 The	 elimination	 of	Wolbachia	 with	 antibiotics	 in	

coevolved	 T.	 urticae	 hosts	 may	 thus	 potentially	 lead	 to	 a	 disruption	 of	 redox	 homeostasis	 and	 higher	

production	 of	 reactive	 oxygen	 species	 (ROS),	 which	 are	 involved	 in	 host	 immunity	 (e.g.	 encapsulation,	

melanisation;	 (reviewed	 in	 Zug	 and	 Hammerstein	 2015),	 thereby	 increasing	 host	 resistance	 to	 infection.	

However,	all	these	different	scenarios	would	only	explain	our	results	if	such	mechanisms	affect	differently	the	

two	fungus	species	and	are	specific	to	the	Wolbachia	strain	and/or	the	host	population.		

	 As	stated	above,	the	host	genetic	background	also	plays	a	major	role	in	determining	host	susceptibility	

to	 infection.	 First,	 as	 recently	 shown	 in	 several	 spider	 mite	 species	 (Zélé	 et	 al.	 2019),	 not	 all	 populations	

(independently	of	their	status	of	infection	by	Wolbachia)	are	equally	affected	by	the	infection	by	the	two	fungi	

(e.g.	 the	 mortality	 induced	 by	 both	 fungi	 is	 stronger	 in	 the	 population	 DEF	 than	 in	 the	 population	 TOM).	

Second,	host	 susceptibility	 to	 infection	may	also	 result	 from	G	x	G	 interactions	with	 their	endosymbionts,	as	

shown,	for	instance,	for	Wolbachia-mediated	protection	against	viruses	across	Drosophila	species	(Martinez	et	

al.	 2017).	 Here,	 the	 different	 effects	 of	Wolbachia	 observed	 in	 the	 populations	 TOM	 and	 AMP	 cannot	 be	

unambiguously	 attributed	 to	 the	Wolbachia	 strain	only,	 but	 likely	 also	 result	 from	 their	 interaction	with	 the	

host	genetic	background.	Hence,	although	further	investigations	on	the	respective	role	of	the	Wolbachia	strain	

and	of	the	host	genome,	as	well	as	on	the	composition	of	the	bacterial	communities	in	each	of	the	population	

tested	would	be	necessary	to	shed	light	on	the	mechanisms	involved,	these	results	show	that	the	outcome	of	

infection	strongly	depends	on	complex	interactions	between	multiple	microorganisms	and	their	host.	

In	 conclusion,	 our	 results	 show	 variable	 effects	 of	Wolbachia	 on	 spider	mite	 susceptibility	 to	 fungi-

induced	mortality	using	two	generalist	fungi,	B.	bassiana	and	M.	brunneum.	To	our	knowledge,	this	is	the	first	

study	 investigating	 the	 interaction	 between	 Wolbachia	 and	 entomopathogenic	 fungi	 on	 the	 survival	 of	

different	 spider	mite	 populations	within	 a	 single	 full	 factorial	 experiment.	 As	Wolbachia	 was	 found	 to	 have	
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either	no	effect	or	 to	 increase	spider	mite	susceptibility	 to	 fungal	 infection,	 these	results	suggest	 that	 it	may	

improve	the	success	of	biological	control	using	entomopathogenic	fungi.	However,	these	results	also	highlight	

the	complexity	of	within-host	pathogens	interaction,	and	draw	caution	on	the	generalization	of	the	effects	of	

Wolbachia	as	they	may	vary	depending	on	both	the	Wolbachia	strain	and	the	host	genetic	background.	Finally,	

our	 findings	also	point	 to	 the	 importance	of	considering	 the	whole	bacterial	 community	of	arthropods	when	

assessing	the	effect	of	Wolbachia	in	a	particular	system.		
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