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ABSTRACT

Background: A transcription-factor (TF) network map indicates the direct, functional targets of
each TF -- the genes it regulates by binding to their cis-regulatory DNA. Data on the genomic
binding locations of each TF and the transcriptional responses to perturbations of its activity,
such as overexpressing it, could support TF network mapping. Systematic data sets of both
types exist for yeast and for human K562 and HEK293 cells.

Results: In previous data, most TF binding sites appear to be non-functional, so one cannot
take the genes in whose promoters a TF binds as its direct, functional (DF) targets. Taking the
genes that are both bound by a TF and responsive to a perturbation of it as its DF targets
(intersection algorithm) is also not safe, as we show by deriving a new lower bound on the
expected false discovery rate of the intersection algorithm. When there are many non-functional
binding sites and many indirect targets, non-functional sites are expected to occur in the cis-
regulatory DNA of indirect targets by chance. Dual threshold optimization, a new method for
setting significance thresholds on binding and response data, improves the intersection
algorithm, as does post-processing perturbation-response data with NetProphet 2.0. A
comprehensive new data set measuring the transcriptional response shortly after inducing
overexpression of a TF also helps, as does transposon calling cards, a new method for
identifying TF binding locations.

Conclusions: The combination of dual threshold optimization and NetProphet greatly expands
the high-confidence TF network map in both yeast and human. In yeast, measuring the
response shortly after inducing TF overexpression and measuring binding locations by using
transposon calling cards improve the network synergistically.

Keywords: transcriptional regulatory networks, transcription factors, gene expression,
chromatin immunoprecipitation (ChlIP), ChlP-Seq, TF perturbation, RNA-Seq, yeast, ENCODE
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BACKGROUND

Mapping out the circuitry by which cells regulate gene expression is a fundamental goal of
systems biology. Such maps would facilitate a broad spectrum of research programs, much as
maps of intermediary metabolism and genome sequences have done. Transcriptional regulation
has multiple layers and component types, including sensors and signal transduction cascades
involving kinases, phosphatases, and other enzymes. The bottom layer of transcriptional
regulation, which acts directly at the genome, features sequence-specific DNA binding proteins
known as transcription factors (TFs). Signaling cascades often change the activity levels of
specific TFs -- the extent to which they exert their regulatory potential on their target genes -- via
mechanisms that affect TFs’ abundance, localization, non-covalent interactions, or covalent
modifications. To map and model transcriptional regulation as a whole, we must know which
genes each TF regulates, or has the potential to regulate when activated.

A map of an organism’s TF network would have powerful applications. It could be used to infer
the effects of specific signals, drugs, or environments on the activity levels of TFs by analyzing
their effects on gene expression [1-4]. It could be used to predict the significance of naturally
occurring genome variants in TFs or TF binding sites (TFBS). And, it could be used to design
genome edits in TFs or TFBS to achieve a desired transcriptional state or behavior [5-7]. Crucial
to all of these applications is the distinction between the direct functional targets of a TF -- the
genes it regulates because it binds to their cis-regulatory DNA -- and its indirect targets, which
are regulated via intermediary proteins. For example, a mutation inactivating a binding site for a
TF in the cis-regulatory DNA of one of its direct targets will generally modulate or eliminate the
relationship between the TF and its direct target. However, a mutation in a non-functional
binding site which happens to lie in the cis-regulatory DNA of an indirect target will not affect the
relationship between the TF and its indirect target.

In this paper, we analyze previously published and newly described genome-wide data sets,
using both standard and novel analytic techniques, to reveal the current state of the art in
identifying the direct, functional targets of a TF (Table 1). The data sets we focus on are those
that aim to determine the binding locations of TFs and those that attempt to measure the
transcriptional response to perturbations of TF activity, such as over expressing the TF or
deleting the gene that encodes it. The binding location data derive from either chromatin
immunoprecipitation (ChlIP) or transposon calling cards, while the perturbation data include
expression profiles after deletion of TF-encoding genes, short-term induction of TF expression,
TF knockdowns via small-interfering RNA (siRNA) or small-hairpin RNA (shRNA), or CRISPR
interference (CRISPRI). Yeast data sets are more complete than those of any other eukaryote
and yeast has a simpler genome with more localized regulatory DNA, so we start by focusing on
yeast. In addition to evaluating data sets and experimental and analytic methods, we construct a
preliminary map of the yeast TF network by integrating the best available binding and
perturbation response data sets. For model invertebrates, there are large data sets on TF
binding location [8, 9], but there are currently no comparable data sets on the responses to
perturbations of TF activity. We analyze large data sets on human cell lines from the ENCODE


https://doi.org/10.1101/619676
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/619676; this version posted May 7, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

aCC-BY-ND 4.0 International license.

consortium [10, 11] and produce a preliminary, partial map of the TF network of human K562
cells. We also analyze a large data set on Zinc Finger TFs in human HEK293 cells [12].

Throughout most of this paper, we take the data sets at face value, assuming that they
accurately report the molecular events they are designed to detect. An alternative explanation
for some of our observations is that some data sets do not accurately report the events they are
designed to detect. We do not take any position on that possibility nor do we mean to imply any
judgment about it.

We consider several approaches to identifying the direct functional (DF) targets of a TF from
binding location and perturbation-response data. The simplest is to take the genes in whose
regulatory DNA a TF binds as its DF targets. We show that this is unsatisfactory as most
binding sites for most TFs appear to be non-functional, according to existing data. We then
consider taking the genes that are both bound by a TF and responsive to a perturbation of it as
its DF targets, an approach we refer to as the intersection algorithm. We show, by means of a
newly derived lower bound on the expected false discovery rate of the intersection algorithm,
that it is unsatisfactory when applied to previously published data sets. Next, we introduce dual
threshold optimization, a simple, new method for setting significance thresholds on binding and
response data that improves the performance of the intersection algorithm. We then show,
using a large, new perturbation-response data set, that measuring the response a short time
after inducing the perturbation gives better results than measuring the steady-state response in
a TF deletion strain. Next, we demonstrate that post-processing gene expression data through
NetProphet 2.0 [13], a network inference algorithm, results in better agreement with binding
data than using raw perturbation-response. Finally, we show that transposon calling cards, a
recently developed method for identifying TF binding locations, improves the performance of the
intersection algorithm greatly, especially when it is combined with rapid measurement of
perturbation responses.

RESULTS

Simple comparison of yeast ChIP-chip to expression profiles of TF deletion strains yields few
high-confidence regulatory relationships

Comprehensive binding and perturbation response data sets are available for yeast TFs In
2004, Harbison et al. assayed the binding locations of essentially all yeast TFs by using ChIP-
chip [14]. They identified many binding sites, but it was not possible at that time to estimate how
many of them were functional, in the sense that the binding caused the TF to regulate the
downstream gene. In 2007, Hu et al. published a data set in which all non-essential yeast TFs
were deleted and the resulting deletion strains were subjected to expression profiling [15]. This
made it possible for the first time to estimate the fraction of binding events that are functional,
and Hu et al. remarked on how surprisingly small that fraction is -- about 3-5% in their data. In
2014, Kemmeren et al. published a second such data set, which benefited from newer
technology and the hindsight afforded by the earlier study [16]. In the remainder of this paper,
we focus on the Kemmeren TF knockout (TFKO) data because it demonstrates somewhat
better agreement with the Harbison ChIP data, on average. We consider 183 yeast TFs with
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138 DNA binding domains and 5,887 genes that are labeled “verified” or “uncharacterized” in

139  Saccharomyces Genome Database (SGD), omitting those that are labeled “dubious ORFS”.
140

141 Most bound genes in the Harbison ChIP data are not responsive in the TFKO data. We began
142  this analysis by calculating the response rate of bound genes, for each TF -- the fraction of

143  bound genes that are differentially expressed in the TFKO strain, relative to the wild type (WT).
144  The spotted microarrays used by Harbison et al. in their ChlP-chip study contained one probe
145  for each promoter, so their analysis yielded a simple P-value for whether each promoter is

146  bound, with no further localization information. We eliminated from further consideration the 16
147  TFs that were not called as bound to any promoter. For the TFKO data, we used the authors’
148  statistical analysis and considered a gene to be differentially expressed in the TFKO strain,

149  relative to the wild type strain, if its p-value (adjusted for multiple comparisons) was < 0.05. We
150 eliminated from further consideration any TF whose knockout resulted in no significant changes
151  as well as the 32 TFs whose microarray-reported expression level in the strain lacking the TF
152  was more than one half its reported level in the WT. This can happen when the wild-type

153  expression level of the TF is near or below the detection limit of the microarray.

154

155  Fig. 1A shows a histogram of the results. The median response rate for bound genes was 18%.
156  The mode was 0% -- 25 of the 97 TFs (26%) had both bound targets and responsive targets,
157  but none of the bound targets were responsive. Only 17 TFs (18%) had a response rate above
158  50%. This is without requiring a minimum fold change, to filter for biologically significant

159  responses. With a minimum fold change of 1.5, the number of TFs for which more than half the
160  bound genes are responsive drops to 4 (4%; Fig. S1A). Tightening the significance threshold for
161 binding to P<10 with no minimum fold change for response increases the median response
162 rate to ~28%, but at the cost of reducing the total number of bound and responsive genes,

163  summed over all TFs, to 297 (Fig. S1A-C). Thus, these data do not support the notion that most
164  binding is functional. The low response rate of bound genes cannot be explained by saying that
165 the TFs are inactive in the conditions tested, since the median number of genes that respond
166  with p<0.05 is 321 (13 with fold-change >1.5). A lot of genes respond, they’re just not the same
167  ones that are bound.

168

169  Many genes that are both bound and responsive in previously published data are probably not
170  DF targets. Given that available data suggest most binding sites are non-functional, a logical
171 procedure for finding the DF targets is to choose those that are. In other words, to take the

172  intersection of the genes bound by each TF with the genes that respond to a perturbation of that
173  TF. Itis important keep in mind, however, that most responsive genes are not bound.

174  Comparing the ChIP data with the TFKO data, the median fraction of responsive genes that are
175  bound is 1% (Fig. 1B). Thus, most of the responsive genes are indirect targets. Furthermore, it
176  is reasonable to assume that the distribution of indirect targets among all genes is independent
177  of the distribution of non-functional binding sites (Fig. 1C). Or at least that non-functional binding
178  sites do not systematically avoid the promoters of indirect targets. This suggests that some of
179  the indirect targets also have non-functional binding sites. These genes would be false positives
180  of the intersection algorithm -- genes that are bound and responsive, but are not responsive

181  because they are bound.
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182

183 In Box 1, we derive a lower bound on the expected false discovery rate (FDR) of the intersection
184  procedure, as a function of the number of bound genes, |B|, the number of responsive genes,
185 |R], the number of bound and responsive genes, |BNR|, and the total number of genes, |G|. The
186 lower bound also depends on the sensitivity of the intersection procedure -- the fraction of direct
187  functional targets that are in the intersection. The formula shows that, if a large fraction of bound
188  genes are not responsive and a large fraction of responsive genes are not bound, the

189 intersection procedure cannot have both high sensitivity and low false-discovery rate. For

190 example, Fig. 2A shows the relationship between sensitivity and expected FDR for a fairly

191  typical TF, GIn3, based on the Harbison ChIP data and the TFKO response data. A reasonable
192  minimum accuracy criterion for a procedure aimed at finding the DF targets of a TF is that it

193  have sensitivity >= 80% (it detects at least 80% of the DF targets) and an FDR <= 20%.

194 However, that is not possible for GIn3, using these two data sets. Intuitively, this is because the
195 fraction of GIn3-bound genes that are responsive to the GIn3 perturbation (53%) is only a little
196  more than the fraction of all genes that are responsive to the GIn3 perturbation (43%; Fig. 2B).
197  The 80-20 criterion is achievable for only 43 TFs. Fig. S2 shows the cumulative fraction of TFs
198 that have an FDR bound below a given level, assuming 80% sensitivity, at various significance
199 thresholds for binding and response.

200

201  The FDR lower bound is only a lower bound and does not guarantee any maximum FDR for the
202 intersection algorithm. In fact, of the 43 TFs that could possibly achieve the 80-20 criterion in the
203  ChIP-TFKO comparison, only 27 have an intersection that is significantly larger than would be
204  expected by chance (hypergeometric P<0.01, not adjusted for multiple testing). If we define

205 “acceptable TF” to be one that could pass the 80-20 criterion and has a larger overlap between
206  bound and responsive targets than would be expected for randomly selected gene sets, then
207  there are 27 acceptable TFs with a total of 448 regulatory interactions involving 366 unique

208 target genes. If we take this to be our network map, ~85% of TFs are not acceptable so they
209  have no high confidence targets, while 94% of genes have no identifiable regulator. Clearly,
210  using the simple intersection algorithm with just these two data sets is not producing anything

211 like a complete network map.

212

213  Comparing yeast ChlP-chip data to expression profiling shortly after TF induction enlarges the
214  map.

215  Recently, Hackett et al. released a data set in which the expression of nearly every yeast TF
216  was induced from a very low level to a high level [17]. This was accomplished by expressing
217  ZEV, an estradiol-activated artificial TF, and replacing the promoter of the gene to be induced
218  with a ZEV-responsive promoter [18, 19]. (Some of the TFs were induced using an earlier
219  iteration of the artificial TF called GEV [20], but we refer to the data set as ZEV for

220  convenience.) Gene expression profiles were measured before induction and at 5, 10, 15, 20,
221 30, 45, and 90 minutes after inducing the expression of a natural yeast TF with estradiol. We
222  reasoned that genes that respond rapidly might be enriched for direct targets of the induced TF,
223  since there would be limited time for intermediary proteins to be transcribed and translated. If
224  the responders were enriched for direct targets, the number of acceptable TFs might increase,
225 expanding the network map. In general, the expression profiles taken 15 minutes after TF
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226  induction (ZEV15) were most enriched for bound genes, so we focus on the 15-minute time
227  point for the remainder of the paper. Specifically, among the 94 TFs available in Harbison ChIP
228 and all ZEV time points, ZEV data at 15 minutes yielded the maximal number of acceptable TFs
229  when compared to ChIP data (Fig. S3). We consider a gene to be responsive if its shrunken log
230 fold change estimate, relative to time 0, was non-zero for details of the shrinkage analysis). A
231  detailed description of these strains and expression profiling experiments can be found in ref.
232 [17]

233

234  The TF GIn3, which could not achieve 80% sensitivity with 20% expected FDR in the ChIP-

235 TFKO comparison (Fig. 2A), can in the ChIP-ZEV15 comparison (Fig. 2C). The reason is that
236  the number of responsive genes has decreased from 43% of all genes to 24%, at the same time
237  that the response rate of bound genes increased from 53% to 60% (Fig. 2B, D). Across all TFs,
238 the ChIP-ZEV15 comparison identified 37 acceptable TFs, 23 of which had not been identified
239 in the ChIP-TFKO comparison (Fig.3A). Together, the ZEV15-ChIP and TFKO-ChIP

240  comparisons yielded 50 acceptable TFs with a total of 930 regulatory interactions involving 722
241 unique target genes. This network map is significantly expanded, but it is still the case that

242  >72% of TFs are not acceptable and hence have no targets, while >87% of genes have no

243  regulators.

244

245  Dual threshold optimization expands the TF Network map

246 A possible limitation of the previous analyses is that they rely on statistical significance

247  thresholds to determine which genes are bound and which are responsive. The statistics are
248 calculated separately for the binding and response data sets and statistical significance

249  threshold are, by their nature, arbitrary. Furthermore, statistically significant levels of binding or
250  perturbation response might not be biologically significant. For example, a TF may bind a site
251  consistently in the ChIP data even though the fractional occupancy of the site is too low to

252  detectably affect transcription. To address these problems, we developed dual threshold

253  optimization (DTO), a method that sets the binding and response thresholds by considering both
254  data sets together. DTO chooses, for each TF, the pair of (binding, response) thresholds that
255  minimizes the probability that the overlap between the bound and responsive sets results from
256  random gene selection (Fig. 3C).

257

258  For this analysis, we ranked all genes by their absolute log fold change in the ZEV15 data and,
259  separately by their negative log P-value in the Harbison ChIP data. We could have used the
260 underlying ChlIP signal rather than its P-value, but in this case the P-value was more convenient
261  (see below). The genes with the strongest evidence for binding or responsiveness were ranked
262  at the top of the lists. We then chose the pair of (binding, response) rank thresholds so as to
263  minimize the probability of the overlap between bound and responsive, under a null hypothesis
264  of random selection of gene sets of the sizes determined by the thresholds (hypergeometric
265  distribution). The only constraint on the thresholds chosen was that the P-value for the ChIP
266  data could not exceed 0.1.

267

268  To test the significance of the overlap at the chosen thresholds, we needed a null distribution for
269  the results of running DTO on unrelated binding and response rankings. The null distribution for
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randomly chosen, fixed-size sets does not apply because DTO chooses the bound and
responsive set sizes specifically to minimize probability under the fixed-size null. To obtain the
correct null, we randomly permuted the assignment of binding and response signals to genes
1000 time for each pair of binding and response data and ran DTO on each random permutation
(see Supplemental Methods for details).

After DTO, we applied the same acceptability criteria as before -- the bound and responsive
overlap must be significant (P<0.01, permutation-based) and 20% FDR at 80% sensitivity must
be achievable. DTO expanded the network map again (Fig. 3B). Combining the results of both
response data sets, it yielded 58 acceptable TFs with a total of 1,829 regulatory interactions
involving 1,236 unique target genes. Interestingly, the number of TFs that are acceptable in both
data sets now exceeds the number that are acceptable in either of the data sets alone. In this
map, ~32% of TFs have at least one target and ~21% of genes have at least one regulator. The
maps based on DTO of TFKO and ZEV15 data are provided as Supplemental Files S1 and S2.

Processing yeast gene expression data through NetProphet 2 further expands the map
NetProphet 2.0 [13] is a network inference method that combines analysis of gene expression
data, including expression data from perturbation-response experiments, with information
gleaned from genome sequence. It assigns a score to each possible TF-target interaction and
ranks all possible interactions according this score. A major component of the NetProphet score
is the degree to which the target gene responds to direct perturbation of the TF. However, it also
considers the degree to which the mRNA level of the TF is predictive of the mRNA level of the
potential target, across many different perturbations. This analysis is not limited to single-TF
perturbations -- it can also use perturbations of other genes, drugs, or growth conditions. As a
result, it can make predictions about the targets of TFs that have not been individually
perturbed. NetProphet also makes use of two other ideas: (1) that co-regulated genes tend to
have similar sequence motifs in their promoters, and (2) that DNA binding domains with similar
amino acid sequences tend to bind similar motifs. NetProphet 2.0 combines all these factors,
but is primarily driven by gene expression data. It does not use ChIP or other experimental data
on TF binding location.

We built separate NetProphet networks using the TFKO and ZEV data (Methods). For TFKO,
we input 3 wild-type expression profiles and the complete set of 1,484 expression profiles from
strains lacking one gene -- some of the deleted genes encode TFs, but others encode other
putative regulatory proteins, such as kinases and phosphatases. For ZEV, we used 590
expression profiles from 15 minutes, 45 minutes, or 90 minutes post-induction. We then ranked
the potential targets of each TF by their NetProphet scores and ran dual threshold optimization,
treating the NetProphet score as we did the response strength.

Combining the results from NetProphet applied to TFKO and NetProphet applied to ZEV, dual
threshold optimization resulted in 84 acceptable TFs (Fig. 3D) with a total of 2,151 regulatory
interactions (Fig. S4B) involving 1,326 unique target genes (Fig. S4A). The number of TFs that
are acceptable in both data sets, 44, is now much larger than the number that are acceptable in
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313  either data set alone (TFKO:22, ZEV:18). The total number of edges, combining both TFKO and
314  ZEV data, is 2,151, of which 400 are supported by both data sets.

315

316  Supplemental Files S3 and S4 contain the complete set of regulatory edges for each acceptable
317  TF in each comparison, along with their NetProphet score rank (among all possible

318 interactions), their Harbison ChIP P-value, and the probability of the TF’s bound-responsive
319  intersection under a hypergeometric null model. This may be the best network that can be

320 obtained by using the comprehensive yeast ChlP-chip data. Network inference methods that do
321 not consider binding data, such as NetProphet 2.0, may produce better networks on their own,
322  butif support from binding data is required, this is the best we can do with these data sets. In
323  this network, ~46% of TFs have at least one target and ~37% of genes have at least one

324  regulator. Running NetProphet on gene expression data and feeding the result into dual

325 threshold optimization has enlarged the map, but it is still smaller than what is generally

326  expected for the complete yeast TF network. To improve on it further, we need binding data that
327  is more focused on functional binding or simply more accurate. We will consider newer yeast
328  binding data, produced by using new methods, after discussing ChlP-seq and perturbation

329 response data on human cells lines.

330

331  Without processing by NetProphet 2.0, data on human cell lines yields a few acceptable TFs.
332 The ENCODE project [10] has produced a wealth of data on human cell lines, which currently
333 includes 743 TF ChlIP-Seq experiments and 391 RNA-Seq experiments following knockdown of
334  a TF by siRNA or shRNA (TFKD) or repression of a TF by CRISPR interference (CRISPRI) [21].
335 In this section, we refer to proteins as TFs if they were subjected to both ChIP-Seq and

336  perturbation-response experiments and are listed as TFs in the ENCODE database; the

337  question of which proteins are sequence-specific DNA binding proteins that regulate

338 transcription rates is considered further in the Discussion. In K562 cells, 42 TFs have both

339 ChIP-Seq and TFKD data and 45 TFs have both ChIP-Seq and CRISPRI data. In HepG2 cells
340 16 TFs have both binding and TFKD data. We focus our investigation on K562 data, as it is by
341  far the biggest relevant data set.

342

343  We considered two ways of assigning ChiP-Seq peaks to the genes they potentially regulate.
344  The first is the traditional approach of choosing an interval around the transcription start site
345 (TSS) -- we used 10 kb upstream to 2 kb downstream. The second is to take a small proximal
346  promoter region (TSS -500 bp to +500 bp) along with enhancer regions that have been

347 identified and assigned to the target gene in the GeneHancer database [22]. GeneHancer uses
348  avariety of data types including predicted and ChlP-based TF binding sites, enhancer RNAs,
349  histone marks, chromosome conformation, and cis-EQTLs. We used only the ‘elite’ enhancers
350 and ‘elite’ associations, each of which are supported by at least two sources of evidence. In

351 order to be comprehensive, we used all elite enhancers and enhancer-gene associations,

352 regardless of the cell lines or tissue types in which the evidence was obtained. However, 91% of
353  the ‘elite’ enhancers were supported by evidence from ENCODE, much of which comes from
354  the same K562 cell line used for the binding and perturbation-response studies. The enhancer-
355  based approach generally gave 1 or 2 more acceptable TFs than the fixed interval, so we used
356  thatin subsequent analyses.
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357

358  Unlike the yeast array-based data, the human sequencing-based data tended to yield many
359  more bound than responsive genes (Fig. 4A, B). Among the TFs that had at least one bound
360 and one responsive gene, 7 (TFKD) and 7 (CRISPRI) had no genes that were both bound and
361 responsive. The median response rate for bound genes was <0.5%. In a fixed-threshold

362 comparison to K562 ChIP-Seq data with adjusted P < 0.05, TFKD and CRISPRI produced 5
363  acceptable TFs each. We then ran dual threshold optimization limiting the bound and

364 responsive gene sets to have P<=0.1; such limits are necessary because DTO occasionally
365 chooses implausible thresholds, such as counting all genes as responsive. DTO increased the
366  number of acceptable TFs slightly, to 6 and 6. In these data sets, all TFs that failed the 80-20
367 FDR criterion also failed the overlap P<0.01 criterion, so the results would be the same without
368 the FDR criterion. However, all TFs would have failed if we had required 80% sensitivity and
369 FDR <= 10%. Of the total number of TFs with both binding and response data, TFKD yielded
370  14% acceptable TFs (6/43) and CRISPRI yielded 13% (6/45).

371

372  We also analyzed a data set on 88 human GFP-tagged C2H2 Zinc Finger TFs with matched
373  Chip-Seq data and response-to-overexpression data in HEK293 cells [12]. ChIP-Seq was

374  carried out using an antibody against GFP and RNA-Seq was carried out 24 hours after

375 overexpressing the TF from a tetracycline-inducible plasmid. For the majority of TFs there was
376  only a single replicate of the RNA-Seq experiment, which prevents the calculation statistical
377  significance by traditional methods. However, we were able to carry out DTO using the absolute
378 log fold-change in the single replicate (relative to the median expression in all perturbations) as
379 the measure of response strength. Seven of the 88 TFs were acceptable in this analysis, but
380 DTO chooses all genes as responsive for five of the seven. When we limited the total number of
381 responsive genes to 300,000, or 3409 per TF on average, three TFs were acceptable and none
382 had more than 1,000 responsive genes.

383

384  Processing human data through NetProphet 2.0 greatly increases the number of acceptable
385 TFs.

386  We ran NetProphet 2.0 on both the K562 data (TFKD and CRISPRI) and the HEK293 data
387  described above (see Supplemental Methods for details). We then ran DTO limiting the total set
388  of responsive genes to those with the top 500,000 (K562) or 300,000 (HEK293) NetProphet
389  scores. NP can infer targets for TFs that have not been directly perturbed by exploiting

390 correlation between the expression of the TF and its targets (among other factors), so we were
391  able to calculate NP scores for 262 ChlPed TFs (K562) or 103 ChlPed TFs (HEK293). This
392  greatly increased the number of acceptable TFs to 64 for K562 TFKD (24%) and 56 for K562
393 CRISPRI (21%; Fig. 4C). For HEK293, DTO on NetProphet scores increased the number of
394  acceptable TFs to 60 of the 103 that were chipped (58%).

395

396  More recent yeast ChIP data does not yield as many acceptable TFs as the Harbison data

397  The ChlIP data published by Harbison et al. in 2004 is still the only data set of binding locations
398 of most or all yeast TFs. However, Venters et al. [23] carried out ChIP-chip on a set of proteins
399 they termed chromatin factors, 25 of which were also chipped by Harbison and perturbed by
400 TFKO and ZEV. We carried out dual threshold optimization on these 25 common TFs,
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comparing the two ChlIP binding data sets to the TFKO and ZEV perturbation data sets, with
and without post-processing by NetProphet 2.0. The older Harbison ChIP data produced more
acceptable TFs than the Venters data, when compared to either TFKO or ZEV, either with or
without NetProphet (Fig. 5A). Thus, the age of the Harbison ChIP data does not seem to be a
significant limitation.

ChlIP-exo yields more acceptable TFs than traditional ChlIP

We also ran NetProphet and DTO on a small set of TFs for we could obtain binding data from
ChlIP-exo, a variant of the ChIP method in which the affinity-purified chromatin is digest by
DNase, leaving a much smaller piece that is partially protected by protein. Seven TFs had data
in ChlP-exo, Harbison, TFKO, and ZEV, enabling all-way comparisons. Regardless of the
perturbation-response data set, ChlP-exo always had more acceptable TFs than ChIP-chip (Fig.
S5). However, five TFs had ChIP-exo data in four different growth conditions. We used the
nitrogen-limited chemostat data as it gave the best results, however this may overestimate the
agreement that would be found in a more typical scenario where ChlP-exo is performed in only
one condition. After processing either the ZEV or TFKO perturbation-response data through
NetProphet 2.0, all seven TFs were acceptable (Fig. S5). Thus, while the numbers of TFs are
still small, this analysis suggests that ChIP-exo may yield better agreement with perturbation-
response data than traditional ChiP.

Transposon calling cards yields more acceptable TFs than traditional ChIP

Transposon calling cards is a method of determining TF binding locations by tethering a
transposase to a TF, recovering the inserted transposons with their flanking sequences, and
counting the insertions in a given genomic region. It does not require crosslinking, sonication, or
affinity purification (see refs [24-26] for details). Here, we analyze both previously published [24]
and new, previously unpublished calling cards data. Binding data from ChlP and Calling Cards
were compared to perturbation-response data from TFKO and ZEV, using the 12 TFs present in
all 4 data sets (Fig. 5B). In all comparisons, calling cards yielded substantially more acceptable
TFs than ChIP. This is particularly impressive given that the calling cards experiments were
carried out very different growth conditions from the ZEV experiments -- synthetic complete
medium with galactose on agarose plates at room temperature versus rich medium with glucose
in liquid culture at 30C. Figure 5B also shows that, holding all other factors constant, ZEV was
always better than TFKO and post-processing by NetProphet was always beneficial. Lists of
acceptable TFs and their bound and responsive targets for all calling cards analyses in Fig. 5B
are provided as Supplemental Files S5-8.

Figure 5C shows the -log P-value of the most significant gene ontology (GO) term for the
predicted targets of each TF we have calling cards data on, excluding terms that describe more
than 300 or fewer than 3 genes. To highlight the progress reported here, results are shown for
the best combination of experimental and analytic methods (DTO on calling cards data and
NetProphet output after running on TFKO and ZEV 15, 45, and 90-minute samples) and for the
simple intersection of bound and responsive genes using TFKO and ChIP-chip. For 10 of 12
TFs, the best combination of methods had a stronger GO term P-value, and the differences
were large. For 2 of 12 (Ino4 and Sfp1), simple intersection had the stronger P-value, but the
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445  differences were smaller. The median -Log10 P-value for the best combination of methods was
446  11.2, while that of simple intersection was 1.5. The best combination of methods assigned the
447  top GO term to 117 target genes, whereas simple intersection assigned the top term to only 41
448  genes. For most TFs, the most significant GO term had a clear relationship to the known

449  function of the TF as described in the Saccharomyces Genome Database. This includes some
450 cases where the term selected is an immediate parent of the most familiar term associated with
451  the TF. For example, Ger2 (Glycolysis Regulation 2) is known as a regulator of genes encoding
452  glycolytic enzymes. Its most significant GO term is “ADP metabolic process”, annotating 13
453  predicted Ger2 targets, but 12 of those targets are also annotated with “Glycolytic process”, a
454  child (subcategory) of “ADP metabolic process”. This can be seen in Figure S6, which shows
455  the top 5 GO terms for each TF.

456

457  Another way to look at the contributions of various methods is to plot the fraction of available
458  TFs that are acceptable, combining TFKO and ZEV, using each combination of methods

459  described here (Fig. 5D). Only 15 TFs are currently available for calling cards and either ZEV or
460 TFKO (12 for both), but analyzing these with DTO and NetProphet results in a much larger

461  fraction of TFs being acceptable. This includes TFs that are not thought to be active in the ZEV
462  or TFKO growth conditions, such as Gal4, presumably because ZEV overexpression of Gal4
463  significantly exceeds the number of Gal80 molecules available to bind and inactivate it.

464

465 The combination of ZEV and calling cards greatly increases response rates

466  We began this paper by observing that, using fixed threshold analysis of the TFKO and ChIP
467  data, most binding appears to be non-functional. To revisit the question of functionality using
468 ZEV and calling cards data, we plotted the fraction of bound genes that are responsive, as a
469 function of binding strength rank. Figure 6A shows that, for the TF Leu3, the combination of
470  calling cards and ZEV gives much higher response rates than any of the other three

471  combinations -- ChIP-ZEV, calling cards-TFKO, or ChIP-TFKO -- regardless of binding strength.
472  Nine out of the 10 mostly strongly bound and 48 out of 100 most strongly bound genes were
473  responsive. To make the comparison between ZEV and TFKO fair, we fixed the number of

474  Leu3-responsive genes in each data set to be the same. Thus, we labeled the 156 most

475  strongly responsive genes in each data set as responsive. We chose 156 because it was the
476  minimum of the numbers of genes that were significantly differentially expressed in the two data
477  sets for Leu3. Although the number of responsive genes in each data set was the same, a

478 larger fraction of the ZEV-responsive genes was bound, as compared to the TFKO-responsive
479  genes. Figure 6B shows a similar plot of the average response rates at each binding threshold,
480 across the 12 TFs for which we have all four combinations of data sets. Again, the combination
481  of ZEV and calling cards gives higher response rates at all binding thresholds. On average, the
482  response rate of the 10 most strongly bound genes is 56%. However, this is probably an

483  underestimate of the true response rate, since the number of responsive genes for each TF was
484  set to the minimum of the number in the TFKO and ZEV data sets. Individual rank response
485  plots for all 11 other TFs present in all four data sets are shown in Figure S7.

486

487 DISCUSSION

488
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The fundamental question behind this investigation is how best to map the direct functional
targets of transcription factors. We found that the established method of assaying the DNA
binding locations of TFs, chromatin immunoprecipitation, does not by itself effectively identify
the direct functional targets of a TF, because most of the genes whose cis-regulatory DNA is
bound by a TF are not functionally regulated by that TF. We found this to be the case for two
yeast ChIP datasets as well as 68 ENCODE ChlP-Seq experiments in human K562 cells and 88
ChIP-Seq experiments in human HEK293, consistent with previous reports based on different
data sets. [15, 27, 28]

If the problem is that most bound genes are not responsive, a natural solution would be to focus
on those that are. That is, to take the intersection of the genes a TF binds and the genes that
respond to perturbation of the TF as its direct functional targets. However, we proved that this
procedure does not effectively identify the direct functional targets when the sets of bound and
responsive genes are much larger than their intersection. The reason is that, when there are
many genes with non-functional binding sites and many genes that respond to the perturbation
because they are indirect targets, it is expected that some genes will be indirect targets with
non-functional binding sites in their cis-regulatory DNA. These are not direct functional targets,
yet they inhabit and contaminate the intersection of bound and responsive genes. As a result, it
is not safe to assume that genes that are both bound and responsive are responsive because
they are bound.

We quantified this problem by setting minimal criteria for considering the genes that are bound
and responsive to be likely direct functional targets. First, the intersection procedure must be
able to achieve, in principle, 80% sensitivity with an expected false discovery rate of no more
than 20%. Second, the intersection between the bound set and the responsive set must be
greater than would be expected by chance, with a P-value of 0.01. We call a TF acceptable if it
meets both those criteria. This designation does not guarantee that all or most of the TF’s
bound and responsive genes are direct functional targets, i.e. that they are responsive because
they are bound. In particular, the 80-20 criterion is a lower bound on the expected FDR,
carrying no implications of any upper bound. Furthermore, it does not guarantee a unique
relationship between the bound and responsive sets of an acceptable TF -- the bound set of one
TF can be acceptable when compared to the responsive set of another TF, so long as the two
sets show concordance beyond what would be expected by chance. Acceptable simply means
that there is no obvious red flag to prevent us from supposing that a good number of the TF’s
bound and responsive genes are direct functional targets. We found that, when combining ChIP
data with steady-state perturbation-response data, the number of acceptable TFs was quite low.
In both the yeast data and the human data, no more than 15% of the TFs assayed were
acceptable. For the remainder, there is a clear red flag.

So far, we have assumed that any protein that is designated as a TF in the ENCODE database
and has bound targets in ChIP-Seq and responsive targets in RNA-Seq is a TF. However, when
we compared these to a recent, exhaustive, manually curated list of human TFs [29], we found
that 20 TFKD targets and 11 CRISPRI targets were not on the list. One possible explanation is
that these are sequence-specific DNA binding proteins that should have been on the Lambert
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533 list. A second possibility is that, although they do not bind DNA directly, they have ChlIP-Seq
534  peaks because they associate with proteins that do. A third possibility is that ChIP-Seq peaks
535 do not necessarily reflect specific association with DNA, as suggested by a study in which green
536 fluorescent protein (GFP) with a nuclear localization signal was found to generate thousands of
537  robust ChIP peaks [30].

538

539  We identified four techniques that could increase the number of acceptable TFs substantially.
540 1. Measuring the transcriptional response a short time after inducing a perturbation by

541 using a method such as ZEV. Overexpression by the ZEV system may also allow TFs
542 with low activity in the experimental growth conditions to elicit a response from their

543 target genes.

544 2. Using dual threshold optimization to set significance thresholds for binding and response
545 data in a way that makes their intersection as significant as possible. This approach

546 considers the two data types together, using each type to inform the threshold for the
547 other, rather than considering each data type in isolation. Considering all the data

548 should, logically, yield a better decision than only considering part of it, and we show that
549 this approach does indeed yield more acceptable TFs.

550 3. Processing all the perturbation-response data together by using NetProphet 2.0, rather
551 than considering the response to each perturbation in isolation from all the others.

552 4. Measuring TF binding location by using transposon calling cards rather than ChiP.

553  We are currently applying all these methods together to yeast and we expect the result to be a
554  significantly expanded, high confidence map of the yeast TF network. As for mammalian cells,
555 calling cards [31], dual threshold optimization, and NetProphet have all been shown to work. For
556  TF activity perturbation, highly specific genome-targeting systems have been developed and
557 tested with a variety activation and repression domains [32] and linked to small-molecule

558 inducers [33, 34]. However, the prospects for obtaining ZEV-like perturbation and calling cards
559  binding data on large numbers of mammalian TFs remain uncertain.

560

561  Other new technologies for measuring TF binding locations have shown great promise [35], but
562 have not yet yielded a sufficiently large, systematic data set, with matched perturbation-

563 response data, for comparison to ChIP and calling cards using the methods of this paper. One
564  such technology is DAMID, in which a DNA-methyltransferase is tethered to a DNA-binding
565 protein and changes in DNA methylation relative to a control are assayed to determine binding
566 location [36-38]. Another is CUT&RUN, in which an endonuclease tethered to an antibody

567  against a TF enters permeabilized nuclei and releases the DNA bound by the TF, which diffuses
568  out of the cell and is recovered for sequencing [39-41]. A promising approach for measuring
569 perturbation-response in mammalian cells is to transfect cells with a library of constructs

570 encoding guide-RNAs that target a variety of TFs and then use single-cell RNA-Seq to identify
571  the TF perturbed and measure the response. Variants of this general approach include Perturb-
572 Seq[42, 43], CROP-Seq [44], and CRISP-Seq [45]. We expect that, as these technologies

573  mature, they will be used to produce large systematic data sets that can be analyzed using the
574  methods described here.

575
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576  Even when we apply the best combination of analytic and experimental methods, a large

577 fraction of the genes whose regulatory DNA is significantly bound by a TF binds do not respond
578 to a perturbation of that TF. Such non-responsiveness could be caused by any of several

579  mechanisms.

580 e [nsufficient occupancy -- rank response plots (Fig. 6) indicate that the most strongly
581 bound sites are much more likely to be functional than sites that are less strongly (but
582 still significantly) bound.

583 e Saturation -- if a gene is already expressed at its maximum possible level and an

584 activator of that gene is induced, no response will be seen. However, if other TFs were
585 removed, lowering the expression level of the gene, it would respond to the induction.
586 The same situation arises when a repressor of an unexpressed gene is induced or an
587 activator of it is depleted.

588 e Inactivity -- the TF may bind DNA even when the TF is in an inactive, or partially active,
589 state. However, the ability of ZEV induction of Gal4 to activate galactose genes even in
590 the absence of galactose and presence of glucose shows that overexpression can elicit
591 a response to TFs that are not normally active.

592 e Compensation -- the regulatory network as a whole may compensate for the change in
593 TF activity in a way that damps the effect of the initial perturbation. Measuring responses
594 shortly after the perturbation should reduce the prevalence of such compensation, but
595 some mechanisms can compensate very quickly. A simple example would be two

596 essentially equivalent TFs that can bind to the same sites, so that the effects of

597 perturbing one TF are buffered by the other. This was shown to be a contributing factor
598 in a comparison of the Harbison ChIP data to the TFKO data from Hu et al [15, 27].
599 Another example would be a TF that activates a protein that covalently inactivates the
600 TF, such as a kinase or phosphatase.

601 e Override -- some regions of a genome may be shut down in a way that overrides the
602 effects of TFs, even when the TFs can bind to the cis-regulatory DNA. For example, the
603 transcribed region of a gene might be in inaccessible, tightly compacted DNA even

604 though the cis-regulatory region remains somewhat accessible to TFs.

605 e Synergistic regulation -- some TFs that are bound to cis-regulatory DNA may be active
606 only where there is a binding site for a cofactor nearby.

607

608 Regardless of the mechanism that renders a bound gene non-responsive, it remains the case
609 that many binding sites are non-functional under the conditions tested, in the sense that the

610 transcription rate of the associated gene is unaffected by the presence or absence of the TF.
611 Currently, we do not know how much each of the factors listed above contributes to explaining
612  why so many genes that are bound by a TF do not respond to a perturbation of that TF. For

613  now, technical limitations of the available data sets may be a significant contributing factor.

614  Once those have been mitigated by newer methods like transposon calling cards, we will be in a
615  strong position to investigate the biological factors that explain the non-responsiveness of genes
616  whose cis-regulatory DNA is bound by a TF. Determining the prevalence of each factor will

617  bring the landscape of transcriptional regulation into much clearer focus.

618

619 CONCLUSIONS
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ChIP data on TF binding locations do not agree well with the set of genes that respond when
the TF is genetically deleted (TFKO), confirming earlier findings. For most TFs, intersecting the
bound and responsive genes is unlikely to be an accurate method of identifying direct functional
targets. Agreement is improved by measuring binding using transposon calling cards and
measuring response shortly after inducing the overexpression of a TF. When calling cards data
become available for the entire set of yeast TFs, and ZEV induction-response experiments have
been done in the same growth conditions, we will have a much clearer view of the network that
regulates transcription in yeast.

METHODS
Detailed methods and data download links can be found in the online supplement.

LIST OF ABBREVIATIONS
e ChlP: chromatin immunoprecipitation
CRISPRI: CRISPR interference -- a method of repressing gene expression
DF: direct functional
DTO: dual threshold optimization -- a method of setting significance thresholds for
binding and perturbation response-data targeting the same TF
TF: DNA-binding transcription factor
TFBS: TF binding site
TFKD: TF knockdown, encompassing siRNA and shRNA knockdowns
TFKO: TF knockout
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673 TABLES, BOXES AND FIGURES

674
675
676
677
678
. Proteins Targeted TFs Genome  Strain/ I
Data type Technology Species targeted analyzed assembly Cell line Publications
ChlIP-chip S. cerevisiae 203 155 N/A W303 Harbison, 2004
ChlP-chip S. cerevisiae 200 36 N/A S288C  Venters, 2011
Rhee, 2011; Rossi,
. R55, R64 2018a; Rossi,
o ChiIP-exo S. cerevisiae 12 12 (SGD) S288C 2018b:
Binding Bergenholm, 2018
location Transooson Wang, 2012;
. P S. cerevisiae 15 15 R61 (SGD) S288C Supplemental file
calling cards
S10
, Davis, 2018
ChiP-seq H. sapiens 261 261 GRCh38 K562 (ENCODE)
ChlP-seq H. sapiens 131 131 GRCh37 HEK293 Schmitges, 2016
TFKO S. cerevisiae 1,484 164 N/A S288C Kemmeren, 2014
.ZEV T.F S. cerevisiae 201 139 N/A S288C Hackett, 2019
induction
. TFKD 3
Perturbation . BNA,  H. sapiens 261 261  GRCh38 K562 ?Ea,:l’gb?g
response SIRNA)
. ) Davis, 2018
CRISPRI H. sapiens 96 96 GRCh38 K562 (ENCODE)
TF induction H. sapiens 80 80 GRCh37 HEK293 Schmitges, 2016
679
680
681 Table 1. Data resources.
682
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Box 1: Expected False Discovery Rate (FDR) of intersection algorithms

Intersection algorithms identify the direct functional targets of a TF as those whose promoters are bound by the TF in an assay
such as ChIP-Seq and are responsive when the same TF is perturbed. A true direct functional (DF) target is responsive when
the TF is perturbed because it is bound by the TF. The obvious alternative is that the binding site is non-functional and the
gene is responsive because it is an indirect target of the TF. Another possible alternative is that the gene is a false positive of
the binding or response assay.

We start by defining the following notation for any given TF:

B the set of genes whose promoters are bound by the TF

R the set of genes that are responsive when the TF is perturbed
DF  the set of direct functional targets of the TF

G the set of all genes in the genome

The analyses below are based on a hypothesis that is best understand by first thinking about the non-functional binding sites
of a TF and its indirect targets as being distributed randomly and independently across the genes that are not DF targets. In
notation:

Pr(X € BNR|X € DF) =Pr(X € B|X € DF)Pr(X € R|X € DF),

That is, having a non-functional binding site for a TF and being an indirect target of the TF are unrelated — an indirect target
is no more or less likely to have a non-functional binding site than any other gene. However, our proof does not require equality,
just the inequality

Pr(X € BNR|X € DF) > Pr(X € B|X € DF)Pr(X € R|X € DF), (1)

where X is a randomly chosen gene. That is, indirect targets and non-functional binding sites do not systematically avoid one
another.

The sensitivity of the intersection algorithm is:

_IDFOR,NB,| _ |R,NB,|

sn [DF| = TIDF|

where the subscript o emphasizes that we are referring to the actual observed sets of bound and responsive genes from some
particular experiment. Thus,

‘DF‘ S |RO n Bn‘
Sn

2)

The expectation of the FDR, with respect to the random process that distributes non-functional binding sites and indirect
targets, is

E[FDR] = Pr(DF|BNR)
=Pr(BN R|DF)Pr(DF)/Pr(BNR)
> Pr(B|DF|) Pr(R|DF) Px(DF)/ Pr(B N R)
where DF is the set complement of DF and the random variable X has been omitted for brevity.

We can estimate these probabilities by maximum likelihood from the observed bound and responsive sets, B, and R,, as

follows.

Pr(B|DF|) Pr(R|DF) Pr(DF)/Pr(BNR) =~ ‘B‘vgﬁ‘” ‘Rlﬂgg‘“‘% L4l

_ |B,nDF||R,nDF|
[DF||BoNR,|

> max(O,\BO\—BF\)max(0,|Ro\—|DF\)
= |DF||BoNR,|
> max(0,|Bo|—|RoNB,|/sn) max(0,|Ro|—|RoNBo|/sn)
= [DF|[B.NR,|

Based on these estimates

max (0, | B,| — |Ro N B,|/Sn) max(0, |R,| — | R, N B,|/Sn)
|Gl|Bo N R, |

E[FDR] >

683 1
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686  Figure 1. (A) Distribution of the response rates of TFs (fraction of bound genes that respond to
687  TF perturbation) in the Harbison binding and Kemmeren TFKO data sets. Stacked orange bar
688 indicates the number of TFs with response rates of exactly 0. Binding threshold is p<0.001 and
689 response threshold is p<0.05, as recommended in the original publications, with no minimum
690 fold change. (B) Median numbers of bound genes (17), perturbation-responsive genes (318),
691  and intersection size (3), when comparing the ChlP-chip data to the TFKO perturbation-

692 response data. Thresholds are as in panel A. (C) An illustration of the idea that non-functional
693  binding sites will sometimes occur in the promoters of responsive, indirect targets by random
694 chance.
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Figure 2. Analysis of Minimum expected false discovery rate (FDR). (A) Minimum expected FDR
as a function of sensitivity for TF GIn3, with moderate and tight thresholds for responsiveness,
when comparing ChIP to TFKO. 80% sensitivity with 20% FDR is not attainable at either
threshold, when comparing ChiIP to TFKO. (B) The bound set, responsive set, and intersection
for GIn3, when comparing ChIP to TFKO. (C) Minimum expected FDR, as a function of
sensitivity, with moderate and tight thresholds for responsiveness, when comparing ChlIP to
ZEV15. 80% sensitivity with 20% FDR is attainable at either threshold. (D) The bound set,
responsive set, and intersection for GIn3, when comparing ChIP to ZEV15.
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709  Figure 3. (A) Numbers of acceptable TFs, unique target genes, and network edges, when

710  comparing Harbison ChIP data to TFKO or ZEV15 response data. “Unique Targets” are genes
711 that are in the bound-responsive intersection of an at least one acceptable TF and thus are
712  plausible direct functional targets. Edges connect acceptable TFs to the genes in their bound-
713  responsive intersection. These genes are not guaranteed to be direct functional targets. The
714  ZEV15 response data yields more acceptable TFs, more regulated genes, and more regulatory
715  edges. (B) Numbers of acceptable TFs and unique target genes for comparison of Harbison
716  ChIP binding data to TFKO or ZEV15 response data, after dual threshold optimization. The
717  requirement that the overlap between the bound and responsive targets be significantly greater
718  than chance at P<0.01 was obtained by comparing the nominal hypergeometric P-value for the
719  overlap to a null distribution obtained by running dual threshold optimization on 1,000 randomly
720  permuted binding and response data sets. ZEV yields more acceptable TFs, regulated genes,
721 and regulatory interactions than TFKO. (C) lllustration of DTO algorithm. Each dot represents
722  one gene. Red lines indicate the chosen (optimal) thresholds for binding (vertical red line) and
723  regulation (horizontal red line). The lower left quadrant, relative to the red lines, contains the
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bound and responsive genes, which are presumed to be direct functional targets (red dots). The
lower right quadrant contains genes that are judged to be responsive but not bound and the
upper left quadrant contains genes that are judged to be bound but not responsive (in this case
there are none). Gray lines indicate some of the other possible thresholds on binding or
response and locations where the gray lines cross are possible combinations of binding and
response thresholds, each of which is evaluated by the DTO algorithm. (D) Comparison of
TFKO and ZEV15 networks derived from fixed thresholds, DTO on raw gene expression, and
DTO on gene expression data processed by NetProphet 2.0. The use of DTO on the raw
expression data (blue bars) increases the size of the networks, whether you focus on the
intersection of the TFKO and ZEV networks (left bar grouping), or the union (right bar grouping).
Post processing with NetProphet 2.0 (green bars) increases the number of acceptable TFs.
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738  Figure 4. (A) Medians of number of bound genes, number of perturbation-responsive genes,
739  and number genes that are both bound and responsive, when comparing ENCODE K562 ChlP-
740  Seq data to ENCODE TFKD data. Excludes TFs with either no bound genes or no responsive
741 genes. Binding threshold is p<0.05 and response threshold is p<0.05 with no minimum fold

742  change. (B) Comparison of ENCODE K562 ChlP-Seq data and ENCODE CRISPRI data, as in
743  Panel A. (C) Comparison of human networks derived from fixed thresholds, dual threshold

744  optimization (DTO) on raw gene expression, and DTO on gene expression data processed by
745  NetProphet 2.0. No fixed threshold analysis for HEK293 is available for the lack of response p-
746  value.
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Figure 5. (A) Number of acceptable TFs, comparing the Harbison ChIP and Venters ChIP data
on the same 25 TFs. Regardless of the perturbation data set or the processing by NetProphet
2.0, the Harbison ChIP data always yields more acceptable TFs. (B) Among the 12 TFs for
which we have data in Harbison ChIP, calling cards, TFKO, and ZEV, the percentage that are
acceptable. Regardless of the perturbation data set or processing by NetProphet 2.0, calling
cards always yields more acceptable TFs. Holding all other factors constant, ZEV always yields
more acceptable TFs than TFKO. NetProphet postprocessing always yields more acceptable
TFs than raw differential expression for TFKO; for ZEV, the raw data already achieve 100%
acceptable. (C) For each of the 12 TFs for which we have data in Harbison ChIP, calling cards,
TFKO, and ZEV, the gene ontology (GO) term that is most strongly enriched in its targets.
Targets are determined either by simple intersection of the bound and responsive genes in
Harbison ChIP and TFKO data, using fixed thresholds (blue) or by dual threshold optimization
on calling cards data and output from NetProphet 2.0 run on the TFKO and ZEV expression
data (red). The colored numbers indicate the number of target genes annotated to the most
significant GO term. Asterisk indicates no GO enrichment with P<0.01. (D) Among all TFs for
which the indicated analyses can be carried out, the percentage that are acceptable in either
TFKO or ZEV expression data or both. The fraction shows the number of acceptable TFs over
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767  the total number of TFs that could be analyzed. FT: Fixed threshold. DTO: Dual threshold
768  optimization.
769

26


https://doi.org/10.1101/619676
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/619676; this version posted May 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a % 100% A
e 100% —— Calling cards-ZEV ° —— Calling cards-ZEV
g‘ 90% A — - Calling cards-TFKO 90% - — - Calling cards-TFKO
S 80% —— ChIP-ZEV 80% —— ChIP-ZEV
8 \ — - ChIP-TFKO =+ ChIP-TFKO
> 70% A < 70% A
g 2
S 60% g 60%
2 50% 8 50%
o X
€ 40% - c 40% 4
5 3
g 30% S 30%
@©
o 20% - 20%
%]
S 10% 10%
%]
€ 0% 0%
R 2SS RO PP e
0700 0% © 000U,
Ranking by binding signal Ranking by binding signal
770
771

772  Figure 6. (A) The fraction of most strongly Leu3-bound genes that are responsive to Leu3

773  perturbation, as a function of the number of most-strongly bound genes considered. (B) Same
774  as (A), with response rates averaged across the 12 TFs for which Harbison ChlP, calling cards,
775 TFKO, and ZEV data were available.

776
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