

1 **Two cases of type-a *Haemophilus influenzae* meningitis within the same week in the same**
2 **hospital are phylogenetically unrelated but recently exchanged capsule genes**

3

4 Yves Terrat¹, Lauge Farnaes², John Bradley², Nicolas Tromas¹ & B. Jesse Shapiro^{1*}

5

6 1. Département de sciences biologiques, Université de Montréal, Canada

7 2. Rady Children's Hospital, University of California San Diego, USA

8

9 * correspondence: jesse.shapiro@umontreal.ca

10

11 **ABSTRACT**

12 *H. influenzae* causes common and sometimes severe pediatric disease including chronic
13 obstructive respiratory disease, otitis media, and infections of the central nervous system.
14 Serotype b strains, with a b-type capsule, have been the historical cause of invasive disease, and
15 the introduction of a serotype b-specific vaccine has led to their decline. However,
16 unencapsulated or non-b-type *H. influenzae* infections are not prevented by the vaccine and
17 appear to be increasing in frequency. Here we report two pediatric cases of severe central nervous
18 system *H. influenzae* infection presenting to the same hospital in San Diego, California during the
19 same week in January 2016. Due to good vaccine coverage in this part of the world, *H. influenzae*
20 cases are normally rare and seeing two cases in the same week was unexpected. We thus
21 suspected a recent transmission chain, and possible local outbreak. To test this hypothesis, we
22 isolated and sequenced whole genomes from each patient and placed them in a phylogenetic tree
23 spanning the known diversity of *H. influenzae*. Surprisingly, we found that the two isolates (H1
24 and H2) belonged to distantly related lineages, suggesting two independent transmission events
25 and ruling out a local outbreak. Despite being distantly related, H1 and H2 belong to two
26 different lineages that appear to engage in frequent horizontal gene transfer (HGT), suggesting
27 overlapping ecological niches. Together, our comparative genomic analysis supports a scenario in
28 which an f-type ancestor of H2 arrived in North America around 2011 and acquired an a-type
29 capsule by recombination (HGT) with a recent ancestor of H1. Therefore, as in other bacterial
30 pathogens, capsule switching by HGT may be an important evolutionary mechanism of vaccine
31 evasion in *H. influenzae*.

32 **OUTCOME**

33 Two cases of severe central nervous system *H. influenzae* infection occurred during the same
34 week in the same hospital in San Diego, California – a region where such infections are usually
35 very rare due to vaccine coverage. We thus suspected a local outbreak of an *H. influenzae* clone
36 not covered by the vaccine. Using whole genome sequencing and phylogenetic analysis of two
37 isolates (H1 and H2, one from each patient), we found that they were distantly related, rapidly
38 ruling out a local outbreak and suggesting independent transmission events. This result highlights
39 the potential for rapid global spread of non-vaccine *H. influenzae* strains. In this case, both H1
40 and H2 both encoded a-type capsules, whereas the vaccine targets b-type capsules. We also
41 present comparative genomic evidence that a recent f-type ancestor of H2 acquired an a-type
42 capsule locus from a recent ancestor of H1, and that this horizontal gene transfer (HGT) event
43 likely happened in the past decade in North America, but probably not in the San Diego hospital.
44 These results highlight the potential importance of HGT in the capsule locus in allowing *H.*
45 *influenzae* to escape vaccine coverage.

46

47 **DATA SUMMARY**

48 *H. influenzae* H1 and H2 genome sequences have been deposited in NCBI under BioProject
49 PRJNA534512.

50

51 **CONFLICT OF INTEREST STATEMENT**

52 The authors declare that they have no conflict of interest to report.

53 **INTRODUCTION**

54

55 *Haemophilus influenzae* is traditionally classified into encapsulated or unencapsulated
56 strains, with encapsulated strains being subdivided into serotypes (or types) a-f, each with a
57 distinct type of polysaccharide capsule. Type-b has long been associated with invasive disease
58 (Pittman, 1931) and has thus been a major vaccine target. Since the introduction of vaccine
59 against type-b *H. influenzae*, a dramatic decrease of severe cases has been observed (Peltola,
60 2000). However, this drop in severe type-b infections was followed by an increase of acute
61 infections caused by non-b-type (*i.e.* a, c, d, e, and f capsule types) and non-typeable
62 (unencapsulated) strains (Ladhani et al., 2012; Headrick et al., 2018; Tsang et Ulanova, 2017;
63 Giufrè et al 2017).

64

65 As a common surface antigen and vaccine target, the capsule is a target of diversifying
66 selection and the capsule locus is a hotspot of recombination in bacterial pathogens including
67 *Klebsiella pneumoniae* (Wyres et al., 2015), *Streptococcus pneumoniae* (Mostowy et al., 2017),
68 and *Neisseria meningitidis* (Bartley et al., 2017) – but has been less thoroughly studied in *H.*
69 *influenzae*. Many (but not all) natural *H. influenzae* isolates are competent for DNA uptake
70 (Maughan et Redfield, 2009), and *H. influenzae* housekeeping and lipopolysaccharide genes are
71 inferred to undergo relatively frequent recombination (Vos et Didelot, 2009). Capsule types tend
72 to be associated with particular phylogenetic lineages of *H. influenzae*, leading to the assertion
73 that capsule genes evolve clonally, with limited recombination (De Chiara et al., 2014). On the
74 other hand, the capsule locus can be deleted naturally by recombination (Kroll et al., 1988, and
75 the capsule locus is occasionally recombined among phylogenetically distant lineages (Musser et
76 al., 1988). Thus, capsular recombination in *H. influenzae* appears to be relatively rare, but its
77 impact on the evolution and epidemiology of *H. influenzae* infections could be substantial. For
78 example, capsular switching could allow successful pathogenic lineages to evade vaccines and
79 persist. Alternatively, if capsular recombination is limited, we would expect vaccine lineages to
80 be replaced with other lineages, encoding different capsules.

81

82 Here we describe two *H. influenzae* genomes, each isolated from a meningitis patient at
83 Rady Children's Hospital (California, USA) within one week of each other in January of 2016.

84 As such severe central nervous system infections are extremely rare in Western countries since
85 the introduction of *H. influenzae* vaccines in the 1990s, the appearance of two cases in a such
86 narrow geographic and time window lead us to address the following questions using a
87 comparative genomic approach:

88 1) Are the two strains closely related, suggesting an outbreak of a particular *H. influenzae*
89 clone – possibly a vaccine-escape mutant? By placing the two strains on a phylogeny
90 of other sequenced *H. influenzae* genomes, we found that the two strains were
91 unrelated. This surprising result led us to ask a second question:
92 2) Do these two unrelated strains share particular genes that might have allowed them
93 both to emerge at the same place and time?

94

95 **METHODS**

96 **Strain collection and patient characteristics**

97 *H.influenzae* strains were isolated from blood culture of two unrelated individuals (Table 1), both
98 children under five years of age. They presented to Rady Children's Hospital within one week of
99 each other in January 2016. They were both treated with antibiotics and were eventually cured
100 with no apparent complications. Blood culture was *H. influenzae* positive for both patients and
101 showed that these strains were non-type b, but with an encapsulated appearance. Both strains
102 were sent to the United States Centers for Disease Control and Prevention (CDC) for serotyping,
103 which confirmed them both to be type a. Further patient characteristics are given in Table 1.
104 Strains isolated from patients 1 and 2 were respectively named H1 and H2 in this study.

105

106 **Ethical approval**

107 This study was approved by the Internal Ethical Review Board and the Privacy Board of Rady
108 Children's Hospital-San Diego (file #19005C). The study was deemed to be a case report, which
109 does not involve a systematic investigation and therefore does not meet the definition of research
110 as outlined in 45 CFR 46.102(d) and are not subject to the Human Subject Regulations (45 CFR
111 46). The privacy board concluded that no protected health information (PHI) is disclosed in this
112 study.

113

114

115 **Table 1.** Patient characteristics.

	Patient #1	Patient #2
Positive culture	Blood culture	Blood and Cerebrospinal fluid (CSF) culture
CSF cell profile on first tap	Protein 267 Glucose 47 Erythrocytes 112, Nucleated cells 619	Protein 68 Glucose 49 Erythrocytes 28 Nucleated cells 707
CNS complications	Subdural empyema	Seizure
Antibiotic Treatment	Vancomycin and meropenem for 18 days	Ceftriaxone for 10 days
Time to fever resolution	14 days	1 day

116

117 **DNA extraction & sequencing**

118 *Haemophilus influenzae* strains were cultured overnight on chocolate agar plates (Thermo Fischer
119 Sceintific) and DNA was extracted using the Bactozol DNA extraction kit (MRC inc.). Extracted
120 DNA was further purified using the PowerClean® Pro DNA Clean-Up Kit (MOBIO Laboratories
121 Inc.). Libraries were prepared using the Nextera XT kit (Illumina Inc.) following the standard
122 Illumina protocol and library size was confirmed at approximately 1000 bp with a Qiaxcel
123 Advanced System (QIAGEN). We performed paired end sequencing (2 x 300 bp) using the
124 MiSeq reagent Kit V3 (Illumina Inc.) on the MiSeq system (Illumina Inc.) yielding a total of
125 1,128,523 paired-end reads for H1 and 1,708, 296 paired-end reads for H2.

126

127 **Genome assembly, annotation, and phylogenetics**

128 Sequencing reads were trimmed with Trimmomatic (Bolger et al., 2014) with default parameters.
129 Trimmed reads were assembled into contigs using IDBA (Peng et al., 2012). We then compared
130 the H1 and H2 genomes with a dataset of 80 non-typable, six b-capsule and one f-capsule
131 genomes (previously described by De Chiara et al. 2014) using gene-by-gene alignments,
132 described below. Consistent with the previous analysis of De Chiara et al., we identified six well-
133 supported clades (named I-VI, following their nomenclature). To ensure that we did not miss
134 close relatives of H1 or H2 not present in the De Chiara dataset, we searched NCBI for closely

135 related genomes using a set of universal single copy genes extracted from H1 and H2 (Creevey et
136 al., 2011). Using this approach, we identified two additional recently sequenced closely related
137 encapsulated genomes: one f-capsule type isolated in Sweden in 2011 (Resman et al., 2011 ; Su et
138 al., 2013) and one a-capsule type isolated in Canada in 2011 (NCBI accession number:
139 CP017811.1). Ten sequences of *Haemophilus haemolyticus* were used as an outgroup for
140 phylogenetic analyses. Contigs were annotated using the RAST server (Aziz et al., 2008).
141 Translated gene predictions were assigned to orthologous groups using Orthofinder (Emms and
142 Kelly, 2015). 941 genes assigned to the core genome (present in single copy in each genome)
143 were aligned using MUSCLE (Edgar, 2004). Concatenation of these aligned genes was to infer a
144 core genome phylogeny using FastTreeMP (Price et al., 2009). We also used FastTreeMP to
145 reconstruct each individual gene tree (or gene fragment for genes in the capsule operon).
146 Phylogenies were displayed in FigTree (<http://tree.bio.ed.ac.uk/software/figtree/>). Gene
147 presence/absence heatmaps were displayed in R with the heatmap.2 function of the ggplots
148 package (<http://www.R-project.org/>). The same exact protocol of alignment and phylogenetic
149 inference was applied on the smaller regions of the capsule genes.

150

151 **Horizontal gene transfer detection**

152 To infer putative recent recombination due to horizontal gene transfer (HGT) between two
153 strains, we used an explicit phylogenetic method where individual gene trees (including both core
154 and flexible genes) were screened for phylogenetic incongruence with the reference tree,
155 containing six major lineages, based on 941 core genes. A phylogenetic incongruence was
156 considered as an HGT if a gene sequence from a lineage [i] was grouped in a well-supported
157 clade (bootstrap value of 100) with a gene from a different lineage [j]. We also required the gene
158 sequences from lineages [i] and [j] to share >97% nucleotide identity. As some flexible genes are
159 shared uniquely between two isolates from different clades, we also considered these as putative
160 HGTs if they shared >97% nucleotide identity.

161

162

163

164 **RESULTS**

165

166 **H1 and H2 genomes are distantly related**

167 The core genome phylogeny based on 941 aligned genes shows that H1 and H2 belong to two
168 distinct lineages: H1 in clade VI and H2 in clade I (**Figure 1**). These two clades are distantly
169 related, clade I being the first *H. influenzae* branch after its divergence from the *H. haemolyticus*
170 outgroup. Within clade VI, H1 is the only type-a isolate in a sub-clade carrying b-type capsule
171 genes, with the exception of one genome, Hi1008, which likely lost most of its capsule genes
172 (Meyler et al., 2019). We searched the NCBI genome database to identify close relatives of H1
173 and H2 not present in our phylogeny. The closest sequenced relative of H1, NML_Hia1, was
174 isolated in Canada in 2011, and also carries an a-type capsule locus. The closest sequenced
175 relatives of H2 are two f-type genomes: Hi794 (Finland, date unknown) and KR494 (Sweden,
176 2011). As H1 and H2 are distantly related in the tree, they are clearly not epidemiologically
177 linked and likely represent independent infection events.

178

179 **H1 and H2 belong to clades engaging in pervasive HGT**

180 Despite being phylogenetically unrelated, H1 and H2 were both isolated during the same week
181 from the same hospital. We thus hypothesized that they may have recently exchanged genes via
182 HGT. Using phylogenetic criteria to detect HGT (Methods) we did not identify any recent gene
183 transfers between H1 and H2 (**Figure 1**). Rather, H1 and H2 had flexible gene profiles similar to
184 other genomes from their respective clades (**Figure S1**). Despite the lack of recent HGT between
185 H1 and H2, we did observe that HGTs were unevenly distributed between clades (chi-square =
186 163.46, df = 14, $P < 2.2\text{e-}16$) and that the two distantly related clades containing H1 and H2
187 (clades I and VI) engaged in particularly pervasive HGT (**Figure 1**). These HGTs encode a mix
188 of virus- and plasmid-related functions, antibiotic resistance genes, and metabolic genes (**Table**
189 **S1**). Clades I and VI have similar profiles of selected virulence factors (De Chiara et al. 2014),
190 and members of both clades tend to encode *hap*, *hia*, and *hif* virulence genes (**Figure S2**). Neither
191 clade has a strong preference for a particular geographic region (**Figure S3**), time period (**Figure**
192 **S4**), or infection site (**Figure S5**). It is thus unclear why clades I and VI apparently engage in
193 more frequent HGT than other clades.

194

195 **Detailed phylogeny and HGT of the capsule locus**

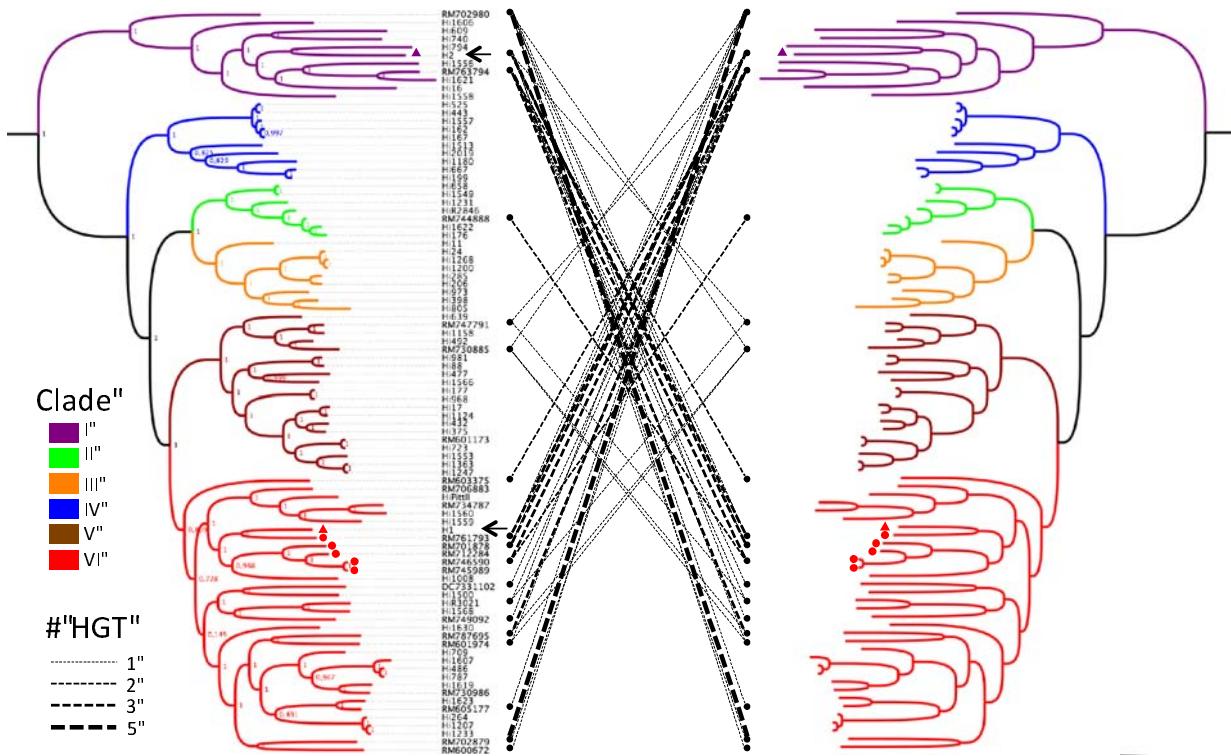
196 The presence of two a-type strains (H1 and H2) in two distantly-related clades lead us to
197 investigate in greater details the evolution of capsule locus genes. By manually inspecting
198 individual gene alignments at this locus, we found that H1 and H2 had identical or very similar
199 sequences spanning a ~5kb region encompassing most of the serotype-specific genes (**Figure 2**).
200 These genetic similarities between H1 and H2 were not detected in the gene-by-gene analysis
201 (**Figure 1**) because of conflicting phylogenetic signals within genes (**Figure 2**). NML_Hia1,
202 another a-type genome isolated in Canada in 2011, also shared a similar or identical sequence in
203 the serotype-specific region, suggesting that the putative recombination event in this region
204 occurred in 2011 or earlier, and that the sequence has subsequently accumulated relatively few
205 mutations. Upstream and downstream of the serotype-specific region, H2 was most similar to f-
206 type strains (**Figure 2**). This suggests that an f-type ancestor of H2 acquired ~5kb of serotype-
207 specific DNA from an a-type donor strain, resulting in a serotype switch. Thus, recent ancestors
208 of H1 and H2 engaged in HGT at the capsule locus. However, the H1 and H2 are non-identical,
209 notably in the *acsC* gene (6 substitutions over 2 400 bp) (**Figure 2**), making it unlikely that the
210 exchange occurred in Rady Children's Hospital.

211

212 **DISCUSSION**

213 The appearance of two *H. influenzae* infections in the same hospital in the same week was highly
214 unexpected because such infections are exceedingly rare in areas of high vaccine coverage. This
215 raised concerns that the two cases were part of a local outbreak, involving *H. influenzae*
216 transmission in the San Diego area. By sequencing the two isolate genomes (H1 and H2) and
217 placing them on a phylogenetic tree encompassing the known diversity of *H. influenzae*, we
218 found that they belonged to distantly related clades, indicating that each infection was acquired
219 independently and the two were not linked in a recent transmission chain. The entire analysis,
220 from strain isolate to sequencing and phylogenetic analysis, could be performed in about a week,
221 allowing us to rapidly rule out local transmission. Rather, the observation that H1 and H2 are
222 distantly related highlights the potential for rapid, potentially global spread of different *H.*
223 *influenzae* lineages.

224 To our knowledge H2 is the first North American clade I genome to be sequenced,
225 suggesting a recent transmission from Europe or Asia (**Figure S3**). H1 is part of clade VI and


226 shares recent ancestry with another type-a Canadian isolate from 2011, suggesting that this type-a
227 lineage has been circulating in North America for several years. Despite being distantly related,
228 H1 and H2 share a very similar capsule locus, particularly in the serotype-specific region.
229 Flanking the serotype-specific region and elsewhere in the genome, H2 is more similar to f-type
230 strains. Together, these observations point to a scenario in which an f-type ancestor of H2 arrived
231 in North America around 2011 and acquired an a-type capsule by recombination with a recent
232 ancestor of H1. We also note that H1 and H2 belong to two clades (VI and I, respectively) that
233 appear to engage in preferential HGT, possibly to cryptic niche overlap. Future work will be
234 needed to confirm and understand the reasons for this preferential genetic exchange.

235 That both H1 and H2 were isolated at the same place and time appears to be a
236 coincidence, but does suggest that these a-type strains are filling a vacant niche left by b-type
237 strains targeted by current vaccines. Our results also indicate that vaccines need not select for
238 lineage replacement, but could allow multiple different lineages to adapt via acquisition of new
239 capsule loci by HGT. We show that such a scenario is plausible, but further analysis of larger
240 population genomic samples will be needed to assess the relative importance of lineage
241 replacement vs. capsule HGT in the evolutionary response of *H. influenzae* to vaccine pressure.

242

243 **Figures and legends**

244

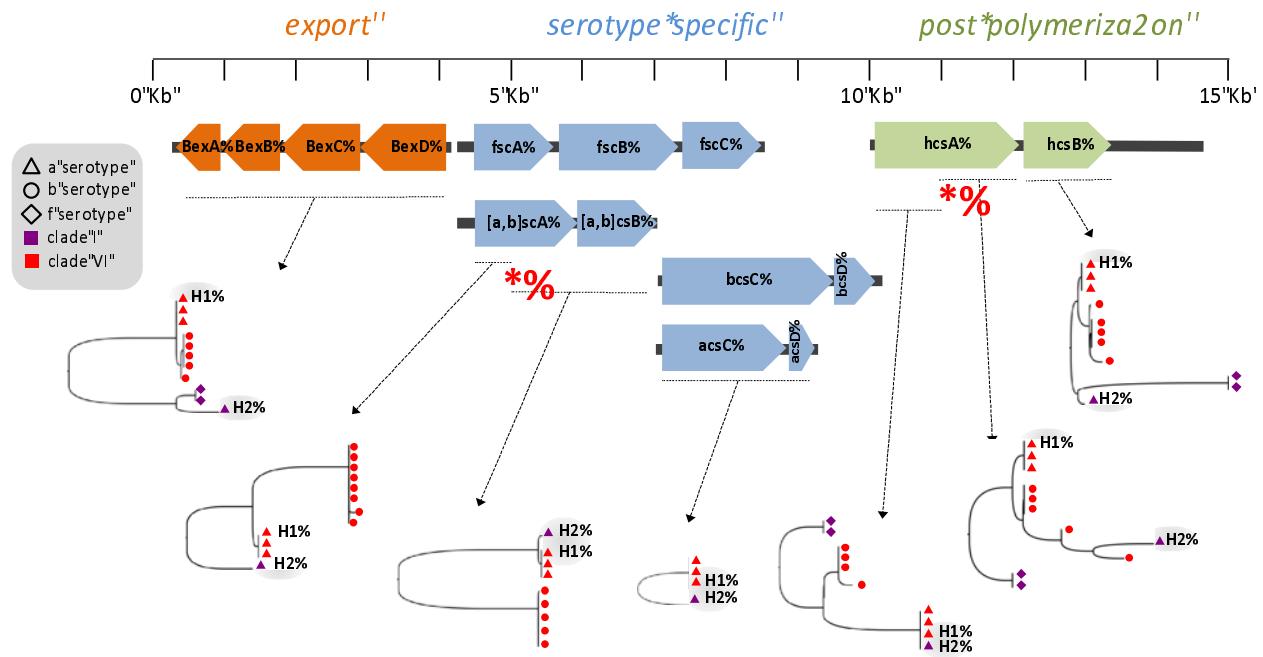
245

246

247 **Figure 1. Core genome phylogeny of *H. influenzae* and putative HGT events between clades.**

248 *H. haemolyticus* was used as an outgroup to root the tree (not shown). Encapsulated strains are

249 indicated with a circle (b-type) or a triangle (a-type); the remaining strains are unencapsulated.


250 H1 and H2 are indicated with arrows. Clades I-VI (following the nomenclature of De Chiara et al.

251 2014) are indicated in different colours. Putative HGT events between clades are indicated with

252 dashed lines. Line thickness indicates the number of HGTs (ranging from 1 to 5 genes).

253

254

255
256
257 **Figure 2: Phylogenies of genes and regions within the capsule locus.** Dashed horizontal lines
258 indicate the region used for phylogenetic analysis. Red stars indicate putative recombination
259 breakpoints.
260
261

262 **Supplementary Table.**

263
 264 **Table S1.** Annotated functions of putative HGTs between clades. Strain 1 and 2 indicated the two
 265 strains involved in the putative HGT. Clades involved (I-VI) are shown in the far left column.

	Strain 1	Strain 2	Annotation
I vs VI	DC7331102	RM763794	D-hexose-6-phosphate mutarotase
	H2	RM601974	peptidase M16
	H2	RM701878	Bicyclomycin resistance protein
	H2	RM701878	EamA/RhaT family transporter
	H2	RM702879	Gamma-glutamylputrescine oxidoreductase
	H2	RM747791	6,7-dimethyl-8-ribityllumazine synthase
	NML_Hia1	H2	mannonate dehydratase
	RM600672	RM702980	iron-sulfur cluster insertion protein ErpA
	RM603375	RM702980	anticodon nuclease / ATPase AAA
	RM603375	RM702980	restriction endonuclease subunit S
	RM603375	RM702980	HD domain-containing protein - guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase
	RM603375	RM702980	NADH oxidase
	RM603375	RM702980	toxin Fic family protein
	RM603375	RM763794	electron transport complex subunit RsxE
	RM603375	RM763794	phage tail protein
	RM605177	RM702980	osmotically-inducible protein OsmY
	RM701878	RM702980	YfcC family protein
	RM702980	RM730885	nitrate/nitrite two-component system sensor histidine kinase NarQ
	RM702980	RM749092	TonB-dependent siderophore receptor
	RM702980	RM749092	phage baseplate protein
	RM702980	RM749092	phage tail protein
	RM702980	RM761793	long-chain-fatty-acid-CoA ligase FadD
III vs VI	RM749092	RM763794	hypothetical protein
	RM761793	RM763794	Transcription termination/antitermination protein NusG
	RM763794	RM787695	plasmid RP4 TraN-related protein
	RM763794	RM787695	HD domain-containing protein / guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase
	RM763794	RM787695	hypothetical protein
V vs VI	RM744888	RM746590	hypothetical protein
	RM744888	RM746590	conjugative coupling factor TraD
	H1R3021	RM747791	conjugal transfer protein TraG
	RM601974	RM730885	5'-methylthioadenosine/adenosylhomocysteine nucleosidase
	RM730885	RM787695	long-chain fatty acid-CoA ligase

267 **References :**

268

269 Aziz, R.K. *et al.* The RAST Server: rapid annotations using subsystems technology. *BMC*

270 *Genomics* **9**, 75 (2008).

271 Bartley, S.N. *et al.* Acquisition of the capsule locus by horizontal gene transfer

272 in *Neisseria meningitidis* is often accompanied by the loss of UDP-GalNAc synthesis. *Sci Rep* **7**,

273 44442 (2017).

274 Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina

275 sequence data. *Bioinformatics* **30**, 2114-20 (2014).

276 Creevey, C.J., Doerks, T., Fitzpatrick, D.A., Raes, J. & Bork P. Universally

277 distributed single-copy genes indicate a constant rate of horizontal transfer. *PLOS ONE* **6**, e22099

278 (2011).

279 De Chiara, M. *et al.* Genome sequencing of disease and carriage isolates of nontypeable

280 *Haemophilus influenzae* identifies discrete population structure. *Proc. Natl. Acad. Sci. U.S.A.*

281 **111**, 5439–5444 (2014).

282 Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high

283 throughput. *Nucleic Acids Res* **32**, 1792-1797 (2004).

284 Emms D.M & Kelly, S. OrthoFinder: solving fundamental biases in whole genome

285 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol* **16**, 157 (2015).

286 Giufrè, M., Cardines, R., Brigante, G., Orecchioni, F. & Cerquetti, M. Emergence of

287 Invasive *Haemophilus influenzae* Type A Disease in Italy. *Clin. Infect. Dis.* **64**, 1626–1628

288 (2017).

289 Headrick, A., Schmit, E. O. & Kimberlin, D. W. Fulminant *Haemophilus Influenzae* Type
290 a Infection in a 4-year-old with Previously Undiagnosed Asplenic Heterotaxy. *Pediatr. Infect.*
291 *Dis. J.* **37**, e108–e110 (2018).

292 Heikkinen, T. *et al.* Incidence of influenza in Finnish children. *Pediatr. Infect. Dis. J.* **22**,
293 S204-206 (2003).

294 Kroll, J. S., Hopkins, I. & Moxon, E. R. Capsule loss in *H. influenzae* type b occurs by
295 recombination-mediated disruption of a gene essential for polysaccharide export. *Cell* **53**, 347–
296 356 (1988).

297 Ladhani, S. N. *et al.* Invasive *Haemophilus influenzae* serotype e and f disease, England
298 and Wales. *Emerging Infect. Dis.* **18**, 725–732 (2012).

299 Maughan, H. & Redfield, R. J. Extensive Variation in Natural Competence in
300 *Haemophilus Influenzae*. *Evolution* **63**, 1852–1866 (2009).

301 Meyler, K. *et al.* Spontaneous capsule loss in *Haemophilus influenzae* serotype b
302 associated with Hib conjugate vaccine failure and invasive disease. *Clin Microbiol Infect* **25**, 390–
303 391 (2019).

304 Mostowy, R.J. *et al.* Pneumococcal capsule synthesis locus cps as evolutionary hotspot
305 with potential to generate novel serotypes by recombination. *Mol Biol Evol* **34**, 2537-2554
306 (2017).

307 Musser, J. M., Kroll, J. S., Moxon, E. R. & Selander, R. K. Evolutionary genetics of the
308 encapsulated strains of *Haemophilus influenzae*. *Proc Natl Acad Sci U S A* **85**, 7758–7762
309 (1988).

310 Peng, Y., Leung, H.C., Yiu, S.M. & Chin F.Y. IDBA-UD: a de novo assembler for single-
311 cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics* **28**, 1420-8
312 (2012).

313

314 Pittman, M. Variation and type specificity in the bacterial species *Hemophilus influenzae*.

315 *J. Exp. Med.* **53**, 471–492 (1931).

316 Price, M.N., Dehal, P.S. & Arkin, A.P. FastTree: computing large minimum evolution

317 trees with profiles instead of a distance matrix. *Mol Biol Evol* **26**, 1641-50 (2009).

318 Resman, F. *et al.* Necrotizing myositis and septic shock caused by *Haemophilus*

319 *influenzae* type f in a previously healthy man diagnosed with an IgG3 and a mannose-binding

320 lectin deficiency. *Scand J Infect Dis* **43**, 972-6 (2011).

321 Su, Y.C., Hörhold, F., Singh, B. & Riesbeck, K. Complete Genome Sequence of

322 Encapsulated *Haemophilus influenzae* Type f KR494, an Invasive Isolate That Caused

323 Necrotizing Myositis. *Genome Announc* **1**, e00470-13 (2013).

324 Tsang, R. S. W. & Ulanova, M. The changing epidemiology of invasive *Haemophilus*

325 *influenzae* disease: Emergence and global presence of serotype a strains that may require a new

326 vaccine for control. *Vaccine* **35**, 4270–4275 (2017).

327 Vos, M. & Didelot, X. A comparison of homologous recombination rates in bacteria and

328 archaea. *ISME J* **3**, 199–208 (2009).

329 Wyres, K.L. *et al.* Extensive Capsule Locus Variation and Large-Scale Genomic

330 Recombination within the *Klebsiella pneumoniae* Clonal Group 258. *Genome Biol Evol* **7**, 1267-

331 79 (2015).