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SUMMARY

Understanding factors that shape the immune landscape
across hematological malignancies is essential for
immunotherapy development. Here, we integrated over
8,000 transcriptomes and over 1,000 samples with
multilevel genomic data of hematological cancers to
investigate how immunological features are linked to
cancer subtypes, genetic and epigenetic alterations, and
patient survival. Infiltration of cytotoxic immune cells was
associated with distinct microenvironmental responses
and driver alterations in different cancers, such as TP53
in acute myeloid leukemia and DTX? in diffuse large B
cell lymphoma. Epigenetic modification of CIITA
regulating antigen presentation, cancer type-specific
immune checkpoints such as VISTA in myeloid
malignancies, and variation in cancer antigen expression
further contributed to immune heterogeneity. Prognostic
models highlighted the significance of immunological
properties in predicting survival. Our study represents the
most comprehensive effort to date to link immunology
with cancer subtypes and genomics in hematological
malignancies, providing a resource to guide future
studies and immunotherapy development.

INTRODUCTION

Immune checkpoint blockade therapies are
revolutionizing cancer therapy in several tumor types,
demonstrating that the immune system can be
successfully harnessed for effective anti-cancer
treatment (Ribas and Wolchok, 2018). In hematological
malignancies, immune checkpoint inhibition has

demonstrated efficacy in classical Hodgkin’s lymphoma
(CHL) (Ansell et al., 2015), and adoptive chimeric antigen
receptor (CAR) T cell therapy has been successful in
several B cell malignancies (Maude et al.,, 2014
Schuster et al., 2017). Allogeneic hematopoietic stem cell
transplantation (allo-HSCT) is also considered to rely on
the immune system by inducing the graft-versus-
leukemia effect (Casucci et al., 2013). It is typical for
immune-based therapies that only some cancer types or
a subset of patients within a cancer type achieve
responses. Therefore, rational patient selection based on
the immune milieu of each tumor type may be crucial to
achieve optimal benefit from immunotherapies. However,
in hematological cancers the immunological diversity and
underlying mechanisms resulting in distinct immune
landscapes are unclear.

The immune landscape of cancers comprises various
elements influencing the anti-cancer immune response
(Chen and Mellman, 2013). The composition of the
immune infiltrate, importantly cytotoxic lymphocytes that
mediate elimination of cancer cells, has been associated
with favorable outcomes in several cancers (Fridman et
al., 2012; Galon et al., 2006) and with immunotherapy
responses (Tumeh et al., 2014; Van Allen et al., 2015).
Furthermore, antigen presentation is essential for
adaptive immune responses. Antigen presentation by
cancer cells is commonly considered to occur in the
context of human leukocyte antigen (HLA) class |
molecules, and somatic mutations in the HLA genes are
frequent immune evasion mechanisms in solid tumors
(Garrido et al., 2010; Shukla et al., 2015). However, as
the normal cellular counterpart for most hematological
malignancies is closely related to antigen-presenting
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cells (APCs), hematopoietic cancer cells may present
antigen also in the context of HLA class Il (Bachireddy et
al.,, 2015). HLA 1l expression has been linked to
prognosis (Rimsza et al.,, 2004) and response to PD-1
blockade immunotherapy in lymphoma (Roemer et al.,
2018), and loss of mismatched HLA (Vago et al., 2009)
or transcriptional downregulation of HLA Il (Christopher
et al., 2018) has been associated with relapse after allo-
HSCT in acute myeloid leukemia (AML), demonstrating
the importance of HLA Il in hematological malignancies.

In addition to antigen presentation, T cells require co-
stimulatory signals for effective activation. The balance of
activating and inhibitory signals from tumor cells and
APCs regulates both T and NK cell responses, and
inhibitory signals such as PD-L1 are proven therapy
targets (Chen and Flies, 2013). Finally, the presence of
cancer antigens is essential to initiate and maintain the
adaptive immune response. Cancer antigens include
neoantigens derived from somatically mutated genomic
regions and cancer-germline antigens (CGAs) normally
expressed only in immune-privileged germ cells
(Simpson et al., 2005). Several hematological
malignancies have been shown to harbor low neoantigen
loads (Alexandrov et al., 2013). However, CGA
expression across hematological malignancies has not
been systematically analyzed, although studies within
cancer types have been conducted (Atanackovic et al.,
2007; Meklat et al., 2007).

Emerging evidence from solid tumors suggests that
cancer cell-intrinsic genetic and epigenetic aberrations
influence tumor immune landscapes (Wellenstein and de
Visser, 2018). Recently, several studies have integrated
the genetics of solid tumors with immunological
properties by leveraging extensive genomic datasets
(Charoentong et al., 2017; Gentles et al., 2015; Li et al.,
2016; Rooney et al., 2015; Thorsson et al., 2018). In
contrast, large-scale studies of genotypic-
immunophenotypic  connections in  hematological
malignancies have not been performed. However, it is
likely that heterogeneity exists in immunological
properties given the vast genetic and epigenetic
heterogeneity in hematological malignancies such as
AML (Cancer Genome Atlas Research Network, 2013;
Figueroa et al., 2010).

Here, we perform a comprehensive immunogenomic
analysis in hematological cancers, investigating cytotoxic
immune infiltration, antigen presentation, immune cell co-
stimulation, and cancer antigen expression patterns in
relation to cancer subtypes and genomics. We utilize a
resource of over 8,000 transcriptomes collected across
36 hematological malignancies and normal
hematopoietic  cells (Hemap, hitp://hemap.uta.fi),
together with multi-omics datasets of AML and diffuse
large B cell lymphoma (DLBCL). In addition to
transcriptomics, we integrate somatic DNA alterations,
DNA methylation, quantitative multiplex
immunohistochemistry, and flow cytometry to
comprehensively map immunological features and
validate the robustness of the findings. We identify
microenvironmental  differences between immune-
infitrated and  immune-excluded cancers and
demonstrate how the genetic and epigenetic makeup is

linked to immune infiltration and antigen presentation.
This understanding has implications for the development
of precision immune intervention strategies in
hematological malignancies.

RESULTS

Assessment of cytotoxic lymphocyte infiltration
across hematological malignancies

We used 8,472 samples from 36 hematological
malignancies, with 629 healthy donor hematological cell
populations and 530 «cell lines as controls, to
comprehensively analyze immunological properties in
hematological cancer transcriptomes (Figures 1A and
S1A and Table S1). To facilitate linking immunological
features to molecular cancer subtypes, we visualized the
data using t-Distributed Stochastic Neighbor Embedding
(t-SNE) (van der Maaten and Hinton, 2008) and utilized
unsupervised sample stratification using density-based
assignment of clusters with distinct molecular profiles
(Cheng, 1995; Mehtonen et al., 2019).

CD8+ cytotoxic T lymphocytes (CTLs) and natural killer
(NK) cells are considered to be essential for effective
anti-tumor immunity and responsiveness to
immunotherapy (Joyce and Fearon, 2015; Morvan and
Lanier, 2016; Tumeh et al., 2014; Van Allen et al., 2015).
We first aimed to quantify the cytolytic immune infiltrate
in the tumor microenvironment from bulk transcriptomes
across hematological malignancies genes specifically
expressed in CTLs and NK cells (Figure S1B). Based on
the high specificity of the genes GZMA, GZMH, GZMM,
PRF1, and GNLY to CTLs/NK cells compared to
hematopoietic cancer cells and their essential role in
cytolytic effector functions, we defined the geometric
mean of these five genes as the cytolytic score reflecting
CTL/NK abundance, (Figures 1B and S1C).

To validate our strategy of inferring cytotoxic lymphocyte
abundance in hematological malignancies, we analyzed
T and NK cell fractions using flow cytometry from
diagnostic bone marrow (BM) aspirates of AML patients
and performed paired RNA-seq from BM mononuclear
cells. Cytolytic score correlated highly with the combined
fraction of T and NK cells out of all BM cells, indicating
good performance in leukemia samples (Spearman’s R =
0.74, P=48 x 107, Figure 1C and S1D). Demonstrating
utility also in lymphomas, cytolytic score correlated with
the immunohistochemistry-based T cell content in a
mucosa-associated lymphoid tissue (MALT) lymphoma
dataset included in Hemap (Chng et al., 2009) (R = 0.68,
P = 0.00013, Figure S1E). Built for hematological
malignancies, cytolytic score also agreed well with
previously reported methods of estimating immune cell
subset abundance in solid tumors, including gene sets
proposed by Bindea et al. (Bindea et al., 2013) and MCP-
counter (Becht et al., 2016) (Figures S1F and S1G).
Correlation to the deconvolution method CIBERSORT
(Newman et al., 2015), designed to infer relative fractions
of immune cell types rather than their abundance, was
lower (Figure S1H). In conclusion, cytolytic score robustly
estimates the abundance of CTLs and NK cells in bulk
gene expression profiles of hematological malignancies,
enabling its use for immunogenomic analyses.
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Figure 1. Identification of cytotoxic lymphocyte infiltration in hematological malignancies A. Schematic overview of the study. Data from
hematological malignancies and normal hematopoietic cells from Hemap and other sources were integrated to study associations of immune states
to cancer subtypes, transcriptional, genetic and epigenetic properties, and clinical parameters. B. Distributions of expression levels (log2
expression) of genes included in cytolytic score for sorted cancer cells, unsorted tumor samples, and sorted CD8+ cytotoxic T lymphocytes and NK
cells. C. Correlation (Spearman) of cytolytic score obtained from RNA-seq and combined T and NK cell fraction obtained by flow cytometry from 35
AML BM samples. D. Visualization of Hemap samples on a t-SNE map, with cancer types, cell lines, and normal cell populations colored. E.
Cytolytic score colored on the Hemap t-SNE map. Red and blue color tones correspond to high and low scores, respectively. Sorted samples (score
not calculated) are colored in beige. F. Cytolytic score across main cancer types in Hemap shown as box plots. Grey shading indicates samples
with Z-score > 1. G. Percentages of samples with high cytolytic score (Z-score > 1) across main cancer types. H. Percentages of samples with high
cytolytic score (Z-score > 1) shown as in G across Hemap BCL subtypes. See also Figure S1 and Table S1.

Across transcriptomes of hematological malignancies, we
observed the highest cytolytic score in chronic
lymphocytic leukemia (CLL) and B cell lymphomas (BCL)
(Figures 1D-F and Table S1). In contrast, acute
leukemias and chronic myeloid leukemia (CML) were
characterized by lower cytolytic scores. Importantly, we
observed substantial variation in cytolytic infiltrate within
cancer types, with most cancer types, including acute
leukemias, harboring a subset of samples with high
cytolytic score (Z-score > 1 across all cancers) (Figure
1G). Within BCL, we observed the highest levels in T
cell/histiocyte-rich B cell lymphoma (THRBCL) and CHL,
and the lowest in Burkitt's lymphoma (BL) (Figure 1H),
consistent with known characteristics of the immune
infilirate across BCL subtypes (Scott and Gascoyne,
2014). Activated B cell-like (ABC) DLBCL showed higher
cytolytic score compared to the germinal center B cell-
like (GCB) subtype. T cell ymphoma (TCL) subtypes had
high cytolytic score, likely partially due to malignant T
cells. Testicular DLBCL demonstrated high cytolytic
score, in contrast to central nervous system DLBCL,
indicating differences related to tumor site. Together,
these data show that cytolytic score captures variation in
cytolytic infiltrates across hematological malignancies
and indicate that even in disease entities with generally
low cytolytic activity, a subset of cases with abundant
cytotoxic lymphocyte infiltration can be identified.

IFNy signature
distinguishes
leukemias

To characterize cancers with abundant cytolytic infiltrate
in more detail, we explored genes whose expression
correlated with cytolytic score in each cancer type. As
expected, genes positively correlated with cytolytic score
were enriched in signatures reflecting T cell activation
and inflammatory response, also confirmed at the protein
level (Figures S2A and S2B and Table S2). To dissect
genes expressed in cell types other than CTLs and NK
cells, we contrasted the transcripts correlated with
cytolytic score with the difference in expression between
purified CTLs/NKs and the unsorted tumor samples
(Figures 2A and S2C). We also investigated which
normal cell types expressed the identified genes to
define cell types co-infiltrating with cytolytic cells (Table
S2). This analysis revealed strong correlations of genes
expressed in monocytes and macrophages to cytolytic
score both in B cell lymphomas and chronic leukemias
(e.g. CD14, R > 0.6, FDR = 0.0), suggesting frequent co-
infiliration of myeloid cells with cytotoxic lymphocytes
(Figure 2B). In contrast, correlations of
microenvironmental genes with cytolytic score were
much more modest in AML, pre-B-ALL, T-ALL, and
myelodysplastic syndrome (MDS) (e.g. CD14 R < 0.3).

linked to cytolytic infiltration
lymphoma microenvironment from

Characteristic microenvironmental genes associated with
cytolytic infiltration in lymphomas included those
encoding the immunosuppressive tryptophan-
catabolizing enzyme /IDO1 (Munn and Mellor, 2016), T

cell-recruiting  chemokines  highly  expressed in
proinflammatory  M1-type  macrophages (CXCL9,
CXCL10, CXCL11), and complement components

expressed in macrophages and dendritic cells (DCs)
(C1QA, C1QB, C1QC) (Figure 2B). The expression of
IDO1 and the CXCR3-ligand chemokines is known to be
strongly induced by IFNy (Groom and Luster, 2011;
Spranger et al., 2013), suggesting evidence of a
microenvironmental response to IFNy associated with
cytolytic infiltration. Expression of these genes in normal
lymph nodes and leukemias was low (Figure 2B),
indicating  cancer-associated modulation of the
lymphoma immune microenvironment.

To validate the distinct lymphoma microenvironment
characterized by myeloid infiltration and IFN-y-induced
expression signature, we analyzed tissue microarrays
(TMAs) constructed from DLBCL and AML BM biopsies
using multiplex immunohistochemistry (Figure 2C).
Consistent with the gene expression data, CTLs (CD8+)
correlated with macrophages (CD68+) and IDO1+ and
CXCL9+ cells in DLBCL (Figures 2D and 2E). In AML,
however, IDO1+ or CXCL9+ cells were generally sparse
and did not correlate with CTLs, in concordance with the
gene expression data (Figure S2D). CD68 did not
correlate either with CTLs, but was likely expressed on a
subset of blasts, potentially confounding correlations.
Collectively, these data indicate general
macrophage/monocyte infiltration  associated  with
cytolytic cells and a distinct immunological tumor
microenvironment in lymphomas characterized by IFNy-
responsive genes.

Cytolytic infiltration is associated with driver
alterations and molecular subtypes in AML and
DLBCL

We next asked whether specific genetic alterations or
molecular subtypes could be associated with increased
abundance of cytotoxic lymphocytes. We first explored
correlations of cytolytic score to somatic mutations and
CNVs in the TCGA AML dataset (Table S3). Cytolytic
score positively correlated with mutations in the TP53
tumor suppressor gene (FDR < 0.00018), as well as
deletions located in the long arm of chromosome 5
(Figure 3A). These alterations often co-occurred with
complex cytogenetics and elevated genome
fragmentation, whereas no correlation to mutation load
was detected. In contrast, the common AML driver
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Figure 2. Distinct immune microenvironments associate with cytolytic infiltration in lymphoma and leukemia A. Correlation of gene
expression with CTL/NK abundance in B cell lymphoma. The average correlation between the expression of each gene and the cytolytic score in
BCL samples (y axis) is compared to the fold change of the respective expression level between purified CTLs/NKs and bulk BCL transcriptomes (x
axis). Genes more specific to CTLs/NKs are colored in red and genes more specific to other cell types in the tumor sample (stromal/cancer cells)
are colored in blue. B. Heatmaps of correlation coefficients (Spearman correlation to cytolytic score) of selected genes across Hemap leukemia and
lymphoma subtypes (left) and mean gene expression in normal cell types (right). C. Workflow of multiplex immunohistochemistry-based validation

of protein-level expression of genes correlating with cytolytic score in lymphoma and leukemia microenvironments.

D. Multiplex

immunohistochemistry images of in representative DLBCL samples with low (left) or high (right) percentage of CD8+ cells (CTLs). CD8 (CTL
marker), CD68 (macrophage marker), CXCL9, IDO1, and DAPI stainings are shown. E. Scatter plots comparing the percentage of CD8+ cells
(CTLs) out of total cells with the percentages of CD68+ cells (macrophages), IDO1+ cells, and CXCL9+ cells out of total cells in the DLBCL IHC
cohort (n=233). Spearman correlation coefficients and P values adjusted using the BH method are shown. See also Figure S2 and Table S2.

mutations FLT3 and NPM1 preferentially occurred in
samples with low cytolytic activity. The samples with high
cytolytic score were enriched in a cluster characterized
by an MDS-like transcriptomic phenotype (FDR = 10°®,
Fisher's exact test) that we have previously identified
(Poélénen et al., 2019) and mutations frequently found in
MDS such as RUNX1 and ASXL1, suggesting that a
distinct MDS-like transcriptional signature may be
associated with elevated cytotoxic lymphocytes in AML
(Figures 3B-E).

To validate the association of cytolytic infiltration to a
transcriptomic subtype linked to complex cytogenetics
and MDS-associated alterations, we identified matching
transcriptional clusters in the Hemap AML and BeatAML
datasets using a cluster-specific gene set enrichment
approach (Mehtonen et al., 2019) (Figures S3A-D). The
cases with high cytolytic score in Hemap AML and
BeatAML were enriched in a cluster corresponding to the
TCGA MDS-like cluster (FDR = 0.0044, Fisher’'s exact
test in BeatAML) with frequent complex cytogenetics and
prior MDS cases. Cytolytic score correlated with
diagnosis of AML with myelodysplasia-related changes
(FDR = 0.05), further suggesting a link between an MDS-
like/secondary AML subtype and increased -cytolytic
infiltration.

We next examined cytolytic score in relation to mutations
and CNVs in DLBCL (Chapuy et al., 2018) (Table S3).
BCL2 translocations, which almost exclusively occur in
GCB DLBCL, correlated negatively with cytolytic
infiltration (FDR = 0.065, Figure 3F), consistent with the
lower cytolytic score observed in this molecular subtype
in Hemap (Figure 1H) and fewer CD8+ cells assessed by
mIHC (Figure S3E). Several CNVs and GCB-associated
mutations (BCL2, KMT2D, CREBBP) were negatively
associated with cytolytic infiltration, whereas mutations in
ETV6, ETS1, and DTX1 showed positive correlations
(FDR < 0.25). Cytolytic score correlated negatively with
tumor purity assessed by ABSOLUTE (Carter et al,,
2012), consistent with increased immune infiltrate linked
to lower tumor cell fractions. Given the strong impact of
the molecular subtype on cytolytic infiltrate, we analyzed
both ABC and GCB subtypes separately to identify more
direct associations to specific genetic alterations (Figures
S3F and S3G). 7q amplifications were preferentially
found in ABC with low cytolytic infiltration and GCB
(Figure 3G). The correlation of DTX7 mutations with
cytolytic infiltration was even stronger in the GCB
subtype alone compared to all DLBCL (FDR = 0.06,
Figure 3H). Together, our data suggest that specific
cancer cell-intrinsic genetic alterations and molecular
subtypes are linked to cytotoxic infiltrate in both AML and
DLBCL.

Epigenetic modification of the HLA class |l
transactivator CIITA regulating antigen presentation
in AML

Given the importance of effective antigen presentation for
adaptive anti-tumor immune responses, we analyzed the
expression of HLA genes to detect potential
transcriptional downregulation. As the normal cellular
counterpart of several hematological malignancies is an
APC, the cancer cells could elicit T cell responses by
presenting antigen in HLA class Il molecules in addition
to HLA | expressed in all nucleated cells. We constructed
an HLA | score, comprised of B2M, HLA-A, HLA-B, and
HLA-C, and an HLA Il score, containing HLA Il genes
significantly upregulated in APCs (macrophages, DCs, B
cells) compared to non-APCs and whose expression
highly correlated with each other (Figures S4A and S4B
and Table S4).

We observed a lower HLA | score in cells of the erythroid
lineage, hematopoietic progenitors, and T cell acute
lymphoblastic leukemia (T-ALL) compared to other cell
populations (Figure 4A and Table S1). While the
differences in HLA | expression were rather modest, HLA
Il expression varied more substantially. B cell
malignancies, including pre-B-ALL, CLL, and B cell
lymphomas had high HLA |l score as expected by their
APC origin, whereas in multiple myeloma (MM) HLA I
was downregulated consistent with HLA Il loss upon
plasmacytic differentiation (Silacci et al., 1994) (Figures
4B and 4C and Table S1). In AML, specific transcriptomic
clusters showed downregulated HLA |l expression,
including the acute promyelocytic leukemia cluster
harboring PML-RARA fusion known to be characterized
by low surface HLA-DR (Wetzler et al., 2003), and a
cluster characterized by NPM1 mutations and M1 or M2
FAB subtype. HLA |l score correlated with HLA-DR
surface expression in AML blasts measured using flow
cytometry and paired RNA-seq, indicating that the HLA I
score accurately reflects variation in surface HLA 1
protein levels (Figures 4D and S4C).

We next correlated molecular features, including
mutations, CNVs, and DNA methylation in the TCGA
AML cohort to the HLA Il score to shed light on the
molecular mechanisms leading to downregulation of the
HLA Il genes (Table S4). Expression of the HLA class I
transactivator CIITA strongly correlated with the HLA Il
score (R = 0.84, FDR = 6.1 x 10, Figure 4E). However,
methylation of promoter regions of CIITA (R = -0.54, FDR
= 4.6 x 107°, probe cg01351032) and several HLA I
genes correlated negatively with the HLA Il score (Figure
S4D). CIITA methylation was enriched in transcriptomic
clusters with low HLA Il score corresponding to those
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Figure 3. Genetic alterations associated with cytolytic infiltration A. Top genetic alterations associated with cytolytic score in TCGA AML
patients shown as an oncoprint, where columns corresponding to a sample are ranked by cytolytic score and different data values are plotted on
rows. Discrete state/class is indicated as color (genetic alterations and sample categories) and continuous values are represented as barcharts
(score or percentage values). FDR for correlations between cytolytic score and genetic alterations are shown. B-D. Visualization of TCGA AML
samples using a t-SNE representation. Clusters, cytolytic score, cytogenetics, and MDS signature are colored on the t-SNE maps, respectively. Key
characteristics of the clusters are annotated. E. Top genetic alterations associated with cytolytic score in DLBCL (data from GSE98588) patients are
shown as in A. F. Comparison of cytolytic score in DLBCL between cases with 7q amplification and without (WT) stratified by molecular subtype.
Nominal P values obtained using two-sided Wilcoxon rank sum test are shown. G. Comparison of cytolytic score in DLBCL between cases with
DTX1 mutations and without (WT) stratified by molecular subtype. Nominal P values obtained using two-sided Wilcoxon rank sum test are shown.

See also Figure S3 and Table S3.

identified in Hemap, harboring PML-RARA fusion or
M1/M2 FAB subtype co-occurring with mutations in
NPM1 (Figures 4F and S4E). Upon closer examination,
highest CIITA hypermethylation occurred in a cluster with
mutations in the DNA methylation regulators IDH1, IDH2,
and TET2. We observed a similar connection between
epigenetic modifier mutations and low HLA Il in the
BeatAML dataset (Figure S4F), further suggesting a link
between AML driver mutations and antigen presentation
mediated by alterations in DNA methylation. In contrast,
AML harboring CBFB-MYH11 or RUNX1-RUNX1T1
translocations were characterized by high HLA Il and
CIITA hypomethylation, and RUNX1 mutations correlated
with high HLA Il score (FDR = 0.0013, TGCA and 2.9 x
10, BeatAML). In addition to AML, CIITA was
methylated in T-ALL with low HLA Il expression (Holling
et al., 2004), suggesting potential epigenetic regulation of
antigen presentation in different hematological cancer
types (Figures S4G and S4H).

To validate the finding in an independent dataset, we
analyzed differentially methylated cytosines (DMCs) in
the CIITA promoter region between AML patients with
high and low HLA 1l score using ERRBS data (Glass et
al., 2017). This analysis demonstrated a differentially
methylated region encompassing a CpG island and
CIITA promoter lll, active in lymphocytes, and the IFNy-
inducible promoter IV  (Muhlethaler-Mottet, 1997)
(Figures 4G and 4H). Further validating the observation,
CIITA promoter methylation negatively correlated with
HLA Il score in AML cell lines (Figure S4G). In MOLM13
AML cells expressing low levels of HLA Il with
hypermethylation of the CI/ITA promoter, treatment with
the hypomethylating agent decitabine partially restored
HLA-DR surface expression and potentiated the HLA-DR
induction by IFNy, a known inducer of HLA |l (Steimle et
al., 1994) (Figures 41 and S4l). Taken together, these
data show that AML cells may evade antigen
presentation through transcriptional downregulation of
HLA Il genes, which is linked to CIITA methylation in
distinct genetic and transcriptional subtypes of AML and
across hematological cancers.

Immune checkpoints are linked to cancer subtypes
and genetic alterations

Immunomodulatory genes or immune checkpoints
regulating T cell co-stimulation or NK cell activation
represent important immunotherapy targets. We focused
on ligands for T and NK cell co-stimulatory and co-
inhibitory receptors and other immunomodulators to
identify potentially targetable immune checkpoints in
subtypes of hematological malignancies. We tested for
enrichment of the immune checkpoints across cancer
types and found distinct patterns of immunomodulatory
genes in myeloid malignancies and mature B cell

malignancies (Figure 5A and Table S5). The cancer
samples also clustered together with their normal
counterparts, suggesting that the cell-of-origin influences
the repertoire of immunomodulatory genes expressed by
cancer cells (Figure S5A).

Myeloid malignancies, including AML, CML, JMML, and
MDS, highly expressed VISTA (C100rf54/VSIR/PD-1H),
encoding an inhibitory T cell checkpoint of the B7 family
(FDR < 10™*? AML compared to other cancers, Wilcoxon
rank sum test). In addition to VISTA, ARG1 encoding the
immunosuppressive enzyme arginase represented
another potential myeloid-specific immune evasion
mechanism (FDR < 10%in AML). In contrast, the NK cell
inhibitory receptor KLRB1 ligand CLEC2D (LLT1) (Figure
S5B) and the T cell inhibitory butyrophilin BTN2A2 were
enriched in mature B cell malignancies. In addition to
myeloid and B cell malignancies, lymphoma samples
clustered together, characterized by elevated CD274
(PD-L1), PDCD1LG2 (PD-L2), IDO family enzymes, and
TNFSF15 (TL1A). These genes were lowly expressed in
the purified CD19+ lymphoma cells, but strongly in
macrophages and DCs, suggesting microenvironmental
origin of these genes (Figure S5A). Other cancer type-
specific immune checkpoints included PVRL3, encoding
a ligand for the inhibitory receptor TIGIT, in myeloma
(FDR < 10'156) and T cell malignancies (Figure S5B), and
NTS5E, encoding the immunosuppressive adenosine-
producing enzyme CD73 (Beavis et al., 2012), in pre-B-
ALL (FDR < 10°%). Together, these results suggest
cancer  type-specific immune checkpoints in
hematological malignancies, such as VISTA in myeloid
malignancies.

To investigate potential mechanisms of
immunomodulatory gene regulation leading to the
observed expression patterns, we examined correlations
with DNA methylation in AML and DLBCL in the TCGA
dataset (Table S5). Comparison of AML and DLBCL
revealed differential methylation at gene promoters linked
to the cancer type-specific expression of several
immunomodulators, such as PDCD1LG2 (FDR = 4.4 x
10® for differential methylation and 4.3 x 10™° for
expression between AML and DLBCL) and CD80 (FDR =
1.3 x 10 and 1.0 x 10™") (Figures 5B, S5C, and S5D).
In addition to variation between cancers, promoter
methylation also correlated with expression of
immunomodulators  within cancer types. In AML,
promoter methylation correlated negatively with
expression of CD200, CD274, the NKG2D ligands
ULBP1 and ULBP3, and PDCD1LG2 and CD80 (R < -
0.4, FDR < 10'6, Figure 5C). Similarly in DLBCL,
expression of ULBP1 and CD200, among other genes,
correlated negatively with promoter methylation,
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Figure 4. Expression of antigen-presenting HLA genes is linked to molecular subtypes and epigenetic regulation A. HLA | score (log2
geometric mean of B2M, HLA-A, HLA-B, and HLA-C) is shown as boxplots comparing main cancer types and normal cell populations in Hemap. B.
HLA Il score (log2 geometric mean of HLA-DRA, HLA-DRB1, HLA-DPA1, HLA-DPB1, HLA-DMA, and HLA-DMB) is shown as in A. C. HLA Il score
colored on Hemap t-SNE map. Specific clusters with low HLA 1l score are highlighted with circles. D. Comparison of HLA Il score and HLA Il
surface protein expression level in blasts in a validation cohort of AML BM samples (n = 37) profiled using both RNA-seq and flow cytometry for
HLA-DR. E.CIITA expression, HLA Il score, and methylation of C/ITA and HLA Il genes in TCGA AML data shown as a heatmap. F. Methylation of
CIITA colored on the TCGA AML t-SNE map. NPM1 and IDH1, IDH2, and TET2 mutation status is labeled for cluster with low HLA Il score. G.
Differentially methylated cytosines (DMCs) in the CIITA region between samples with low and high HLA |l score in GSE86952 ERRBS dataset.
Histogram indicates the negative log10 P value of differential methylation at each cytosine, with red and blue colors indicating hypermethylated and
hypomethylated cytosines in HLA |l low samples, respectively. CpG areas, including CpG islands, CpG shores (< 2 kb flanking CpG islands), and
CpG shelves (< 2 kb flanking outwards from CpG shores) are shown above C/ITA exons belonging to isoforms plll (lymphoid) and pIV (IFNy-
inducible). Transcription factor binding sites (TFbs) are shown below. E. Heatmap showing methylation of cytosines at C//TA regions significantly
hypermethylated in the HLA Il low group compared to high in the AML GSE86952 ERRBS dataset. 0 indicates no methylation and 1 indicates
complete methylation. Patients (columns) are grouped by HLA Il score and PML-RARA status. Rows correspond to cytosines at the CpG island,
shores, and inter-CGl area (> 4 kb outwards from a CpG island) shown on the right. Major AML genetic alterations, HLA scores, and FAB
classification are shown. F. Percentages of HLA-DR+ MOLM13 cells measured by flow cytometry after 72 h treatment with indicated concentrations
of decitabine (DAC) and/or 10 ng/mL IFNy. Dots indicate individual technical replicate wells. Data are shown for one of two independent
experiments. P values are obtained using two-sided Wilcoxon rank sum test. See also Figure S4 and Table S4.

suggesting that DNA methylation contributes to variation
in immune checkpoints across cancer types (Figure
S5E).

In addition to epigenetic modification, several genetic
driver alterations were linked to distinct immune
checkpoints, suggesting potential immune evasion
strategies. In AML, NPM1 mutations were linked to
elevated expression of VISTA (FDR = 0.00041) and the
NKG2D ligand ULBP1 (FDR = 0.00027, Figures 5C and
S5F). RUNX1-mutated AML highly expressed the B cell-
associated BTN2A2, SLAMF7, and LY9 in addition to
HLA I, suggesting that the lineage infidelity and B
lineage transcriptional program induced by RUNXT1
mutations influences also co-inhibitory signaling by AML
cells (Silva et al., 2009). TP53 mutations were linked to
higher CD274 (PD-L1) expression, potentially related to
increased cytolytic activity. In DLBCL, the co-stimulatory
CD70 was often mutated when highly expressed (FDR =
10, Figure 5D), suggesting evasion from the T cell
stimulatory interaction through somatic mutations. Other
alterations potentially enabling immune evasion included
downregulation of MICB, encoding an activating ligand
for the NKG2D receptor, through 6p21.33 losses
containing MICB, and 9p24.1 amplifications or gains
associated with elevated expression of PD-1 ligands
(Figure S5G). Thus, genetic alterations contribute to
variation in immunomodulatory gene expression in
hematological malignancies such as AML and DLBCL.

Finally, to validate the cancer type-specific immune
checkpoints at the protein level, we performed mIHC on
BM biopsies focusing on VISTA which we identified
enriched in myeloid malignancies. In Hemap, VISTA
(C100rf54) expression was strongly enriched in a cluster
representing NPM71-mutated AML with M4/M5 FAB
subtype, and a cluster comprising MLL-rearranged
cases, suggesting association of VISTA expression with
monocytic differentiation of leukemic cells (Figure 5E).
Quantitative mIHC confirmed elevated VISTA in
monocyte-like AML and CML BM compared to lymphoid
malignancies or healthy controls (Figures 5F, 5G, and
S5H). Together, our data suggest that several immune
checkpoints such as VISTA are expressed in a cancer
type-specific fashion and may be influenced by DNA
methylation or driver alterations.

Frequent expression of cancer-germline antigens in
multiple myeloma

To evaluate potential targets of the adaptive cytotoxic
immune response, we investigated cancer-germline
antigens (CGAs) that can be readily identified from
transcriptomic data but have not been systematically
studied in hematological malignancies. CGAs are
expressed only in the immune-privileged germ cells
among healthy tissues, but aberrantly activated in
cancers. We integrated the Genotype-Tissue Expression
(GTEx) project (Mele et al., 2015) and Hemap data to
define genes with a cancer-germline expression pattern
in hematological malignancies by first selecting genes
expressed in testis but not in other human tissues using
GTEx and then requiring the genes to be expressed in
5% hematological cancers but not in normal
hematopoietic cells (Figure 6A). Using these stringent
criteria, we recovered 27 CGA genes. Most of the genes
are included in the CTdatabase (Almeida et al., 2009),
which however contains several genes whose expression
is not testis-restricted (Figure S6A).

Strikingly, across hematological cancers, CGAs were
most frequently expressed in multiple myeloma (MM)
(Figures 6B and S6B). One third of MM patients
expressed more than four CGAs. Both B and T cell
lymphomas also showed frequent CGA expression,
whereas CGAs were largely transcriptionally silent in
leukemias. Several CGAs were expressed in a cancer
type-specific manner, including MAGEC1, MORCT,
DPPA1, COX7B2, PAGE1, and GAGE1 in MM, ADAM?29
in CLL (Vasconcelos et al.,, 2005), SAGE71 in AML,
DMRT1 in anaplastic large-cell lymphoma (ALCL), and
MAGEB2 and MAGEB1 in DLBCL (Figures 6C and S6C).

To understand mechanisms leading to aberrant CGA
expression in MM and lymphomas, we studied whether
alterations in DNA methylation are associated with
activated CGA transcription. CGAs were frequently
hypomethylated and expressed in myeloma cell lines in
CCLE, consistent with primary myeloma samples
(Figures 6D and 6E). Similarly, expression of the most
frequent CGAs in DLBCL in patients in the TCGA
dataset, MAGEB1 and MAGEB2, was linked to
hypomethylation at probes located near the transcription
start site (Figures S6D and S6E).

We next explored transcriptional and genetic signatures
correlated with the number of expressed CGAs. In
Hemap MM, CGA expression was associated with gene
sets reflecting cell cycle and MYC targets, implying that
highly proliferative cancers frequently express multiple
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Figure 5. Immune checkpoints are linked to cancer subtypes and genetic alterations A. Expression levels (Z-scores of median log2
expression) of co-stimulatory, co-inhibitory, and other immunomodulatory genes across Hemap cancer types shown as a heatmap. Sorted and
unsorted samples are shown as separate categories. Rows and columns are clustered using Spearman correlation distance and Ward'’s linkage.
Corresponding receptors and the nature of the interaction is shown according to Table S5. B. Comparison of PDCD1LG2 and CD80 expression
between TCGA DLBCL and TCGA AML. Dots indicating individual patients are colored by average methylation within 1 kb of the transcription start
site. C. Volcano plot of correlations (Spearman) of immune checkpoint gene expression with genetic alterations and DNA methylation in TCGA
AML. Dot size is proportional to the adjusted P value. ULBP1 expression is compared between NMP7-mutated (mut) and wild type (WT) samples
and the nominal P value obtained using two-sided Wilcoxon rank sum test is shown. D. Volcano plot of correlations (Spearman) of
immunomodulatory gene expression with genetic alterations in DLBCL (GSE98588). Dot size is proportional to the adjusted P value. CD70
expression is compared between CD70-mutated (mut) and wild type (WT) samples and the nominal P value obtained using two-sided Wilcoxon
rank sum test is shown. E. Expression of VISTA colored on Hemap t-SNE map. Circles indicate clusters highly expressing VISTA. F. Percentages
of VISTA-positive cells out of all BM cells in AML (n=57), CML (n=62), pre-B-ALL (n=51), T-ALL (n=9), and healthy BM (n = 11) tissue microarrays
analyzed by quantitative multiplex immunohistochemistry. The P values indicate comparisons of leukemia types to healthy BM using two-sided
Wilcoxon rank sum test. G. Multiplex immunohistochemistry of AML BM from a patient with M4 FAB subtype AML with high VISTA expression.
VISTA, CD11b (myeloid marker), CD14 (monocyte marker), CD34 (blast/progenitor marker), and DAPI stainings are shown. See also Figure S5

and Table S5.

CGAs (Figure 6F). Furthermore, the presence of
cytogenetic abnormalities was linked to increased CGA
expression, whereas HLA Il score correlated negatively
with the number of expressed CGAs. In DLBCL, number
of CGAs correlated with mutation and CNV load (FDR <
0.05) as well as specific alterations such as 1p13.1
deletions containing CD58 (FDR = 0.02) and CD58
mutations (FDR = 0.1), providing a potential immune
evasion mechanism for CGA-expressing cancers through
disruption of the CD2-CD58 interaction with T cells
(Figure 6G). In the ABC subtype, a mutational signature
including 6q deletions and MYD88, HLA-A, and ETV6
mutations (FDR < 0.15), resembling cluster 5 (Chapuy et
al., 2018), was enriched in cases expressing multiple
CGAs (Figure S6F), suggesting a link between a distinct
genetic subtype and activation of germline-restricted
genes. Cytolytic score and gene sets reflecting
inflammatory response were interestingly downregulated
in ABC DLBCL expressing multiple CGAs (Figure S6G).
In the GCB subtype, 1p13.1 deletions and KLHL6
mutations correlated with CGA expression, similarly as in
all DLBCLs (FDR < 0.08). Together, these data suggest
that CGA expression is activated in myelomas and
lymphomas harboring genomic aberrations or distinct
genetic alterations associated with immune evasion,
often involving promoter hypomethylation.

Immunological features are associated with survival

Finally, we aimed to delineate how immunological
features are associated with overall survival. To
comprehensively profile the prognostic associations of
immune properties, we obtained survival models using
elastic net Cox proportional hazards modeling in DLBCL,
MM, and AML where multiple datasets with outcome data
were available in Hemap (Table S7). Tested features
included cytolytic score, HLA scores, number of
expressed CGAs and individual CGAs,
immunomodulatory genes, microenvironmental genes
linked to cytolytic infiltrate, as well as established clinical
risk scores, International Prognostic Index (IP1) in DLBCL
and International Staging System (ISS) in MM. We used
Hemap datasets for training the models (Figures S7A
and S7B) and validated the results in independent test
cohorts. The established models remained prognostic for
overall survival in independent external validation
datasets (Figures 7A and 7B), indicating that the
identified associations of immune features to survival are
robust. Although clinical risk scores were strong
predictors of survival both in DLBCL and MM as
expected, immunological features significantly improved

outcome predictions in both cancer types, further
stratifying patients within existing risk groups, including
the cell-of-origin subtype and IPl in DLBCL and ISS in
MM (Figures S7C and S7D).

In DLBCL, certain monocyte/macrophage genes
correlated with cytolytic score, such as LYZ and APOC1,
strongly associated with better overall survival according
to the risk model and also in univariate analysis (Figures
7C, S7E, and S7F). However, several macrophage-
associated genes, including C71QA, C1QB, C1QC,
CD163, and MS4A6A, were linked to worse survival,
suggesting that distinct types or states of infiltrating
myeloid cells characterized by these genes may have
opposing impact on outcomes. The co-stimulatory genes
CD58 (CD2 ligand) and CD86 (CD28/CTLA-4 ligand)
were associated with improved outcomes. HLA |l
expression was also associated with survival benefit,
consistent with previous findings (Lenz et al., 2008).

In MM, the butyrophilin BTN3A1 expressed in B cell
malignancies was linked to better overall survival,
reflected also in univariate analysis (Figures 7D, S7G,
and S7H). Several immune checkpoint receptor ligands
associated with superior survival, including CD274 (PD-
L1), PDCD1LG2 (PD-L2), VISTA (C100rf54), and
CD276. However, the TIGIT ligand PVRL3 (CD113),
highly expressed in MM compared to other cancers, was
linked to poor survival. The expression of several CGAs
was linked to worse outcome in both MM and DLBCL,
suggesting increased CGA expression in more
aggressive or advanced cancers.

In AML, we found establishing a risk model generalizable
across datasets challenging, likely due to heterogeneity
in the composition of the studied patient cohorts.
However, we were able to identify individual genes with
robust survival associations across multiple datasets
(Table S7). Elevated VISTA (C100rf54) expression was
associated with adverse outcomes in both Hemap and
TCGA AML datasets (Figure 7E). Together, these
findings show that immunological properties of
hematological cancers have complex associations with
survival.

DISCUSSION

Understanding the determinants that shape the

immunological landscape in cancer subtypes could
enable more precise development of immune
intervention approaches. We explored large-scale
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Figure 6. Cancer-germline antigen expression is frequent in multiple myeloma and linked to DNA methylation A. Schematic of identification
of genes with cancer-germline expression pattern. B. Expression of CGAs across hematological malignancies (Hemap). Color indicates percentage
of samples from each cancer types expressing a given antigen. C. Expression of MAGEB2 across Hemap cancer types and healthy samples.
Examples of expression of other CGAs are shown in Figure S6C. D. Expression of CGAs across cell lines of hematological malignancies (CCLE)
shown as a heatmap. Numbers of expressed (> 0.5 RPKM) and hypomethylated (< 0.5 average methylation) CGAs in each cell line are indicated
as bars above the heatmap. Correlation (Spearman) of gene expression with average methylation and the corresponding FDR is shown on the
right. Cell lines within cancer types are ordered by number of expressed CGAs and genes are ordered by correlation coefficient between gene
expression and average methylation. E. Expression of MAGEA4 in CCLE hematological cancer subtypes. Dots indicating individual cell lines are
colored by average methylation value, where 0 indicates no methylation and 1 indicates complete methylation. F. Gene sets correlated with the
number of expressed CGAs in MM. Heatmap shows GSVA scores of gene sets for each patient. G. Genetic alterations correlated with the number
of expressed CGAs in DLBCL (Chapuy et al.). See also Figure S6 and Table S6.

genomic datasets to uncover factors explaining
immunological heterogeneity in hematological
malignancies. We validated the discoveries in
independent datasets and using orthogonal methods
including multiplex immunohistochemistry and flow
cytometry, lending robustness to the findings. The data
suggest that both microenvironmental properties and
cancer cell-intrinsic genetic and epigenetic features are
associated with cytotoxic immune response, expression
and presentation of antigens, and immune checkpoints.
Our findings thus underline the importance of integrating
data of genetic and epigenetic aberrations as well as the
tumor microenvironment for a complete understanding of
factors that may impact immunotherapy responsiveness.

We found consistently higher cytolytic score in
lymphomas compared to other hematological
malignancies, suggesting a higher ratio of cytotoxic
lymphocytes to cancer cells in the Ilymphoma
microenvironment. Increased cytolytic activity within
lymphomas was associated with monocyte/macrophage-
derived and IFNy-inducible genes. A similar IFNy-related
profile has been shown to predict clinical response to
PD-1 blockade (Ayers et al., 2017). Specific types of
macrophages, monocytes, and DCs expressing these
genes were recently identified using single-cell
transcriptomics in  melanoma (Li et al, 2018),
corroborating our cell type inference and suggesting that
similar cell types may infiltrate solid tumors and
lymphomas. A distinct microenvironmental response
might thus influence efficacy of immunotherapies in
lymphomas as opposed to acute leukemias, where we
were unable to detect similar microenvironmental
signatures associated with cytolytic activity.

We identified cancer cell-intrinsic genetic alterations
linked to cytotoxic infiltration, including TP53 mutations,
5g deletions, and complex karyotype in AML. These
genetic aberrations have been demonstrated to co-occur
in elderly AML patients with dismal prognosis (Rucker et
al., 2012). Both negative (Rooney et al.,, 2015) and
positive (Thorsson et al.,, 2018) associations between
TP53 alterations and immune infiltration have been
observed in other cancers. In DLBCL, DTX7 mutations
marked an immune-infiltrated group of especially GCB
lymphomas. Cytolytic infiltration was linked to distinct
molecular subtypes, including AML with myelodysplasia-
related changes and ABC DLBCL, suggesting that the
molecular phenotype of cancer cells may influence the
immune infiltrate together with genetic alterations.

Downregulation of HLA class |l genes was associated
with hypermethylation of the transactivator CIITA,
potentially resulting in defective antigen presentation to T
helper lymphocytes. As HLA loss has been linked to AML

relapse after allo-HSCT (Vago et al., 2009), low
expression level already at diagnosis could restrict CD4+
T helper cell-mediated recognition both during an
autologous immune response and in the allogeneic
setting. Moreover, CIITA hypermethylation could be
responsible for the transcriptional downregulation of HLA
Il upon relapse after allo-HSCT (Christopher et al., 2018).
Given the reversible nature of epigenetic silencing as
demonstrated by combined hypomethylating and IFNy
treatment of AML cells, reversal of promoter methylation
could potentially augment HLA ll-dependent immunity. Of
interest, combining PD-1 blockade immunotherapy with
hypomethylating agents has demonstrated efficacy in
AML patients (Daver et al., 2018).

Several co-inhibitory immune checkpoints were
expressed in a cancer type-specific fashion. Targeting
different inhibitory interactions might thus be required for
maximizing immunotherapy benefit in each disease.
VISTA emerged as a novel checkpoint enriched in
myeloid malignancies, including CML, MDS, JMML, and
particularly monocytic, NPM71-mutated AML. VISTA
expression was also linked to inferior outcomes in AML.
VISTA is expressed in monocytes and neutrophils in
healthy hematopoiesis (Flies et al., 2014), and could
potentially be utilized by cancer cells of these lineages
for immune evasion. VISTA has been implicated as a
potential novel immunotherapy target in some solid
tumors, such as prostate and pancreatic cancer and
mesothelioma (Blando et al.,, 2019; Gao et al.,, 2017;
Hmeljak et al., 2018). We also identified both genetic and
epigenetic factors impacting immunomodulatory gene
expression, such as high expression of VISTA in NPM1-
mutated AML and copy number losses of MICB,
encoding a ligand for the activating T/NK cell receptor
NKG2D, thus providing additional potential layers of
regulation to the cancer type-specific expression
patterns.

CGA expression was more frequent in multiple myeloma
and B and T cell lymphomas compared to other
hematological malignancies. Although comparison to
other cancers has not been previously performed, CGA
expression and anti-CGA immune responses have been
demonstrated in MM (Atanackovic et al., 2007; van Duin
et al., 2011). Higher mutation loads have been described
in MM and DLBCL compared to other hematological
malignancies (Alexandrov et al., 2013), suggesting
higher immunogenicity in these diseases conferred both
by neoantigens and CGAs. CGA expression correlated
with promoter hypomethylation and poor prognosis both
in MM and DLBCL. Consistently, progression from
monoclonal gammopathy with undetermined significance
to advanced MM has been linked to global
hypomethylation (Heuck et al., 2013). Thus, treatment of

8


https://doi.org/10.1101/618918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/618918; this version posted April 26, 2019. The copyright holder for this preprint (which .

not certified by rigepiew) is the author/funder, who has granted bioRxiv a license to display the int in.p i Is made
Bﬁm available under aCC-BY-NC-ND 4.0/pternational license. Mﬁﬂwﬁlré R Sﬁ&'l%ﬁt}ﬁ
Validation set DLBCL RCHOP Validation set MM
Cox model Lo . Cox model
Risk index quartiles log-rank score test P = 5e-8 Risk index quartiles log-rank score test P = 3e-9
10 remmm——m—mm, Q1 1.0 M
Q1
0.8 0.8+
()] ()]
£ £
= Z 0.6
s 0.6 s 0.6
3 3
c c Q3
S04 S 0.41
3 3
w i
0.2 0.21
Q3
0.0 0.0
06 20 40 60 80 100 120 0 10 20 30 40 50 60
Months D Months
Risk index Validation set DLBCL Risk index Validation set MM
2
2
Favourable prognosis .. .....mmunnl|||III|||||||||||‘|H|H o[Favourable prognosis ., mmm\\\\\\\\||||||||||||||||||HHHHW
H|||||||||||||||||||I||||||||||||||||||mm Poor prognosis [—— Boororagnosis
-2
Hazard Hazard
ratio Multiple regression Cox model ratio Multiple regression Cox model
0.74 1 TR | I II;} 2—15 ?;28 IIIIIIIIHIIIIIHII\IIIHIIIIIHHHI\IHIII\IHHI\II\IIIIIH O N 0 00 000 HSS%
0.914 | y1l| GGADumber Antigens 1,001 111 \CGAnumber
1.16 R | | 1y C1A 1.160 ’ i HHV A1
gk it i e MAGEA1 Lol IIHH\HI‘HI‘ I HIH M\u ||m‘|‘\“” [ HHN”W || (\/| PASD1
3.07 LMDV R0 LRI AR I T llMORC’ 1.090 |1 | Ll H\HHI il L | HIIIH Ilif s
1.06 | [l | I CTCFL 1080 \ J ‘ ’ { ‘ H}
e i et v 0:843 [ ||H|IIH| | H\\\HINHHIIIIH h uuu‘\ I i m‘” TEKT5
0.984 NI 0 TR ) (SRR O I IIIIMAGE52 :
B e 1R 81 1Y B I B NAA :)gig ‘:‘ HI:\III‘ HI‘HII\ II‘I‘}H:\HIH HH |'I,II‘Ill l}l l{l‘lll“wnggFL
1.27 VU000 LU NN Y I U D84
1.06 1l OO BTN2A2 Co-stimulation 0.833’ il HII HH HHH 0T 1 IBTN3A1
1.06 NI U0 L0 QT O 1y L Wi ENTPD 1 0.845 W\/ “\H |H||||II | I}\ } | H‘ ‘ ‘
1.05 0L (T O SO SV T 0 e i TNFSF9 1.180 || ‘ \ { H | HI IH {PVRL3
0.975 I TAE (LA PO 0 TR O T0UL 0 W ACan - £y9 1.150 ‘ HHHIHHIH‘I ”HI \‘ \ el \I HI ‘\
0.974 || VI 0Ly | I ey 086 H \H H‘H \ i w H‘ SLAMF?
0.959 Il A1 N0 ET | I CEMNTS LS 0T R Ll cbs4 N HI | \“HH H‘\I AV I 171
0.953 [T HUWEL WL E RO EnQUn | it i f L g e ICOSLG 091 Il \HHI 1 | IHH || || HI I\H/ G2
0.914 UL L0 OO IO RO AT O OO AT O TS - N |H ] \|| Il Hn i H| [ 0100,1:54
0.906 Il Ir I I U ILUREEL BE G e e CD58 L \HIH [11f I \ IH \IIH\I\ H | | cD274
0.865 Il I 1A WVE 0 AT 0 00 A ORI L L i ¢ \| 100 (] H\ (e SLAMF6
a7 i b T Bl 7062 0873 } I \I}IIHH H\ulmm I muu H Mw\u‘ h\ CD276
1.48 [N CAF 000 IR0 00 00 [ 1011 MS4A4A )
141 [T DT (A0 WD 00 e e Wi S100A8 Micro- Clinical features
1.1 LIURTD D0 O 0 0 OO 00O ORI O - . \ LI [ HHI o
1.08 W 1111 RULACAETRSREE RN DAL LRI T CD 163 environment T | HllH || T ISS
1.05 (W TREE Q00 FEWTT BE OO {1 B iy e ie127
1.03 0T 0 000 0 0 A RO 1 e m iy | coLs Expression (log2) number
1.02_ (0T TID G0 ERETEUTT (T R0 B [ 11 1l MS4A6A 1SS Z-score m OS status
0.997 NI A0 0 A0 O R DO Y RE AL ipnry c1QA o [ B I M Dead
0.976 [l I 0000 T ChETRen T D00 L I0ET O T IC 2 1 10 Alive
0.934 N[ {1 0L LD 000 T R ARCEYEVY QU 01 L € 1QC 3 0 5 NA
0.839 VI I IAIAn o T s S d g O W eey v )| APOC1 -1
0.835 [T Tl I FIT A Ay TE N C1orf54 [ 0
0.833 MU0 | Il LI Lyz
0.993 R Wi I HLA 1l score
Clinical features E AML
AN 1 Y | 11 iimeym os
)M 1) ¥ A 1 A 1 R S C100n‘54/VISTA Hemap AML C100rf54/VISTA  TCGA AML
o o
[l o b v € " - Lown-69 1 o Lown-d
Subtype o Mid n=138 o |2 Mid n=87
Expression (log2) CGA E’ S 7] High n=69 E S 7 High n=43
IPI Z-szc‘:ore nungber aS/PFS status Subtype % © g ©
0-1 Dead/progression M ces 2 > |
.23 1 !6 Alive/progression-free [l Unclassified a3 ° ? °
4-5 0 4 NA S o c <
-1 2 £ s T 2 S
!_2 0 8 (té
[ T o
o o
P =0.0004 P =0.0034
2 {FDR=0.0112 -{ FDR = 0.0669
T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120
Months Months




https://doi.org/10.1101/618918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/618918; this version posted April 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 7. Immunological properties are associated with survival A. Kaplan-Meier curves of overall survival for DLBCL patients stratified by the
risk index of the immunological risk model (shown in Figure 7C) in the validation set (GSE98588). Patients were divided into three groups based on
quartiles and P value was obtained using the score (log-rank) test. B. Kaplan-Meier curves of overall survival, as in A, for MM patients stratified by
the risk index of the immunological risk model (shown in Flgure 7D) in the validation set (GSE16716 and GSE24080). C. Heatmap depicting
features included in the DLBCL immunological risk model in the validation set (GSE98588). Patients are ordered by the risk index and hazard ratio
(HR) for each feature is shown on the left. Features are grouped based on their function and clinical features are shown below the model heatmap.
D. Heatmap depicting features included in the MM immunological risk model in the validation set (GSE16716 and GSE24080). Patients are ordered
by the risk index and hazard ratio (HR) for each feature is shown on the left. Features are grouped based on their function and clinical features are
shown below the model heatmap. E. Kaplan-Meier curves of overall survival for AML patients stratified by C100rf54/VISTA expression in Hemap
and TCGA AML. Patients were divided into three groups based on quartiles and P value was obtained using the Wald test. See also Figure S7 and

Table S7.

advanced myelomas could potentially benefit from
immunotherapies leveraging the high number of
expressed antigens, such as vaccines or T cell receptor
therapies tailored for most common CGAs. CGA
expression has been associated with resistance to
CTLA-4 blockade (Shukla et al., 2018) and, in contrast,
with response to PD-1 inhibition (Saghafinia et al., 2018),
suggesting also relevance for patient stratification for
immune checkpoint blockade therapies. In contrast, CGA
expression was sparse due to hypermethylation in
leukemias, where treatment with hypomethylating agents
could be used increase antigenicity.

The immunological risk models revealed complex links
between immunological features and patient survival,
and highlighted potential immune properties that could be
targeted to improve outcomes. In AML, the unfavorable
prognosis linked to high VISTA expression further
underlines VISTA as a potential target for novel immune
checkpoint blockade approaches. Distinct subsets of
monocyte/macrophage genes correlated with CTL/NK
infiltration displayed diverging survival associations in
DLBCL. Different cell populations marked by these genes
co-infiltrating with cytotoxic lymphocytes may modulate
the resulting immune response thus influencing
outcomes, possibly explaining the lack of favorable
prognostic survival association of cytolytic score itself.
Although the cohorts studied here have received
immunomodulatory treatments such as rituximab in
DLBCL and thalidomide in MM, correlating immune
signatures to outcomes of novel immunotherapies such
as immune checkpoint blockade or CAR T cell therapy
may reveal patterns distinct from those highlighted here.

Our approach of estimating immune cell composition
from bulk gene expression data is limited in the analysis
of rare cell types and normal immune cells
transcriptionally resembling cancer cells, which is often
the case in hematological malignancies. We anticipate
that single-cell transcriptomics studies will further
illuminate the association between infiltrating immune cell
types and their transcriptional programs, such as those
regulating antigen presentation or co-stimulatory
signaling. Moreover, the genotypic-immunophenotypic
associations identified from genomic data are unable to
yield mechanistic insights into causal relationships
between tumor genetics and immune states. We envision
that the results presented here can guide further
experimental investigation into the underlying tumor
characteristics that modulate inter-tumor heterogeneity in
immune landscapes.

In summary, our integrative analysis provides evidence
of genomic and microenvironmental factors associated
with variation in the immune contexture between different
tumors. The findings of this study highlight the need to

integrate genetic, epigenetic, and transcriptomic data of
different aspects of the immune landscape to understand
potential determinants of responsiveness to cancer
immunotherapies.

MATERIALS AND METHODS

Patients

RNA sequencing and flow cytometry

Bone marrow (BM) aspirates from 37 AML patients were
collected at diagnosis after signed informed consent from
each patient (permit numbers 239/13/03/00/2010,
303/13/03/01/2011, Helsinki University Hospital (HUH)
Ethics Committee) in accordance with the Declaration of
Helsinki.

Tissue microarrays (TMA)

We collected diagnostic BM biopsies from AML (n=66),
B-ALL (n=54), T-ALL (n=14), and CML (n=62) patients
treated in the Department of Hematology, HUH between
2005-2015, and DLBCL biopsies treated at the
Department of Oncology, HUH (n=233). In addition, BM
biopsies taken in 2010 from subjects due to persistent
abnormal leukocyte, erythrocyte, or platelet count and
without diagnosis of hematological malignancy, chronic
infection, nor autoimmune disorder in six years of follow-
up were included as controls (n=11). Study subjects gave
written informed research consent to the study and to the
Finnish Hematology Registry. The study complied with
the Declaration of Helsinki and the HUH ethics
committee (permit number 303/13/03/01/2011). Fresh
BM biopsies and lymphoma samples were formalin-fixed
and paraffin-embedded (FFPE) in the Department of
Pathology, HUSLAB and stored at the Helsinki Biobank
at HUH. TMA blocks were constructed from up to four 1
mm cores from representative regions of tumor samples.
RNA sequencing-defined molecular subtypes were
available from a subset of DLBCL TMA patients (Reddy
etal., 2017).

Cell line

The MOLM13 cell line established from the peripheral
blood of a 20-year-old man with AML was obtained from
the Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (DSMZ). Cells were cultured in
RPMI-1640 (Lonza) with 10% FBS, 2 mM L-glutamine,
100 U/mL penicillin, and 100 pg/mL streptomycin (R10).
The cell line was authenticated using GenePrint10
System (Promega) and confirmed to have an overall
identity estimate of 100% at all 18 tested alleles.

Processing of genome-wide multilevel data
Each dataset and sample numbers used in the analysis
are listed in Figure S1.
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Hemap

The Hemap dataset includes 9,544 gene expression
profiles collected across several studies from the Gene
Expression Omnibus (GEO) database described in
(P6lénen et al., 2019). The data, curated sample
annotations and disease categories are available at
http://nemap.uta.fi. Briefly, these data represent
microarray data from the commonly used hgu133Plus2
platform that were processed using the RMA probe
summarization algorithm (Irizarry et al., 2003) with probe
mapping to Entrez Gene IDs (from BrainArray version
18.0.0, ENTREZG) and a bias-correction method (Eklund
and Szallasi, 2008) to generate gene expression signal
levels. To ensure representative samples for the
immunological analyses, we performed filtering on the
original dataset. Treatments that induced cell
differentiation or activation of normal cells were kept,
while other ex vivo treatments (617 samples), non-
malignant cells from patients (417), or clusters
representing only a single study (>90% samples with the
same study ID, 38 samples) were excluded from the
analysis performed here, resulting in a dataset of 8,472
samples. We also distinguished sorted (using FACS,
isolated by magnetic beads using either positive or
negative selection, or microdissected), unsorted, and cell
line samples based on sample descriptions. Finally,
clinical information was added when available (survival
from GSE10358, GSE10846, GSE11877, GSE12417,
and GSE14468; progression-free survival, sex, age,
race, and tumor cell contents from GSE13314,
GSE10846, GSE24080, and GSE19784). All annotations
for the samples used are provided in Table S1.

TCGA

Processed data were retrieved into feature matrices for
AML and DLBCL, containing expression, mutation, CNV,
methylation, and clinical data, using TCGA Feature
Matrix Pipeline and fmx-construction.sh command,
available at https://github.com/cancerregulome/gidget.
For representing the data at individual gene loci, level 3
RSEM RNA-seq and methylation data for each TCGA
AML and DLBCL sample was obtained from firehose
GDAC, run stddata_ 2015 11_01. Methylation data
were annotated using FDb.InfiniumMethylation.hg19 R
package to assign probes at TSS.

CCLE

RNA-seq read counts (RPKM) dated 2018.05.02, RRBS
methylation data for CpG islands and TSS 1 kb dated
2018.06.14, and cell line annotations dated 2012.10.18
were downloaded from:
https://portals.broadinstitute.org/ccle/data.

Other multilevel datasets

Affymetrix Human Genome U133 Plus 2.0 gene
expression datasets (DLBCL: GSE98588 and AML:
GSE6891) were normalized using affy 1.52.0 (Gautier et
al., 2004) RMA and gene expression values obtained
using Brainarray v18 probe mapping. Mutations,
chromosomal rearrangements, and clinical and sample
characteristics were obtained from Supplementary
Tables 2-5 for the DLBCL study (Chapuy et al., 2018).
Clinical data, mutations, and sample annotations were
obtained from Supplementary Tables 1-2 for AML (Glass
etal., 2017).

Methylation data from pre-B-ALL and T-ALL samples in
GSE49031 (processed beta values for each probe) were
used in the analysis of CI/ITA expression and methylation
(CIITA probe cg04945379).

BeatAML mutation, clinical, and sample annotation data
were downloaded from source data (from Supplementary
Table 3) (Tyner et al., 2018). The RNA-seq count matrix
was obtained from the authors. Genes with log2 cpm
level > 1 in over 1% of samples were voom transformed
and quantile normalized using limma (Ritchie et al.,
2015). Mutation status was assigned based on exome
sequencing and clinical sequencing data. Only bone
marrow samples were used in the statistical analysis of
immunological features.

Sample stratification based on gene expression
profiles

Molecular subtypes were identified from the Hemap,
TCGA AML, and BeatAML datasets using an data-driven
approach as previously described (Mehtonen et al.,
2019). Briefly, the Barnes-Hut approximated version of t-
SNE implementation (BH-SNE) (16) was used with 15%
most variable genes to perform dimensionality reduction.
Kernel density-based clustering algorithm known as
mean-shift clustering (Cheng, 1995) with bandwidth
parameter set to 1.5 (subsets of data, one cancer type)
or 2.5 (all data) was used (LPCM package in R) to cluster
the data following the dimensionality reduction. To
identify corresponding clusters in different datasets of the
same cancer type, similarity in sample clustering
between datasets was evaluated in a data-driven manner
using GSVA (Hanzelmann et al, 2013) enrichment
scores as previously described (Mehtonen et al., 2019).
Briefly, top 20 positively and negatively correlated genes
per cluster were used to identify similar clusters in a new
dataset with significant enrichment for cluster specific
genes.

Statistical analysis using discrete gene expression
features

For individual genes, discrete categories (high, low, and
not detected) were assigned based on mixture model fit
as described previously for Hemap and DLBCL
GSE98588 datasets (Polénen et al.,, 2019). Briefly,
Gaussian finite mixture models were fitted by
expectation-maximization algorithm (R package mclust
version 4.3). The model was chosen by fitting both equal
and variable variance models and ultimately choosing the
model which achieved a higher Bayesian Information
Criterion (BIC) to avoid overfitting. To assure minimal
amount of misclassifications of data samples to discrete
categories, three additional rules were implemented.
First, if the uncertainty value from the model was above
0.1, value of 0 was assigned to denote low level.
Secondly, log2 expression values lower than 4 or higher
than 10 were assigned to a value -1 and 1, respectively.
Thirdly, genes without clear background distribution
(gene is always expressed), or if over 90% of the
samples had uncertain expression based on the model
classification, categories were re-evaluated. If >60% of
the uncertain samples had expression above or below 6,
categories were assigned as 1, and -1, respectively. For
binary classification, values -1 and 0 were merged as
low/not detected expression and 1 as expressed for
statistical evaluation.
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Sample group specificity Hypergeometric tests followed
by Bonferroni adjustment of P values were used to
estimate statistical enrichment of gene expression in a
particular sample group. Secondly, one-tailed Wilcoxon
rank sum test was performed to compare the mean of a
sample group expression to other groups to test whether
gene is expressed at higher level. P value was corrected
using Bonferroni if multiple groups were compared.
Thirdly, fold change was computed between the tested
groups.

Development of immunological scores

Cytolytic score

To find genes most specifically expressed in CD8+ T
cells/INK cells, specificity to these cell types was
evaluated with the sample group specificity tests as
described above (hypergeometric test adjusted P value <
1e-5, fold change > 1.5, Wilcoxon rank sum test adjusted
P value < 0.01 ) using Hemap samples. Genes with
significantly higher expression compared to B cells, HSC,
erythroid cells, macrophage, monocyte, and dendritic
cells were kept, resulting in 46 CD8+/NK cell-specific
marker genes (Figure S1B). Known CD8+ T cell/NK cell-
specific genes GZMA, GZMB, PRF1, GNLY, GZMH, and
GZMM were chosen for further exploration, as they are
directly related to cytolytic activity of T/NK cells.

Sorted BCL and AML samples and cell lines from all
cancers, excluding T cell-like TCL lymphomas (because
of transcriptomic similarity of TCL cancer cells and T/NK
cells), were used to check whether these genes are
expressed in pure cancer cell populations by requiring
that expression values from pure samples (probeset
noise distribution) were well separated from T/NK cells
with high expression of the genes. As a second criteria,
unsorted BCL and AML populations were compared to
sorted BCL and AML samples to inspect if unsorted
populations have samples with higher expression of the
gene, indicating that increased signal is coming from
T/INK cells. GZMB was filtered out, as it was highly
expressed in a subset of pure samples. Geometric mean
of gene expression for GZMA, PRF1, GNLY, GZMH,
GZMM was computed followed by log2 transformation to
be used as a proxy of cytolytic activity in hematological
cancers.

HLA scores

To find genes related to HLA Il antigen presentation,
normal non-APC cells including
CD4/CD8/regulatory/gamma-delta T cells, NK cells,

erythroid lineage cells, and neutrophils were compared to
normal APC cells including DCs, B cells, and
macrophages to find HLA 1l genes that are expressed
highly in APC cells, but not in any non-APC cells.
Wilcoxon rank sum test was computed with option
“greater” to find genes with higher expression in APC
cells. Adjusted P value cutoff 0.001 and fold change
cutoff > 4 were set to find significant genes, resulting in
350 genes. Genes were further filtered by computing fold
change between each individual APC and non-APC cells
to ensure genes are expressed higher in each APC cell
type (median fold change > 2 to non-APC) resulting in
total of 66 genes (Figure S4A and Table S4). Pairwise
Spearman correlation of the genes overexpressed in
APC was used to identify HLA |1l genes whose
expression most highly correlated with each other using

Hemap cancer samples (Figure S4B). The geometric
mean of the HLA Il genes HLA-DMA, HLA-DMB, HLA-
DPA1, HLA-DPB1, HLA-DRA, and HLA-DRB1 was
defined as HLA Il score.

Due to the ubiquitous expression of HLA | on all cell
types, no filtering was necessary and the geometric
mean of known HLA | genes B2M, HLA-A, HLA-B, and
HLA-C was used to detect HLA | expression in the
samples.

Validation of immunological scores

Flow cytometry of AML patient samples

To analyze T and NK cell percentages in 37 AML BM
samples, fresh diagnostic-phase BM aspirates in EDTA
tubes were used. Antibodies according to Tables S1 and
S4 were added to 50 pl of the BM sample, mixed and
incubated for 15 min, washed with PBS + 0,1% NaN3,
centrifuged, and the supernatant was discarded.
Erythrocytes were lysed by incubating the sample in
FACS Lysing Solution (BD) and the sample was washed
with PBS + 0,1% NaN3, centrifuged, and the supernatant
was discarded. The sample was resuspended into 0.5 ml
FACSFlow Sheath Fluid (BD) and 200,000 events were
acquired with FACSCanto (BD Pharmingen). Data were
analyzed using FlowJo (10.0.8r1). For quantification of
T/NK cells for cytolytic score validation, cell debris was
excluded based on low forward scatter (FSC),
lymphocytes were identified as CD45highSSClow cells,
and T cells gated as CD3+ and NK cells as CD3-CD2+
out of lymphocytes (Figure S1D). Percentage of the sum
of T and NK cells was calculated out of all non-debris
cells. For quantification of HLA-DR+ AML blasts for HLA
Il score validation, cell debris was excluded based on low
forward scatter (FSC), blasts were identified based on
CD45 and SSC, and HLA-DR+ blasts gated as shown in
Figure S4C.

RNA sequencing of AML patient samples for flow
cytometry comparison

RNA sequencing was performed from the same 37 AML
patient samples. Briefly, total RNA (2.5-5 pug) was
extracted from BM mononuclear cells obtained by Ficoll-
Paque gradient centrifugation using the miRNeasy kit
(Qiagen) and depleted of ribosomal-RNA (Ribo-Zero™
rRNA Removal Kit, Epicentre) after purification, then
reverse transcribed to double stranded cDNA
(SuperScript™ Double-Stranded cDNA Synthesis Kit,
Thermo Fisher Scientific). Sequencing libraries were
prepared with lllumina compatible Epicentre Nextera™
Technology and ScriptSeq v2™ Complete kit (lllumina)
and were purified with SPRI beads (Agencourt AMPure
XP, Beckman Coulter) and library QC was evaluated on
High Sensitivity chips by Agilent Bioanalyzer (Agilent).
Paired-end sequencing with 100 bp read length was
performed using lllumina HiSeq 2000. The reads were
preprocessed as described previously (Kumar et al.,
2017). Briefly, Trimmomatic was used to correct read
data for low quality, lllumina adapters, and short read-
length. Filtered paired-end reads were aligned to the
human genome (GRCh38) using STAR (Dobin et al.,
2013) with the guidance of EnsEMBL v82 gene models.
Default 2-pass per-sample parameters were used,
except that the overhang on each side of the splice
junctions was set to 99. The alignments were then sorted
and PCR duplicates were marked using Picard, feature
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counts were computed using SubRead (Liao et al.,
2013), feature counts were converted to expression
estimates using Trimmed Mean of M-values (TMM)
normalization (Robinson and Oshlack, 2010) in edgeR
(Robinson et al., 2010), and lowly expressed genomic
features with counts per million (CPM) value < 1.00 were
removed. Default parameters were used, with exception
that reads were allowed to be assigned to overlapping
genome features in the feature counting. The
immunological scores were calculated from TMM values
based on geometric mean of selected genes, as
described above.

Validation samples from Hemap

We used GSE13314 MALT lymphoma pathologic data
from Chng et al. (Chng et al., 2009) (Table 1) to validate
cytolytic score in lymphoma samples. GSMids with MALT
immunohistochemistry data scored by a pathologist was
compared to cytolytic score using Spearman’s
correlation.

Comparison to other immunological scores

CIBERSORT (Newman et al., 2015) was computed for
Hemap dataset with parameters perm=100 and QN=F.
Similarly, R package “MCPcounter® command
MCPcounter.estimate was used to infer immunology
scores in Hemap dataset. GSVA was used to compute
enrichment of Bindea et al. gene sets (Bindea et al.,
2013) for Hemap data using parameter tau=0.25.
Cytolytic score was correlated to CIBERSORT, MCP-
counter, and Bindea et al. gene set scores using
Pearson's correlation in Hemap data.

Analysis of microenvironment genes correlated to
cytolytic score

Spearman correlation between gene expression level
and cytolytic score was computed in unsorted cancer
samples. Expression in CTL/NK cells was compared to a
particular unsorted cancer sample group based on fold
change. To distinguish genes that are CTL/NK cell-
expressed, genes with significantly differential expression
in CTL/NK cells compared to a particular normal cell
type/purified cancer sample group were identified using
the sample group specificity tests were performed as
described above (hypergeometric test adjusted P value <
1e-3, fold change > 1.5, Wilcoxon rank sum test adjusted
P value < 1e-5) using Hemap samples.

Multiplexed immunohistochemistry (mIHC)

General

TMA blocks were sliced in 3.5 ym sections on Superfrost
objective slides. We used 0.1% Tween-20 diluted in 10
mM Tris-HCL buffered saline pH 7.4 as washing buffer.

Tissue preparation

Tissue deparaffinization and rehydration was performed
in xylene and graded ethanol series. Then, heat-induced
epitope retrieval (HIER) was carried out in 10 mM Tris-
HCI - 1 mM EDTA buffer (pH 9) in +99°C for 20 min (PT
Module; Thermo Fisher Scientific). Tissue peroxide
quenching with 0.9% H202 for 15 min was followed by
protein blocking with 10% normal goat serum (TBS-NGS)
for 15 min.

Staining

Primary antibody diluted in protein blocking solution as in
(Tables S2 and S5) and secondary anti-mouse or anti-
rabbit  horseradish  peroxidase-conjugated (HRP)
antibody (Immunologic) diluted 1:1 in washing buffer
were applied for 1h45min and 45 min, respectively.
Tyramide signal was amplified (TSA; PerkinElmer) for 10
min. Primary antibodies and HRP activity were
inactivated with HIER, followed by peroxide and protein
block steps as described above. The second primary
antibody with its matching HRP-conjugated secondary
antibody diluted 1:5 in washing buffer were added and
TSA signal amplified. We repeated HIER, peroxide block
and protein block and applied two additional primary
antibodies immunized in different species overnight in
+4°C. AlexaFluor647 and AlexaFluor750 fluorochrome-
conjugated secondary antibodies (Thermo Fisher
Scientific) diluted 1:150 in washing buffer (45 min) and
4' 6-diamidino-2-phenylindole counterstain (DAPI;
Roche/Sigma-Aldrich) diluted 1:250 in TBS (15 min) were
added. Last, ProLong Gold (Thermo Fisher Scientific)
was used to mount slides.

Imaging

Fluorescent images were acquired with the
Axiolmager.Z2 (Zeiss) microscope equipped with Zeiss
Plan-Apochromat 20x objective (NA 0.8). Scanned
images were acquired and converted to JPEG2000
format (95% quality). For representative images shown in
figures, image channels were recolored using Fiji
(Schindelin et al., 2012; Schneider et al.,, 2012),
brightness and contrast were adjusted using identical
parameters for images acquired using the same antibody
panel to maintain comparability and representative
regions of the images were selected.

Image analysis

Unfocused images were eliminated from the analysis.
Cell segmentation and intensity measurements were
computed based on adaptive Otsu thresholding and
gradient intracellular intensity of grayscaled DAPI
staining with the image analysis platform CellProfiler
2.1.2 (Carpenter et al., 2006). Cores with fewer than
1500 cells were eliminated from analysis. Cutoffs for
marker positivity were based on staining intensity
patterns of pooled cells of all samples and were
confirmed visually (Tables S2 and S5, ‘mIHC panel’).
Counts of all cells and cells positive for marker
combinations were averaged across multiple cores of
each patient when available. Immune cells were
quantified as proportion of positive cells to all cells (e.g.
proportion of CD68+ cells to total core cell count).

Gene set enrichment analysis

Gene set enrichment analysis was computed using the
command line version of GSEA (Subramanian et al.,
2005). A total of 1645 genesets from MsigDB V5 c2
category gene sets (BIOCARTA, KEGG, REACTOME,
SA, SIG, ST), MsigDB HALLMARKS, version 4 of NCI
NATURE Pathway Interaction Database, and WIKIPW
(6.2015) were used for enrichment analysis.
Immunological scores were used as a continuous
phenotype to rank genes using Pearson correlation as
metric for ranking. Sample permutation and multiple
hypothesis testing correction was done to obtain FDR for
each gene set. Gene sets were limited to contain
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between 5 to 500 genes per gene set. Single sample
enrichment score was assigned to significant pathways
for visualization and for Bindea gene sets using GSVA
package 1.24.0 (Hanzelmann et al., 2013) in R.

Genomic correlations with immunological features
Feature generation from multilevel data

Feature matrix generation, pairwise analysis run, and
feature-specific filtering was based on the TCGA
featurematrix pipeline available in
https://github.com/cancerregulome/gidget/tree/master/co
mmands/feature _matrix_construction.
Continuous/discrete numeric data matrices were
generated for the analyzed datasets Hemap, TCGA AML
and DLBCL, Chapuy et al. DLBCL, and Glass et al. AML
including clinical, genomic and immunologic features. In
case of categorical features, binary indicator features
were generated to compare i) each categorical feature to
the rest of the samples, ii) two categorical features to rest
of the samples and iii) comparing two categorical
features against each other. Feature types (gene
expression, protein expression, clinical, methylation,
CNV, mutations, sample annotation) were distinguished
from each other. Missing values were assigned as NA.
To account for differential methylation within the same
locus, probes associated with each gene were first
correlated to gene expression using Spearman's
correlation (P < 0.05) and divided into positive and
negatively correlated sets. Probes with standard
deviation below 0.1 were removed. Mean methylation for
these sets were computed to obtain two methylation
features per gene, with positive and negative association
to gene expression.

Feature statistical analysis

Spearman correlation was used to for numeric-numeric
and numeric-binary feature pairs (in R
use="pairwise.complete.obs”), while one-tailed Fisher’s
exact test test of co-occurrence was used for binary-
binary feature analysis. To keep the number of
comparisons smaller and statistically reliable, only
features with at least 5 observations were used in the
analysis.

For P value adjustment, the number of features and
intrinsic correlation are very different for different data
pairs. Therefore, we performed separate statistical tests:
The first test was to find whether features of a gene
(methylation, mutation, CNV, gene expression) are
correlated with each other (to identify alterations of the
gene itself associated with each other), followed by
Benjamini-Hochberg (BH) correction of the obtained P
values. The second test was to assess whether features
of a gene are correlated to features of other genes (to
identify e.g. driver alterations associated with
immunological features) and included additional feature
types, such as clinical variables and sample annotations,
followed by BH correction of P values. Multiple
hypothesis testing was performed separately for the
correlation and Fisher's test results, as these produce
different P value distributions. Similarly, different
significance level cutoffs were used for different data
pairs. Methylation-methylation and CNV-CNV pairs were
omitted. FDR cutoff was set to 0.1, except for mutations
FDR < 0.25 was permitted. Further filtering criteria are

specified in the result tables. This procedure allowed us
to identify most relevant correlations and to filter out
correlations difficult to interpret.

Differential methylation analysis

ERRBS (Glass et al. AML)

GSEB86952 raw aligned ERRBS AML methylation data
were analyzed using the methylSig (Park et al., 2014) R
package to identify methylation changes in patients with
low HLA Il expression or PML-RARA mutation compared
to rest of the samples. Intersection of samples with both
methylation, gene expression, and mutation data was
106 samples. Data files were read in R using the
methylSigReadData command with parameters
context="CpG” and destranded=TRUE. methylSigCalc
command was run to obtain differentially methylated
CpGs with parameters min.per.group=5 to require a
minimum of 5 CpGs per group for calling differential
methylation. All significant DMCs with  FDR < 0.05 and
absolute methylation change > 25% for CIITA genomic
locus were obtained.

Hllumina 450k (TCGA)

For comparison of differentially methylated immune
checkpoint genes between TCGA AML and DLBCL
samples, beta values of lllumina 450k probes within 1 kb
of the transcription start site of the genes were averaged
to obtain a single value representing methylation of the
gene promoter area. M values were calculated from
mean beta values using log2(beta/(1-beta)) and
differential methylation analysis was performed using
limma. For the corresponding differential gene
expression analysis, RNA-seq read counts were
converted to cpm and normalized using limma voom with
quantile normalization, and differential expression
analysis was performed using limma.

CCLE For correlation of gene expression to methylation
in CCLE RRBS data, CpG and TSS 1 kb methylation
values of each gene were averaged and the resulting
mean methylation value was compared with gene
expression using Spearman correlation.

Cell culture experiments

For drug treatment experiments, MOLM13 cells were
plated on flat-bottom 96-well plates at 50,000 cells/well in
a volume of 100 pL. Cell were treated with 10, 100 or
1,000 nM decitabine (Selleck) or DMSO as a control,
both in the presence or absence of 10 ng/mL
recombinant human interferon gamma (Peprotech), all
conditions in triplicate wells. After 3 days, 25 pL of cell
suspension from each well was washed with 100 pL
PBS-EDTA and stained with 5 pL of HLA-DR-FITC (clone
G46-6, BD BioSciences) or isotype control (clone G155-
178, BD BioSciences) antibodies or left unstained in a
total volume of 25 yL PBS-EDTA and antibodies. Cells
were then washed with 100 yL PBS-EDTA, resuspended
to 50 yL PBS-EDTA, and 10,000 events were acquired
on a FACSVerse flow cytometer (BD BioSciences). Flow
cytometry data were analyzed using FlowJo 10.0.8r1.
Viable cells were gated using forward (FSC-A) and side
scatter (SSC-A), followed by gating for singlets using
FSC-A and FSC-H. HLA-DR+ cells were gated such that
untreated isotype control-stained cells were gated
negative. Final HLA-DR+ cell percentages were obtained
by subtracting isotype control-stained HLA-DR+ cell
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percentages (mean of ftriplicate wells) from HLA-DR
antibody-stained HLA-DR+ cell percentages at each
treatment condition.

Immune checkpoint gene list curation

A list of co-stimulatory and co-inhibitory ligands and
immunomodulatory enzymes known to be expressed on
APCs or T/NK cell target cells was curated based on the
literature. T cell ligands were based largely on a
comprehensive review on T cell co-stimulation (Chen and
Flies, 2013), and the list was supplemented with NK cell
receptor ligands and immunomodulatory enzymes.
References for the receptor-ligand interactions and their
stimulatory or inhibitory effect on T/NK cells are listed in
Table S5.

Antigen expression analysis

Genes expressed only in normal or cancer cells were
identified using the sample group specificity tests were
performed as described above (hypergeometric test
adjusted P value < 1e-2, fold change > 1.25, Wilcoxon
rank sum test adjusted P value < 1e-5 ) using Hemap
samples. Genes expressed in cancer were required to be
expressed highly in > 5% of the patients in at least one
disease based on mixture model categories (high vs. low
expressed/not detected) and not expressed in normal
cells. GTEx database (GTEx Consortium, 2015) V6 RNA-
seq gene median RPKM values for each tissue were
used to find genes specific to testis when compared to
other tissues (excluding ovary). Testis genes were
defined to have < 0.25 RPKM expression in all other
tissues, resulting in a total of 1,563 genes common
between Hemap and GTEx datasets. This list of genes
was filtered to contain only coding genes expressed in
Hemap cancer samples, resulting in 59 genes. CCLE cell
line data for hematological cancers was also used to filter
out genes not expressed > 0.5 RPKM levels in at least 5
cell lines, resulting in a final antigen genelist containing
27 genes. Number of expressed CGA genes was
computed for each sample using mixture model-
discretized gene expression values for Hemap data, and
using a cutoff of 0.25 RPKM for CCLE data. For Chapuy
et al. DLBCL, patient LS2208 with testicular DLBCL was
omitted from the analysis.

Survival analysis

Univariate analysis

Cox regression available in R package ‘survival’ version
2.42-4 was applied for univariate analyses of numeric
immunology scores, including HLA | score, HLA 1l score,
and CGA number in myeloma, AML, and DLBCL
datasets, and cytolytic score in AML and DLBCL where
unsorted samples were available (for myeloma
GSE19784, GSE16716, GSE24080, for DLBCL
GSE10846, GSE11318, and GSE17372 and for AML
GSE10358, GSE12662, GSE12417,
GSE14468,GSE6891). Furthermore, all co-stimulatory
genes and individual CGAs were included in the analysis.
Additionally, non-T/NK expressed genes with expression
fold change > 2 between CTLs/NK cells and the unsorted
cancer samples and correlation with cytolytic score
above 0.4 (as in Figures 2 and S2). Well-known
prognostic markers, including ISS for myeloma and IPI
for DLBCL were also included in the analysis. Survival
data were analyzed also for each individual study in

Hemap to make sure findings are not due to differences
in survival cohorts.

Multivariate analysis

Features correlated to overall survival in univariate
analysis for each disease were selected for multiple
regression analyses computed in Hemap myeloma and
DLBCL datasets to evaluate their prognostic significance.
Features were filtered using an adjusted P value cutoff
0.2 to reduce the number of features for the multiple
regression analysis and to decrease the the false
discovery rate. Regularized Cox regression model
available in gimnet 2.0.16 R package was used to fit the
Cox model. L1 and L2 norm ratio (alpha parameter) was
optimized using 10-fold cross-validation and alpha values
from 0 to 1 with 0.05 increments. To reduce variability in
the model, cross-validation for each alpha value was
iterated 100 times. Alpha and lambda with the lowest
mean fitting error were used for the final model fitting.
Independent test datasets were used for model
validation. Hemap RCHOP-treated samples from
GSE10846 and GSE17372 were used for training and
GSE98588 for testing in DLBCL, and for myeloma
GSE19874 was used for model training and GSE24080
for model testing. Prognostic index (Pl) was computed for
each sample as in (Royston and Altman, 2013) for
training and test sets. Cox proportional hazards model
and Kaplan-Meier plots were used to compare model
performance between training and test sets. Pl with a
similar hazard ratio and a low overall P value were used
to verify that a set of distinct immunology features could
be used to distinguish different patient outcomes
independently of the dataset where the model was
generated.

Data visualization

R package “ComplexHeatmap” (Gu et al., 2016) was
used for drawing heatmaps and oncoprints and “ggplot2”
for drawing boxplots, barplots, and dot plots. Gene
expression Z-scores were used for t-SNE map
visualization to denote samples with low and high
expression (low: < -2 to -1 and high 1 to > 2). For Hemap
dataset, e-staining was used for gene expression
visualization for mixture model components (not
detected, low, and high) as described above.

Statistical analysis

The statistical details of all experiments are reported in
the text, figure legends, and figures, including statistical
analysis performed, statistical significance, and counts.
Significance codes correspond to P values or FDR as
follows: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. In
boxplots, horizontal line indicates the median, boxes
indicate the interquartile range, and whiskers extend from
the hinge to the smallest/largest value at most 1.5 * IQR
of the hinge. Generally, nonparametric methods including
Spearman correlation and Wilcoxon rank sum test were
used for statistical analyses.

Data and software availability

Software used for the analyses are described and
referenced in the individual Method Details subsections
and are listed in the Key Resources Table. Scripts used
to generate results are available upon request. Hemap
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data can be queried and \visualized from http://hemap.uta.fi.

REAGENTS AND RESOURCES

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
CD2 FITC (clone S5.2) BD Cat#: 347404
CD3 PerCP-Cy5.5 (clone SK7) BD Cat#: 332771
CD10 PE (clone HI10a) BD Cat#: 332776
CD19 PE-Cy7 (clone SJ25C1) BD Cat#: 341113
CD22 APC (clone S-HCL-1) BD Cat#: 333145
CD45 APC-Cy7 (clone 2D1) BD Cat#: 348814
CD56 FITC (clone NCAM16.2) BD Cat#: 345811
CD13 PE (clone L138) BD Cat#: 347406;
RRID:AB_2732011
CD34 PerCP-Cy5.5 (clone 8G12) BD Cat#: 347222
CD117 PC7 (clone 104D2D1) Beckman Coulter Cat#: IM3698;
RRID:AB_131184
CD33 APC (clone P67.6) BD Cat#: 345800
CD11b APC-Alexa Fluor 750 (clone Bear 1) Beckman Coulter Cat#: B36295
HLA-DR V450 (clone L243) BD Cat#: 655874;
RRID:AB_2716783
CD45 KromeOrange (clone J.33) Beckman Coulter Cat#: A96416
CD14 FITC (clone MP9) BD Cat#: 345784
CD64 PE (clone 10.1) Bio-Rad (Formerly AbD Cat#: MCA756PE;
Serotec) RRID:AB_321800
CD33 PE-Cy7 (clone P67.6) BD Cat#: 333952;
RRID:AB_2713932
HLA-DR APC (clone L243) BD Cat#: 347403
HLA-DR FITC (clone G46-6) BD Cat#: 555811
IgG2a k isotype control FITC (clone G155-178) BD Cat#: 555573
CD8 (clone C8/144B) BioSB Cat#: BSB 5172
CD11b (clone EP45) BioSB Cat#: BSB 6439
CD34 (clone QBENd 10) Dako Cat#: M716501-2;
RRID:AB_2750581
CD68 (clone KP1) Abcam Cat#: ab955;
RRID:AB_307338
IDO (clone D5J4E) Cell Signaling Technology Cat#: 86630;
RRID:AB_2636818
VISTA (clone D1L2G) Cell Signaling Technology Cat#: 64953
CXCL9 (polyclonal) Thermo Fisher Scientific Cat#: PA5-34743;
RRID:AB_2552095
CD14 (clone D7A2T) Cell Signaling Technology Cat#: 75181
DAPI (4',6-Diamidine-2'-phenylindole dihydrochloride) Sigma-Aldrich Cat#: 10236276001
Alexa Fluor 647 Goat Anti-Mouse IgG (H+L) Thermo Fisher Scientific Cat#: A-21236;
RRID:AB_2535805
Alexa Fluor 647 Goat Anti-Rabbit IgG (H+L) Thermo Fisher Scientific Cat#: A-21245;
RRID:AB_2535813
Alexa Fluor 750 Goat Anti-Mouse IgG (H+L) Thermo Fisher Scientific Cat#: A-21037;
RRID:AB_2535708
Alexa Fluor 750 Goat Anti-Rabbit IgG (H+L) Thermo Fisher Scientific Cat#: A-21039;
RRID:AB_2535710
BrightVision Poly-HRP Goat Anti-Mouse Immunologic VWR Cat#:
VWRKDPVM55HRP
BrightVision Poly-HRP Goat anti-Rabbit Immunologic VWR Cat#:
VWRKDPVR55HRP
Chemicals, Peptides, and Recombinant Proteins
Decitabine Selleck Chemicals Cat#: S1200; CAS: 2353-
33-5
Recombinant human interferon gamma PeproTech Cat#: 300-02
DAPI (4',6-Diamidine-2'-phenylindole dihydrochloride) Sigma-Aldrich Cat#: 10236276001
ProLong Gold Thermo Fisher Scientific Cat#: P36934;
RRID:SCR_015961
Alexa Fluor 488 Tyramide Reagent Thermo Fisher Scientific Cat#: B40953
Alexa Fluor 555 Tyramide SuperBoost Kit Thermo Fisher Scientific Cat#: B40933
Critical Commercial Assays
miRNeasy kit Qiagen Cat#: 217004
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Ribo-Zero™ rRNA Removal Kit

lllumina (formerly Epicentre)

Cat#: MRZH11124

SuperScript™ Double-Stranded cDNA Synthesis Kit

Thermo Fisher Scientific

Cat#: 11917010

ScriptSeq v2™ Complete kit

Illlumina

Cat#: BHMR1224

Agencourt AMPure XP PCR purification system

Beckman Coulter

Cat#: A63881

Deposited Data

Raw and processed clinical, array, and sequence data (Hemap)

(Pol6nen et al., 2019)

hemap.uta.fi

AML ERRBS methylation, gene expression, genetic alteration and
clinical data

(Glass et al., 2017)

GEO: GSE86952

BeatAML gene expression, genetic alteration and clinical data

(Tyner et al., 2018)

CCLE RNA-seq, RRBS methylation data, and cell line annotations

(Barretina et al., 2012)

RRID:SCR_013836;
https://portals.broadinstitu
te.org/ccle/data

DLBCL gene expression, genetic alteration, and clinical data

(Chapuy et al., 2018)

GEO: GSE98588

GTEx gene expression data

(GTEx Consortium, 2015)

RRID:SCR_013042;
https://gtexportal.org/hom
e/datasets

pre-B-ALL and T-ALL processed methylation data

(Nordlund et al., 2013)

GEO: GSE49031

Experimental Models: Cell Lines

MOLM-13

DSMZ

Cat#ACC-554;
RRID:CVCL 2119

Software and Algorithms

affy 1.52.0

(Gautier et al., 2004)

RRID:SCR_012835;
http://www.bioconductor.o
rg/packages/release/bioc/
html/affy.html

Bioconductor

RRID:SCR_006442;
http://www.bioconductor.o
rg/

CellProfiler 2.1.2

(Carpenter et al., 2006)

RRID:SCR_007358;
https://cellprofiler.org/

CIBERSORT

(Newman et al., 2015)

https://cibersort.stanford.e
du/

ComplexHeatmap

(Gu et al., 2016)

https://bioconductor.org/p
ackages/release/bioc/html
/ComplexHeatmap.html

edgeR (Robinson et al., 2010) RRID:SCR_012802;
http://bioconductor.org/pa
ckages/edgeR/

Fiji (Schindelin et al., 2012) RRID:SCR_002285;
http://fiji.sc

FlowJo 10.0.8r1

Tree Star

RRID:SCR_008520

ggplot2

RRID:SCR_014601;
https://ggplot2.tidyverse.o
g

glmnet 2.0.16

(Friedman et al., 2010)

RRID: SCR_015505;
https://cran.r-project.org/
web/packages/gimnet/ind
ex.html

GSEA

(Subramanian et al., 2005)

RRID:SCR_003199;
http://software.broadinstit
ute.org/gsea

GSVA 1.24.0

(Hanzelmann et al., 2013)

https://bioconductor.org/p
ackages/release/bioc/
html/GSVA.html

FDb.InfiniumMethylation.hg19

http://bioconductor.org/pa
ckages/release/data/anno
tation/html/FDb.InfiniumM
ethylation.hg19.html

limma

(Ritchie et al., 2015)

RRID:SCR_010943;
http://bioconductor.org/pa
ckages/release/bioc/html/|
imma.html

mclust 5.4

(Scrucca et al., 2016)

https://cran.r-
project.org/web/packages/
mclust/ index.html

MCPcounter

(Becht et al., 2016)

https://github.com/ebecht/
MCPcounter

methylSig

(Park et al., 2014)

http://sartorlab.ccmb.med.
umich.edu/software

MSigDB

(Subramanian et al., 2005)

RRID:SCR_016863;
http://software.broadinstit
ute.org/gsea/msigdb
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Picard http://broadinstitute.github.io | RRID:SCR_006525;
/picard/ http://broadinstitute.github

.io/picard/

R R Core Team https://www.r-project.org

STAR (Dobin et al., 2013) RRID:SCR_015899;
https://github.com/alexdob
in/STAR

Subread (Liao et al., 2013) RRID:SCR_009803;

http://subread.sourceforge
.net/

survival 2.42-4

https://cran.r-
project.org/web/packages/
survival/index.html

Trimmomatic (Bolger et al., 2014) RRID:SCR_011848;
http://www.usadellab.org/
cms/index.php?page=trim
momatic
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