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ABSTRACT: Analysis of the dynamic and steady-state properties of biochemical networks hinge
on information about the parameters of enzyme kinetics. The lack of experimental data
characterizing enzyme activities and kinetics along with the associated uncertainties impede the
development of kinetic models, and researchers commonly use Monte Carlo sampling to explore
the parameter space. However, the sampling of parameter spaces is a computationally expensive
task for larger biochemical networks. To address this issue, we exploit the fact that reaction rates
of biochemical reactions and network responses can be expressed as a function of displacements
from thermodynamic equilibrium of elementary reaction steps and concentrations of free enzymes
and their intermediary complexes. For a set of kinetic mechanisms ubiquitously found in
biochemistry, we express kinetic responses of enzymes to changes in network metabolite
concentrations through these quantities both analytically and schematically. The tailor-made
sampling of these quantities allows for characterizing the missing kinetic parameters and

accelerating the efforts towards building genome-scale kinetic metabolic models.
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1. INTRODUCTION

Evolutionary processes in biological systems gave rise to a wide range of control and
regulatory mechanisms to ensure their survival and robustness under varying environmental
conditions. For a comprehensive understanding of cellular organisms, we have to consider them
at the system-wide level and use the appropriate analytical methods.” The methods from systems
and control theory?~ are particularly suitable for the analysis of biological systems, and many
significant properties of cellular organisms have been discovered using these concepts.® 7

The theoretical analysis and study of metabolic processes and ways to control fluxes in
metabolic networks have been mostly focused on developing the quantitative descriptions of
metabolism.? A predominant approach in these studies is Metabolic Control Analysis (MCA), a
parametric sensitivity analysis of a metabolic system around a steady-state.’/? Though the theory
of MCA is well developed, information about kinetic properties of enzymes that is required for
its successful application is scarce.

To obtain the values of kinetic parameters, one can use experimental data and perform

parameter estimation,’3-/¢

or explore the parameter space by employing Monte Carlo sampling
techniques,’® /7 The latter approach is prevalent in newer kinetic modeling methods.’® However,
the random sampling of kinetic parameters spaces of large biochemical networks becomes
computationally challenging as the size of network is growing.’” Efficient methods for exploring
large parametric spaces of biochemical networks require tailor-made sampling techniques that

exploit the specific structure of the networks while considering physico-chemical constraints.’”

9 Recently, a novel method for characterization and reduction of uncertainty in kinetic models
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was proposed that further alleviates issues with intensive computational requirements by
identifying parameters and their bounds relevant for the analyzed physiology.?’

In our previous work’?, we proposed a framework for modeling of uncertainty in the enzyme
kinetics and efficient sampling technique that allows us to sample parametric space of large
biochemical networks. The framework allows us to calculate the local parametric sensitivity
coefficients of biochemical reactions, dubbed elasticities within the Metabolic Control Analysis
(MCA) formalism®2, as a function of the distribution of enzymes among their free form and
intermediary complexes, the thermodynamic displacements of the reactions from the
equilibrium, and the net reaction fluxes. The proposed formulation allowed us to explicitly
integrate the conservation of the total amount of enzymes, metabolite concentrations and reaction
thermodynamics, and perform an efficient Monte Carlo sampling for generating all states within
modeled enzymatic mechanisms. The features of the proposed framework were illustrated
through examples of the three-step reversible and irreversible Michaels-Menten kinetic
mechanisms.

While the single-substrate single-product mechanisms can be used to model more complex
enzymes, e.g., certain hydrolyses are commonly described with these mechanisms because water
is abundant in living cells and its concentration is considered constant, according to a strict
definition these mechanisms are rather infrequent in biochemistry as they are confined to
isomerizations.’’ In this work, we extend the previously proposed framework’® to more
ubiquitous mechanisms appearing in biochemical networks such as ordered Bi Bi, ping pong Bi
Bi, ordered Uni Bi and ordered Bi Uni mechanism. It is estimated that the Bi Bi mechanisms
cover more than 60% of known enzymatic reactions.?’ We also propose a novel schematic

method for the derivation of the analytic expressions of elasticities allowing us to skip altogether
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algebraic manipulations that are particularly cumbersome for more complex mechanisms. The
method is closely related to the signal flow graphs methods used in the analysis of (i) electronic
circuits and control loops,?? and (ii) control and regulation in metabolic pathways.?3-%
Furthermore, we present a bottom-up workflow that makes use of the computed elasticities to

determine the steady-state outputs of biochemical networks induced by the changes in the

enzyme activities despite uncertainties in kinetic properties of enzymes.

2. METHODS
2.1. (Log)Linear Description of Biochemical Networks and Metabolic Control Analysis.
Consider a biochemical system with n metabolites involved in m enzymatic reactions. The mass

balances of the system are described by

dx_
dt

Nv(x(t), p(t)) €Y)
where the stoichiometric matrix, N € R™*™, describes the network topology, v € R™ is the
reaction rate vector, x € R™ is the vector of metabolite concentrations, and p € R! is the vector
of manipulated inputs. Due to conservation relationships among metabolites in the network, the
stoichiometric matrix is rank deficient, and the rows corresponding to dependent metabolites,

x4 € R"4, can be expressed as a function of the rows corresponding to independent metabolites,

x; € R™, so that the system (Eq. 1) takes the form

dxi

— = Nev(x,(0), 24 (00, (), p(D) &)

where Ny, is the reduced stoichiometric matrix containing the rows corresponding to the

independent metabolites.?’


https://doi.org/10.1101/618777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/618777; this version posted April 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The vector of metabolic outputs, h € R", can be formed in general as a nonlinear function of
reaction rates, v, the independent metabolites, x;, and the inputs, p.® /> For simplicity, here we

choose h to contain the following two variables:

o= @

v

Following the derivation from Hatzimanikatis and Bailey’?, we can linearize the system (Egs.

1-2) around a steady state x;*, p* to obtain a (log)linear model:

le- _
— = NeVZz; + Ny Vg (3)
w =324 g @)

where the vectors z; and q represent the logarithmic deviations of the state variables and

parameters whose elements are defined as:’?

B (5)
g =1 (pl*) [=1,.,¢
b
and the matrices V, X, and II are:
V =diag(vy*,vy", ..., v")
dlnv;
E = {o‘.k | o'.k = J }
1 I 0lnx;y X' p* (6)
_ _ 6lnvj
l-[ — {T[],k | T[],k - d1ln Pk xi* p*}

Hatzimanikatis and Bailey have demonstrated® /2 that (log)linear models can accurately
describe the dynamic behavior of metabolic responses. Moreover, they have shown that the flux
and concentration control coefficients defined within the framework of Metabolic Control
Analysis (MCA)?® /% 12 can readily be derived from the (log)linear model (Egs 3-6). Indeed, the

flux and concentration control coefficients that quantify the responses of biochemical networks
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to the changes in systems parameters such as enzyme activities are the steady-state gains of the

(log)linear system. By expressing the steady state solution of Egs. 3-6, one obtains

wes =[5, Y 1q oy CA 7)

with

- [ —(NgVE) "IN,V
(1 - Z(NRVE) "IN

®)

The matrix C is the control coefficient matrix of the outputs h (metabolite concentrations and
metabolic fluxes) with respect to inputs p (within the MCA formalism? /% /2, the inputs p are
considered as parameters as they do not change at the steady state). By inspecting Eq. 8, we
observe that for computing the control coefficients we need to accurately determine the matrices
of sensitivities of reaction rates with respect to the metabolite concentrations, X, and the
parameters, I1 (within the MCA formalism these matrices are called the elasticity matrices). The
rates of reactions constituting a biochemical network are characterized by the mechanistic
properties of catalyzing enzymes, but also by the states of the biochemical network, i.e.,
metabolic fluxes and metabolite concentrations.

Therefore, for determining the elasticity matrices X and I, the steady-state values of fluxes and
concentrations in the network are required. This task can be performed by employing methods
that integrate information about thermodynamics in the context of Flux Balance Analysis®” such
as the Thermodynamics-based Flux Analysis (TFA)?%3, the energy balance analysis (EBA)?/,
and the network-embedded thermodynamic analysis (NET analysis)*’.

In contrast, determining the mechanistic properties of enzymes catalyzing the reactions

involved in the networks is a challenging task because the comprehensive knowledge of the

kinetic properties of enzymes is lacking.’” 333> To address this challenge, the space of enzyme
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states can be explored,’’ and the information about the distribution of the enzymes among their

free form and the intermediary complexes can then be used to compute the elements of the

elasticity matrices ¥ and I1. These matrices are, in turn, used to compute the control coefficients.
The set of procedures for determining the flux and concentration control coefficients is

assembled in a conceptual workflow (Figure 1), and its constitutive elements are detailed below.

INPUTS

- Reaction network (Stoichiometry)
- Thermodynamics
- Experimental data (if available)

N, AG*

o NETWORK PROPERTIES

Compute: ) )
- Metabolite concentrations

- Net fluxes
- Equilibrium displacements

X, v, T

g MECHANISTIC PROPERTIES

- Assign kinetic mechanism
- Sample enzyme states
- Sample elementary reaction displacements

2, I

e METABOLIC CONTROL ANALYSIS

Compute:
- Concentration control coefficients
- Flux control coefficients

Figure 1. A workflow for the computation of flux and concentration control coefficients based

on the Monte Carlo sampling of the enzyme states and elementary reaction displacements.


https://doi.org/10.1101/618777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/618777; this version posted April 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2.2. Displacements from Thermodynamic Equilibrium. The displacement of a reaction

from its thermodynamic equilibrium is defined as follows:’% 36 37

r:ﬁ:inﬁlpi 9)
Vf Keq 7j1=1 Sj

where V}, and V; denote the backward and the forward reaction rates of the overall reaction, and
Spj=1..n, and P;,i = 1 ...m, are the concentrations of the participating substrates and
products. The reaction’s equilibrium constant, K,,, represents the ratio of the concentrations of

substrates, S ]feq, and products, Pieq, at the equilibrium, and it can be expressed as:

m Peq AG'O
R S e -
Keqg =T qea=¢€ &7 (10)
J=1%j

where A,.G'® denotes the standard Gibbs free energy of the reaction, R is the universal gas

constant and T is the temperature. The Gibbs free energy of the reaction can be expressed as

m
m p.
AG = AG"° + RTln% (11)
j=15i
Combining Eqs 9-11, ' can be expressed as:
a6’
[ =eRT (12)

Therefore, for reactions operating towards production of products P;, the Gibbs free energy
difference is negative and I" can take values from the interval [0, 1], whereas for reactions
operating towards production of substrates S;, A,.G' is positive and I' € [1, +0]. Reactions with
values of I close to 1 are operating near thermodynamic equilibrium, whereas reactions with I' =
0 and I' - +o0 are operating strictly in the forward and backward direction, respectively.

The displacement I' of a reaction can be determined by knowledge of the A,.G'®,and

equivalently the K, and the concentrations of the metabolites (substrates and products). The
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Gibbs free energy of reactions (A,.G'?) can be determined by experiments®® or it can be estimated

using estimation methods, such as group contribution methods.?? 4

2.3. Mass Balances of Enzyme Complexes in Enzymatic Reactions. For a generic multi-
substrate multi-product enzymatic reaction
A+B+- &P +Q+-
the mass balance equations of the concentrations of enzyme states have the following form:

deS
dt

= Mu(xgs, Pgs) (13)

where xgg € R™ES denotes the vector of enzyme states’ concentrations, M € R™MES*"ES g the
stoichiometric matrix describing the dependency of xg¢ and the fluxes of elementary reactions

steps u € R™ES, and pgg € REES is the parameter vector

PEs = [ETr k1f; kip, ..., A B,P,Q,.. ]T
that contains the conserved concentrations of total enzyme, E, the rate constants of elementary
reaction steps, ks, Kqp, ... , and other parameters such as the concentrations of substrates and
products, 4, B, P, Q, ....

We assume that an enzyme is not consumed nor produced in the course of a reaction, i.e., the
total amount of enzyme, E;, remains constant, i.e., E + EA+ EB+ -+ EP + - =E;. Asa
consequence, M is a rank deficient matrix as the concentration of an enzyme state can be
expressed as a function of other enzyme states. Therefore, the vector of enzyme states, xgg, can
be split in the dependent enzyme states, Xgg 4, and the independent enzyme states, Xgg ;, and the

temporal evolution the enzyme states can then be expressed as

dXgsi
diS'l = MRu(xES,ierS,d(xEsri’ ET)’pES ) )
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where My, is a reduced stoichiometric matrix.?% #/

2.4. Sampling of Enzyme States and Displacements of Elementary Reaction Steps from
Thermodynamic Equilibrium. For exploring both enzyme states’ space and thermodynamic
displacements space, the samples can be drawn from a n-variate Dirichlet distribution. A n-
variate Dirichlet distribution with all parameters equal to one allows generating a population of
uniformly distributed samples over n-dimensional simplices.’’

2.4.1. Sampling of Enzyme States. In the space formed by the concentration values of the

enzyme in its free form, E, and in the form of enzyme-metabolite complexes, ES;, the

conservation of E:

mges—1

E+1ZES—1 (15)
Er  Ep L '
=

represents a mgg-dimensional simplex. Therefore, the samples of enzyme states scaled by E can
be efficiently generated by drawing samples from the Dirichlet distribution.’?
2.4.2. Sampling of Thermodynamic Displacements of Elementary Reaction Steps. The overall

displacement of a reaction from its equilibrium, I', can be expressed as a product of

thermodynamic displacements of elementary reactions steps, yy, belonging to a set D:

u
le_[yké kb (16)

u
k€D k€D kf

where uy,, is the backward, and u, s the forward rate of the k™ elementary reaction step. The

content of the set D depends on the kinetic mechanism of a reaction. For example, in the case of
ping-pong or ordered kinetic mechanisms, the set D contain all elementary steps. From the above

expression, we obtain by applying logarithm:

1
lel’lyk =1 (17)

keD

10
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In the space of logarithms of thermodynamic displacements of elementary reactions steps, yy,
Eq. 17 represents a k-dimensional simplex and the samples of y;, can promptly be generated
using the Dirichlet distribution. Observe that for I' = 1, the thermodynamic displacements of
elementary steps are equal to one, i.e., y, = 1,k € D.

Information about the marginal distributions of the enzyme states or displacements from
thermodynamic equilibrium of elementary reaction steps inferred from experimental
observations can be used to generate refined sets of these quantities. We can accomplish this by
adjusting the parameters of the Dirichlet distribution to match the experimental data.’’

2.5. Elasticities. Elasticities are defined within the MCA formalism? /% /2 as the local
sensitivities of reaction rates to the changes in metabolite concentrations and parameters, and
they are required to compute the flux and concentration control coefficients.” /0 12 33-33

According to the MCA formalism, the elasticities of the enzyme states, xgg ;, and of the
elementary fluxes, u, with respect to the parameters, pgg, can be expressed in the following

form:”?

XES,i , dInxgs; = —1
E7ras ——— = (M,UZ)""MyUIl
P d1npgs (MRUE) ™ MgUTlgs

dlnu
€
dln PES

(18)

A

u = EE," 4 Mg
where U € R2"ESX21ES ig a diagonal matrix of the forward and backward elementary rates, and

dlnu . e e .
[gs 2 Fnpgs &€ the matrices of the sensitivities of elementary reaction rates
ES

with respect to the enzyme states and the system parameters, respectively. Considering the

conservation of the total amount of enzymes, we can write

—-
(Op—
—_

[1]

= nd
i +240;

11
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dlnu dlnu

where Z; £ and Z; & are the matrices of the sensitivities of elementary reaction

d1n XES i d1n XES d

dlnx . .
ESd s the relative

rates with respect to independent and dependent enzyme states, and Q¢ 2 T
ES,i

abundance of the dependent enzyme states with respect to the independent ones.’? 33

3. RESULTS AND DISCUSSION

3.1. Analytical Expressions for Elasticities of Several Enzymatic Mechanisms.

3.1.1. Ping Pong Bi Bi mechanism. The ping pong mechanism, also called double displacement
reaction?’, is characterized by the existence of a substituted enzyme intermediate, E*, that is
temporary formed after the binding of the first substrate, A, to the enzyme, E (Figure 2b). In the
ping pong Bi Bi mechanism, the occurrence of ternary complexes is structurally impossible due
to an overlap of the binding sites for the substrates A and B, and the first product, P, is created
and released before the second substrate, B, binds.?’ Examples of reactions that exhibit the ping
pong mechanism include pyruvate carboxylase and serine proteases such as trypsin and

chymotrypsin.

12
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Figure 2. Two representations of a ping pong Bi Bi enzymatic reaction. a) network
representation characterized by the flux through the reaction and the metabolite concentrations of
participating metabolites; b) more detailed mechanistic representation additionally characterized

by the enzymatic mechanism, the enzyme states, and the fluxes of elementary reaction steps.

The net fluxes of six elementary reactions steps, ui* k = 1, ...,6, of the ping pong mechanism

are all equal to the net flux of the overall reaction, V. Therefore, using the definition of the
thermodynamic displacement from equilibrium of elementary reaction steps from Eq. 16, the

forward and backward elementary reaction rates can be expressed as:
(=7 k=1,..6 (19)

From the conservation of the total amount of enzyme

13
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E+EA+E'P+E*"+E'B+EQ=E; (20)
we can consider the enzyme states EA, E*P, E*, E*B, and EQ to be independent and E to be
dependent.

The elasticities of the ping-pong mechanism can be expressed analytically in the form of Eq.

18, where the stoichiometric matrix of the mechanism is

1 -1 -1 1 0 0 0 0 0 0 0 O
0 O 1 -1 -1 1 0 0 0 0 0 O
Mp=10 0 0 0 1 -1 -1 1 0 0 0 O (21)
0 O 0 0 0 0 1 -1 -1 1 0 O
0 O 0 0 0 0 0 0 1 -1 -1 1

and the matrix of the elementary rates can be derived from Eq. 19:

; 1 Y1 1 Y2 1 Y3 1 Ya 1 Vs 1 Ye
U = V ) dlag ( ) ) ) ) ) ) ) ) ) ) ) ) (2 2)
1-y1 1-y1 1-Y2 1-¥2 1-y3 1-y3 1-Y4 1-ys4 1-ys 1-ys 1-Ys 1-Vs

The sensitivities of the elementary reaction rates with respect to the vectors of independent

enzyme states [EA, E*P, E*, E*B, EQ] and parameters pgs = [E7, A, B, P, Q]" read as

—-EA/E 1 1 0 0 0 0 0 0 0 O —FEA/E T
-E*P/E 0 0 1 1 0 0 0 0 0 0O —-E*P/E
== -E*/JE 0 0 0 0 1 1 0 0 0 0 -—E*/E (23)
-E*'B/JE 0 0 0 0 0 0 1 1 0 0O —E'BJE
-EQ/E 0 0 0 0 0 0 0 0 1 1 -—EQ/E
and
E/JE 0 0 0 0O OO O O O O E;/E T
1 O 0 00OO0O O 0 00O 0
[gs = 0 O 000OO1T 0 0 0O0 0 (24)
0 O 0001 00 0 00O 0
0 O 0 00OOO O 0 O0WwWO 1
Substituting Eqgs. 21-24 into Eq. 18, and considering that

Py P _1_V1p

we finally obtain

14
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E EA E*P E* E*B E
net  Ep Tt V2Y3VaVsVe o E, + V3VaVsVe E, T VaVsVe - E, T VsYe T E, + Ve EQ
gk = z (26)
1 = v1Y2V3YaVsVe
E EA E*P E* E*B E
upet V1Y2V3 57— E; T V2V3 5o E; tV3 E, E + V1V2Y3Vs5Ve E, + V1Y2V3Ve EQ @7
il = 27

1 = y1Y2V3VaVsVe

E EA E P E* E*B E
net V3 (V1V2E TV 5o E; E +V1V2V4V5V6E + V1Y2VsVe E, + V1Y2Ys EQ)

£ =— (28)
1 = ¥1Y2V3Ya¥sVe
E EA E*P E* E'B E

et Y6 (V1V2V3V4V5E +V2V3V4V5E + V3VaVs - E, +V4V5E Tyvs ot EQ)

€ =-— L—T1= (29)
@ 1 = y1Y2Y3VaVsVe

net

and, as expected, €. V=1,

3.1.2. Ordered Bi Bi mechanism. The ordered Bi Bi mechanism is characterized by a
compulsory order of substrate binding and product release (Figure 3). The enzyme E first binds
to substrate A, and creation of the EA complex results in the formation of a binding site for
substrate B. The ternary EAB complex is then formed and isomerized to the EPQ complex which
releases first the product P and then the product Q. Examples of reactions that follow the ordered
bi-bi mechanism include lactate dehydrogenase?’, alcohol dehydrogenase??, and many other

dehydrogenases.
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Figure 3. Ordered Bi Bi enzymatic mechanism.
Using the formalism presented in Section 3.1.1., one can obtain the following expressions for

the elasticities of the net rates with respect to the parameter vector pgs = [4, B, P, Q]:

E EA EAB EP
net T T V2V3VaVs - tV3VaVs T — T VaVs Y tTVs 5o EQ
uk — ET ET ET E ET (30)
4 1 = ¥1Y2V3VaVs
E EA EAB EP E
nee  ViE. T, TV1VaVaVs—f E, T V1VaVs 5 E, EFQ + V1Vs EQ
g =—T T (31)
1 —=Y1V2V3VaVs
E EA EAB EP E
net V1V2V3V4 E; T V2V3Va o E, + V3Va E, T Va E, Y + V1Y2V3YaVs E_Q
£ = L (32)
1 —=Y1Y2V3VaVs
E EA EAB EP E
net V1V2V3V4V5 E; Tt V2Y3VaVs - E, + V3VaVs E, T V4Vs EQ Tt Vs EQ
sgk = T (33)
1= v1Y2V3YaVs

3.1.3. Ordered Uni Bi mechanism. The ordered Uni Bi mechanism is characterized by a

compulsory order of product release (Figure 4). Examples of reactions that are conform with the

44, 45

ordered uni-bi mechanism include fructose-bisphosphate aldolase and isocitrate lyase?S.

Figure 4. Ordered Uni Bi enzymatic mechanism.

16


https://doi.org/10.1101/618777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/618777; this version posted April 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The elasticities of the net rates with respect to the parameter vector pgg = [4, P, Q]” for this

mechanism read as:

E EA EP E
net E_+V2V3V4E_+V3V4_EQ +V4E_Q
k _ kT T T T
ek = (34)
1—y1v2Y3Va
E EA EP E
et YiYVaVs g + ¥2V3 . + V3 B < + Y1Y2V3Va E_Q
EPk — T T T T (35)
1 —y1v2Y3Va
E EA EP E
net Vﬂﬂm@r+nhnf—+hn7£+nig
Euk — T T T T (36)
Q 1= y1Y2¥3Va

3.1.4. Ordered Bi Uni mechanism. The ordered Uni Bi mechanism is characterized by a
compulsory order of substrate binding (Figure 5). Examples of reactions that exhibit this

mechanism include 3-methylaspartate ammonia-lyase?” and pyruvate aldolase?s.

.
.

E § u, EAY u, EAB u, EP uy™ E
6 o O

Figure 5. Ordered Bi Uni enzymatic mechanism.
The elasticities of the net rates with respect to the parameter vector pgg = [A, B, P] for this

mechanism can be written as:

EA EAB EP
net E. T VeVsVap TVaVa | TVaE,
E k — T T T T (37)
A 1 —y1Y2V3Va
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E  EA EP E
nee V1. T, TV1V3Va EQ T ViVa EQ
gk = Er Er (38)
1=v1v2V3Va
E EA EAB _ EP

et hnmnE+Wﬂﬁ”;+nmE traE, (39)
€ =
P 1 =v1¥2V3Va

3.2. Schematic Method for Deriving Analytical Expressions for Elasticities. The algebraic
manipulations used in deriving the analytical expressions for elasticities (Section 3.1) are rather
complicated for mechanisms with a large number of enzyme states. However, inspection of the
analytical expressions from Section 3.1. reveals a regularity in terms that multiply the enzyme
states thus providing a way to shorten the derivations substantially. We propose here a schematic
method that is reminiscent of Mason’s gain formula?? for finding the transfer function of linear
systems from the control theory. We present the method through an elementary example.

3.2.1. Illustrative example. Consider the reversible Uni Uni mechanism

A P

O ¢
—»0<——L>c<_>0 —0—>

" u, EA u, EP u,- E
o

A P

Figure 6. Reversible Uni Uni mechanism
The analytical expressions for the elasticities of the net rates of this mechanism with respect to

the parameters pgg = [A4, B]T are derived elsewhere:’*

E EA EP
unet E +V2V3 5o Er +V3 7 Er
k
= (40)
1—=v1v2v3
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E EA EP
et NnyVsg . tY¥s g tVsg.
K T T T
ghi = (41)
1—=71v273

The expressions Egs. 40-41 can be obtained schematically in two steps as follows.

Step 1: Draw a schematic diagram of the kinetic mechanism as a graph, where the enzyme
states that both (i) bind with a substrate and (ii) are formed by releasing a product are represented
by two nodes. Such a state in the illustrative example is the enzyme in its free form (Figure 6).
We distinguish these two nodes as the input node, that connects to a substrate (Figure 7a, empty
circle) and the output node that connects to a product (Figure 7a, full circle). The other enzyme

states, EA/E and EP /Er, are represented with a node of the graph (Figure 7a).
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Figure 7. Directed graphs of typical enzymatic mechanisms: Uni Uni mechanism (a), Ordered

Uni Bi Mechanism (b), Ordered Bi Bi mechanism (c), and Ping Pong Bi Bi mechanism (d).

It is assumed that there is a net production of the product P, i.e., a net flow is directed from A
to P (Figure 7a). The vertices of the graph that connect each two enzyme states are weighted by
the equilibrium displacements of the elementary steps connecting them, and they are directed

along the assumed net flow. For example, the vertex that connects E /E; and EA/E; has a weight

20
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of y;, and it is directed from E /E; to EA/E;. The vertices that connect a substrate to the input
node of an enzyme state have the weight of +1, whereas the vertices that connect the output
nodes of an enzyme state to a product are directed toward the product and have the weight of -1.
The vertices that connect the input and the output node of an enzyme state are directed towards

the input node and have the weight of +1.

Step 2: From the directed graph formed in Step 1 (Figure 7a), the analytic expression of the

net net
elasticity of the net rate with respect to A and P, Ezk and Ezk , can be obtained as follows.

net net
The denominator of Ezk and Ezk is equal, and we form it by subtracting from 1 the product

of the weights of the vertices that form the graph loop, i.e., we obtain 1 - y;y,¥; from Figure 7a.

To derive the terms in the numerator, we start by forming for each of enzyme states the direct

net net
path from that state to A when we derive Ezk or to P for Ezk . For the enzyme states with two

nodes, the direct path starts from the input node. Then, to form the numerator terms, the weights
of the direct paths are multiplied with the corresponding enzyme state. The summary of the

procedure for the example is provided in Table 1.

net net
Table 1. Direct paths of the directed graph used to form the numerators of Ezk and Ezk of the

reversible Uni Uni mechanism.

Direct path Gai Corresponding
ain
From To numerator term
t E/E; A 1 E/E;
Ezk EA/Er A V2V3 Y2VsEA/Er
EP/Er A V3 YsEP/Er
, E/Er p —Y1V2V3 —Y1V2V3E/Er
Ezk EA/Er p —Y2Y3 —Y2YsEA/Er
EP/Er p —V3 —YsEP/Er
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3.2.2. Schematic Method. The method can be summarized as follows. Create a directed graph
representing a kinetic mechanism as described in Step 1 of Section 3.2.1. The analytical
expression for the elasticities of the reaction rate of the mechanism with respect to its substrates

and products can be readily derived from the expression

ES;
Z:’iﬁs E_Tl ' HlEde,i 14!

(42)
1 = Tlkepyo0p Yk

where D, is the set that contains the vertices that form the graph loop, Dy, ; the set of vertices
that form the direct path from the enzyme state E'S; towards the metabolite of interest.

3.2.3. Ping Pong Bi Bi Mechanism. An interesting example for the application of the schematic
method is the ping pong bi bi mechanism because it has two enzyme states, the free enzyme, E,
and the substituted enzyme intermediate, E*, that have two nodes (Figure 7d).

From the directed graph (Figure 7d) and Eq. 42, we obtain for the denominator 1 —

¥1Y2Y3YaYsYe, and the terms of the numerators are provided in Table 2.

net uﬁ” uﬁ”

Table 2. Direct paths of the directed graph used to form the numerators of Ezk €50 L Ep

net
and Egk of the ping pong Bi Bi mechanism.

Direct path . Corresponding
From To Gain numerator term
E/E; A 1 E/E;
EA/Er A ¥V2V3Ya¥sVe V2V3VaVsVe EA/Er
gl E"P/Er A V3¥a¥sVe V3Va¥sVeE™P/Er
4 E*/Er A Va¥sVe VaYsVeE™/Er
E*B/Ey A VsVe YsYeE B/Er
EQ/Er A Ye YeEQ/ET
ot E/Er B V1V2V3 Y1Y2YsE/E7
Egk EA/Er B Y2V3 Y2YsEA/Er
E*P/Er B V3 YsE"P/Er
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E*/E; B 1 E*/E;
E*B/Er B Y1Y2¥3YsVe Y1V2V3YsVeE'B/Er
EQ/Er B Y1Y2Y3Ve Y1V2V3YeEQ/Er
E/Er P Y1Y2V3 Y1V2VsE/Er
EA/Er P Y2V3 Y2V3EA/Er
Gl E*P/E; P ¥a vsE*P/E;
d E*/Er P Y1Y2V3YaVs5Ve Y1V2V3YaVsVeE™ /Er
E*B/Er P Y1Y2¥3YsVe Y1V2V3YsVeE'B/Er
EQ/Er P Y1Y2Y3Ve Y1V2V3YeEQ/Er
E/Er Q Y1Y2V3YaVsVe Y1V2V3YaYsVeE/Er
EA/Ey Q Y2¥3YaVsVe Y2V3YaVsVe EA/Er
ket E*P/Er Q ¥Y3YaY¥sVe V3YaVsYeE P/Er
Q E*/Er Q Ya¥sYe YaVsYeE"/ET
E*B/E7 Q YsVe YsYeE™B/E7
EQ/Er Q Ye YeEQ/ET

In a similar way, one can derive the analytic expressions for the elasticities of the ordered Uni
Bi and ordered Bi Bi mechanisms using the directed graphs from Figure 7b and 7c, respectively

(Supplementary material).

4. CONCLUSIONS

The uncertainties and absence of data about kinetic properties of enzymes remain a major
hurdle for developing kinetic models of biochemical networks. The construction of these models
requires approaches that consider networks as a whole and also consider the mechanistic
properties of enzymes. Indeed, the network quantities such as metabolic fluxes and metabolite
concentrations affect the behavior of elementary reaction steps within kinetic mechanisms, and
conversely, the parameters and variables corresponding to individual kinetic mechanisms affect
the overall behavior of biochemical networks. The formalism based on Monte Carlo sampling of

enzyme states and equilibrium displacements of elementary reaction steps discussed here allows

23


https://doi.org/10.1101/618777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/618777; this version posted April 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

us to model the kinetic responses of enzymes despite the lack of kinetic data, and therefore, to
model the effects of individual kinetic mechanisms on metabolic networks. The formalism,
coupled together with the network information obtained from methods such as TFA, allow us to
predict the responses of biochemical networks to genetic and environmental variations. Efficient
sampling procedures for generating missing kinetic data used in the formalism represent a
valuable tool for methods that use Monte Carlo sampling to generate populations of large-scale
kinetic models’® 37 4962,

Though the proposed schematic method for deriving the analytical expressions for elasticities

can cover a wide gamut of the ordered and ping-pong mechanisms, its extension to the random-

order and other more complex mechanisms remains to be addressed.
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