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Abstract

Changes in transcriptional regulation are thought to be a major contributor to the evolution of
phenotypic traits, but the contribution of changes in chromatin accessibility to the evolution of
gene expression remains almost entirely unknown. To address this important gap in knowledge,
we developed a new method to identify DNase I Hypersensitive (DHS) sites with differential
chromatin accessibility between species using a joint modeling approach. Our method overcomes

several limitations inherent to conventional threshold-based pairwise comparisons that become
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increasingly apparent as the number of species analyzed rises. Our approach employs a single
quantitative test which is more sensitive than existing pairwise methods. To illustrate, we applied
our joint approach to DHS sites in fibroblast cells from five primates (human, chimpanzee,
gorilla, orangutan, and rhesus macaque). We identified 89,744 DHS sites, of which 41% are
identified as differential between species using the joint model compared with 33% using the
conventional pairwise approach. The joint model provides a principled approach to
distinguishing single from multiple chromatin accessibility changes among species. We found
that non differential DHS sites are enriched for nucleotide conservation. Differential DHS sites
with decreased chromatin accessibility relative to rhesus macaque occur more commonly near
transcription start sites (TSS), while those with increased chromatin accessibility occur more
commonly distal to TSS. Further, differential DHS sites near TSS are less cell type-specific than
more distal regulatory elements. Taken together, these results point to distinct classes of DHS
sites, each with distinct characteristics of selection, genomic location, and cell type specificity.
Key words: cis-regulatory evolution, comparative functional genomics, positive selection,

chromatin accessibility, transcriptional regulation

Introduction

It has long been hypothesized that phenotypic differences between species are more often
due to genetic variation in non-coding regulatory regions than in protein-coding regions (King
and Wilson 1975; Wray 2007; Wittkopp and Kalay 2011). The development of diverse genome-
wide assays, combined with the publication of primate reference genomes, has allowed
identification of inter-species differences in gene expression (Céceres et al. 2003; Gilad et al.
2006; Blekhman et al. 2008; Brawand et al. 2011), DNA methylation (Pai et al. 2011; Zeng et al.

2012; Hernando-Herraez et al. 2013), histone modifications (Zhou et al. 2014; Villar et al. 2015),
2
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transcription factor binding motifs (Dermitzakis and Clark 2002; Odom et al. 2007; Schmidt et
al. 2010), chromatin accessibility (Shibata et al. 2012; Gallego Romero et al. 2018), and
alternative splicing (Blekhman et al. 2010; Barbosa-Morais et al. 2012). These differences in
molecular function among primate species can provide valuable insights into species-specific
trait differences, including disease risk (Prabhakar et al. 2008; Boyd et al. 2015; Prescott et al.
2015).

Conventional approaches to analyzing comparative functional genomic data employ
multiple pairwise comparisons to detect differences between species (Robinson et al. 2010; Love
et al. 2014). While these approaches work well with a few species, certain limitations with
pairwise comparisons become apparent as the number of analyzed species increases. First, the
multiple comparisons burden imposed by species number scales exponentially, reducing
sensitivity. This is not an issue for the majority of published studies, which consider two or three
species, but it quickly becomes constraining with additional species. Second, pairwise
comparisons only consider part of the overall data when assessing whether a significant
difference exists between any two species. Joint consideration of all the available data can
provide a more informed inference of true differences. Third, when analyzing data from more
than two ingroups species, the possibility of multiple state changes arises. In such cases, pairwise
comparisons rely on a somewhat post hoc approach to resolve the phylogenetic history.

To address these concerns, we introduce a negative binomial generalized linear model
that jointly models chromatin accessibility data from all available species and replicates.
Regardless of the number of ingroup species, this method requires only one test to determine
whether a given open chromatin site is differential among species. In contrast, the conventional

pairwise approach uses n-/ tests for n species, requiring a Benjamini-Hochberg correction that is
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n-1 times larger than our approach. We applied our joint model to chromatin accessibility
DNase-seq data from cultured skin fibroblasts obtained from four great apes (human,
chimpanzee, gorilla, and orangutan) and an outgroup (rhesus macaque). We demonstrate that the
joint modeling approach mitigates some of the challenges that arise when applying a pairwise
approach to multiple ingroup species.

To facilitate application of our joint modeling approach with other data sets, we created a
GitHub repository (http://github.com/ledsall/2019primate) with the script used to identify and
classify differential sites, along with instructions for necessary modifications. Although we use a
single script to both identify and classify differential sites, the steps can be separated and

combined with other methods for classification (e.g. phylogenetically based methods).

Materials and Methods

DNase-seq Experiments and Sequencing

Fibroblast cell lines from 15 individuals comprising 3 biological replicates from each of
five primate species (human, chimpanzee, gorilla, orangutan, and rhesus macaque) were obtained
from Coriell (Supplementary Table 1). It is estimated that human and chimpanzee diverged 7
million years ago; gorilla diverged from the human-chimpanzee ancestor 10 million years ago;
orangutan diverged from the human-chimpanzee-gorilla ancestor 18 million years ago; and
rhesus macaque diverged from the human-chimpanzee-gorilla-orangutan ancestor 30 million
years ago (Schrago and Voloch 2013). DNase-seq experiments were performed as previously
described (Shibata et al. 2012). DNase-seq libraries were generated from 50 million cells and

sequenced on Illumina instruments (Supplementary Table 1).
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DNase-seq Read Mapping and Conversion to Human Genome

Due to the use of Mmel to generate DNase-seq libraries (Boyle et al. 2008), genomic
DNA fragments are only 20 bases long. Therefore, sequencing reads were trimmed to 20 bases
using a custom perl script. Reads were mapped to the species’ native genome: hgl19 for human,
panTro4 for chimpanzee, gorGor3 for gorilla, ponAbe2 for orangutan, and rheMac3 for rhesus
macaque (Lander et al. 2001; Chimpanzee Sequencing and Analysis Consortium 2005; Locke et
al. 2011; Yan et al. 2011; Scally et al. 2012). Reads were mapped using Bowtie version 0.12.9
(Langmead et al. 2009) (parameters: -trim5 0 --trim3 0 -m 1 -1 20) as part of a custom two-step
pipeline. In the first step (“tier 1), reads were required to match to a unique location with no
mismatches (parameter: -n 0). In the second step (“tier 2”’), unmapped reads from step one were
re-mapped with a relaxed mismatch parameter of one mismatch (parameter: -n 1). Reads that
mapped to multiple locations or had more than one mismatch were discarded. Samtools version
0.1.19-44428cd (Li et al. 2009) was used to convert the sam files from each step to bam files,
merge them into one file, and remove duplicate reads (defined as having the same chromosomal
coordinates). Bedtools v2.17.0 (Quinlan and Hall 2010) was used to convert the bam files to bed
files. Details on the number of reads in the input files and at each step are included in
Supplementary Table 2.

Reads from the non-human samples were converted from their native genomic
coordinates to hgl9 coordinates using a three-step process that removed reads lacking a one-to-
one relationship between the genomes. In each step, read coordinates were converted from one
genome to the other using the UCSC liftOver software (Hinrichs et al. 2006) with a minMatch
parameter of 0.8, which requires that 80% of the read maps to the new genome. Note that this

parameter filters only on the presence or absence of DNA, not nucleotide identity. In the first
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step, read coordinates were converted from their native genome to hg19. Read coordinates that
successfully lifted to hg19 were then lifted back to the native genome. Read coordinates that did
not lift back to the same coordinates on the native genome were removed. Reads that did lift
back to the same coordinates were lifted back to hg19 for further processing. An additional
filtering step was added to ensure the reads were not part of a duplicated region. In that step,
overlapping reads on the native genome were merged into a region, which was then lifted to
hg19. Regions that failed to lift uniquely to hg19 were flagged and reads that overlapped them
were removed. Because some of the samples were from males and some were from females
(Supplementary Table 1), we removed reads that mapped or lifted over to the human X or Y
chromosomes to eliminate any sex-specific bias. Details on the number of reads lifted over and
remaining after removal of sex chromosomes are included in Supplementary Table 2.

Phylogenetic trees were drawn with ggtree (Yu et al., 2016).

DHS Site Identification and Filters

To avoid bias due to large differences in depth of library sequencing, 20 million reads
were randomly selected from samples with library sizes greater than 20 million reads to keep all
libraries approximately the same size. The random sampling was performed after the conversion
to the human genome and filtering steps.

First, we identified DHS sites in each sample by performing peak calling using the
MACS?2 callpeak command with an FDR cutoff of 5% (Zhang et al. 2008) (version
2.1.0.20150420; parameters: --nomodel --extsize 20 --qvalue .05). Next, we identified per-
species DHS sites. For each species, we used bedtools v2.17.0 (Quinlan and Hall 2010) to
identify DHS sites by taking the union set of peaks that were found in at least 2 out of 3

biological replicates. We used bedtools to remove DHS sites that overlapped the ENCODE
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blacklist
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode
DacMapabilityConsensusExcludable.bed.gz) (Rosenbloom et al. 2013). Lastly, we generated the
master set of DHS sites to use for cross-species comparisons by using bedtools to create the
union set of DHS sites identified in each species then applying two filters. In the first filter, we
removed DHS sites without at least 95% genomic coverage between the start and stop
coordinates for each of the species. Genomic coverage was determined using the Multiz
Alignment MAF file (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz1 00way/maf/)
from the UCSC Genome Browser Multiz Alignment of 100 Vertebrates (Blanchette et al. 2004),
the Galaxy MAF Coverage Stats tool at usegalaxy.org (Afgan et al. 2018), and a custom perl
script (filter regions based on conservation coverage.pl; available in the GitHub repository).
Next, we assigned read counts to each DHS site using bedtools. In the second filter, we used a
custom perl script (zero_count filter HCGOM_min_2 replicates.pl; available in the GitHub
repository) to remove DHS sites without DNase-seq sequence reads in at least two biological
replicates from each species because they may be indicative of regions that were not sequenced
or cannot be uniquely aligned. In other words, we expect at least some level of background
DNase cutting across the genome. See Supplementary Table 3 for DHS site counts before and

after each filtering step.

Principal Components Analysis

We performed a principal components analysis on the read counts from the 15 samples
(Supplementary Figure 1). We first normalized the counts by library size then ran the R
prcomp function with the center and scale parameters set to true. We also performed a principal

components analysis on the read counts from the 15 samples plus 3 additional chimpanzee
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samples from Pizzollo et al. 2018 (Supplementary Figure 1). See Supplementary Table 1 for

details on the samples.

Differential Site ldentification and Classification

The read counts for each DHS site were used as input to a custom R script
(GO.step10.run_glm.R; available in the GitHub repository) that identified and classified
differential DHS sites. To address the over-dispersion problem inherent in count-based
sequencing data, we used the R package DSS (Wu et al. 2013) to calculate a dispersion
parameter for each DHS site, as well as a normalization offset (based on total library size) for
each sample. For each DHS site, the read counts, dispersion parameter, and normalization offset
were fit using a negative binomial generalized linear model with a log link function. Specifically,
we fit two models: a species informed model and a null model in which species was not
predictive of normalized counts. The species informed model models the expected counts by
log (A) = aj + B_ + x;" B, where A represents expected counts, j indexes the sample, a; is a
normalization offset for sample j, and £3,,, represents the expected counts for rhesus macaque

(and is analogous to an intercept parameter). The design vector x; indicates to which species the
™ sample belongs and x;T denotes its transpose. This design vector has 4 elements comprised of
indicator functions of whether the sample is human, chimpanzee, gorilla, or orangutan.
Specifically, x;7 = (1 0 0 0) if the j* sample is human; x;7 = (0 1 0 0) if the j" sample is
chimpanzee; x;” = (0 0 1 0) if the j™ sample is gorilla; and x;" =(0001)ifthe ™ sample is
orangutan. Because accessibility changes are relative to rhesus macaque, it is used as the
intercept in the models and does not have an indicator function. The vector g = (8,8, ,Bg, ,BO)T

parameterizes the change in expected counts between each species and rhesus macaque. The null
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model assumes the vector f is zero and models the expected counts by log (4;)) = a; + B,
These models were fit using the R package glm using negative.binomial (from package MASS)
as the family. The DSS normalization offset value was used for the offset parameter. The inverse
of the DSS dispersion parameter value was used for the theta parameter in the negative.binomial
family function. The difference in deviances between these two models was used to form a
likelihood ratio test of whether the site was differential. A Benjamini-Hochberg correction was
performed using the R function p.adjust. DHS sites with a corrected p-value of less than 0.01
were classified as differential.

To determine which species (or combination of species) were different from rhesus
macaque, 15 contrasts were constructed using the g values estimated in the regression model
detailed above. A B value represents the change in accessibility for that species compared to
rhesus macaque and each contrast tests the  values for a different combination of species. Five
contrasts were used to identify changes in a single species, six for changes in two species, and
four for changes in three species (Supplementary Table 4 contains the constraint matrices,
Supplementary Document construction_of constraint_matrices.pdf contains details on
constructing the matrices). Note that the contrast for changes in rhesus macaque will also
identify changes that occurred in the human-chimpanzee-gorilla-orangutan internal branch. A
value for each contrast ¢ using constraint matrix C and variance-covariance matrix Var(Cf) was
calculated as ¢ = [CB]T[Var(CB)]~1CP, where [Var(CB)]~? denotes the matrix inverse of
Var(CpB) . A p-value was calculated for each contrast using a chi-squared test to determine
whether the accessibility for the species (or combination of species) of interest differed from
rhesus macaque. We applied a Bonferroni correction for the 15 tests being conducted at each

site. We took the contrast with the lowest, significant (p < 0.01), Bonferroni-adjusted p-value and
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the signs of the Bvalues associated with the contrast to classify the pattern of differential
accessibility across the species at the site. Note that while we chose the contrast with the lowest
p-value, other contrasts may also be significant after multiplicity adjustment. For 2,454 (7% of
differential sites) DHS sites, none of the p-values for the contrasts were less than 0.01, so the
change was marked as “other”.

We have included supplementary files that contain the input data for the R script
(glm_analysis.input_file.txt), the results from the analyses discussed in this paper
(glm_output_and_analsyis_results.txt), and the field information for the input and output files
(input_and_output_file_field_information.xlsx). Raw fastq files, bed files containing hg19
coordinates for the full read set, and bed files containing hg19 coordinates for the 20 million read
subset are available under GEO accession GSE129034. The 20 million subset reads, DHS sites,
and differential analysis classifications are available in a UCSC Genome Browser session at
http://genome.ucsc.edu/s/ledsall/2019primate. All scripts for the data processing and analyses
described above are available at http://github.com/ledsall/2019primate. Note that only the script
named GO.stepl10.run_glm.R needs to be modified in order for researchers to use our method on
their data sets. The GitHub repository contains a document (also included as Supplementary
Document modifying_the GLM_analysis_R_script.pdf) detailing the necessary modifications
to that script. The other scripts in the repository are specific to the work reported here and are

included for completeness and reproducibility.

Classification of Differential Sites Using Multiple Pairwise Comparisons

As a separate analysis, we used edgeR (Robinson et al. 2010) (version 3.20.9) to perform
multiple pairwise comparisons on the same input data used for the generalized linear model. We

used these results as a comparison with our method. We calculated the normalization factors

10
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using the calcNormFactors command. We calculated the dispersion estimates using the
estimateDisp command. We fit the model using the quasi-likelihood method (glmQLFit
command with default parameters). We used the quasi-likelihood F-test (glmQLFTest command
with default parameters) for four tests: human vs rhesus macaque; chimpanzee vs rhesus
macaque; gorilla vs rhesus macaque; and orangutan vs rhesus macaque. We used the R function
p.adjust to perform a Benjamini-Hochberg correction to adjust for multiple tests. A DHS site was
considered differential if at least one species had a corrected p-value less than 0.01. A p-value

threshold of 0.01 was selected to match the threshold used in the generalized linear model.

Testing for Positive Selection and Determining Vertebrate Conservation

We performed selection analysis on both the differential and non differential DHS sites.
We tested for selection on the species branches for human, chimpanzee, gorilla, and orangutan,
and on the internal branches for human-chimpanzee and human-chimpanzee-gorilla.

As the stochasticity of the evolutionary process may be elevated in short alignments, we
expanded each DHS site that was smaller than 300 bases up to 300 bases, while maintaining the
size of any DHS site longer than 300 bases. We removed any sites that couldn’t be expanded due
to gaps in the non-human genomes.

To investigate the extent of positive selection among the DHS sites, we used a branch-
specific method we first developed in 2007 (Haygood et al. 2007) and recently improved (Berrio
et al. 2019). Briefly, the method uses a likelihood ratio test based on the maximum likelihood
estimates obtained from HyPhy (Pond et al. 2005). The branch of interest (e.g. human species
branch) is used as the foreground and the rest of the tree is used as the background. The
assumption for the background is the same for both the null and alternative models; specifically,

neutral evolution and negative (purifying) selection are permitted but positive selection is not. In
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the null model, the assumption for the foreground is the same as the one for the background. In
the alternative model, all three types of evolution are permitted (neutral evolution, negative
selection, and positive selection) in the foreground. This method is highly sensitive and specific
and can differentiate between positive selection and relaxation of constraint.

The method requires a 3kb reference alignment for each species that is used as a
putatively neutral proxy for computing substitution rates. To generate this alignment, we first
identified a set of functional regions on the human genome using annotations from the ENCODE
project at UCSC (http://genome.ucsc.edu/encode/downloads.html) (ENCODE Project
Consortium 2012) and annotations from the HoneyBadger2-intersect dataset from the ENCODE
and Roadmap Epigenomics projects
(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect _release/)
(Roadmap Epigenomics Consortium et al. 2015). We used the set of 56,893 putative promoter
regions; 1,598,323 putative enhancer regions; and 31,255 putative dyadic regions. We then
masked the genomes using those functional regions, along with 5 and 3’ UTRs, coding and non-
coding RNAs, CpG repeats, microsatellite repeats, and simple repeats. Next, we extracted
windows of 300 bases and excluded those with substitution rates that are too high or slow
relative to the entire tree. Finally, we concatenated the set of these windows until we reached a
length of 3kb (Berrio et al. 2019).

We used the PHAST library msa_split (Hubisz et al. 2011) to extract query regions from
the UCSC Genome Browser Multiz Alignment of 100 Vertebrates
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz1 00way/maf/) (Blanchette et al. 2004)
for the human, chimpanzee, gorilla, orangutan, and rhesus macaque genomes. For each DHS site

(called a query site), we used HyPhy (Pond et al. 2005) to fit the null and alternative models and
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generate maximum likelihood values. We used a custom R script to compute the likelihood ratio,
which was used as a test statistic for a chi-squared test with one degree of freedom to calculate a
p-value. We classified a DHS site as under positive selection if the p-value was less than 0.05.
We were unable to successfully run HyPhy on 12 sites due to unknown reasons and removed
these regions from analysis.

We calculated the distribution of relative branch lengths for human, chimpanzee, gorilla,
and orangutan (Supplementary Figure 2) for a random set of approximately 50,000 genomic
regions. While the human, chimpanzee, and gorilla distributions are substantially similar, the
orangutan distribution is much broader and shifted toward larger values. Whether this reflects a
true biological difference or is an artifact of assembly quality or orthology assignment is not
clear. In either case, this shift is sufficiently large that the substitution rate for orangutan biases
the estimation of positive selection on that branch. Therefore, we excluded the orangutan branch
from subsequent analysis. We also excluded the human-chimpanzee and human-chimpanzee-
gorilla internal branches for two reasons. First, these internal nodes are predicted sequences
rather than the observed sequences used for the external (species) branches and second, the short
lengths of the internal branches often result in a divide-by-zero issue.

We then tested for significant enrichment of positive selection in different classes of DHS
sites (Supplementary Table 5). We performed Fisher’s exact tests using a test statistic of the
number of DHS sites classified as under positive selection. We used a Bonferroni correction to
adjust for the multiple tests performed.

To visualize the strength of selection, we computed the statistic { (zeta), representing the
ratio of evolution, by calculating the ratio of the substitution rates in each query compared to the

putatively neutral sites; we computed ¢ for the human, chimpanzee, and gorilla species branches.
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This parameter is analogous to w (omega), the ratio of dN/dS, where a value of w < 1 indicates
constraint or negative selection; a value of w = 1 indicates neutrality; and a value of w > 1
indicates positive selection.

We then tested whether the distributions of ¢ differed between classes of differential DHS
sites (Supplementary Table 6). We performed Wilcoxon tests on human increased accessibility
against the other classes of DHS sites with increased accessibility and used a Bonferroni
correction to adjust for the multiple tests. Similarly, we performed Wilcoxon tests on human
decreased accessibility against the other classes of DHS sites with decreased accessibility and
used a Bonferroni correction to adjust for the multiple tests. Finally, we performed a Wilcoxon
test on the non differential sites against the non functional sites defined above.

To determine the amount of vertebrate conservation, we computed the median value of
the PhastCons scores for each DHS site using bedops (Neph et al. 2012), the UCSC 100-way
PhastCons table (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way) (Siepel et
al. 2005; Pollard et al. 2010), and custom scripts. The PhastCons score represents the probability
of a particular base being conserved. The values range from 0 to 1, with higher values
representing an increased probability of conservation. Consistent with the original PhastCons
paper (Siepel et al. 2005), we classified a DHS site as constrained if the median PhastCons score
was above 0.9.

We then investigated whether the amount of conservation was similar between
differential and non differential DHS sites. We used the percentage of constrained DHS sites as
our test statistic and performed a Fisher’s exact test on non differential sites compared to three

classes of differential DHS sites; specifically, 1) human accessibility changes; 2) chimpanzee
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accessibility changes; and 3) gorilla accessibility changes. We used a Bonferroni correction to

adjust for the multiple tests.

Intersection with Human Putative Regulatory Annotations

We characterized each DHS site as a proximal element, distal element, or unannotated
region using the HoneyBadger2-intersect dataset from the ENCODE and Roadmap Epigenomics
projects (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-
intersect_release/) (Roadmap Epigenomics Consortium et al. 2015). We used the putative
promoter and enhancer regions as above, but did not use the putative dyadic regions. We used
bedtools (Quinlan and Hall 2010) to identify DHS sites that overlapped the annotated promoters
(which we characterized as “proximal elements’) and enhancers (which we characterized as
“distal elements”). DHS sites that didn’t overlap promoters or enhancers were characterized as

unannotated regions.

Determining Cell Type Specificity

We characterized the cell type specificity of each DHS site by using bedtools (Quinlan
and Hall 2010) to intersect it with DHS sites from 125 human cell types and tissues
(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encode DCC/wgEncode AwgDnaseMasterSites
/wgEncodeAwgDnaseMasterSites.bed.gz) (Thurman et al. 2012). We used a custom perl script
(cluster cell types in bed file.pl; available in the GitHub repository) and the ENCODE Cell
Types metadata (https://genome.ucsc.edu/ENCODE/cellTypes.html) to remove cancerous cell
lines and tissues (defined as having a value of “cancer” in the “Karyotype” column) and group
the remaining samples into 32 tissue types (based on the value in the “Tissue” column). We

assigned a score to each DHS site representing its cell type specificity. The score was calculated
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as 1 — %, where N represents the number of cell types and tissues in which the DHS site is
present (including the fibroblast cell line from this study). The score ranges from 0 for a DHS
site present in all tissues and cell types to % (which is approximately 0.97) for a DHS site

present in only our dataset.

We then asked whether the distribution of cell type specificity scores varied between
different classes of DHS sites (Supplementary Table 7). We subset the DHS sites into those
overlapping proximal elements and those overlapping distal elements. Within each subset, we
performed Wilcoxon tests on the classes of DHS sites and used a Bonferroni correction to adjust

for the multiple tests.

Results

Method Development to Identify and Classify Differential DNase I Hypersensitive Sites Across

Multiple Primate Species

We developed a joint modelling method to allow us to quantitatively compare DNase |
hypersensitive (DHS) sites across five primate species and identify a differential site with one
statistical test. We then used contrasts to identify the species (or combination of species) with the
most prominent change in accessibility compared to rhesus macaque (see Materials and
Methods). The output from the model includes g values, which are analogous to log fold
changes in conventional pairwise comparisons, and represent the difference in chromatin
accessibility between a species and rhesus macaque (Figure 1A-D, Supplementary Figures 3
and 4).

Using this approach, we identified 89,744 total DHS sites that can be compared across all
five species at 1:1:1:1:1 orthologous genomic regions (see Materials and Methods). As a first
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step in analyzing these data, we carried out a principal components analysis and found that the
first principal component separated the single old world monkey (rhesus macaque) from the four
great apes, while the second principal component recapitulated the phylogeny of the great apes
(Supplementary Figure 1). Because we are drawing on the original data from Shibata et al.
2012 for three species (human, chimpanzee, rhesus macaque) and new data generated several
years later for two species (gorilla, orangutan) (Supplementary Table 1), we also investigated
whether batch effects would overwhelm the species signal by comparing principal components
analyses performed with and without three additional chimpanzee samples generated more
recently and reported in Pizzollo et al. 2018 (Supplementary Table 1). As shown in
Supplementary Figure 1, the Pizzollo et al. chimpanzee samples cluster with the original
Shibata et al. chimpanzee samples across the first four principal components (cumulative
proportion of variance of 0.53), suggesting that biological signal is retained even when samples
are prepared and sequenced years apart.

We performed additional analyses to determine the extent of technical and biological
variation. For each species, we plotted the distribution of intra-species variation in normalized
read counts across all of the DHS sites (Supplementary Figure 5). The distributions are highly
similar across all five species, indicating that there are no major effects due to technical or
biological differences. The similarity of the distributions also indicates a lack of systemic bias
caused by differences in the quality and completeness of the genome assemblies. To further
check the impact of biological differences, we compared the normalized read counts in all of the
DHS sites between biological replicates within each species (Supplementary Figure 6). The
biological replicates are highly concordant, even when replicates are from different sexes or

ages.
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Of the 89,744 total DHS sites, 53,078 (59%) are not statistically significantly different
between species, 22,514 (25%) display a difference that likely resulted from a single chromatin
accessibility change, and 11,698 (13%) display a difference due to multiple such changes
(Figure 1E, Table 1). For 2,454 differential sites, we were unable to determine the type of
change, possibly due to low statistical power, and excluded them from subsequent analyses.
Because we are using rhesus macaque as the outgroup, we are unable to differentiate between
changes in the rhesus macaque species branch and changes in the human-chimpanzee-gorilla-
orangutan internal branch.

Consistent with our earlier study (Shibata et al. 2012), as well as studies by other groups
(Reilly et al. 2015; Villar et al. 2015; Emera et al. 2016), the majority of the changes are
increased accessibility rather than decreased accessibility (see Discussion). For changes on the
species branches, there are approximately 10x the number of DHS sites with increased
accessibility as DHS sites with decreased accessibility while changes on the internal branches

have a ratio that is much less (Figure 1F, Table 1).

Changes in Chromatin Accessibility Detected in a Single Species

Using the methods described above, we identified 9,899 DHS sites with increased
accessibility likely specific to a single species and 1,196 DHS sites with decreased accessibility
likely specific to a single species (Table 1). Heatmap overviews (Figure 2) of each class of
increased accessibility and decreased accessibility show that these differences are not binary, but
instead span the continuum from extremely large differences to those that represent more modest
changes. Representative screenshots of individual genomic loci are shown in Figure 2.

Even though we can’t classify rhesus macaque-specific changes, we can identify sites

where rhesus macaque is different from the other four species. We identified 4,803 sites that
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have increased accessibility in rhesus macaque relative to human, chimpanzee, gorilla, and
orangutan (Table 1). We identified 1,231 sites that have decreased accessibility in rhesus

macaque compared to human, chimpanzee, gorilla, and orangutan (Table 1).

Changes in Chromatin Accessibility that Likely Occurred on Internal Branches

Our method allows us to identify ancient changes in chromatin accessibility that likely
occurred as a single change on an internal branch. The contrasts we constructed and tested (see
Materials and Methods) can identify changes that are present in human and chimpanzee (which
likely occurred as a single change on the human-chimpanzee internal branch) and those that are
present in human and chimpanzee and gorilla (which likely occurred as a single change on the
human-chimpanzee-gorilla internal branch). We identified 1,638 DHS sites with increased
accessibility and 761 DHS sites with decreased accessibility that likely occurred during the
common lineage of human and chimpanzee (Table 1). We identified 1,613 DHS sites with
increased accessibility and 1,373 DHS sites with decreased accessibility that likely occurred
before the split between human, chimpanzee, and gorilla (Table 1). Heatmap overviews and
representative screenshots of individual genomic loci are shown in Figure 3. As with
accessibility changes in a single species, the heat map overviews show the changes are on a

continuum rather than being binary.

Multiple Changes in Chromatin Accessibility

In addition to detecting likely single changes in chromatin accessibility on either species
or internal branches, we identified changes in chromatin accessibility that appear to have
occurred multiple times, resulting in different combinations of chromatin accessibility patterns

between species. There are many possible ways these differences could have happened and our
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method cannot determine if these changes resulted from multiple increases in accessibility,
multiple decreases in accessibility, or a combination of increases and decreases (see Discussion).
We identified 5,900 DHS sites where two species display increased accessibility relative
to rhesus macaque and 1,599 DHS sites where two species display decreased accessibility
relative to rhesus macaque (Table 1). We identified 2,237 DHS sites where three species
displayed increased chromatin accessibility relative to rhesus macaque and 1,962 sites where
three species displayed decreased accessibility relative to rhesus macaque (Table 1). Heatmap
overviews, showing a continuum of magnitudes of differences, and representative screenshots of

individual genomic loci are shown in Figure 4.

Comparison to Previous Study with Fewer Species

To test the accuracy of our new method for identifying differences in chromatin
accessibility across five species, we compared our results with those from our previous study that
used individual pairwise edgeR (Robinson et al. 2010) comparisons for human, chimpanzee, and
rhesus macaque (Shibata et al. 2012). Using the species-specific calls from Shibata et al., we
detected a high degree of concordance (Supplementary Table 8). Due to updates in the analysis
pipeline, not all of the DHS sites that were previously characterized were also identified as DHS
sites in this study (Supplementary Table 9). The additional gorilla and orangutan DNase-seq
data in this study allows us to fill in missing branch data and gauge the accuracy of our previous
classification of human-specific or chimpanzee-specific changes. For 342 DHS sites that Shibata
et al. characterized as human-specific increased accessibility, 245 (72%) are still characterized as
human-specific increased accessibility even after including gorilla and orangutan, while 91
(27%) are now characterized as increased accessibility in human and at least one other species

(Supplementary Table 8). For 148 DHS sites that Shibata et al. characterized as human-specific
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decreased accessibility, 21 (14%) are still characterized as human-specific decreased
accessibility even after including orangutan and gorilla, while 107 (72%) are now characterized
as decreased accessibility in human and at least one other species (Supplementary Table 8). A
similar trend was detected for previously identified chimpanzee-specific changes
(Supplementary Table 8). For 1,154 DHS sites that Shibata et al. (2012) characterized as non
differential between human, chimpanzee, and rhesus macaque, 5% (56) displayed changes in
accessibility on the gorilla and/or orangutan branches that were not considered by Shibata et al.,
(Supplementary Table 8). Together, this indicates that adding chromatin accessibility data from
additional primate species allows us to identify a substantial subset of DHS sites that have

experienced changes in chromatin accessibility across multiple species during evolution.

High Degree of Concordance with Conventional Multiple Pairwise Method

In order to compare our joint model to the conventional multiple pairwise method, we
performed pairwise edgeR analyses using the same input data that was used for the generalized
linear model (see Materials and Methods). We first checked whether the fold changes called by
the joint model (represented on the natural log scale by the beta values) were consistent with the
fold changes called by edgeR (Supplementary Figure 7). Overall, the joint model called more
differential DHS sites (36,666) than the pairwise comparison (29,463); 26,093 DHS sites were

called differential by both methods (Table 2).

DHS Sites with Decreased Accessibility are Enriched for Proximal Elements and DHS Sites

with Increased Accessibility are Enriched for Distal Elements

After identifying and classifying DHS sites, we next determined their location in the

human genome relative to previously annotated proximal and distal elements. We used the
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HoneyBadger2 annotations (see Materials and Methods), which are predicted promoters or
enhancers based on histone marks identified in human cells and tissues as part of the Roadmap
Epigenomics project (Roadmap Epigenomics Consortium et al. 2015). We overlapped these
annotations to characterize each DHS site identified in this study as a proximal element, distal
element, or unannotated region.

For DHS sites that are not differential between primate species, 22% (11,850) of these
regions overlap proximal elements, 57% (30,371) overlap distal elements, and the remaining
20% (10,857) are unannotated (Figure 5A, Supplementary Table 10). All DHS sites with
increased accessibility relative to rhesus macaque display a substantially depleted amount of
proximal element overlap compared to the non differential DHS sites (human: 3%; chimpanzee:
4%; gorilla: 9%; orangutan: 10%; human-chimpanzee: 3%; human-chimpanzee-gorilla: 5%)
(Figure 5A, Supplementary Table 10). Conversely, half of the classes of DHS sites with
decreased accessibility relative to rthesus macaque overlap proximal elements to a similar degree
as non differential DHS sites (human: 19%; chimpanzee: 22%; gorilla: 12%; orangutan: 21%;
human-chimpanzee: 35%; human-chimpanzee-gorilla: 11%) (Figure SA, Supplementary Table
10). These results indicate that decreased accessibility changes are more likely to be associated
with proximal elements, while increased accessibility changes are more likely to be associated
with distal elements. In every class of accessibility changes, there are substantially more distal
than proximal elements, which is consistent with other studies (Schmidt et al. 2010; Villar et al.
2015).

We note that all of these proximal and distal annotations are from human tissues, which
allows us to make specific inferences about comparisons only to human. There is not yet a

similar Roadmap effort for non-human primate species. However, we find a high degree of
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overlap, which is likely due to non-human chromatin changes representing a continuum rather
than being binary (e.g., open in non-human and completely closed in human). Classes of
accessibility increases that include human have the lowest amount of overlap with unannotated
regions of the genome. DHS sites with increased accessibility in chimpanzee, gorilla, or
orangutan all have much higher overlaps with unannotated regions, with orangutan increased
accessibility showing the highest degree of overlap with unannotated regions (Figure 5A,
Supplementary Table 10). This is expected since orangutan is the most distantly related great
ape species in our study. Similarly, we find that DHS sites with decreased accessibility in human
have a higher overlap with unannotated regions compared to DHS sites with decreased
accessibility in chimpanzee, gorilla, and orangutan. This is also expected since DHS sites with
decreased accessibility in non-human primates will by definition have higher chromatin

accessibility signals in human fibroblasts.

Evolutionary Changes in Accessibility are Associated with Cell Type Specificity

We calculated cell type specificity (see Materials and Methods) for the DHS sites by
comparing them to a much larger set of DHS sites detected in 32 different human cell and tissue
types (Thurman et al. 2012). A cell type specificity score close to 1 indicates the DHS site is
present in only a few of the 32 tissues and cell types, while a score near 0 indicates that the DHS
site is present in almost all of the 32 tissues and cell types.

As with the proximal and distal annotations, we can make inferences about evolutionary
changes in chromatin accessibility only for DHS sites that overlap the human annotations. The
union set of the DHS sites we identified show a continuum of cell type specificity scores with

DHS sites from different human cell types (Figure SB). 5,502 (6%) of our DHS sites overlapped
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DHS sites found in all 32 tissues and cell types and 3,976 (4%) of our DHS sites were not found
in any of the previously tested tissues and cell types.

We then analyzed the distribution of cell type specificity scores in distal and proximal
DHS sites that displayed changes in chromatin accessibility. In general, distal elements have
higher specificity scores than proximal elements (Figure SC and 5D), consistent with previous
studies (Thurman et al. 2012).

For proximal elements showing increases in accessibility, tissue specificity is higher on
all four species branches than on the two internal branches (one sided Wilcoxon test comparing
pooled distributions of external vs internal; P = 1.64x10™") (Figure 5C). The opposite pattern is
evident for decreases in accessibility (one sided Wilcoxon test comparing pooled distributions of
external vs internal; P = 8.52x107°) (Figure 5C). Since changes on the internal branches are
more ancient than those on external branches, this result hints at the possibility that degree of
chromatin accessibility is positively correlated with broader utilization across cell types. One
possible explanation is that increases in chromatin accessibility raise the likelihood that a
proximal regulatory element is co-opted for use by another tissue. The same trends are observed
for distal elements which have higher tissue specificity scores than proximal elements (Figure
5D). This is expected since distal chromatin accessible sites are more likely to be cell type
specific than proximal elements (Xi et al. 2007; Thurman et al. 2012).

For proximal elements showing changes in chromatin accessibility, the human branch
shows lower cell type specificity compared to the three other species for accessibility increases
(one sided Wilcoxon test with Bonferroni correction; P.c = 8.77x107; Py.g = 7.34x107; Py.o =
7.17x107'*) and higher cell type specificity for accessibility decreases compared to chimpanzee

and orangutan (one sided Wilcoxon test with Bonferroni correction; Py.c = 0.008; Py.¢ = 0.19;
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Pr.0=0.011) (Figure 5C). A similar pattern is present for distal elements, for both increases and
decreases in accessibility (one sided Wilcoxon test with Bonferroni correction; Increases: Py.c =

3.27x107%; Py.g = 1.42x10°; Pyro = 1.10x10'%"; Decreases: P.c = 1.61x107; Py = 3.56x107;

Pu.o = 1.38x10"'") (Figure 5D). This may reflect an ascertainment bias arising from relying on

human tissue comparisons for the cell type specificity score.

Selection Within DHS Sites Showing Chromatin Changes

To investigate the evolutionary significance of species-specific changes in chromatin
accessibility, we tested each DHS site for signatures of positive selection on the human,
chimpanzee, and gorilla branches separately (see Materials and Methods). Testing for positive
selection required additional filtering of DHS sites (see Materials and Methods), resulting in a
reduced set of 87,431 DHS sites used in this analysis. The figure of merit in these analyses is {
(zeta), the ratio of substitution rates within a DHS site on a given branch compared to the
substitution rates for a collection of proxy neutral sites (Wong and Nielsen 2004; Haygood et al.
2007; Haygood et al. 2010). Similar to the analogous and more familiar ® (omega), high values
of { indicate positive selection, values near 1 indicate neutrality, and low values indicate negative
selection.

Putative non functional elements display a relatively tight distribution of { on the human
branch centered around 1 (Figure 6A), confirming they are a good proxy for neutral evolution in
non-coding regions of the genome. Non differential DHS sites have a distribution of { on the
human branch that is centered significantly below 1 (one sided Wilcoxon test; P = 1.57x107*%)
(Figure 6A), consistent with ongoing negative selection. Additionally, the distribution of {

values is much broader for non differential DHS sites compared to putative non functional sites,
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with a small fraction showing elevated substitution rates on the human branch that are consistent
with positive selection.

DHS sites with a change in chromatin accessibility on the human branch have positively-
shifted distributions of { on the human branch relative to non differential DHS sites (Figure 6A).
This suggests that both increases and decreases in accessibility are accompanied by enrichment
for a combination of relaxed selection and positive selection on the same branch. As expected,
this enrichment on the human branch is less pronounced when the accessibility change occurs on
a different branch of the phylogeny: the distributions of £ on the human branch are higher when
the chromatin accessibility change occurred on the human branch rather than the gorilla or
orangutan branches, and this is true for both increases and decreases (one sided Wilcoxon test
with Bonferroni correction; Increases: Py.c = 0.12, Py.g = 4.74x10'“, Puo= 1.99x10’6, Pun.c=
9.13x10™, Pyrr.c.c = 3.89x10™"" ; Decreases: Pi.c = 4.52x107, Py.g = 9.25x107, Py.o = 1.15x10°
* Pumc = 0.03, Pupc.g = 2.62x10'4), although these differences are all modest in magnitude
(Figure 6A).

For the human accessibility changes, we tested for enrichment of positive selection on the
human branch relative to the chimpanzee and gorilla branches. We performed a similar
comparison for the chimpanzee accessibility changes by testing for enrichment of positive
selection on the chimpanzee branch relative to the human and gorilla branches. Finally, for the
gorilla accessibility changes, we tested for enrichment of positive selection on the gorilla branch
relative to the human and chimpanzee branches (Figure 6B). Although none of the Fisher’s
exact tests were significant after Bonferroni correction for the total number of foreground
branches considered (n=6), the data trends in the expected patterns (e.g., human changes have

more selection on the human branch). As a control, non differential DHS sites show no
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significant differences in positive selection between branches (Figure 6B). Additionally, putative
non functional sites in the genome do not display an enrichment of positive selection (Figure
6B). These results suggest that evolutionary changes in chromatin accessibility between species
are phylogenetically correlated with an enrichment of positive selection.

Next, we investigated the converse: whether signatures of positive selection on individual
regulatory elements are generally limited to branches where the change in accessibility occurred.
This is clearly not the case: DHS sites with increased accessibility on the human branch show
positive selection on the chimpanzee branch almost as often as on the human branch (Figure
6C). The same pattern is evident for increased accessibility on the chimpanzee branch and for
decreased accessibility on the human or chimpanzee branch (Figure 6C). These results suggest
that positive selection may act on the DNA sequence of DHS sites in ways that do not affect
chromatin accessibility. Interestingly, some DHS sites show evidence of positive selection on
both branches (Figure 6C).

On average, 5% of DHS sites that show accessibility changes in human, chimpanzee, or
gorilla are highly constrained in sequence evolution, with nucleotide substitution rates that are
significantly lower than the neutral expectation across vertebrates (Figure 6D). In contrast, DHS
sites that are not differential are enriched for highly constrained sites in comparison to
accessibility changes in human, chimpanzee, or gorilla (Fisher’s exact test, one-sided with a
Bonferroni correction for 3 comparisons; Pxp:n = 1.23x10’9; Pnp.c=1 .47x10'8; Pxnp.=5. 10x10'6)
(Figure 6D).

Together, these results suggest that positive selection contributes to chromatin
accessibility increases and decreases, while purifying selection contributes to the conservation of

non differential DHS sites.
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Discussion

We developed a new method that uses a negative binomial generalized linear model to identify
regions of differential chromatin accessibility across multiple species. This method does not rely
on thresholding and is therefore able to detect subtle differences in degree of chromatin
accessibility that are obscured using conventional approaches. In addition, our method jointly
models the data across all species and replication. We carry out a single global test for any
difference among species at a particular genomic location that acts as a “gatekeeper”
(Dmitrienko and Tamhane 2007). In contrast, the conventional approach of multiple pairwise
comparisons requires correcting for the number of pairwise comparisons, which scales
exponentially and thus significantly decreases sensitivity. For example, in this study, the joint
model method required 89,744 tests while the conventional method required 358,976 tests. As
shown in Table 2, the joint model identified 7,203 (8% of all DHS sites) more differences among
species than the conventional pairwise approach. This is due in part to a lower multiple
comparisons burden, which in turn allows the method to detect more subtle quantitative changes.
A joint model also provides a more principled approach to dealing with cases where
multiple state changes have evolved among species. This is not a problem when only two
ingroup species are analyzed, but as the number of ingroup species rises it becomes increasingly
more difficult to reconstruct the history of state changes across the phylogeny. In addition, the
number of state changes within any given locus will on average rise as the number of taxa
analyzed rises. With pairwise comparisons, the reconstruction of state changes is based on post
hoc review of several independent comparisons, each of which only consider data from two
species. Our approach draws on all the available data, providing a more principled approach to

identification of state changes. It does not, by itself, reconstruct the most likely history of state
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changes across the phylogeny, but it does estimate a figure of merit (beta values) that can be
input into conventional tools for character state reconstruction conditional on a phylogeny.

Our approach tests for quantitative differences among species and incorporates
phylogenetic topology after chromatin accessibility changes have been identified. As a result, it
is complementary to conventional methods for inferring inter-species changes in quantitative
traits. It is also possible to use our approach when phylogeny is ambiguous.

Here we applied the joint model to DNase-seq data from cultured skin fibroblasts from
five primate species. While the majority of DHS sites (59%) were not quantitatively distinct
between species, we identified 36,666 DHS sites with significant differences in chromatin
accessibility between human, chimpanzee, gorilla, orangutan, and rhesus macaque. Of those,
61% are likely the result of a single change in chromatin accessibility that occured on either an
internal or external branch, while the remainder imply multiple changes in accessibility.

Our results show a high degree of overlap with a conventional analysis using pairwise
comparisons and include modest changes that the conventional method was not able to detect.
Our results are also largely congruent with our earlier study (Shibata et al. 2012) that used a
threshold-based multiple pairwise comparison approach and considered three primate species
(human, chimpanzee, and rhesus macaque). Here, the use of five species provides additional
confidence in the identification of species-specific accessibility changes and also allows for the
identification of accessibility changes that likely occurred multiple times throughout evolution.
For these multiple changes, the method we developed does not characterize how exactly they
occurred. That characterization will be the subject of future work using a likelihood analysis that
incorporates the phylogenetic information and models evolutionary processes (Felsenstein 1973;

Hansen 1997; Felsenstein 2008; Paradis and Schliep 2019).
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As mentioned in the results, we identified substantially more accessibility increases than
decreases. It seems in principle unlikely that increases and decreases in accessibility actually
occur at such different rates, since, if true, primate genomes would eventually become saturated
with open chromatin regions. The same asymmetry was observed previously by us (Shibata et al.
2012) and other groups (Villar et al. 2015; Reilly et al. 2015; Emera et al. 2016) using
conventional pairwise comparisons and thresholding, so the source is unlikely to lie in the
method we developed and describe here. Instead, it seems likely that the asymmetry is an
ascertainment bias that derives, in part, from unequal statistical power to call increases and
decreases, though the exact basis of the bias is currently unclear.

Finding so many DHS site differences in non-human primates is a fascinating result with
implications for understanding the evolution of transcriptional regulation. Nevertheless, we also
suggest that the results describing cell type specificity should be interpreted carefully. One non-
biological possible scenario for such enrichment is an ascertainment bias in our analyses due to
the cell type specificity score being based entirely on data from human, a limitation imposed by
the current lack of comparable cell type specificity data from other primate species. Although the
patterns of positive selection that we detected are consistent with expectations, none of the tests
found statistically significant enrichment on the human, chimpanzee, or gorilla branches after
correcting for multiple testing. This may be due to our method of positive selection detection
relying on human functional annotations to identify proxy neutral regions, which may result in a
loss of power with increasing phylogenetic distance.

Interestingly, our results suggest that DHS sites are not homogenous from either a
functional or an evolutionary perspective. Those near transcription start sites (including likely

core promoter regions) differ from DHS sites that are distant (including classic enhancers and
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other kinds of distal elements) in several regards. Compared with proximal DHS sites, gains in
chromatin accessibility in distal sites are more likely to show signatures of positive selection on
the same branch, as might be expected if these DHS sites are contributing to changes in gene
regulation. DHS sites that are not differential between the species surveyed are enriched in
conserved nucleotides, consistent with greater functional constraint. These and other trends we
observed suggest that functional constraints and opportunities differ markedly among classes of
DHS sites. Additional studies will be needed to delineate these distinct classes of likely
regulatory elements and to understand how evolutionary mechanisms operate on their chromatin
accessibility and underlying DNA sequence.

Functional characterization studies will be necessary to understand these regions and
their contribution to gene expression patterns and organismal traits. High-throughput reporter
assays such as MPRA (Klein et al. 2018) and population STARR-seq (Vockley et al. 2015) can
quantify the impact of these differentially utilized regulatory regions, as well as variants within
these regions. In addition, methods such as CRISPR (Diao et al. 2017; Klann et al. 2017) can
characterize the impact of these regions in their natural context, including identifying the correct
target gene(s) for these regulatory elements. Finally, additional replicates from these species can
provide characterization of biological variability within each species. While obtaining data from
additional tissues for primate species is not possible for most tissues, generation of induced
pluripotent stem cells (iPSCs) followed by differentiation (Gallego Romero et al. 2018), will
provide insights into how these differential chromatin signals translate into different cell types
across many species.

While we used our joint model method to identify and classify differences in chromatin

accessibility between five species, we believe this strategy can be used for quantitative
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comparisons across tissues, cell types, time-series, and similar experiments. In addition to
DNase-seq, we expect this method can be readily applied to any count-based data type such as
RNA-seq, ATAC-seq, and ChIP-seq because the input is a table of read counts. The procedure to
generate this input table will vary between the different types of assays, but once the input table
is generated, the procedure is the same regardless of the source of the data. The identification of
differential sites using this method is also easily adaptable to more than five groups, as it only

requires changing the design matrices.

Acknowledgments

We would like to thank Terry Gaasterland for her help developing the tiered mapping
approach. We thank the Duke Sequencing and Genomic Technologies Shared Resource for
sequencing. This work was supported by the National Science Foundation [HOMINID 0827552
to G.A.W]; the National Institute of Mental Health at the National Institutes of Health
[SROIMH105472 to G.E.C and G.A.W]; and a generous donation from Dr. Howard Clark. This
work used a high-performance computing facility partially supported by grant 2016-IDG-1013
(“HARDAC+: Reproducible HPC for Next-generation Genomics") from the North Carolina

Biotechnology Center.

Figure and table legends

FIG. 1.—Classification of DHS sites. (A-D) Density plots showing the beta values for human
(black), chimpanzee (green), gorilla (blue), and orangutan (orange). (A) Non differential sites.
(B) Chromatin accessibility increases in human. (C) Chromatin accessibility decreases in human.

(D) Chromatin accessibility increases in human and gorilla. (E) Pie chart showing the number
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and proportion of DHS sites that i) are non differential; i1) have accessibility changes likely due
to a single event; and iii) have accessibility changes that are due to multiple events. Percentages
are of the total number of DHS sites. Not shown: differential DHS sites that could not be
classified due to insufficient power. (F) Bar chart showing the relative proportions of increases
and decreases in accessibility. Numbers at the top are the total number of DHS sites in each
category. Numbers in or just above the orange bar are the number of DHS sites with decreased
accessibility. Numbers at the bottom of the green bar are the number of DHS sites with increased
accessibility. H-C: Human-chimpanzee internal branch. H-C-G: Human-chimpanzee-gorilla

internal branch.

FIG. 2.—Chromatin accessibility changes in each species. Phylogenetic tree with divergence
dates (to scale). UCSC Genome Browser screenshots of representative DHS sites for (A)
increased accessibility and (B) decreased accessibility. Heatmaps of signal are rank-ordered DHS
sites based on hierarchical clustering. Signal for the rhesus macaque species is equal to the
rhesus macaque beta value. Signal for the non-rhesus macaque species is calculated by adding

the rhesus macaque beta value to the species’ beta value.

FIG. 3. —Internal branch changes in chromatin accessibility. Phylogenetic tree with divergence
dates (to scale). UCSC Genome Browser screenshot of a representative DHS site changes that
likely occurred before the human-chimpanzee split (top) and human-chimpanzee-gorilla split
(bottom). Heatmaps of signal are rank-ordered DHS sites based on hierarchical clustering. Signal

for the rhesus macaque species is equal to the rhesus macaque beta value. Signal for the non-
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rhesus macaque species is calculated by adding the rhesus macaque beta value to the species’

beta value.

FIG. 4. —Changes in chromatin accessibility due to multiple events. Heatmaps of signal are
rank-ordered DHS sites based on hierarchical clustering. Signal for the rhesus macaque species is
equal to the rhesus macaque beta value. Signal for the non-rhesus macaque species is calculated
by adding the rhesus macaque beta value to the species’ beta value. (A) Two species have
increased chromatin accessibility relative to rhesus macaque. (B) Two species have decreased
chromatin accessibility relative to rhesus macaque. (C) Three species have increased chromatin
accessibility relative to rhesus macaque. (D) Three species have decreased chromatin

accessibility relative to rhesus macaque.

FIG. 5. —Chromatin accessibility changes relative to proximal/distal location and cell type
specificity. (A) The percentage of proximal elements, distal elements, and unannotated elements
for each category of DHS sites. (B) Histogram of specificity scores for DHS sites identified in
this study compared to DHS sites detected in 32 different tissue and cell types (Thurman et al.
2012). A high specificity score indicates the DHS site is specific to a small number of cell types.
A low specificity score indicates the DHS site is shared across many cell types. The DHS site
categories are separated into proximal elements (C) and distal elements (D). H-C: human-

chimpanzee internal branch. H-C-G: human-chimpanzee-gorilla internal branch.

FIG. 6. —Effect of natural selection on increases and decreases in chromatin accessibility.
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(A) Distribution of the ratio of evolution { (zeta) in the human branch for DHS sites. The dashed
green line depicts the critical value where the human zeta value becomes significant (p < 0.05).
Zeta values around 1 are expected to be neutral and below 1 are expected to be constrained. (B)
Percentages of DHS sites that are significant for positive selection (p < 0.05). Each DHS site was
tested with 3 different foregrounds: human, chimpanzee, and gorilla. (C) Scatterplots of zeta
values for DHS sites with significant positive selection on the human branch (purple diamond),
the chimpanzee branch (blue cross), or both the human and chimpanzee branches (black solid
circle). Zeta values for the human branch are on the x-axis and zeta values for the chimpanzee
branch are on the y-axis. The kernel density depicts non functional sites. (Top left) increased
accessibility in human. (Top right) decreased accessibility in human. (Bottom left) increased
accessibility in chimpanzee. (Bottom right) decreased accessibility in chimpanzee. (D)
Percentages of DHS sites that are highly constrained (median vertebrate PhastCons > 0.9). H-C:
human-chimpanzee internal branch. H-C-G: human-chimpanzee-gorilla internal branch. ***: p-

value < 0.001. **: p-value < 0.01. *: p-value < 0.05. #: p-value <O0.1.

Table 1

Number of DHS sites in each category

Table 2
Comparison of joint model classifications with pairwise classifications
NOTE. —(a) Percentages are of the total number of pairwise classifications. (b) Percentages are

of the total number of joint model classifications.

35


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

Afgan E, et al. 2018. The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Res. 46(W1):W537-W544.

Barbosa-Morais NL, et al. 2012. The evolutionary landscape of alternative splicing in vertebrate
species. Science 338(6114):1587-1593.

Berrio A, Haygood R, Wray GA. 2019. Identifying branch-specific positive selection throughout
the regulatory genome using an appropriate neutral proxy.bioRxiv 722884. doi:
https://doi.org/10.1101/722884

Blanchette M, et al. 2004. Aligning multiple genomic sequences with the threaded blockset
aligner. Genome Res. 14(4):708-715.

Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y. 2008. Gene regulation in primates
evolves under tissue-specific selection pressures. PLoS Genet. 4(11):e1000271.

Blekhman R, Marioni JC, Zumbo P, Stephens M, Gilad Y. 2010. Sex-specific and lineage-
specific alternative splicing in primates. Genome Res. 20(2):180-189.

Boyd JL, et al. 2015. Human-Chimpanzee Differences in a FZD8 Enhancer Alter Cell-Cycle
Dynamics in the Developing Neocortex. Curr Biol. 25(6):772-779

Boyle AP, et al. 2008. High-resolution mapping and characterization of open chromatin across
the genome. Cell 132(2):311-322.

Brawand D, et al. 2011. The evolution of gene expression levels in mammalian organs. Nature
478(7369):343-348.

Céceres M, et al. 2003. Elevated gene expression levels distinguish human from non-human

primate brains. Proc Natl Acad Sci U S A. 100(22):13030-13035.

36


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Chimpanzee Sequencing and Analysis Consortium 2005. Initial sequence of the chimpanzee
genome and comparison with the human genome. Nature 437(7055):69-87.

Dermitzakis ET, Clark AG. 2002. Evolution of transcription factor binding sites in Mammalian
gene regulatory regions: conservation and turnover. Mol Biol Evol. 19(7):1114-1121.
Dmitrienko A, Tamhane AC. 2007. Gatekeeping procedures with clinical trial applications.
Pharm Stat. 6(3):171-180.

Emera D, Yin J, Reilly SK, Gockley J, Noonan JP. 2016. Origin and evolution of developmental
enhancers in the mammalian neocortex. Proc Natl Acad Sci U S A. 113(19):E2617-2626.
ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human
genome. Nature 489(7414):57-74.

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous
characters. Am J Hum Genet. 25(5):471-492.

Felsenstein J. 2008. Comparative methods with sampling error and within-species variation:
contrasts revisited and revised. Am Nat. 171(6):713-725.

Gallego Romero I, Gopalakrishnan S, Gilad Y. 2018. Widespread conservation of chromatin
accessibility patterns and transcription factor binding in human and chimpanzee induced
pluripotent stem cells. bioRxiv: 466631. doi: https://doi.org/10.1101/466631

Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP. 2006. Expression profiling in primates
reveals a rapid evolution of human transcription factors. Nature 440(7081):242-245.

Hansen TF. 1997. STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF

ADAPTATION. Evolution 51(5):1341-1351.

37


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA. 2007. Promoter regions of many
neural- and nutrition-related genes have experienced positive selection during human evolution.
Nat Genet. 39(9):1140-1144.

Haygood R, Babbitt CC, Fedrigo O, Wray GA. 2010. Contrasts between adaptive coding and
noncoding changes during human evolution. Proc Natl Acad Sci U S A. 107(17):7853-7857.
Hernando-Herraez I, et al. 2013. Dynamics of DNA methylation in recent human and great ape
evolution. PLoS Genet. 9(9):¢1003763.

Hinrichs AS, et al. 2006. The UCSC Genome Browser Database: update 2006. Nucleic Acids
Res. 34(Database issue):D590-598.

Hubisz MJ, Pollard KS, Siepel A. 2011. PHAST and RPHAST: phylogenetic analysis with
space/time models. Brief Bioinformatics 12(1):41-51.

King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science
188(4184):107-116.

Klann TS, et al. 2017. CRISPR-Cas9 epigenome editing enables high-throughput screening for
functional regulatory elements in the human genome. Nat Biotechnol. 35(6):561-568.

Klein JC, Keith A, Agarwal V, Durham T, Shendure J. 2018. Functional characterization of
enhancer evolution in the primate lineage. Genome Biol. 19(1):99.

Lander ES, et al. 2001. Initial sequencing and analysis of the human genome. Nature
409(6822):860-921.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biol. 10(3):R25.

Li H, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics

25(16):2078-2079.

38


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Locke DP, et al. 2011. Comparative and demographic analysis of orang-utan genomes. Nature
469(7331):529-533.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 15(12):550.

Neph S, et al. 2012. BEDOPS: high-performance genomic feature operations. Bioinformatics
28(14):1919-1920.

Odom DT, et al. 2007. Tissue-specific transcriptional regulation has diverged significantly
between human and mouse. Nat Genet. 39(6):730-732.

Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y. 2011. A genome-wide study of DNA
methylation patterns and gene expression levels in multiple human and chimpanzee tissues.
PLoS Genet. 7(2):¢1001316.

Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary
analyses in R. Bioinformatics 35(3):526-528.

Pizzollo J, et al. 2018. Comparative Serum Challenges Show Divergent Patterns of Gene
Expression and Open Chromatin in Human and Chimpanzee. Genome Biol Evol. 10(3):826-839.
Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of nonneutral substitution
rates on mammalian phylogenies. Genome Res. 20(1):110-121.

Pond SLK, Frost SDW, Muse SV. 2005. HyPhy: hypothesis testing using phylogenies.
Bioinformatics 21(5):676-679.

Prabhakar S, et al. 2008. Human-specific gain of function in a developmental enhancer. Science
321(5894):1346-1350.

Prescott SL, et al. 2015. Enhancer Divergence and cis-Regulatory Evolution in the Human and

Chimp Neural Crest. Cell 163(1):68-83.

39


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26(6):841-842.

Reilly SK, et al. 2015. Evolutionary changes in promoter and enhancer activity during human
corticogenesis. Science 347(6226):1155-1159.

Roadmap Epigenomics Consortium, et al. 2015. Integrative analysis of 111 reference human
epigenomes. Nature 518(7539):317-330.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26:(1)139-140.
Rosenbloom KR, et al. 2013. ENCODE data in the UCSC Genome Browser: year 5 update.
Nucleic Acids Res. 41(Database issue):D56-63.

Scally A, et al. 2012. Insights into hominid evolution from the gorilla genome sequence. Nature
483(7388):169-175.

Schmidt D, et al. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of
transcription factor binding. Science 328(5981):1036-1040.

Schrago CG, Voloch CM. 2013. The precision of the hominid timescale estimated by relaxed
clock methods. J Evol Biol 26(4):746-755.

Shibata Y, et al. 2012. Extensive evolutionary changes in regulatory element activity during
human origins are associated with altered gene expression and positive selection. PLoS Genet.
8(6):1002789.

Siepel A, et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res. 15(8):1034-1050.

Thurman RE, et al. 2012. The accessible chromatin landscape of the human genome. Nature

489(7414):75-82.

40


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Villar D, et al. 2015. Enhancer Evolution across 20 Mammalian Species. Cell 160(3):554-566.
Vockley CM, et al. 2015. Massively parallel quantification of the regulatory effects of noncoding
genetic variation in a human cohort. Genome Res. 25(8):1206-1214.

Wittkopp PJ, Kalay G. 2011. Cis-regulatory elements: molecular mechanisms and evolutionary
processes underlying divergence. Nat Rev Genet. 13(1):59-69.

Wong WSW, Nielsen R. 2004. Detecting selection in noncoding regions of nucleotide
sequences. Genetics 167(2):949-958.

Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet.
8(3):206-216.

Wu H, Wang C, Wu Z. 2013. A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics 14(2):232-243.

Xi H, et al. 2007. Identification and characterization of cell type-specific and ubiquitous
chromatin regulatory structures in the human genome. PLoS Genet. 3(8):e136

Yan G, et al. 2011. Genome sequencing and comparison of two nonhuman primate animal
models, the cynomolgus and Chinese rhesus macaques. Nat Biotechnol. 29(11):1019-1023.

Yu G, Smith DK, Zhu H, Guan Y Lam TT-Y. 2016. ggtree: an R package for visualization and
annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol
Evol 8(1):28-36.

Zeng J, et al. 2012. Divergent whole-genome methylation maps of human and chimpanzee brains
reveal epigenetic basis of human regulatory evolution. Am J Hum Genet. 91(3):455-465.
Zhang Y, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9):R137.
Zhou X, et al. 2014. Epigenetic modifications are associated with inter-species gene expression

variation in primates. Genome Biol. 15(12):547.

41


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FIG. 1

Non Differential
(53,078 DHS Sites)
A 0.8 ‘ | E Multiple Single
‘ Changes Change
0.6 Species 11,698 sites 22,514 sites
fé‘ B Human (13%) (25%)
g 04 B Chimpanzee
A M Gorilla
0.2 Orangutan
0.0 S—— |
S50 25 00 25 50 Non Differential
Beta Value 53,078 sites
Human Increases (59%)
B 5 (2,380 DHS Sites)

F O Decreased Accessibility O Increased Accessibility

2,570 1,599 2,780 4,146 2,399 2,986

\ 5000 1
o \#“
50 25 00 25 5.0 "
Beta Value S 4000 A 593
Human Decreases 2 230
(190 DHS Sites) 2 3000 41 190
c 15 ) 5 —
9]
‘ o
‘ € 2000 - 183 761 | (1,373
1.0 l >
Z \ Z
: (l‘\| 1000 -
=05 [ \
| \‘l 0 2,380 (1,416 |2,550| 3,553| |1,638| |1,613
{ i
\
0.0 = c v o c o V)
50 25 00 25 50 g : T 2 T 9
Beta Value 32:5 z o t&o T
€ s
Human/Gorilla Increases .S o

D (915 DHS Sites)

04 /

Density
ey
e

50 25 00 25 50
Beta Value


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FIG 2 Human Increased Accessibility (n=2,380)
dadd Human
Human . Chimpanzee [l (NRRNRON IR

Gorilla | 11 [ | (VA DR
Orangutan Il 111/ [ IR 0 ¥ M
Rhesus Macaque [V | 111 AN 0 M

A Chimpanzee Increased Accessibility (n=1,416)
. R Human (10N M
Chimpanzee Chimpanzee

Gorilla |/ | 1NN A 0
Orangutan || | /INNNNN 0N MMM ¥ 00 )
Rhesus Macaque |1 1]/ N MMM " /i

Gorilla Increased Accessibility (n=2,550)

e Hurman ||| 1R 0N A
Gorilla . Chimpanzee | | [ Il NN 1 e

Gorilla

Orangutan | | TR0 (NN O
Rhesus Macaque | [N AR MMM B

Orangutan Increased Accessibility (n=3,553)

Humanl I|| H\IW\HI-IIIII\I\ WL 0

Orangutan Chimpanzee Il [ IR W
¢ Gorilta {11 177 NANNCA U MRR 1 YU
A Orangutan

Rhesus Macaque Il 1 NANNVNMY DTN /0 R

Rhesus Macaque Increased Accessibility (n=4,803)

Human | [N IHIIIIH-\II\IIHI i 1 ||||

Rhesus Macague "~ " Chimpanzee  [MMNNNN SUNE N 1 O 1
o Gorila| - IR TRERTE 0 1
| ! 1 Orangutan NN NN 1I0 | 1 17 O
30 18 10 7 ,M| Rhesus Macaque

Millions of Years Ago

Human Decreased Accessibility (n=190)

Human I-IIII\I—"I\| I 1]

210123456 Human™ """ Chimpanzee|ll
Gorillallll [ \
. Orangutan[Il] Il
; Rhesus Macaque [l | 1
B Chimpanzee Decreased Accessibility (n=183)
. Human | LR K
Chimpanzee ] Chimpanzee I | NN
Gorilla Il ||||"|
Orangutan
A Rhesus Macaque | | R
Gorilla Decreased Accessibility (n=230)
) Human ||||I” I“l H ‘I\I ‘ |
Gorilla Chimpanzee (1]
- Gorilla [N 0 1 | NI
. Orangutan M
Rhesus Macaque 11111 AR
Orangutan Decreased Accessibility (n=593)
Human| LA
Orangutan ke Chimpanzee| | R 110
‘ , Gorilla| | Wmmi
- Orangutan || [ 0L
Rhesus Macaque| | 11
Rhesus Macaque Decreased Accessibility (n=1,231)
T Human I“
Rhesus Macaque . Chimpanzee
e Gorilla [
| | I I e Orangutan I
% s 0 7 _____ RhesusMacaque IR | Ly

Millions of Years Ago


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FIG. 3

Human Human/Chimpanzee Increased Accessibility (n=1,638)
A Human
Al Chimpanzee |
Ny a Gorila [ 1000 m
10123456 | Orangutan [JIIIRET T 0N
Signal Rhesus Macaque [IIEEENINIVONNINEENN. OO0
Chimpanzee Human/Chimpanzee Decreased Accessibility (n=761)
Human AT T
| Chimpanzee | AN AT A
s Gorilla |
o eman Orangutan |
ikt Rhesus Macaque |
Human/Chimpanzee/Gorilla Increased Accessibility (n=1,613)
"™ Human
A Chimpanzee
Gorilla | LT
Orangutan [T I I
Orangutan Rhesus Macaque [INNIINIIIINNNT & 0 1100
]
Human/Chimpanzee/Gorilla Decreased Accessibility (n=1,373)
u Human N N
Chimpanzee [0 1 JEIRN i
L Gorilla A NN |00 A
A Orangutan
Rhesus Macaque Rhesus Macaque
I I [
30 18 10 7

Millions of Years Ago


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FIG. 4

A

Human/Gorilla Increased Accessibility (n=915)

-1 0123456
Signal

Human ‘ ‘ H‘ H :
Chimngwn;ﬁe o WIII\ N1 BT
orangutan |11 | [INEERONNAANANIE | DOSOLE 000

Rhesus Macaque | |l

Human/Orangutan Increased Accessibility (n=928)
Human H

il |
Chimpanzee | NS SN 11 L
Gorilla [N O 0 MRt ey

Orangutan [/}

l
Rhesus Macaque [T MM 0wy

Chimpanzee/Gorilla Increased Accessibility (n=1,437)

o Human 0 N Y
impanzee

Gorilla |
Orangutan (0 NN | 10 A

BT i R

Chimpanzee/Orangutan Increased Accessibility (n=610)

Rhesus Macaque [

. Human‘ i 1 IMIIHIIMMM‘II_IHMIII
impanzee I

Gorilla [ 7171 AN O
Orangutan ‘H ”

Rhesus Macaque [|]

AN | Y (1 I

Gorilla/Orangutan Increased Accessibility (n=2,010)

Human | -\HIWIIIII-III\ II\III\IIIH
Chimpanzee | | N

Gorilla
Orangutan

Rhesus Macaque

C

Human/Chimpanzee/Orangutan Increased Accessibility (n=740)

AR 00 N

Human || | H””H | ‘
Chimpanzee ||| [
. Gorilla _l | 0 D ‘ i I
rangutan
Rhesus Macaque: [N MM 0

Human/Gorilla/Orangutan Increased Accessibility (n=643)

Human [N 1| |
Chimpanzee [T ([11 [ ENHANUO000 MMM
Gorilla HIm
Orangutan | i \
Rhesus Macaque [N . AN
Chimpanzee/Gorilla/Orangutan Increased Accessibility (n=854)
Human I VU OO0 N D
Chimpanzee || ||
Gorilla "'
Orangutan ||

Rhesus Macaque [N T D0

Human/Gorilla Decreased Accessibility (n=190)

Human (11 TR I
Chimpanzee [] il
Gorilla [N 1700 NN OVEE
Orangutan | || (1] |
Rhesus Macaque ME 0 I
Human/Orangutan Decreased Accessibility (n=369)
Human I_I | 1| | IHIIII\ |
Chimpanzee [[[[] | \
Gorilla [ Il |H \ \

Orangutan [N " (DNMRNNRNNN OO~ (10

Rhesus Macaque [ [ il |
Chimpanzee/Gorilla Decreased Accessibility (n=353)
~ Human [0 [y ,
Chimpanzee | | [N | NN N O |
Gorilla | I (TN ! N AR |
Orangutan [ /] il
Rhesus Macaque 1] | Ml
Chimpanzee/Orangutan Decreased Accessibility (n=218)
) Human |||||| H" | ‘ L I
Chimpanzee || JEN © INEDADON AR | 0
Gorilla || 0l ]
Orangutan | [ DD
Rhesus Macaque |I1I] [ ]
Gorilla/Orangutan Decreased Accessibility (n=469)
Human [ (I 1 111110
Chimpanzee |11 [ (AL |
Gorilla ENMMNANONNY 7 ]ORN l
Orangutan [NNICONINNN) | WD AR W
Rhesus Macaque [[1] DA | |

D

Human/Chimpanzee/Orangutan Decreased Accessibility (n=833)

Human | [0 ERIAEIYH el

Chimpanzee | (D | ||]ll I | THm
Gorilla i

Orangutan | | -l T'0 T

-‘IIIHI

Rhesus Macaque m

Human/Gorilla/Orangutan Decreased Accessibility (n=490)

Human | IR JIIUI\IH I 11 |

Chimpanzee [ | \ ‘
Gorilla IR IRV ! IHII [/ T
Orangutan | (N0 O AN e g ¢
Rhesus Macaque [[I11 1111 I T
Chimpanzee/Gorilla/Orangutan Decreased Accessibility (n=639)
Hurman [N O
Chimpanzee [ ] [T AT | VTN AT
Gorilla | |} [ 1) CDUET TTMMEVN RO

Orangutan L

Rhesus Macaque [0 00T


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FIG. 5

» 100/ — ] O Unannotated
5 W Proximal Element
A QE, 75 m Distal Element
ko)
s 50/
&
8 25
fo
[0}
a_‘-; 0 L
o 5§ § 2§ 9 9 58 & §5 9 9 ® B
E & & 5 T @ g & & 5 T Q@ © o
2 5 &8 2 t 2 53 & 2 t ¢ 3
S o S i b= =1
= o = o a %
@) @) c S
o
Increased Accessibility Decreased Accessibility z =
6000
B §5000
3 -
wn 4000 —
T
fa)
4 3000
@
Qa 2000
£
3
Z 1000
0
0.00 0.25 0.50 0.75 1.00
Specificity Score
Proximal Elements
1.00+
(V]
ju.
c 3 075
0
z
2 0.50 =
O 5
2
o =
»n 0.25
0.00; —— - :
“ — c
25 8 2 2§ 8 ¢ 3
£ i £ s b=
i o = o [a)
@) @) p
]
Increased Accessibility Decreased Accessibility z
Distal Elements
1.00
(0]
—
D S 075
0
==
W s
(8] =
[0
Q.
0 0.25 - ==
0.00
2 8 8 ¢ i 2§ & 2 i g
£ i £ s £
£ o £ o a
O O -
o
=4

Increased Accessibility Decreased Accessibility


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FIG. 6

A

Positive
Selection

Human C

Neutral

Negative
Selection

H-C-

Orangutan
Orangutan

Non Differential
Non Functional

Increased Accessibility Decreased Accessibility

[ € Human foreground

[]C chimpanzee foreground
[C]€ Gorilla foreground

EN w
=
[
=
&
=

Percentage of DHS sites

under positive selection
e n v v
;I g ]
|5
&
Percentage of constrained DHS sites
\ I L

Human Chimpanzee Gorilla Non Non Human Chimpanzee Gorilla Non Non
Changes Changes Changes Differential Functional Changes Changes Changes Differential Functional

Human Increased Accessibility Human Decreased Accessibility
-[Significant in: i Significant in:

® Human & Chimpanzee i ® Human & Chimpanzee
< Human i + < Human i
+ Chimpanzee bt + Chimpanzee +

10
10

-+
n

o 0 <

1

C Chimpanzee Foreground
1
P S O% o
pons
T Chimpanzee Foreground

0.1
|
0.1
|

T T T T \ T
0.1 1 10 0.1 1 10
CHuman Foreground € Human Foreground

Chimpanzee Increased Accessibility Chimpanzee Decreased Accessibility
© significant in: i © SSignificant in: 4
® Human & Chimpanzee i ® Human & Chimpanzee

< Human i < Human
+ Chimpanzee i + + Chimpanzee

+ i
- T
r
L e M e
+ o+ it
i +

C Chimpanzee Foreground
1
g .

T Chimpanzee Foreground
1

0|.1
0.1

T T T T i T
0.1 1 10 0.1 1 10
€ Human Foreground € Human Foreground


https://doi.org/10.1101/617951
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617951; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

TABLE 1
ALL DHS SITES
Total % of total
Non differential (no changes) 53,078 59%
Differential (one or more changes) 36,666 41%
TOTAL 89,744
SINGLE CHANGE AFFECTING SINGLE SPECIES
Increases Decreases Total % of differential
Human 2,380 190 2,570 7%
Chimpanzee 1,416 183 1,599 4%
Gorilla 2,550 230 2,780 8%
Orangutan 3,553 593 4,146 11%
TOTAL 9,899 1,196 11,095 30%
SINGLE CHANGE AFFECTING MULTIPLE SPECIES
Increases Decreases Total % of differential
Human/chimpanzee 1,638 761 2,399 7%
Human/chimpanzee/gorilla 1,613 1,373 2,986 8%
Human/chimpanzee/gorilla/orangutan 1,231 4,803 6,034 16%
TOTAL 4,482 6,937 11,419 31%
MULTIPLE CHANGES AFFECTING TWO SPECIES
Increases Decreases Total % of differential
Human/gorilla 915 190 1,105 3%
Human/orangutan 928 369 1,297 4%
Chimpanzee/gorilla 1,437 353 1,790 5%
Chimpanzee/orangutan 610 218 828 2%
Gorilla/orangutan 2,010 469 2,479 7%
TOTAL 5,900 1,599 7,499 20%
MULTIPLE CHANGES AFFECTING THREE SPECIES
Increases Decreases Total % of differential
Human/chimpanzee/orangutan 740 833 1,573 4%
Human/gorilla/orangutan 643 490 1,133 3%
Chimpanzee/gorilla/orangutan 854 639 1,493 4%
TOTAL 2,237 1,962 4,199 11%
OTHER CHANGES
Total % of differential
Not classified 2,454 7%

Number of DHS sites in each category
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TABLE 2
ALL DHS SITES
Either Both Pairwise | Joint Model | Pairwise | Joint
Method | Methods| Only (a) Only (b) Total | Model
Total
Non Differential | 63,651| 49,708| 10,573 18%| 3,370 6%| 60,281| 53,078
Differential 40,036| 26,093| 3,370 11%| 10,573 29%| 29,463| 36,666

Comparison of joint model classifications with pairwise classifications

NOTE. —(a) Percentages are of the total number of pairwise classifications.
(b) Percentages are of the total number of joint model classifications.
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