

1 **The role of lineage, hemilineage and temporal identity in establishing neuronal connectivity in the**
2 ***Drosophila* larval CNS**

5 Brandon Mark¹, Sen-Lin Lai¹, Aref Arzan Zarin¹, Laurina Manning¹, Albert Cardona², James W. Truman^{2,3},
6 and Chris Q. Doe^{1*}

7
8 ¹Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of
9 Oregon, Eugene, OR 97403

10 ²Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147

11 ³Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250

15 * Author for correspondence at cdoe@uoregon.edu

17 Key words: neuroblast, hemilineage, temporal identity, synapse targeting, cell lineage, neural circuits

20 **Abstract**

22 The mechanisms specifying neuronal diversity are well-characterized, yet it remains unclear how or if these
23 mechanisms regulate neuronal morphology and connectivity. Here we map the developmental origin of 78
24 bilateral pairs of interneurons from seven identified neural progenitors (neuroblasts) within a complete TEM
25 reconstruction of the *Drosophila* newly-hatched larval CNS. This allows us to correlate developmental
26 mechanism with neuronal projections, synapse targeting, and connectivity. We find that clonally-related
27 neurons from project widely in the neuropil, without preferential circuit formation. In contrast, the two
28 Notch^{ON}/Notch^{OFF} hemilineages from each neuroblast project to either dorsal motor neuropil (Notch^{ON}) or
29 ventral sensory neuropil (Notch^{OFF}). Thus, each neuroblast contributes both motor and sensory processing
30 neurons. Lineage-specific constitutive Notch transforms sensory to motor hemilineages, showing hemilineage
31 identity determines neuronal targeting. Within a hemilineage, temporal cohorts target processes and synapses
32 to different sub-domains of the neuropil, effectively “tiling” the hemilineage neuropil, and
33 hemilineage/temporal cohorts are enriched for shared connectivity. Thus, neuroblast lineage, hemilineage,
34 and temporal identity progressively restrict neuropil targeting, synapse localization, and connectivity. We
35 propose that mechanisms generating neural diversity are also determinants of neural circuit formation.

37 **Introduction**

38 Tremendous progress has been made in understanding the molecular mechanisms generating neuronal
39 diversity in both vertebrate and invertebrate model systems. In mammals, spatial cues generate distinct pools
40 of progenitors which generate a diversity of neurons and glia appropriate for each spatial domain (1). The
41 same process occurs in invertebrates like *Drosophila*, but with a smaller number of cells, and this process is
42 particularly well-understood. Spatial patterning genes act combinatorially to establish single, unique
43 progenitor (neuroblast) identity; these patterning genes include the dorsoventral columnar genes *vnd*, *ind*, *msh*
44 (2-4) and the orthogonally expressed *wingless*, *hedgehog*, *gooseberry*, and *engrailed* genes (5-8). These factors endow
45 each neuroblast with a unique spatial identity, the first step in generating neuronal diversity (Figure 1A, left).
46 Here we focus on the left and right sides of abdominal segment 1 (A1L, A1R) and so segment-specific
47 patterning due to Hox gene expression is not relevant. The second step occurs as each neuroblast “buds off”
48 a series of ganglion mother cells (GMCs) which acquire a unique identity based on their birth-order, due to
49 inheritance from the neuroblast of a “temporal transcription factor” – Hunchback (Hb), Krüppel (Kr), Pdm,
50 and Castor (Cas) – which are sequentially expressed by nearly all embryonic neuroblasts (9). The combination
51 of spatial and temporal factors leads to the production of a unique GMC with each neuroblast division
52 (Figure 1A, middle). The third and final step in generating neuronal diversity is the asymmetric division of
53 each GMC into a pair of post-mitotic neurons; during this division, the Notch inhibitor Numb (Nb) is
54 partitioned into one neuron (Notch^{OFF} neuron) whereas the other sibling neuron receives active Notch
55 signaling (Notch^{ON} neuron), thereby establishing two distinct hemilineages (10-13) (Figure 1A, right). In
56 summary, three developmental mechanisms generate neuronal diversity within the embryonic CNS:
57 neuroblast spatial identity, GMC temporal identity, and neuronal hemilineage identity.

58 A great deal of progress has also been made in understanding neural circuit formation in both vertebrates
59 and invertebrate model systems, revealing a multi-step mechanism. Mammalian neurons initially target their
60 axons to broad regions (e.g. thalamus/cortex), followed by targeting to a neuropil domain (glomeruli/layer),
61 and finally forming highly specific synapses within the targeted domain (reviewed in 14).

62 Despite the progress in understanding the generation of neuronal diversity and the mechanisms
63 governing axon guidance and neuropil targeting, how these two developmental processes are related remains
64 unknown. While it is accepted that the identity of a neuron is tightly linked to its connectivity, the
65 developmental mechanisms involved remain unclear. For example, do clonally-related neurons target similar
66 regions of the neuropil due to the expression of similar guidance cues? Do temporal cohorts born at similar
67 times show preferential connectivity? Are neurons expressing the same transcription factor preferentially
68 interconnected? It may be that lineage, hemilineage, and temporal factors have independent roles in circuit
69 formation; or that some mechanisms are used at different steps in circuit assembly; or that mechanisms used
70 to generate neural diversity could be independent of those regulating circuit formation. Here we map
71 neuronal developmental origin, neuropil targeting, and neuronal connectivity within a whole CNS TEM
72 reconstruction (15). This provides us the unprecedented ability to identify correlations between development
73 and circuit formation – at the level of single neurons/single synapses – and test those relationships to gain
74 insight into how mechanisms known to generate diversity might be coupled to mechanisms of neural circuit
75 formation. We find that lineage, hemilineage, and temporal identity are all strongly correlated with features of
76 neuronal targeting that directly relate to establishing neural circuits.

77
78 **Results**

80 **Clonally related neurons project widely within the neuropil**

82

83 It is not possible to determine the clonal relationship of neurons in the TEM volume based on anatomical
84 features alone; for example, clonally-related neurons are not ensheathed by glia as they are in grasshopper
85 embryos or the *Drosophila* larval brain (16, 17). We took a multi-step approach to identify clonally-related
86 neurons in the TEM reconstruction. First, we generated sparse neuroblast clones and imaged them by light
87 microscopy. All neuroblasts assayed had a distinctive clonal morphology including the number of fascicles
88 entering the neuropil, cell body position, and morphology of axon/dendrite projections (Figure 1B-G; and
89 data not shown). The tendency for neuroblast clones to project one or two fascicles into the neuropil has also
90 been noted for larval neuroblast clones (11-13). We assigned each clone to its parental neuroblast by
91 comparing our clonal morphology to that seen following single neuroblast DiI labeling (18-20), and what has
92 been reported previously for larval lineages (21, 22), as well as the position of the clone in the segment, and in
93 some cases the presence of well-characterized individual neurons (e.g. the “looper” neurons in the NB2-1
94 clone). Note that we purposefully generated clones after the first-born Hb+ neurons, because the Hb+
95 neurons have cell bodies contacting the neuropil and do not fasciculate with later-born neurons in the clone,
96 making it difficult to assign them to a specific neuroblast clone. We found that neurons in a single neuroblast
97 clone, even without the Hb+ first-born neurons included, project widely throughout the neuropil, often
98 targeting both dorsal motor neuropil and ventral sensory neuropil, as well as widely along the mediolateral
99 axis of the neuropil (Figure 1B).

100 Next, we used these neuroblast lineage-specific features to identify the same clonally-related neurons in
101 the TEM reconstruction in A1L. We identified neurons that had clustered cell bodies, clone morphology
102 matching that seen by light microscopy (Figure 1C), and one or two fascicles entering the neuropil (Figure
103 1D,E). The similarity in overall clone morphology between genetically marked clones and TEM reconstructed
104 clones was striking (compare Figure 1B and 1C). We used two methods to validate the clonal relationship
105 observed in the TEM reconstruction. We used neuroblast-specific Gal4 lines (13, 23) to generate MCFO
106 labeling of single neurons, and found that in each case we could match the morphology of an MCFO-labeled
107 single neuron from a known neuroblast to an identical single neuron in the same neuroblast clone within the
108 TEM reconstruction (data not shown). We also validated the reliability of clone morphology and neuron
109 numbers by tracing the same seven lineages in A1R, where we observed similar neuron numbers and fascicles
110 per clone (Figure 1D, E), and similar clonal morphology (data not shown). Overall, we mapped seven
111 bilateral neuroblast clones into the TEM reconstruction (Figure 1F,G; Supp. Table 1). Note that we chose
112 these seven neuroblasts based on successful clone generation and availability of single neuroblast Gal4 lines,
113 and thus there should be no bias towards a particular connectivity or circuit. We conclude that each
114 neuroblast clone has stereotyped cell body positions, 1-2 fascicles entering the neuropil, and widely projecting
115 axons and dendrites.

116

117 **Lineages generate two morphologically distinct classes of neurons, which project to motor or** 118 **sensory neuropil domains.**

119 After mapping seven lineages into the EM volume, we observed that most lineages seemed to contain two
120 broad classes of neurons with very different projection patterns. Recent work has shown that within a larval
121 neuroblast lineage all Notch^{ON} neurons have a similar clonal morphology (called the Notch^{ON} hemilineage),
122 whereas the Notch^{OFF} hemilineage shares a different morphology (11-13). We hypothesized that the observed
123 morphological differences may be due to hemilineage identity (Figure 2). First, we used NBLAST (24) to
124 compare the morphology of clonally related neurons. We observed that five of the seven neuroblast lineages
125 generated two highly distinct candidate hemilineages that each projected to a focused domain in the dorsal or
126

127 ventral neuropil (Figure 2A-D). A sixth neuroblast lineage, NB7-4, generated neurons projecting to the
128 ventral neuropil, and a pool of glia (Figure 2E). The seventh neuroblast lineage, NB3-3 (Figure 2F), has
129 previously been shown to directly generate a single Notch^{OFF} hemilineage due to direct differentiation of the
130 neuroblast progeny as neurons, bypassing the terminal asymmetric cell division (25, 26). We conclude that
131 NBLAST can identify candidate hemilineages, with one projecting to the ventral neuropil, and one projecting
132 to the dorsal neuropil (Figure 2G). This is a remarkable subdivision within each lineage, because the dorsal
133 neuropil is the site of motor neuron dendrites and premotor neurons while the ventral neuropil is the site of
134 sensory neuron presynapses and post-sensory neurons (27, 28) (Fig. S1). Additionally, neurons from the same
135 candidate hemilineage are morphologically related, but different from the neurons in the other candidate
136 hemilineage from the same parental neuroblast (Figure 2H). Thus, each neuroblast lineage generates two
137 totally different classes of neurons, doubling the neuronal diversity generated in a single lineage. We conclude
138 that neuroblasts produce two types of neuronal progeny: one targeting motor neuropil and one targeting
139 ventral neuropil.

140 141 **Hemilineage identity determines axon projection targeting**

142 143 We next wanted to (a) validate the NBLAST hemilineage assignments, (b) determine whether Notch^{ON}
144 hemilineages always project to dorsal/motor neuropil domains (ventral/sensory neuropil for Notch^{OFF}
145 hemilineages), and (c) to experimentally test whether hemilineage identity determines neuropil targeting. We
146 can achieve all three goals by using neuroblast-specific Gal4 lines to drive expression of constitutively active
147 Notch (Notch^{intra}) to transform Notch^{OFF} hemilineages into Notch^{ON} hemilineages.

148 149 There are Gal4 lines specifically expressed in NB1-2, NB7-1, and MB7-4 (13, 29) which we used to drive
150 Notch^{intra} expression. Notch^{intra} expression in NB1-2 or NB7-1 led to a loss of ventral projections and a
151 concomitant increase in dorsal neuropil projections (compare Figure 3A,B to Figure 3D,E). Similarly,
152 Notch^{intra} expression in the NB7-4 lineage led to a loss of ventral projections and an increase in the number
153 of glia (Figure 3C). For all lineages, the loss of ventral neurons is also visible in dorsal views (Figure 3A-F
154 insets). In addition, we generated a Notch reporter by Crispr engineering the Notch target gene *hey*, placing a
155 T2A:FLP exon in frame with the *hey* exon, resulting in Notch^{ON} neurons expressing FLP. When we use NB7-
156 1-Gal4 to drive expression of UAS-GFP we see the full NB7-1 clone (Figure 3G), whereas a FLP-dependent
157 reporter (*UAS-FRT-stop-FRT-RFP*) will only be expressed in Notch^{ON} neurons innervating the dorsal
158 neuropil (Figure 3G'). Taken together, our Notch experiments strongly support the NBLAST assignments of
159 neurons into two distinct hemilineages, and show that all tested neuroblast lineages make a Notch^{ON}
160 hemilineage that projects to dorsal/motor neuropil (or makes glia), and a Notch^{OFF} hemilineage that projects
161 to ventral/sensory neuropil. In conclusion, we show that NBLAST can be used to accurately identify
162 neuroblast hemilineages; that Notch^{ON}/Notch^{OFF} hemilineages project to motor/sensory neuropil domains,
163 respectively; and most importantly, that hemilineage identity determines neuronal targeting to the motor or
sensory neuropil.

164 165 **Hemilineage identity determines synapse targeting**

166 167 Here we use motor and sensory domains (Fig. S1) as landmarks to map synapse localization for different
168 hemilineages. We observed that dorsal hemilineages localize both pre- and post-synaptic sites to the motor
169 neuropil, whereas ventral hemilineages localize both pre- and post-synaptic sites to the sensory neuropil
170 (Figure 4A-D; Fig. S3), but see Discussion for caveats. Consistent with these observations, the vast majority
171 of sensory output is onto ventral hemilineages, and the vast majority of motor neuron input is from dorsal

172 hemilineages (Figure 4E). We conclude that within the seven assayed neuroblast lineages, Notch^{ON}
173 hemilineages target synapses to the motor neuropil, whereas Notch^{OFF} hemilineages target synapses to the
174 sensory neuropil (Figure 4F).

175 After showing that hemilineages target synapses to restricted domains of dorsal or ventral neuropil, we
176 asked if individual hemilineages tile the neuropil or have overlapping domains. We mapped the pre- and post-
177 synaptic position for six ventral hemilineages and four dorsal hemilineages. Each of the dorsal hemilineages
178 targeted pre-synapses and post-synapses to distinct but overlapping regions of the neuropil (Figure 5A,C).
179 Similarly, each of the ventral hemilineages targeted pre-synapses and post-synapses to distinct but overlapping
180 regions of the neuropil (Figure 5B,D). Clustering neurons by synapse similarity (a measure of similar position
181 in the neuropil volume) confirms that most neurons in a hemilineage cluster their pre- and post-synapses
182 (Figure 5E). We conclude that neuroblast hemilineages contain neurons that project to distinct but
183 overlapping neuropil regions, strongly suggesting that the developmental information needed for neuropil
184 targeting is shared by neurons in a hemilineage (see Discussion).

185

186 **Mapping temporal identity in the TEM reconstruction: radial position is a proxy for neuronal birth-order**

187

188 Most embryonic neuroblasts sequentially express the temporal transcription factors Hb, Kr, Pdm, and Cas
189 with each factor inherited by the GMCs and young neurons born during each window of expression
190 (reviewed in 30). Previous work has shown that early-born Hb+ neurons are positioned in a deep layer of the
191 cellular cortex adjacent to the developing neuropil, whereas late-born Cas+ neurons are at the most
192 superficial position, with Kr+ and Pdm+ neurons positioned in between (Figure 6A)(9, 31). Thus, in the late
193 embryo, radial position can be used as a proxy for temporal identity (Figure 6B). To determine if this
194 relationship is maintained in newly hatched larvae, we could not simply stain for temporal transcription
195 factors, as their expression is not reliably maintained in newly hatched larvae. Instead, we used more stable
196 reporters for Hb (a recombined Hb:GFP transgene) and Cas (*cas-ga4* line driving *UAS-histone:RFP*). We
197 confirm the radial position of Hb:GFP and Cas>RFP in the late embryonic CNS, and importantly, show that
198 the same deep/superficial layering is maintained in newly hatched larvae (Figure 6C,D). Note that although
199 we are not attempting to map Hb+ neurons to specific lineages (see above), here we use Hb+ neurons in a
200 lineage-independent way to help validate the use of radial position as a proxy for temporal identity.

201 Additionally, we generated a new Hb-LexA construct in order to identify additional Hb+ neurons, which
202 we then traced in the EM volume (Figure 6E,F, cyan neurons). We also used *cas-ga4* to drive MCFO in order
203 to identify new late-born neurons (Figure 6E,F magenta neurons). In total, we identified 18 neurons in the
204 EM volume with known birthdates (Figure 6E,F; Fig.S4). In order to quantify distance from the neuropil, we
205 measured the neurite length between the cell body and the neuropil entry point. We found that all confirmed
206 Hb+ neurons were located close to the neuropil, whereas late-born neurons were located more distantly
207 (Figure 6G,H). We also confirmed that left/right neuronal homologs had extremely similar cortex neurite
208 lengths (Figure 6I). Thus, we confirm that neuronal cortex neurite length is consistent across two
209 hemisegments, and can be used to approximate the temporal identity of any neuron in the TEM
210 reconstruction.

211

212 **Temporal cohorts “tile” hemilineage neuropil domains**

213

214 In order to determine the role of temporal identity in neuronal targeting and connectivity we first used cortex
215 neurite length to map the birthdates of all neurons in 10 hemilineages (Fig. S5). Unlike the striking dorsal-
216 ventral division observed from mapping hemilineages, the synaptic distributions of individual temporal

217 cohorts appeared far more overlapping (Fig. S5). To quantify this, we compared the synapse similarity of
218 hemilineage-related neurons and temporal-related neurons and found that neurons related by hemilineage
219 were more similar than those related by birthdate (Fig. S6). We conclude that hemilineages, not temporal
220 cohorts, are more important determinants of neuropil targeting.

221 We next asked whether temporal identity is linked to more precise sub-regional targeting or “tiling” of
222 neuronal projections and synapses within a hemilineage. Here we focus on NB3-3. Previous work has shown
223 that temporal identity in NB3-3 plays a role in segregating neurons into distinct circuits: early-born neurons
224 (A08x/m) are involved in escape behaviors while late-born neurons (A08e1/2/3) are involved in
225 proprioception (25). We confirmed the identity of early- and late-born neurons in this lineage using radial
226 position (Figure 7A), and found that these five previously characterized neurons projected to different
227 regions of the neuropil, and different regions of the central brain (Figure 7B,C). We grouped the remaining
228 neurons in this lineage into temporal cohorts based on their radial position, and found a striking correlation
229 between birth-order and synapse similarity (Figure 7E,F). We conclude that neurons in the proprioceptive or
230 nociceptive circuits target their synapses to different regions of the neuropil.

231 We next tested whether other lineages contained hemilineage/temporal cohorts that “tile” neuronal
232 projections and synapse localization. Indeed, examination of the NB5-2 ventral hemilineage showed that
233 early- and late-born neurons targeted their projections to “sub-regional” domains of the full hemilineage
234 (Figure 8A,B). Additionally, both pre- and post-synaptic distributions were strongly correlated with birth-
235 order (Figure 8C-H). Similar results were observed for pre-synaptic targeting (but not post-synaptic targeting)
236 in the NB5-2 dorsal hemilineage (Figure 8I-P). Examination of the remaining hemilineages found that only
237 one did not have a significant correlation between birth-order and presynaptic targeting (NB1-2 dorsal) and
238 only one hemilineage did not show a significant relationship between birth-order and post-synaptic targeting
239 (NB5-2 dorsal). Pooling data from all hemilineages reveals a positive correlation between synapse location
240 and temporal identity (Figure 8Q). We conclude that temporal identity subdivides hemilineages into smaller
241 populations of neurons that target both projections and synapses to different sub-domains within the larger
242 hemilineage targeting domain (Figure 8R). Thus, hemilineage identity provides coarse targeting within
243 neuropil, and temporal identity refines targeting to several smaller sub-domains.

244 245 **Temporal cohorts share common connectivity**

246 Temporal cohorts share restricted neuronal projections and synapse targeting within each hemilineage,
247 raising the possibility that temporal cohorts may also share connectivity. To test this idea, we analyzed the
248 connectome of 12 hemilineages as well as the motor and sensory neurons in segment A1 left and right (Figure
249 9A-C). In total, we analyzed 160 interneurons, 56 motor neurons, and 86 sensory neurons, which
250 corresponded to approximately 25% of all inputs and 14% of all outputs for the 12 hemilineages. We found
251 that hemilineage connectivity is highly structured, with a higher degree of interconnectivity within dorsal and
252 ventral hemilineages (Figure 9A), consistent with the idea that dorsal and ventral hemilineages are functionally
253 distinct (SFig. 1). Next, we generated force directed network graphs, in which neurons with greater shared
254 connectivity are positioned closer together in network space (Figure 9D-H). Examination of the network as a
255 whole revealed an obvious division between both A1L and A1R as well as the sensory and motor portions of
256 the network (Figure 9D). Neurons in a hemilineage showed increased shared connectivity (i.e. they are
257 clustered in the network). Importantly, temporal cohorts within a hemilineage also showed increased shared
258 connectivity, even compared to other temporal cohorts in the same hemilineage (Figure 9E-J). To quantify
259 shared connectivity using a different method, we determined the minimum number of synapses linking
260 neuronal pairs (a) picked at random, (b) picked from a hemilineage, or (c) picked from a temporal cohort

262 within a hemilineage (Figure 9I,J). Neuron pairs that are directly connected have a value of 1 synapse apart;
263 neurons that share a common input or output have a value of 2 synapses apart, with a maximum of seven
264 synapses apart. We found that neurons in a hemilineage had a much lower minimum synapse distance than
265 random, indicating shared connectivity; similarly, neurons in a temporal cohort within a hemilineage also have
266 significantly lower minimum synapse distances, with over 60% of all neurons in the same temporal cohort
267 being separated by two synapses or less (Figure 9I,J). We conclude that temporal cohorts share common
268 connectivity.

269

270 Discussion

271

272 Our results show that individual neuroblast lineages have unique but broad axon and dendrite projections to
273 both motor and sensory neuropil; thus, each neuroblast contributes neurons to both sensory and motor
274 processing circuits. In contrast, the two hemilineages within a neuroblast clone have highly focused
275 projections into either the sensory or motor neuropil, with all Notch^{ON} hemilineages assayed projecting to the
276 motor neuropil and all Notch^{OFF} hemilineages assayed projecting to sensory neuropil. Conversion of
277 Notch^{OFF} to Notch^{ON} identity by lineage-specific misexpression of constitutively active Notch redirects
278 sensory hemilineages into the motor neuropil, showing that Notch signaling regulates dorsal/ventral choice in
279 axon projections; it is unknown whether connectivity is also changed from sensory to motor circuits. Most
280 importantly, we show that temporal cohorts within each hemilineage “tile” their projections and synapses to
281 neuropil subdomains, and each temporal cohort has shared connectivity. Our results strongly support the
282 hypothesis that the developmental mechanisms driving the generation of neural diversity are directly coupled
283 to the mechanisms governing circuit organization

284 Previous work on *Drosophila* larval neuroblasts show that the pair of hemilineages have different
285 projection patterns and neurotransmitter expression (11-13). We extend these pioneering studies to
286 embryonic neuroblasts, and show that pairs of hemilineages not only have different projection patterns, but
287 also target pre- and post-synapses to distinct regions. Surprisingly, in all lineages where we performed Notch
288 mis-expression experiments, neurons in the Notch^{ON} hemilineage projected to the dorsal neuropil, whereas
289 Notch^{OFF} neurons projected to the ventral neuropil. It is unlikely that all Notch^{ON} hemilineages target the
290 dorsal neuropil, however, as the NB1-1 interneuron pCC is from a Notch^{ON} hemilineage (10) yet projects
291 ventrally and receives strong sensory input, and its sibling aCC motor neuron is from the Notch^{OFF}
292 hemilineage (10) and projects dendrites in the dorsal motor neuropil. We think it is more likely that the
293 Notch^{ON}/Notch^{OFF} provides a switch to allow each hemilineage to respond differently to dorsoventral
294 guidance cues: in some cases the Notch^{ON} hemilineage projects dorsally, and in some cases it projects
295 ventrally. Nevertheless, our finding that neuroblasts invariably produce both sensory and motor hemilineages
296 reveals the striking finding that the sensory and motor processing components of the neuropil are essentially
297 being built in parallel, with one half of every GMC division contributing to either sensory or motor networks.
298 This has not been observed in larval hemilineages, and may be the result of an evolutionary strategy to
299 efficiently build the larval brain as fast as possible.

300 While we do observe some differences between embryonic and larval hemilineages, the similarities are far
301 more striking. Previous work has shown that larval and embryonic hemilineages have similar morphological
302 features (13), suggesting the possibility that these neurons could be performing analogous functions. Here we
303 show that two components of a proprioceptor circuit, the Jaam and Saaghi neurons (32), are derived from
304 two hemilineages of NB5-2 (also called lineage 6 (21)). Activation of either of these hemilineages in adults
305 results in uncoordinated leg movement, consistent with the idea that these hemilineages could be involved in
306 movement control. Similarly, adult activation of the NB3-3 lineage (also called lineage 8 (21)) caused postural

307 effects, again consistent our previous findings that activation of this lineage in larvae cause postural defects
308 (32). In the future, it will be interesting to further explore the functional and organizational similarities of the
309 embryonic and larval nervous systems.

310 Our results suggest that all neurons in a hemilineage respond similarly to the global pathfinding cues that
311 exist within the embryonic CNS. Elegant previous work showed that there are gradients of Slit and Netrin
312 along the mediolateral axis (33), gradients of Semaphorin 1/2a along the dorsoventral axis (34), and gradients
313 of Wnt5 along the anteroposterior axis (35). We would predict that the palette of receptors for these
314 patterning cues would be shared by all neurons in a hemilineage, to allow them to target a specific neuropil
315 domain; and different in each of the many hemilineages, to allow them to target different regions of the
316 neuropil. Expression of constitutively-active Notch in single neuroblast lineages will make two Notch^{ON}
317 hemilineages (see [Figure 3](#)), or expression of Numb will make two Notch^{OFF} hemilineages. In this way it will
318 be possible to obtain RNAseq data on neurons with a common neuropil targeting program.

319 Many studies in *Drosophila* and mammals are based on the identification and characterization of clonally-
320 related neurons, looking for common location (36, 37), identity (37, 38), or connectivity (39). Our results
321 suggest that analyzing neuronal clones may be misleading due to the clone comprising two quite different
322 hemilineages. For example, performing RNAseq on individual neuroblast lineages is unlikely to reveal key
323 regulators of pathfinding or synaptic connectivity, due to the mixture of disparate neurons from two
324 hemilineages.

325 We used the cortex neurite length of neurons as a proxy for birth-order and shared temporal identity. We
326 feel this is a good approximation (see [Figure 5](#) for validation), but it clearly does not precisely identify
327 neurons born during each of the Hb, Kr, Pdm, Cas temporal transcription factor windows. In the future,
328 using genetic immortalization methods may allow long-term tracking of neurons that only transiently express
329 each of these factors. Nevertheless, we had sufficient resolution to show that neurons within a temporal
330 cohort could target their pre- or post-synapses to distinct sub-domains of each hemilineage targeting domain.
331 Temporal cohort tiling could arise stochastically due to self-avoidance mechanism (40), by using spacing cues
332 (41, 42), or by precise responses to global patterning cues. Previous work in the mushroom body has shown
333 how changes in temporal transcription factor expression can affect neuronal targeting, and in the optic lobe it
334 is known that altering temporal identity changes expression of axon pathfinding genes (42, 43). Our data
335 suggest a similar mechanism could be functioning in the ventral nerve cord. We find that temporal cohorts
336 within a hemilineage share common neuropil targeting, synapse localization, and connectivity. It will be
337 important to test whether altering neuronal temporal identity predictably alters its neuronal targeting and
338 connectivity. We have recently shown that manipulation of temporal identity factors in larval motor neurons
339 can retarget motor neuron axon and dendrite projections to match their new temporal identity rather than
340 their actual time of birth (29). For example, mis-expression the early temporal factor Hb can collapse all five
341 sequentially-born U motor neuron axons to the U1 early temporal identity, with axon and dendrite
342 projections matching the endogenous U1 motor neuron (29); whether they change connectivity remains to be
343 determined.

344 Our results strongly suggest that hemilineage identity and temporal identity act combinatorially to allow
345 small pools of 2-6 neurons to target pre- and post-synapses to highly precise regions of the neuropil, thereby
346 restricting synaptic partner choice. Hemilineage information provides coarse targeting, whereas temporal
347 identity refines targeting within the parameters allowed by hemilineage targeting. Thus, the same temporal cue
348 (e.g. Hb) could promote targeting of one pool of neurons in one hemilineage, and another pool of neurons in
349 an adjacent hemilineage. This limits the number of regulatory mechanisms needed to generate precise
350 neuropil targeting for all ~600 neurons in a segment of the CNS.

351 In this study we demonstrate how developmental information can be mapped into large scale
352 connectomic datasets. We show that lineage information, hemilineage identity, and temporal identity can all
353 be accurately predicted using morphological features (e.g. number of fascicles entering the neuropil for
354 neuroblast clones, and radial position for temporal cohorts). This both greatly accelerates the ability to
355 identify neurons in a large EM volume as well as sets up a framework in which to study development using
356 datasets typically intended for studying connectivity and function. We have used this framework to relate
357 developmental mechanism to neuronal projections, synapse localization, and connectivity; in the future we
358 plan on identifying the developmental origins of neurons within larval locomotor circuits. It is likely that
359 temporally distinct neurons have different connectivity due to their sub-regionalization of inputs and outputs,
360 however testing how temporal cohorts are organized into circuits remains an interesting open question.

361

362 **Methods summary**

363

364 For detailed methods see Supplemental File 1. Fly stocks are mentioned in the text and described in more
365 detail in the Supplemental Methods. We used standard confocal microscopy, immunocytochemistry and
366 MCFO methods (32, 44, 45). When adjustments to brightness and contrast were needed, they were applied to
367 the entire image uniformly. Mosaic images to show different focal planes were assembled in Fiji or
368 Photoshop. Neurons were reconstructed in CATMAID as previously described (15, 32, 46). Analysis was
369 done using MATLAB. Statistical significance is denoted by asterisks: ***p<0.0001; **p<0.001; *p<0.01;
370 *p<0.05; n.s., not significant.

371

372 **Acknowledgements**

373

374 We thank Haluk Lacin for unpublished fly lines. We thank Todd Laverty, Gerry Rubin, and Gerd Technau
375 for fly stocks; Luis Sullivan, Emily Sales and Tim Warren for comments on the manuscript; Avinash
376 Khandelwal and Laura Herren for annotating neurons; Keiko Hirono for generating transgenic constructs;
377 and Keiko Hirono, Rita Yazejian, and Casey Doe for confocal imaging. Stocks obtained from the
378 Bloomington *Drosophila* Stock Center (NIH P40OD018537) were used in this study. Funding was provided
379 by HHMI (CQD, BM, LM, AAZ), NIH HD27056 (CQD), and NIH T32HD007348-24 (BM).

380 **Figure 1. Individual neuroblast progeny project widely within the neuropil**

381 (A) Three mechanisms specifying neuronal diversity.

382 (B) Single neuroblast clones generated with *dpn*(FRT,*stop*)*LexA*,*p65* in newly-hatched larvae. We recovered n>2
383 clones for each lineage except NB4-1 whose lineage morphology is well characterized in (13); posterior view; scale
384 bar, 20 um.

385 (C) The corresponding neurons traced in the TEM reconstruction. Dashed lines, neuropil border.

386 (D) Each clone has one or two fascicles at the site of neuropil entry (blue). Number of neurons per clone
387 show below for A1L and A1R.

388 (E) Quantification of fascicle number at neuropil entry by light and EM microscopy.

389 (F,G) Seven neuroblast lineages traced in the TEM reconstruction; posterior view (F), lateral view (G).

390 **Figure 2. Lineages generate two morphologically distinct classes of neurons which project to dorsal
391 and ventral regions of the neuropil.**

392 (A-F) NBLAST clustering for the indicated neuroblast progeny typically reveals two morphological groups
393 (red/cyan) that project to dorsal or ventral neuropil; these are candidate hemilineages. Cluster cutoffs were set
394 at 3.0 for all lineages.

395 (G) Superimposition of all dorsal candidate hemilineages (red) and all ventral candidate hemilineages (cyan).

396 (H) Dendrogram showing NBLAST results clustering neurons based on similar morphology. Clustered
397 neurons were all from hemisegment A1L. Colored bars denote lineage identity.

398 **Figure 3. Hemilineage identity determines axon projection targeting to dorsal or ventral neuropil**

400 (A-C) Wild type. Posterior view of three neuroblast lineages expressing GFP using single NB-Gal4 drivers (see
401 methods for genetics). Note the projections to dorsal neuropil (red arrowhead) and ventral neuropil (cyan
402 arrowhead). Insets, anterior view of A1-A8 segments. Note: NB7-4 makes neurons (cyan arrowhead) and glia
403 (red arrowhead). Below: summaries. Blue channel is either FasII or phalloidin.

404 (D-F) Notch^{intra} mis-expression. Posterior view of three neuroblast lineages expressing GFP and
405 constitutively active Notch^{intra}. Note loss of the ventral projections and expansion of dorsal projections (red
406 arrowhead). Insets, anterior view of A1-A8 segments. n>3 for all experiments. Below: summaries.

407 (G,G') Crispr genomic engineering of the *bey* locus to create a Notch reporter. The *bey* locus was engineered
408 to express Hey:T2A:FLP, crossed to NB7-1-Gal4 UAS-GFP UAS-FRT-*stop*-FRT-*myr*:RFP, and stained for
409 GFP (G, whole lineage) and RFP (G', Notch^{ON} hemilineage) in a newly hatched larva. Dorsal up, midline,
410 dashed; arrows indicate neuronal processes in the dorsal or ventral neuropil.

411 **Figure 4. Hemilineage identity determines synapse targeting to motor or sensory neuropil domains**

412 (A,B) Each lineage generates a sensory targeting hemilineage and a motor targeting hemilineage, represented
413 here by NB1-2 and NB5-2 (other neuroblasts shown in SFig. 3). Pre- and post-synaptic sites displayed as 2D
414 kernel density. Note the restricted domains, and how both pre- and post-synaptic sites remain in the same
415 functional neuropil domain. Purple and green regions are the contour line denoting the greatest 40% of all
416 pre-motor (purple) or post-sensory (green) synaptic densities.

417 (C) Pre-synaptic density maps for all hemilineages tile the neuropil.

418 (D) Post-synaptic maps for all hemilineages tile the neuropil.

419 (E) Connectivity diagram showing sensory neurons preferentially connect to neurons in ventral hemilineages,
420 while motor neurons preferentially connect to neurons in dorsal hemilineages. Edges represent fractions of
421 outputs for sensory neurons, and fraction of inputs for motor neurons.

422 (F) Summary showing that lineages generate a sensory and a motor processing hemilineage in a Notch-
423 dependent manner.

426

427 **Figure 5. Hemilineages target synapses to distinct but overlapping motor or sensory neuropil**
428 **domains**

429 (A,B) Presynaptic distributions of four hemilineages (A) or five ventral hemilineages (B) shown in posterior
430 view. Dots represent single pre-synaptic sites with their size scaled by the number of outputs from a given
431 pre-synaptic site.

432 (C,D) Postsynaptic distributions of four dorsal hemilineages (C) or five ventral hemilineages (D) shown in
433 posterior view. Dots represent single postsynaptic sites.

434 (E) Neurons with similar synapse positions tend to be in the same hemilineage. Dendrogram clustering
435 neurons based on combined synapse similarity. Combined synapse similarity was determined by calculating a
436 similarity matrix for pre-synapses and post-synapses separately and then averaging similarity matrices.

437

438 **Figure 6. Mapping temporal identity in the TEM reconstruction: radial position is a proxy for**
439 **neuronal birth-order**

440 (A) Schematic showing correlation between temporal identity and radial position. Posterior view.

441 (B-D) Immunostaining to show the radial position of Hb+ and Cas+ neurons at embryonic stage 16 (B),
442 recombined *Hb:GFP* (C), or *cas-ga4 UAS-RFP* (D) newly-hatched larvae (L0).

443 (E) Single cell clones of either Hb or late-born neurons. Hb neurons were labeled using *hb-T2A-LexA* (see
444 methods). Late-born neurons were labeled using *cas-Ga4; MCFQ*. We use the term late-born as we can not
445 rule Gal4 perdurance into neuroblast progeny born after Cas expression ends.

446 (F) Neurons identified in the TEM reconstruction that match those shown in E.

447 (G) All Hb+ and late-born neurons identified in the TEM reconstruction.

448 (H) Distribution of cortex neurite lengths for known Hb+ and late-born neurons shows that late-born
449 neurons are further from the neuropil than Hb+ neurons.

450 (I) Left/right homologous pairs of neurons with verified birthdates show highly stereotyped cortex neurite
451 lengths across two hemisegments. Solid red line represents a linear fit, with dotted red lines representing 95%
452 CIs. $R^2 = .87$, $p = 1.4e-8$.

453

454 **Figure 7. Temporal cohorts in the NB3-3 lineage have distinct synapse targeting domains.**

455 (A) Plot of mean cortex neurite lengths across bilateral pairs of NB3-3 neurons. Colors are assigned by
456 dividing the lineage into two temporal cohorts. Mean cortex neurite length for the lineage was 18 μ m, with
457 four neurons having less than the mean (cyan cells). A08m has a mean length greater than 18 μ m, but has been
458 shown previously to be early-born. Asterisks denote neurons with confirmed birthdates matching their color
459 assignment. 6/7 previously birthdated neurons had cortex neurite lengths consistent with their birthdate.

460 (B-D) Full 11 cell clone of NB3-3 in hemisegments A1L and A1R. Colors were assigned by dividing the
461 lineage into two temporal cohorts on the basis of cortex neurite length with the exception of A08m, which
462 has been shown previously to be born early.

463 (E) Presynaptic similarity clustering of NB3-3 neurons again shows a clustering of early and late-born neurons
464 with the exception of A08m. Presynaptic distributions of these two populations of cells show both a
465 dorsoventral split in the VNC as well as differential target regions for the projection neurons in the brain.

466 (F) Postsynaptic similarity clustering of NB3-3 neurons shows two groups divided by temporal cohort.
467 Postsynaptic distributions of these two populations of cells show a dorsoventral division consistent with their
468 differential input from chordotonal neurons (early-born NB3-3 neurons) or proprioceptive sensory inputs
469 (late-born NB3-3 neurons).

470

471 **Figure 8. Temporal cohorts in multiple neuroblast lineages have distinct synapse targeting domains**
472 (A-H) NB5-2 ventral hemilineage. (A) NB5-2 ventral hemilineage (cyan, early-born; magenta, late-born).
473 (B) Cortex neurite lengths of neurons in the hemilineage. (C-D) Presynaptic distributions of neurons in NB5-2V colored by birth-order. Little separation in the dorsoventral or mediolateral axes in the VNC was
474 observed, but early-born neurons project axons to the brain while late-born neurons do not. (E-F)
475 Presynaptic (E) and postsynaptic (F) similarity clustering of NB5-2V neurons shows neurons of a similar
476 birth-order have similar synaptic positions. (G-H) Presynaptic (G) and postsynaptic (H) similarity plotted
477 against birth order similarity. Birth-order similarity was defined as the pairwise Euclidean distance between
478 cell bodies divided by the greatest pairwise distance between two cell bodies in the same hemilineage. Solid
479 lines represent linear fits while dotted lines represent 95% CIs.
480 (I-L) NB5-2 dorsal hemilineage. (I) NB5-2 dorsal hemilineage (cyan, early-born; magenta, late-born). (J)
481 Cortex neurite lengths of neurons in NB5-2D. (K-L) Presynaptic distributions of neurons in NB5-2D colored
482 by birth-order. Little separation in A/P axis in the VNC was observed, early-born and late-born neurons
483 segregate in the D/V and M/L axes. (M-N) Presynaptic (M) and postsynaptic (N) similarity clustering of
484 NB5-2D neurons shows neurons of a similar birth-order have similar synaptic positions. (O-P) Presynaptic
485 (O) and postsynaptic (P) similarity plotted against birth order similarity. Birth-order similarity was defined as
486 the pairwise Euclidean distance between cell bodies divided by the greatest pairwise distance between two cell
487 bodies in the same hemilineage. Solid lines represent linear fits while dotted lines represent 95% confidence
488 interval. For NB5-2D, a significant relationship between postsynaptic targeting and birth-order was not
489 observed.
490 (Q) Presynaptic (blue) and postsynaptic (red) similarity plotted against birth order similarity across nine
491 hemilineages. NB1-2V was excluded as it only contained two neurons. When examined separately, only one
492 hemilineage (NB1-2D) did not show a significant relationship between presynaptic similarity and birth-order
493 similarity, and only one hemilineage (NB5-2D) did not show a significant relationship between postsynaptic
494 similarity and birth-order similarity. Solid lines represent linear fits, and dashed lines represent 95%
495 confidence interval.
496 (R) Summary showing hemilineage targeting setting up broad neuropil targeting and temporal information
497 sub-regionalizing hemilineage targeting.

498 **Figure 9. Temporal cohorts within hemilineages have shared connectivity**

500 (A) Heatmap of connectivity between hemilineages and A1 sensory and motor neurons shows structure in
501 hemilineage interconnectivity. Entries indicate the degree of connectivity (not the number of synapses)
502 between each hemilineage. Edges with a strength of less than 1% of the input for a given neuron were
503 discarded.
504 (B,C) Fraction of inputs/outputs for each hemilineage. Adjacent bars of the same color represent the
505 homologous hemilineage in the left and right hemisegments.
506 (D) Force directed network graph of all neurons in the dataset highlighting the sensory and motor
507 subdivision. Neurons with similar connectivity appear closer in network space. Purple edges represent all
508 incoming connections to motor neurons, while green edges represent all outgoing connections from sensory
509 neurons.
510 (E-H) Force directed network graphs of all neurons highlighting specific lineages (E,F) or temporal cohorts
511 (G,H). Edge colors represent outputs from given nodes.
512 (I) Cumulative distribution of the number of synapses between temporal cohorts of hemilineage related
513 neurons, hemilineage related neurons, or random neurons. Neurons that belonged to a temporal cohort with

516 only one neuron were not analyzed (16 neurons). Random neurons were selected from the same
517 hemisegment.

518 (J) Quantification of the number of directly connected pairs of neurons, neurons separated by 2 synapses, and
519 neurons separated by more than two synapses. Black circles represent pairs of neurons connected by 1
520 synapse (top) or two synapses (bottom).

521 (K) Summary.

522 **Fig. S1. The dorsal neuropil contains motor neuron post-synapses and premotor neurons pre- and post-**
523 **synapses, whereas the ventral neuropil contains sensory neuron pre-synapses and post-sensory neuron**
524 **pre- and post-synapses**

525 (A) Motor neuron post-synapses (purple) and sensory neuron pre-synapses (green) showing dorsoventral
526 segregation. Plots are 1D kernel density estimates for dorsoventral or mediolateral axes. Purple dots represent
527 a single post-synaptic site. Green dots represent a single pre-synaptic site scaled by the number of outputs
528 from that presynaptic site.

529 (B) Premotor neuron post-synaptic sites (>3 synapses onto a motor neuron in segment A1), or post-sensory
530 neuron pre-synaptic sites (pre >3 synapses with an A1 sensory neuron) show that connecting neurons are still
531 restricted to dorsal or ventral neuropil domains.

532 (C) 2D kernel density estimates of all pre/post synaptic sites for pre-motor and post-sensory neurons outlines
533 the regions of sensory (green) and motor (magenta) processing in the VNC.

534 **Fig. S2. Ventral hemilineages have projection neurons**

535 The indicated neuroblast lineages traced in catmaid showing the dorsal (red) and ventral (cyan) predicted
536 hemilineages. Note that the ventral (cyan) hemilineages contains significantly longer axons (ascending and
537 descending projection neurons) compared to dorsal (red) hemilineage neurons consistent with what has been
538 observed in larva (Truman, 2010). $P = .0034$, via 2-sided Wilcoxon rank sum test.

539 **Fig. S3. Hemilineage identity determines synapse targeting to motor or sensory neuropil domains**

540 2D kernel density estimates for all hemilineages not shown in Figure 4. Density maps are of post-synaptic and
541 pre-synaptic densities for four neuroblast lineages. Note the restricted domains, and how both pre- and post-
542 synaptic sites remain in the same functional neuropil domain. Green and magenta regions represent density
543 estimates for the pre-motor and post-sensory neurons for segment A1. Posterior view, dorsal up, midline
544 dashed line.

545 **Fig. S4. Known Hb+ or Cas+ neurons identified in the TEM reconstruction**

546 Cyan: neurons known to be Hb+. Magenta, neurons known to be Cas+. Posterior view, midline, dashed line;
547 inset, dorsal view, anterior up.

548 **Fig. S5. Neurons with a common temporal identity project widely within the neuropil**

549 (A-F) Skeletons of 6 lineages colored by inferred birth order (cyan, early-born) to (magenta, late-born).
550 Posterior view, dorsal up.

551 (G) Quantification of cortex neurite length in each neuroblast lineage.

552 (H) Overlay of all six lineages; note the intermingling of early- and late-born neuronal projections.

553 (I,J) Pre- or post-synapse distributions of neurons position labeled by neuronal temporal identity; note the
554 intermingling of synapses from early- and late-born neurons.

555

561 **Fig. S6. Neurons in a hemilineage have more similar synaptic targeting than neurons in a temporal**
562 **cohort**

563 (A) Combined synapse similarity clustering similar to Figure 5E. Neuron names are colored either by
564 hemilineage or by temporal cohort. Note the lack of coherent clusters of temporally-related neurons from
565 different hemilineages.

566 (B) Mean combined synapse similarity of neurons from hemilineages or temporal cohorts. Mean similarity
567 was calculated by randomly selecting pairs of neurons in the same hemilineage or the same temporal cohort
568 100 times. $p < .0001$ via 2-sided Wilcoxon rank sum test.

569

570

References

571

1. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. *Nature reviews. Genetics* 1(1):20-29.
2. McDonald JA, *et al.* (1998) Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. *Genes Dev* 12(22):3603-3612.
3. Weiss JB, *et al.* (1998) Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. *Genes Dev* 12(22):3591-3602.
4. Isshiki T, Takeichi M, & Nose A (1997) The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. *Development (Cambridge, England)* 124(16):3099-3109.
5. McDonald JA & Doe CQ (1997) Establishing neuroblast-specific gene expression in the Drosophila CNS: huckebein is activated by Wingless and Hedgehog and repressed by Engrailed and Gooseberry. *Development (Cambridge, England)* 124(5):1079-1087.
6. Skeath JB, Zhang Y, Holmgren R, Carroll SB, & Doe CQ (1995) Specification of neuroblast identity in the Drosophila embryonic central nervous system by gooseberry-distal. *Nature* 376(6539):427-430.
7. Zhang Y, Ungar A, Fresquez C, & Holmgren R (1994) Ectopic expression of either the Drosophila gooseberry-distal or proximal gene causes alterations of cell fate in the epidermis and central nervous system. *Development (Cambridge, England)* 120(5):1151-1161.
8. Chu-LaGraff Q & Doe CQ (1993) Neuroblast specification and formation regulated by wingless in the Drosophila CNS. *Science (New York, N.Y.)* 261(5128):1594-1597.
9. Isshiki T, Pearson B, Holbrook S, & Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. *Cell* 106(4):511-521.
10. Skeath JB & Doe CQ (1998) Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. *Development (Cambridge, England)* 125(10):1857-1865.
11. Truman JW, Moats W, Altman J, Marin EC, & Williams DW (2010) Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. *Development (Cambridge, England)* 137(1):53-61.
12. Harris RM, Pfeiffer BD, Rubin GM, & Truman JW (2015) Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. *eLife* 4.
13. Lacin H & Truman JW (2016) Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. *eLife* 5:e13399.
14. Kolodkin AL & Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. *Cold Spring Harbor perspectives in biology* 3(6).
15. Ohyama T, *et al.* (2015) A multilevel multimodal circuit enhances action selection in Drosophila. *Nature* 520(7549):633-639.
16. Doe CQ & Goodman CS (1985) Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. *Developmental biology* 111(1):193-205.
17. Dumstrei K, Wang F, & Hartenstein V (2003) Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 23(8):3325-3335.
18. Bossing T, Udolph G, Doe CQ, & Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. *Developmental biology* 179(1):41-64.
19. Schmid A, Chiba A, & Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. *Development (Cambridge, England)* 126(21):4653-4689.
20. Schmidt H, *et al.* (1997) The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. *Developmental biology* 189(2):186-204.
21. Lacin H & Truman JW (2016) Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. *eLife* 5:e13399.
22. Birkholz O, Rickert C, Nowak J, Coban IC, & Technau GM (2015) Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. *Biology open* 4(4):420-434.
23. Kohwi M, Lupton JR, Lai SL, Miller MR, & Doe CQ (2013) Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. *Cell* 152(1-2):97-108.
24. Costa M, Manton JD, Ostrovsky AD, Prohaska S, & Jefferis GS (2016) NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases. *Neuron* 91(2):293-311.

623

624

625

626 25. Wreden CC, *et al.* (2017) Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct
627 Sensorimotor Circuits. *Current biology : CB* 27(10):1521-1528.e1524.

628 26. Baumgardt M, *et al.* (2014) Global programmed switch in neural daughter cell proliferation mode triggered by a
629 temporal gene cascade. *Developmental cell* 30(2):192-208.

630 27. Landgraf M, Sanchez-Soriano N, Technau GM, Urban J, & Prokop A (2003) Charting the Drosophila neuropile: a
631 strategy for the standardised characterisation of genetically amenable neurites. *Developmental biology* 260(1):207-225.

632 28. Mauss A, Tripodi M, Evers JF, & Landgraf M (2009) Midline signalling systems direct the formation of a neural
633 map by dendritic targeting in the Drosophila motor system. *PLoS Biol* 7(9):e1000200.

634 29. Seroka AQ & Doe CQ (2019) The Hunchback temporal transcription factor determines motor neuron axon and
635 dendrite targeting in Drosophila. *Development (Cambridge, England)*.

636 30. Doe CQ (2017) Temporal Patterning in the Drosophila CNS. *Annu. Rev. Cell Dev. Biol.* 33:in press.

637 31. Kambadur R, *et al.* (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in
638 the Drosophila CNS. *Genes Dev* 12(2):246-260.

639 32. Heckscher ES, *et al.* (2015) Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that
640 Maintains Left-Right Symmetric Muscle Contraction Amplitude. *Neuron* 88(2):314-329.

641 33. Zlatic M, Landgraf M, & Bate M (2003) Genetic specification of axonal arbors: atonal regulates robo3 to position
642 terminal branches in the Drosophila nervous system. *Neuron* 37(1):41-51.

643 34. Zlatic M, Li F, Strigini M, Grueber W, & Bate M (2009) Positional cues in the Drosophila nerve cord: semaphorins
644 pattern the dorso-ventral axis. *PLoS Biol* 7(6):e1000135.

645 35. Yoshikawa S, McKinnon RD, Kokel M, & Thomas JB (2003) Wnt-mediated axon guidance via the Drosophila
646 Derailed receptor. *Nature* 422(6932):583-588.

647 36. Fekete DM, Perez-Miguelanz J, Ryder EF, & Cepko CL (1994) Clonal analysis in the chicken retina reveals
648 tangential dispersion of clonally related cells. *Developmental biology* 166(2):666-682.

649 37. Mihalas AB & Hevner RF (2018) Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of
650 mouse cortical intermediate progenitors. *Development (Cambridge, England)* 145(17).

651 38. Wong LL & Rapaport DH (2009) Defining retinal progenitor cell competence in *Xenopus laevis* by clonal analysis.
652 *Development (Cambridge, England)* 136(10):1707-1715.

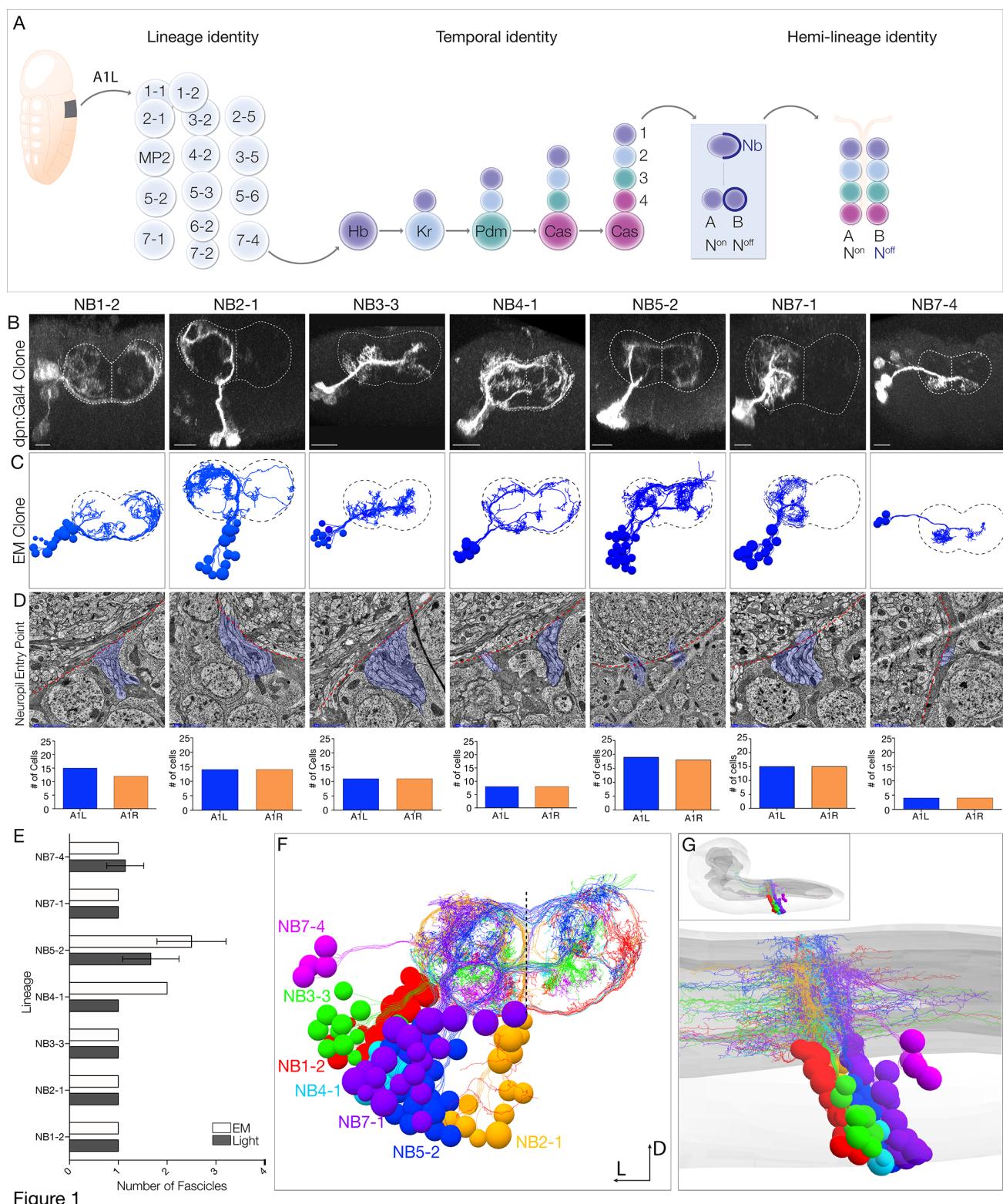
653 39. Yu YC, Bultje RS, Wang X, & Shi SH (2009) Specific synapses develop preferentially among sister excitatory
654 neurons in the neocortex. *Nature* 458(7237):501-504.

655 40. Zipursky SL & Grueber WB (2013) The molecular basis of self-avoidance. *Annual review of neuroscience* 36:547-568.

656 41. Petrovic M & Hummel T (2008) Temporal identity in axonal target layer recognition. *Nature* 456(7223):800-803.

657 42. Kulkarni A, Ertekin D, Lee CH, & Hummel T (2016) Birth order dependent growth cone segregation determines
658 synaptic layer identity in the Drosophila visual system. *eLife* 5:e13715.

659 43. Zhu S, *et al.* (2006) Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal
660 identity. *Cell* 127(2):409-422.


661 44. Clark MQ, McCumsey SJ, Lopez-Darwin S, Heckscher ES, & Doe CQ (2016) Functional Genetic Screen to
662 Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs. *G3*
663 (*Bethesda*).

664 45. Syed MH, Mark B, & Doe CQ (2017) Steroid hormone induction of temporal gene expression in Drosophila brain
665 neuroblasts generates neuronal and glial diversity. *eLife* 6.

666 46. Carreira-Rosario A, *et al.* (2018) MDN brain descending neurons coordinately activate backward and inhibit forward
667 locomotion. *eLife* 7.

668

669

670

Figure 1

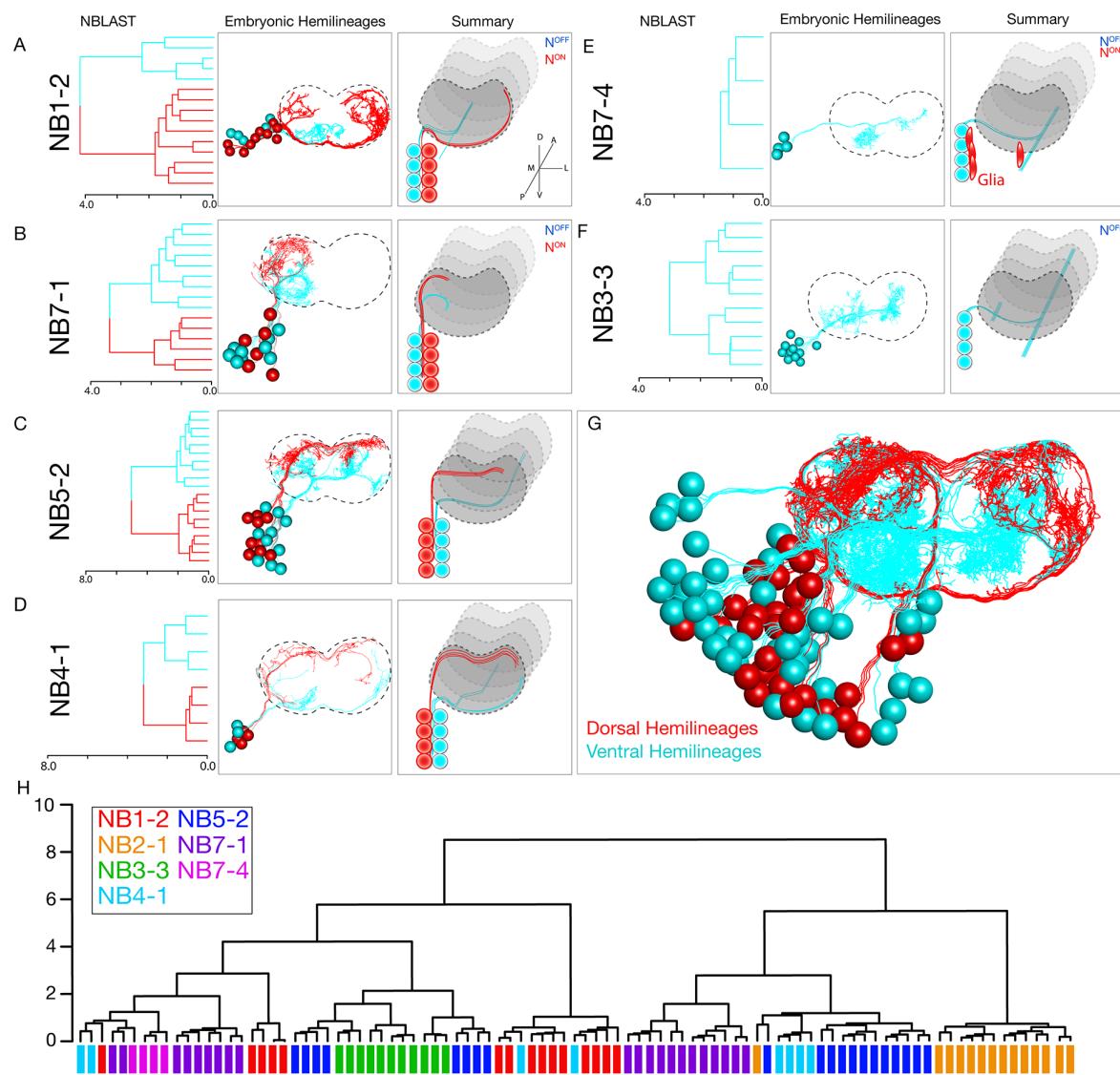


Figure 2

671

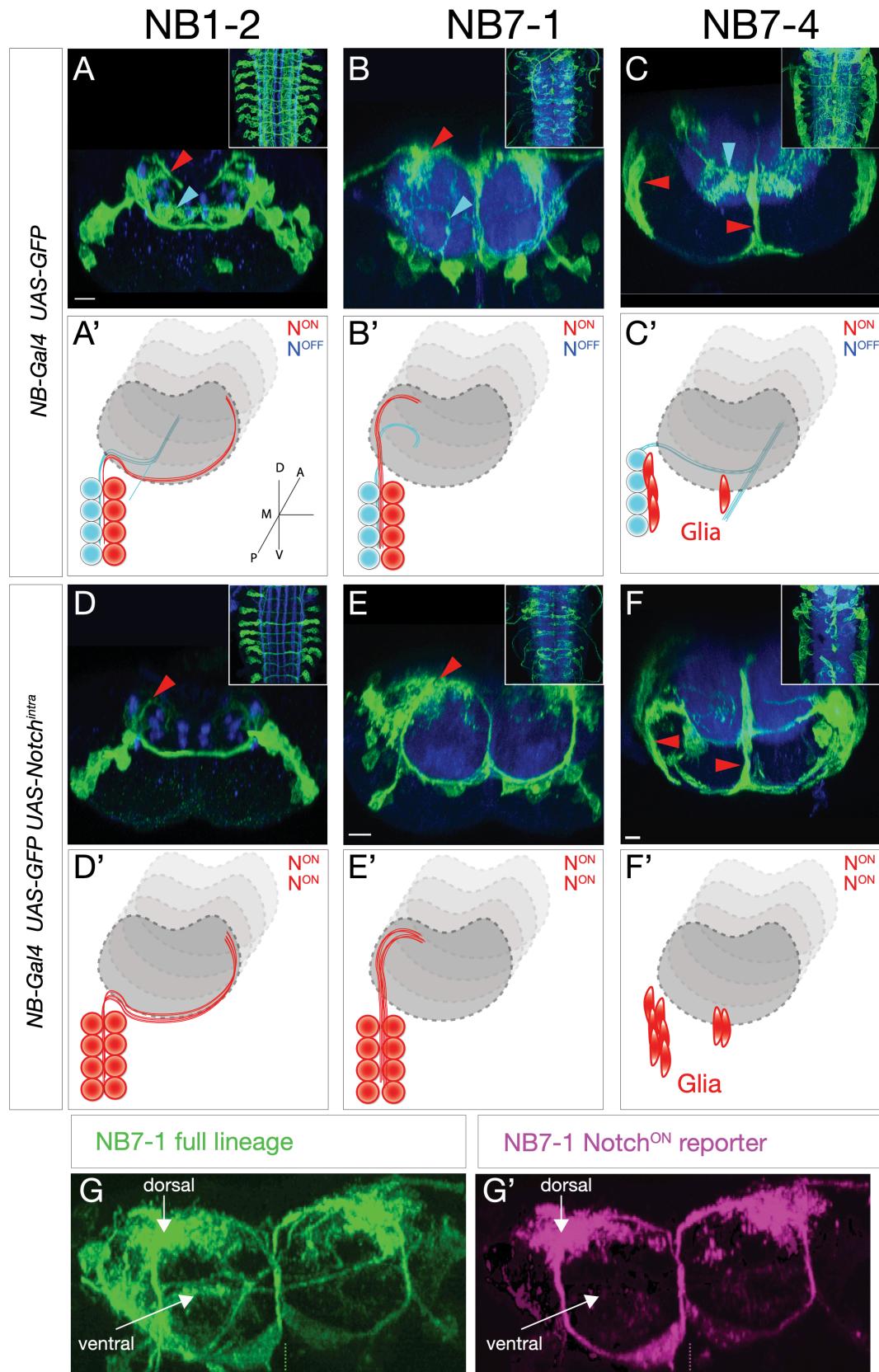


Figure 3

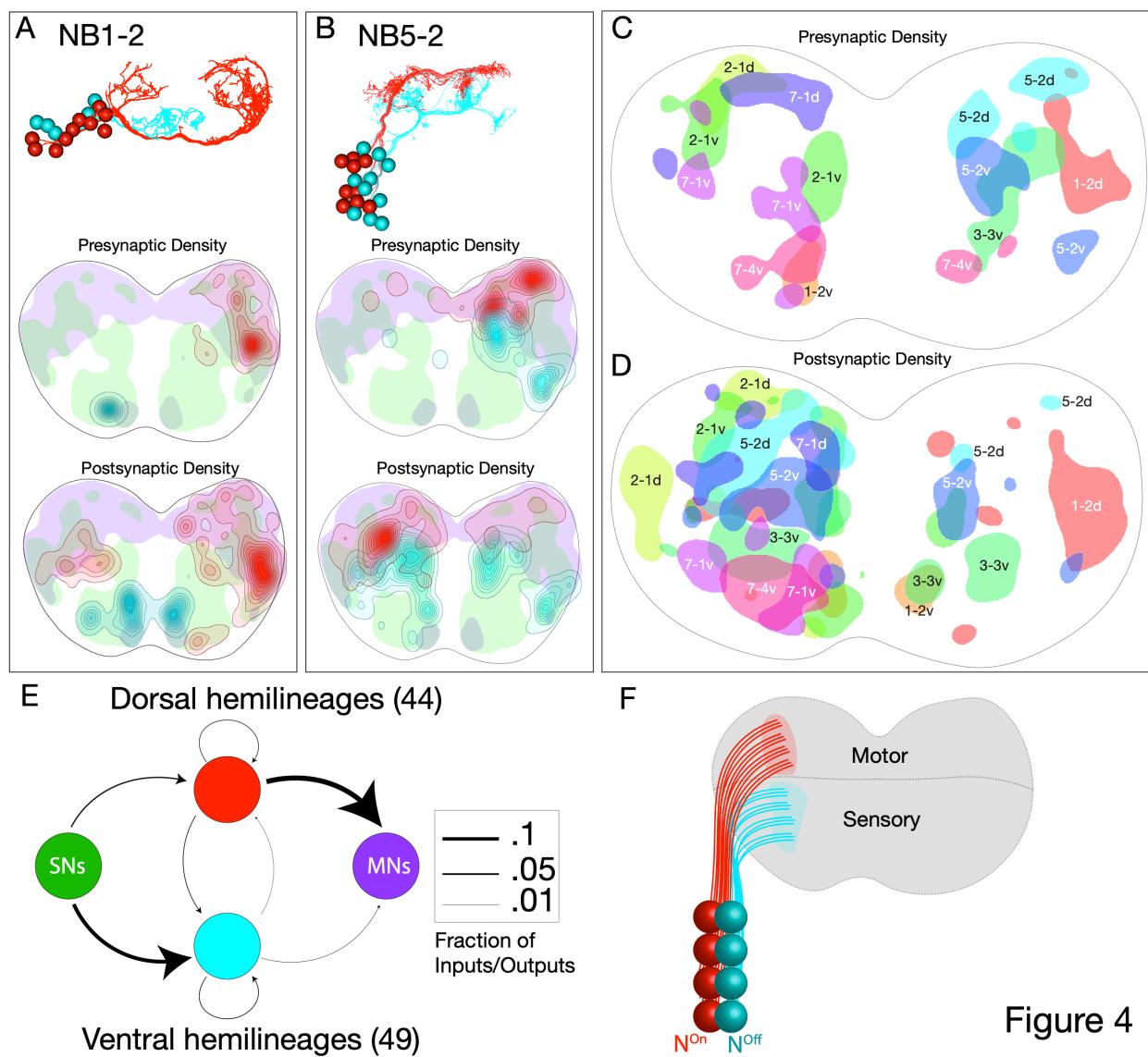
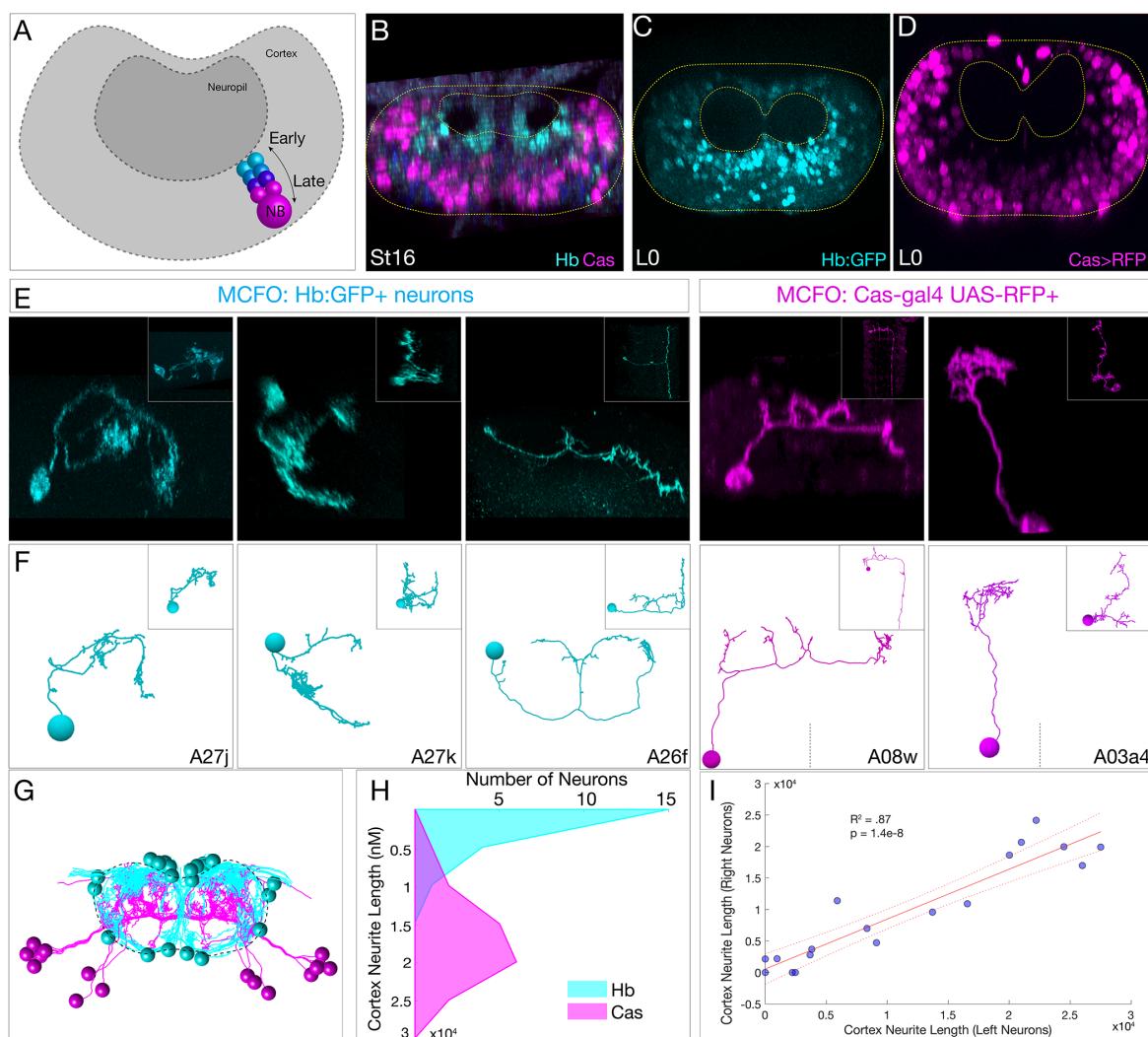



Figure 4

Figure 5

676

Figure 6

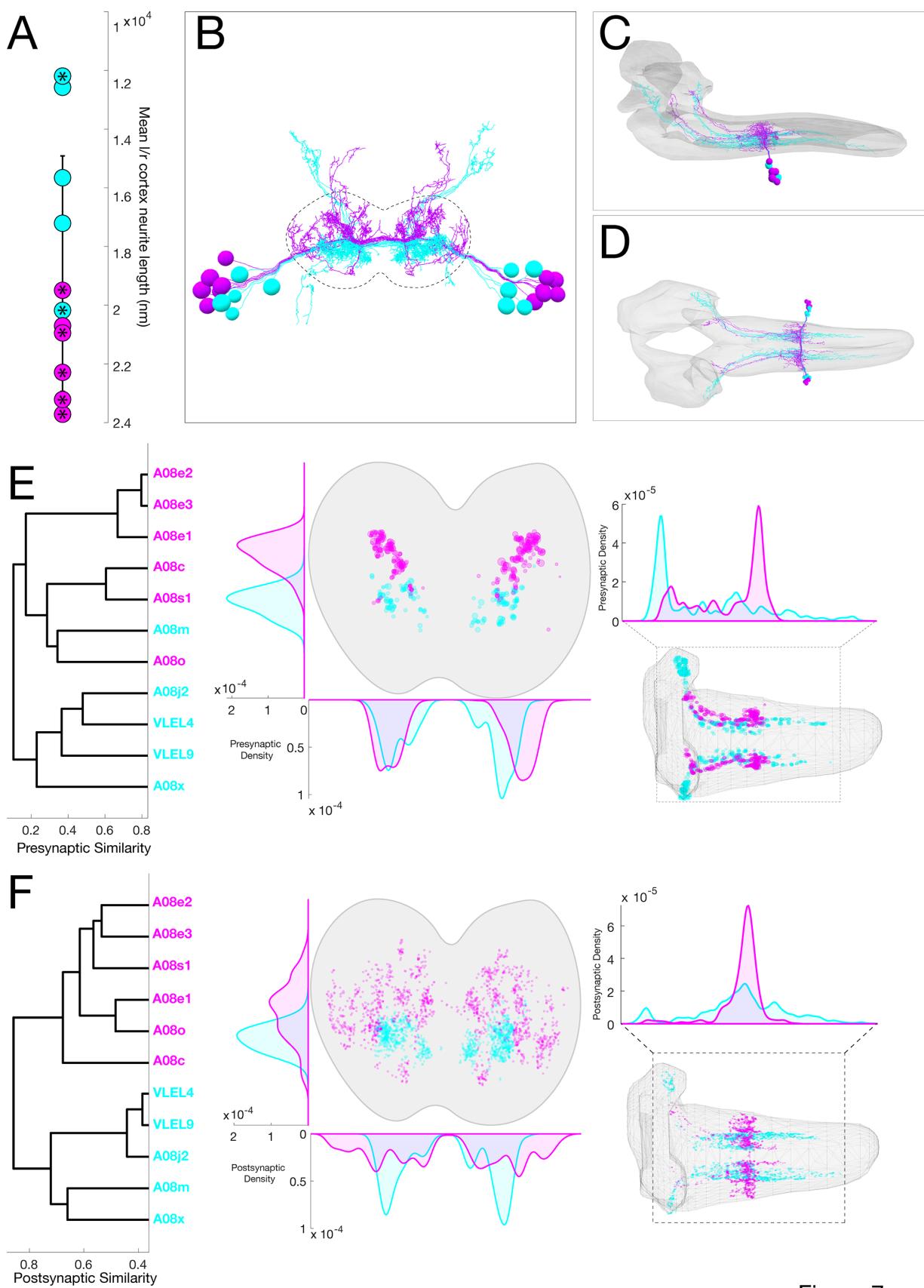


Figure 7

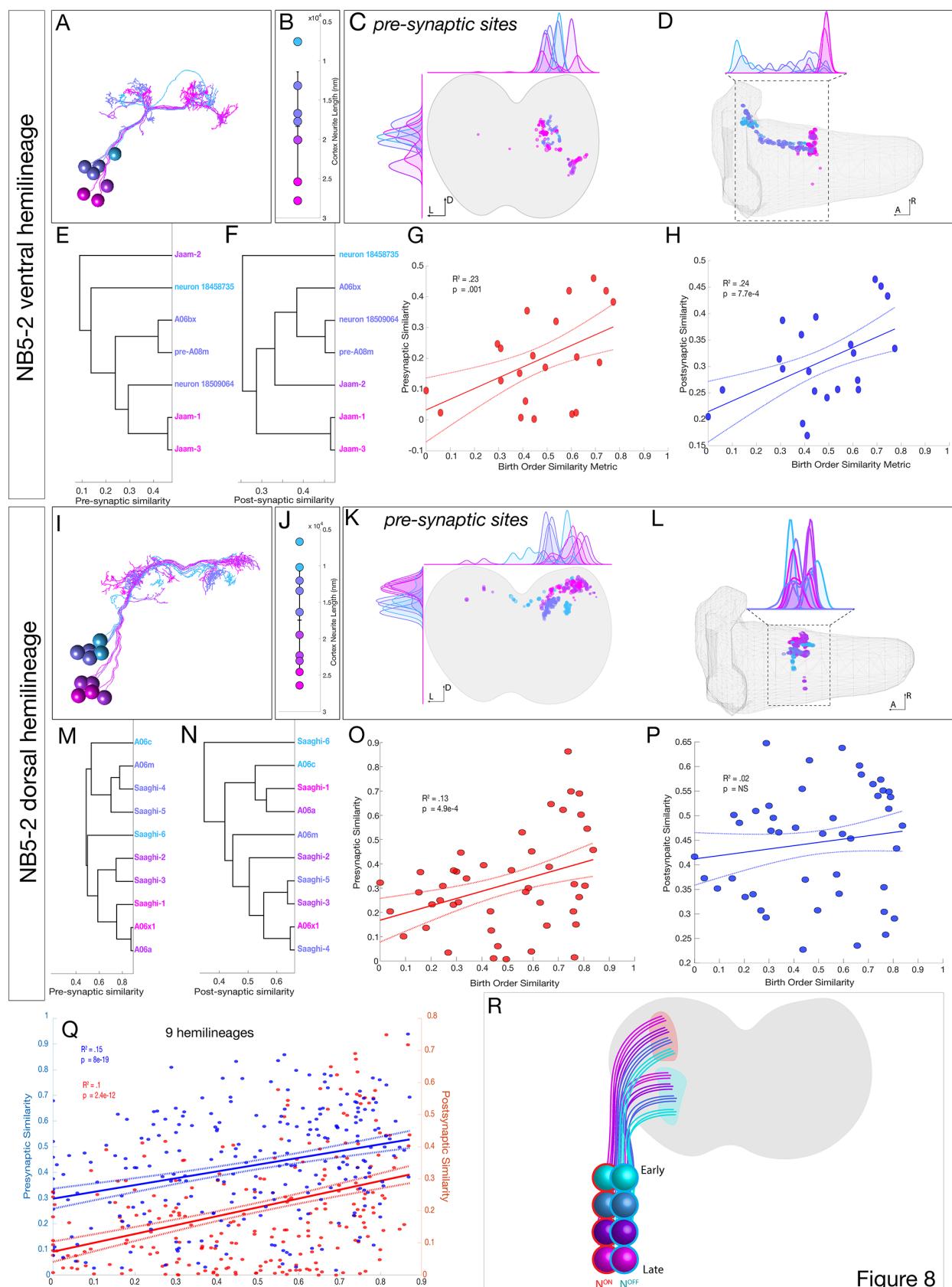
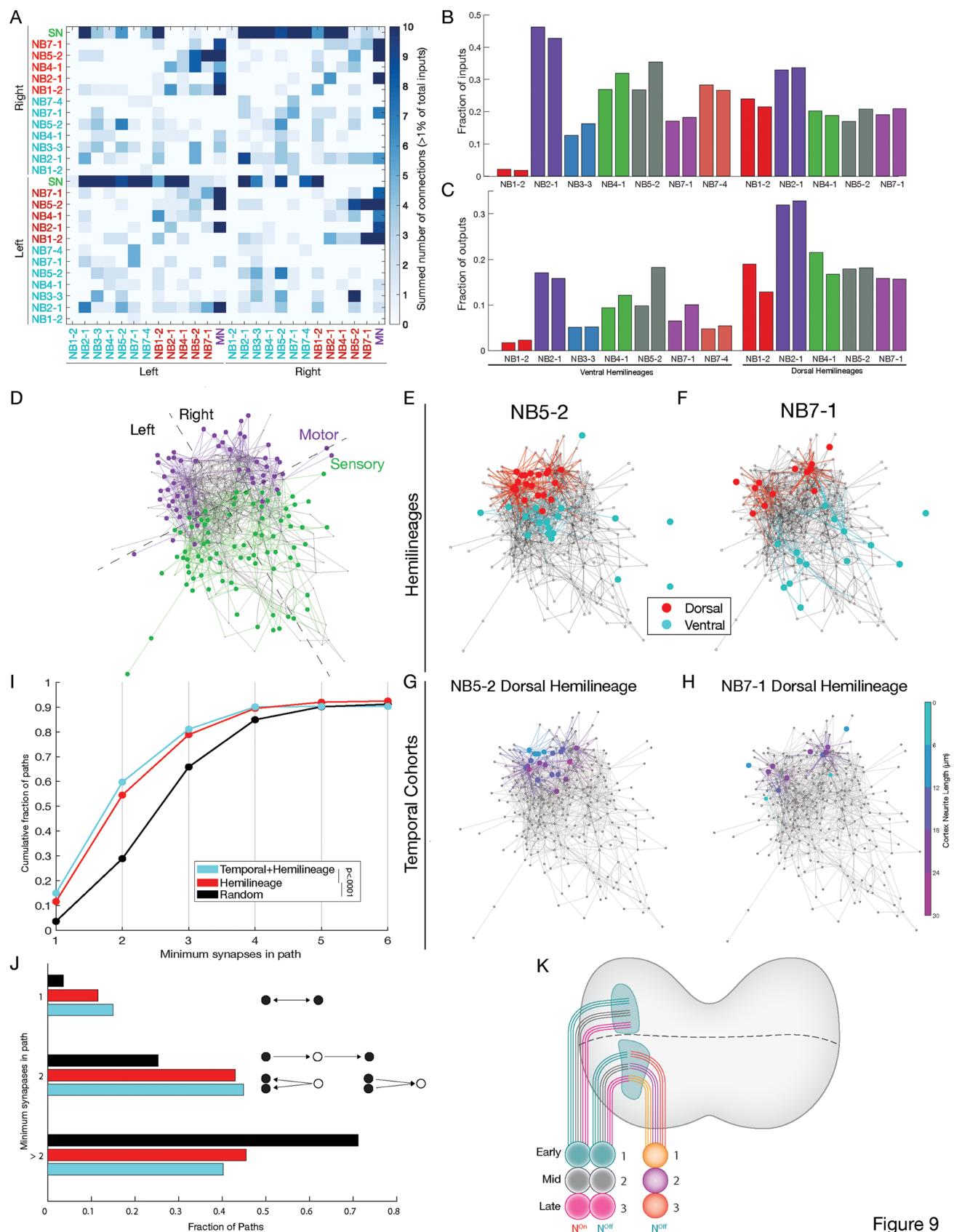
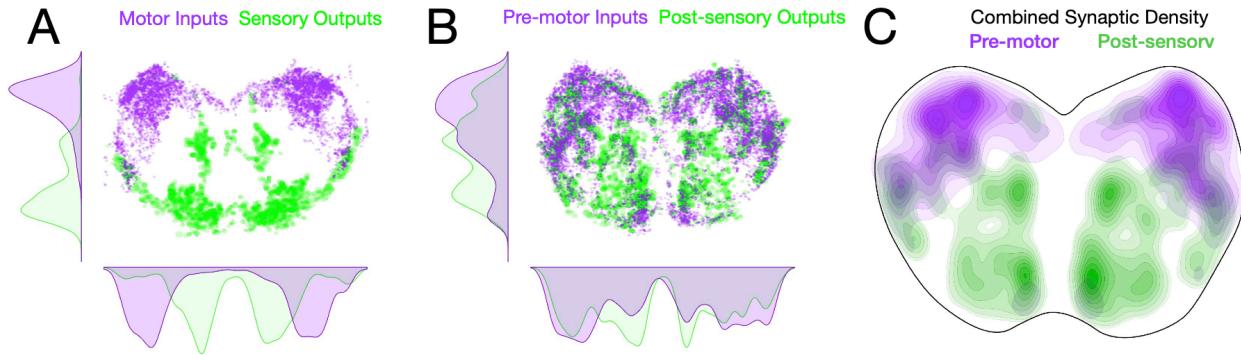
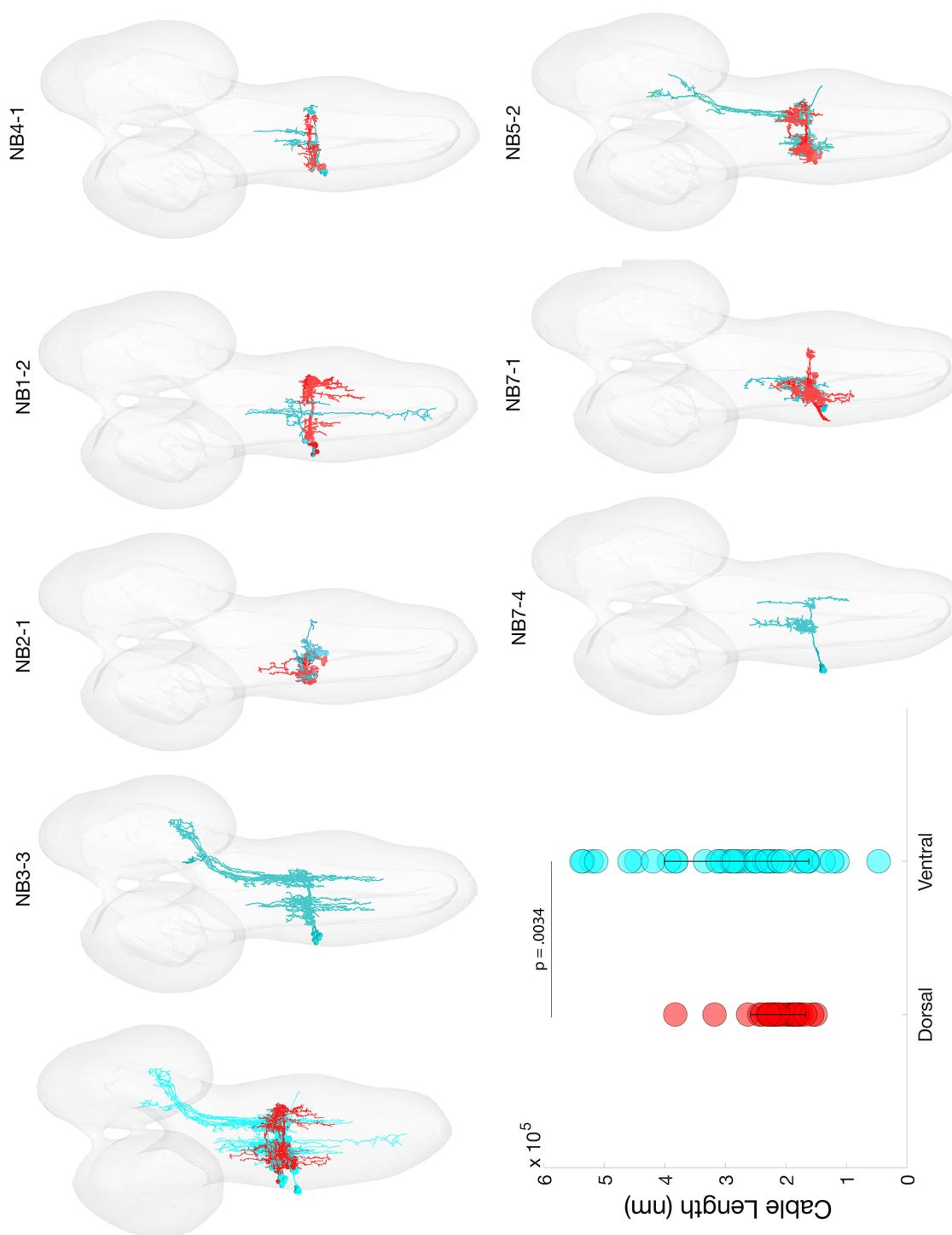
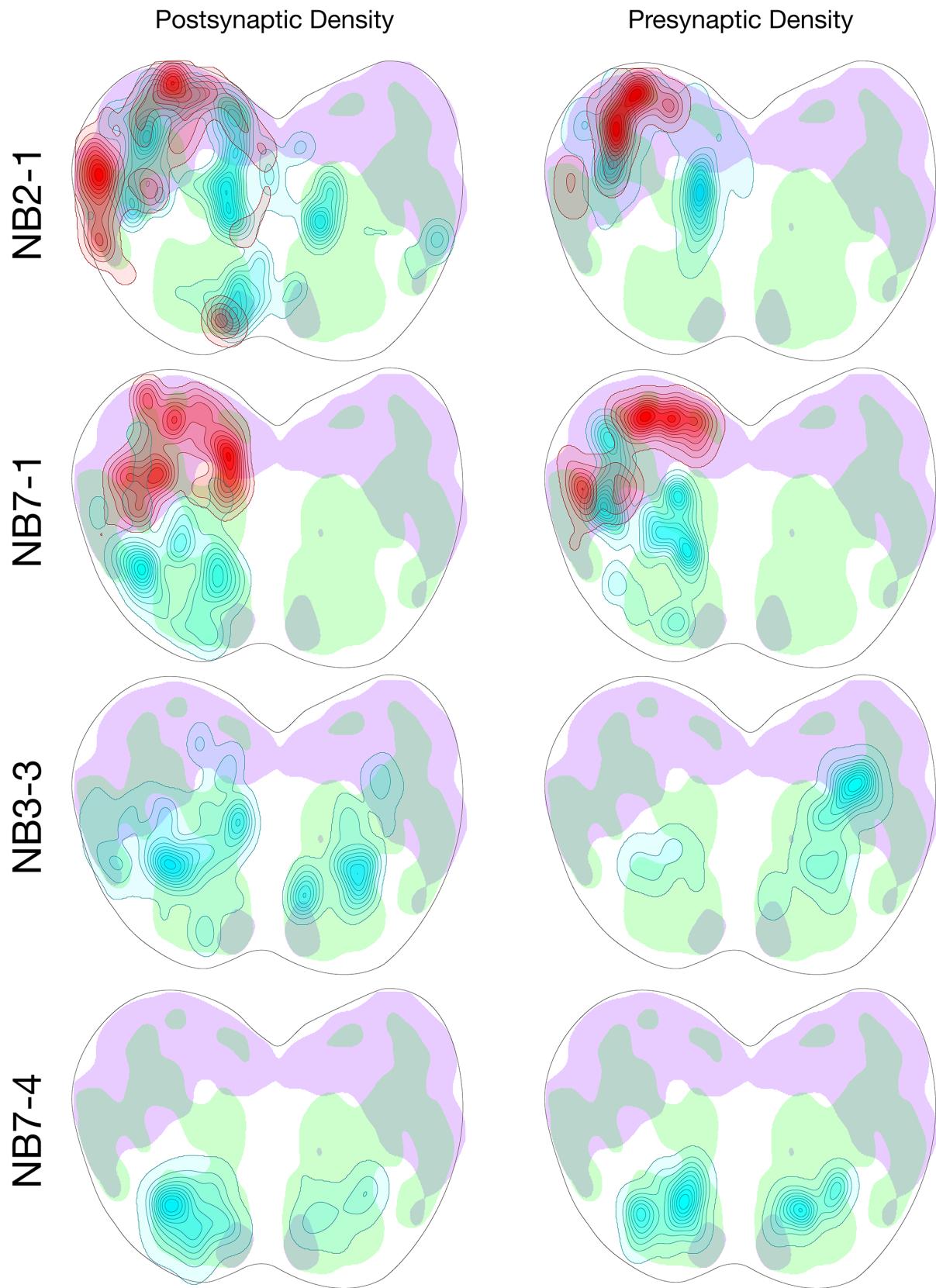




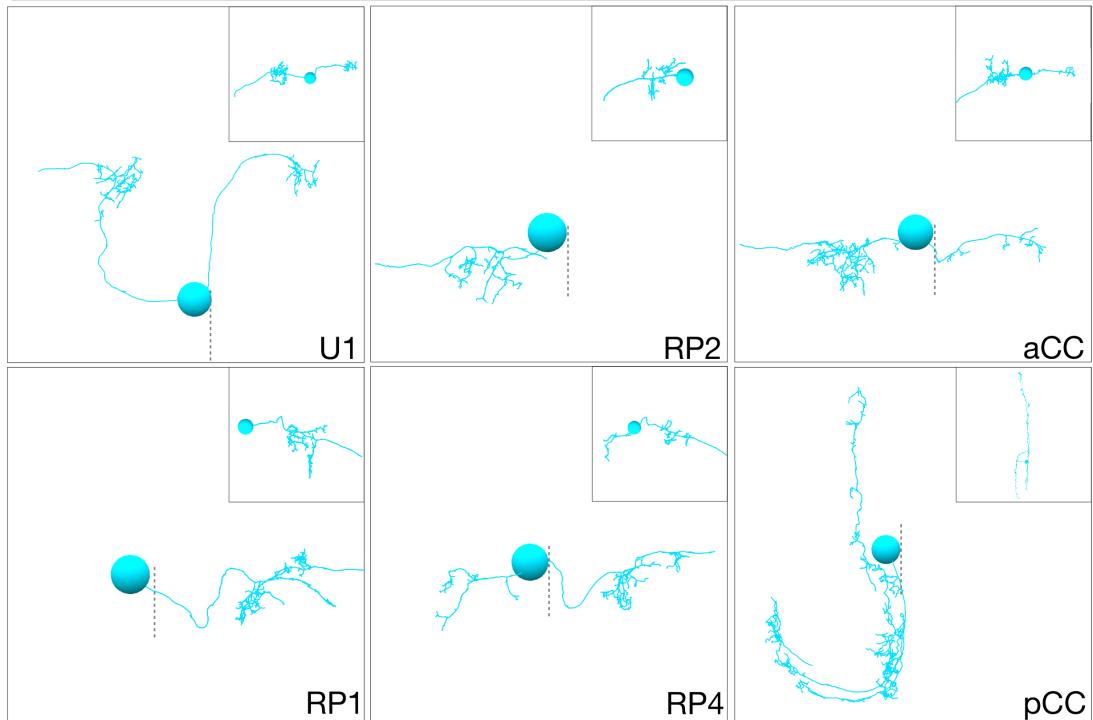
Figure 8



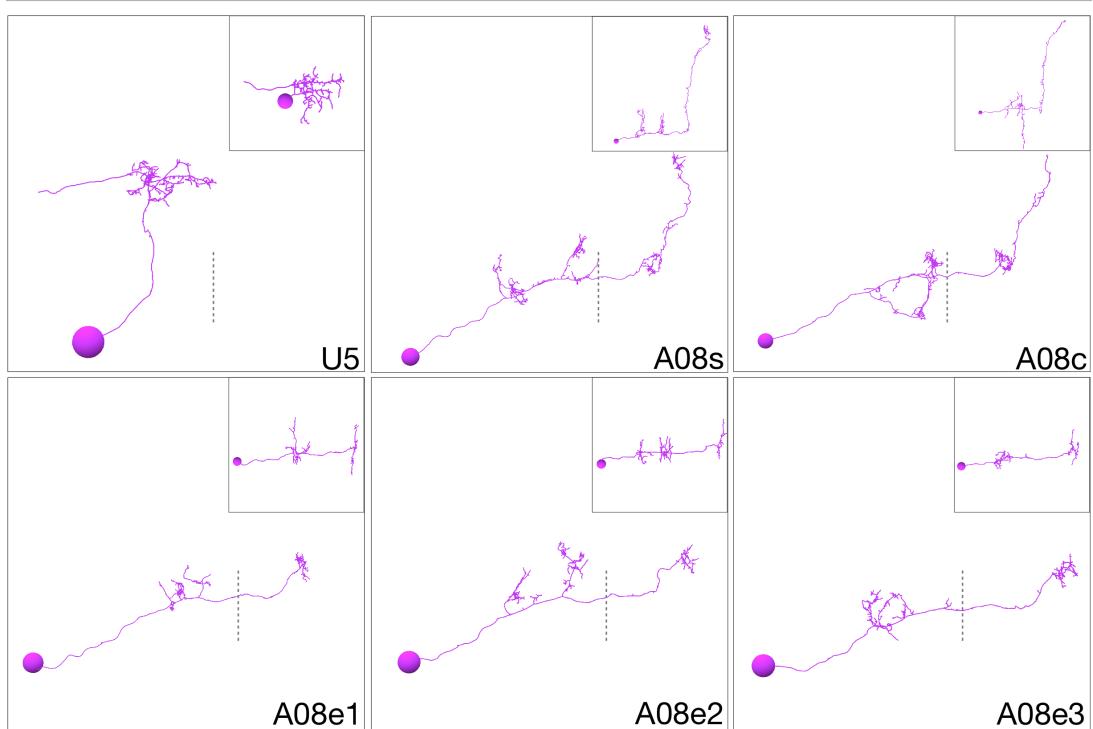
Pre-motor and post-sensory neuronal synapses localize to dorsal/ventral neuropil respectively

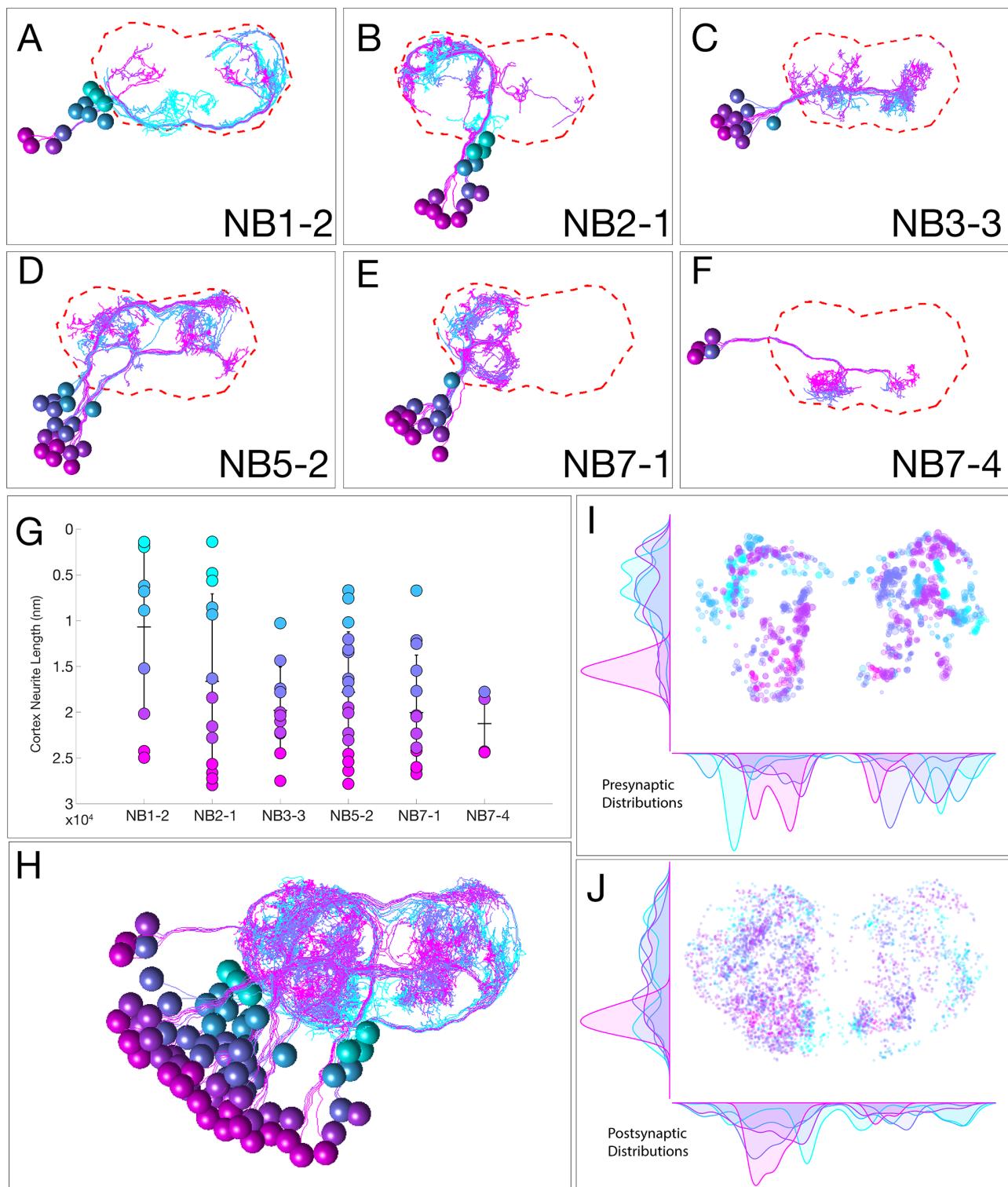

Supplemental Figure 1

680



Supplemental Figure 2


681


Previously identified early-born Hb⁺ neurons

Previously identified late-born Cas⁺ neurons

Supplemental Figure 4

Supplemental Figure 5

684