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ABSTRACT (150 words)

Therapeutic antibody optimization is time and resource intensive, largely because it requires
low-throughput screening (102 variants) of full-length IgG in mammalian cells, typically resulting
in only a few optimized leads. Here, we use deep learning to interrogate and predict antigen-
specificity from a massively diverse sequence space to identify globally optimized antibody
variants. Using a mammalian display platform and the therapeutic antibody trastuzumab,
rationally designed site-directed mutagenesis libraries are introduced by CRISPR/Cas9-
mediated homology-directed repair (HDR). Screening and deep sequencing of relatively small
libraries (104) produced high quality data capable of training deep neural networks that
accurately predict antigen-binding based on antibody sequence. Deep learning is then used to
predict millions of antigen binders from an in silico library of ~108 variants, where experimental
testing of 30 randomly selected variants showed all 30 retained antigen specificity. The full set
of in silico predicted binders is then subjected to multiple developability filters, resulting in
thousands of highly-optimized lead candidates. With its scalability and capacity to interrogate
high-dimensional protein sequence space, deep learning offers great potential for antibody

engineering and optimization.

INTRODUCTION

In antibody drug discovery, the ‘target-to-hit' stage is a well-established process, as screening
hybridomas, phage or yeast display libraries typically result in a number of potential lead candidates.
However, the time and costs associated with lead candidate optimization often take up the majority of
the preclinical discovery and development cycle’. This is largely due to the fact that lead optimization
of antibody molecules consists of addressing multiple parameters in parallel, including expression level,
viscosity, pharmacokinetics, solubility, and immunogenicity?3. Once a lead candidate is discovered,
additional engineering is often required; phage and yeast display offer a powerful method for high-
throughput screening of large mutagenesis libraries (>10°), however they are primarily only used for
increasing affinity or specificity to the target antigen*. The fact that nearly all therapeutic antibodies
require expression in mammalian cells as full-length IgG means that the remaining development and

optimization steps must occur in this context. Since mammalian cells lack the capability to stably
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replicate plasmids, this last stage of development is done at very low-throughput, as elaborate cloning,
transfection and purification strategies must be implemented to screen libraries in the max range of 103,
meaning only minor changes (e.g., point mutations) are screened?®. Interrogating such a small fraction
of protein sequence space also implies that addressing one development issue will frequently cause
rise of another or even diminish antigen binding altogether, making multi-parameter optimization very
challenging. This challenge frequently results in antibodies with suboptimal biophysical properties for
clinical development, which can lead to adverse side effects or even drug failure. For example, self-
administered, subcutaneous injection of antibodies is becoming an increasingly used approach for
patients requiring frequent dosing, but the identification of highly soluble, non-viscous antibodies which
retain high biological activity is immensely difficult’. The withdrawal of Pfizer's anti-PCSK9 antibody,
bococizumab, from clinical trials is an even more drastic example, where the immunogenicity of the
molecule adversely effected long-term treatment efficacy. Conversely, Sanofi and Regeneron’s
clinically approved antibody, alirocumab, has the same molecular target of PCSK9, but shows almost

no immunogenic effects’.

Machine learning applied to biological sequence data offers a powerful approach to augment protein
engineering by constructing models capable of making predictions of genotype-phenotype
relationships®®. This is due to the capability of models to extrapolate complex relationships between
sequence and function. One of the principle challenges in constructing accurate machine learning
models is the collection of appropriate high-quality training data. Directed evolution platforms are well-
suited for this as they rely on the linking of biological sequence data (DNA, RNA, protein) to a phenotypic
output'®. In fact, it has long been proposed to use machine learning models trained on data generated
by mutagenesis libraries as a means to guide protein engineering'"'2. Recently, Gaussian processes,
a Bayesian learning model, were used to engineer cytochrome enzymes, enabling navigation through
a vast protein sequence space to discover highly thermostable variants'®. Similarly, the design and
screening of a structure-guided library of channel rhodopsin membrane proteins was used to train
Gaussian process regression models, which were able to accurately predict variants that could express

and localize on mammalian cell membranes™*.

In recent years, access to deep sequencing and parallel computing has enabled the construction of
deep learning models capable of predicting molecular phenotype from sequence data''6. For example,
deep learning has been used to learn the sequence specificities of RNA- and DNA-binding proteins'’,
regulatory grammar of protein expression in yeast'®, and HLA-neoantigen presentation on tumor cells®.
In most cases deep (artificial) neural networks represent the class of algorithm utilized. While the
complexity of neural networks has changed drastically since their conception, the fundamental concept
remains the same: mimicking the connections of biological neurons to learn complex relationships
between variables?®. As an extension of a single-layer neural network, or perceptron®!, deep learning
incorporates multiple hidden layers to decipher relationships buried in large, high-dimensional data sets,
such as the millions of reads gathered from a single deep sequencing experiment. Well trained models
can then be used to make predictions on completely unseen and novel variants. This application of
model extrapolation lends itself perfectly to protein engineering because it provides a way to interrogate

a much larger sequence space than what is physically possible. For example, even for a short stretch
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82  of just 10 amino acids, the combinatorial sequence diversity explodes to 10'%, a size which is nearly

83  impossible to interrogate experimentally.

84 Here, we leverage the power of deep learning to perform multi-parameter optimization of therapeutic
85  antibodies (fulllength IgG) directly in mammalian cells (Figure 1). Starting with a mammalian display
86  cell line?? expressing the therapeutic antibody trastuzumab (Herceptin), we use CRISPR-Cas9-
87 mediated homology-directed repair (HDR) to introduce site-directed mutagenesis libraries in the
88  variable heavy chain complementarity determining region 3 (CDRH3)?. In order to generate information
89 rich training data, single-site deep mutational scanning (DMS) is first performed?*, which is then used
90 to guide the design of combinatorial mutagenesis libraries. An experimental (physical) library size of 5
91 x 10*variants was then screened for specificity to the antigen HER2. All binding and non-binding variant
92  sequences were then used to train recurrent and convolutional deep neural networks, which when fully-
93 trained and optimized were able with high accuracy and precision to predict antigen-specificity based
94  on antibody sequence. Neural networks are then used to predict antigen-specificity on a subset of
95  sequence variants from the DMS-based combinatorial mutagenesis library (~10® sequences), resulting
96 in >3.0 x 108 variants predicted to have a high probability of being antigen-specific. A random selection
97  of variants were recombinantly expressed and tested, resulting in 30 out of 30 showing antigen-specific
98 binding. The in silico library of predicted binders are then subjected to several sequence-based in silico
99 filtering steps to optimize for developability parameters such as viscosity, clearance, solubility and
100  immunogenicity, resulting in nearly 5,000 antibody sequence variants predicted to have more optimal

101 properties than the starting trastuzumab sequence.
102 RESULTS

103 Deep mutational scanning determines antigen-specific sequence landscapes and guides

104  rational antibody library design

105  As the amino acid sequence of an antibody’s CDRH3 is a key determinant of antigen specificity, we
106 performed DMS on this region to resolve the specificity determining residues. To start, a hybridoma
107  cell-line was used that expressed a trastuzumab variant that could not bind HER2 antigen (mutated
108 CDRHS3 sequence) (Supplementary Fig. 1). Libraries were generated by CRISPR-Cas9-mediated
109  homology-directed mutagenesis (HDM)? by transfecting guide RNA (gRNA) targeting the CDRH3 and
110  a pool of homology templates in the form of single-stranded oligonucleotides (ssODNs) containing NNK
111 degenerate codons at single-sites tiled across CDRH3 (Figure 2a, Supplementary Fig. 2). Libraries
112 were then screened by fluorescence activated cell sorting (FACS), and populations expressing surface
113  1gG which either were binding or not binding to antigen were isolated and subjected to deep sequencing
114 (lllumina MiSeq) (Supplementary Table 1). Deep sequencing data was then used to calculate
115 enrichment scores of the 10 positions investigated, which revealed six positions that were sufficiently
116  amenable to a wide-range of mutations and an additional three positions that were marginally accepting
117  to defined mutations (Figure 2b). Although residues 102D, 103G, 104F, and 105Y appear to be
118  contacting amino acids of the CDRH3 loop with HER22526, 105Y is the only residue completely fixed.
119 In addition to DMS, we also explored the capacity of structural modeling to identify the prospective

120  antigen-binding landscape by using structure-guided modeling with Rosetta, a leading software platform
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121 for computational protein design?’. After performing 5,000 redesigns of trastuzamab (PDB id: 1N8Z),
122 preceded by a stochastic backbone flexibility (FastRelax) step, 48 possible variants were generated
123  (Figure 2c). The resulting sequence logo plot from these generated variants, however, differed

124  substantially from the DMS-based sequence logo plot.

125  The limited number of predictions and diversity from Rosetta suggested that sequence logo plots
126 generated by DMS are a better option to guide the rational design of a combinatorial mutagenesis
127  library, which consisted of degenerate codons across all positions (except 105Y) (Supplementary Fig.
128 3, Supplementary Table 7). Degenerate codons were selected per position based on their amino acid
129  frequencies which most closely resembled the degree of enrichment found in the DMS data following
130 1, 2, and 3 rounds of antigen-specific enrichment (Supplementary Fig. 2, Equation 2). This
131 combinatorial library possesses a theoretical protein sequence space of 7.17 x 108, far greater than the
132 single-site DMS library diversity of 200. Libraries containing CDRH3 variants were again generated in
133  hybridoma cells through CRISPR-Cas9-mediated HDM in the same non-binding trastuzumab clone
134  described previously (Figure 2d). Antigen binding cells were isolated by two rounds of enrichment by
135  FACS (Figure 2d, Supplementary Fig. 3) and the binding/non-binding populations were subjected to
136 deep sequencing. Sequencing data identified 11,300 and 27,539 unique binders and non-binders,
137  respectively (Supplementary Table 2). These sequence variants represented only a miniscule 0.0054%

138  of the theoretical protein sequence space of the combinatorial mutagenesis library.

139 Discriminating between the binding and non-binding sequences in the combinatorial library is
140 challenging at the sequence level. Amino acid usage per position was comparatively similar between
141 antigen binding and non-binding populations (Figure 2e), thus making it difficult to develop any sort of
142  heuristic rules or decipher observable patterns to identify binding sequences. Thus, we investigated
143  whether structure-based analysis could accurately predict antigen-binding sequences. We used
144 Rosetta to model each of the 11,300 binder and 27,539 non-binder sequences from the combinatorial
145 library on the antibody structure of trastuzumab, and used Rosetta's predicted free energy of binding
146 (ddG) as the discrimination score. This approach, however, yielded a very poor classifier (ROC curve
147  AUC: 0.55, Figure 2f) and revealed that high-dimensional patterns determining antigen-specificity could
148  not be extracted by structural modeling.

149  Training deep neural networks to classify antigen-specificity based on antibody sequence

150 To learn the high-dimensional patterns that determine antigen binding, we set out to develop and train
151 sequence-based deep learning models capable of predicting antibody specificity towards the target
152 antigen HER2. After having compiled deep sequencing data on binding and non-binding CDRH3
153  variants, amino acid sequences were converted to an input matrix by one-hot encoding, an approach
154  where each column of the matrix represents a specific residue and each row corresponds to the position
155  in the sequence, thus a 10 amino acid CDRH3 sequence as here results in a 10 x 20 matrix. Each row
156  will contain a single ‘1’ in the column corresponding to the residue at that position, whereby all other
157  columns/rows receive a ‘0’. We utilized long short-term memory recurrent neural networks (LSTM-RNN)

158 and convolutional neural networks (CNN), which represent two of the main classes of deep learning
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159  models used for biological sequence data'®. LSTM-RNNs and CNNs both stem from standard neural
160  networks, where information is passed along neurons that contain learnable weights and biases,
161 however, there are fundamental differences in how the information is processed. LSTM-RNN layers
162 contain loops, enabling information to be retained from one step to the next, allowing models to
163 efficiently correlate a sequential order with a given output; CNNs, on the other hand, apply learnable
164  filters to the input data, allowing it to efficiently recognize spatial dependencies associated with a given
165  output. Model architecture and hyperparameters (Figures 3a, c) were selected by performing a grid
166 search across various parameters (LSTM-RNN: nodes per layer, batch size, number epochs and
167  optimizing function; CNN: number of filters, kernel size, dropout rate and dense layer nodes) using a k-
168  fold cross-validation of the data set. All models were built to assess their accuracy and precision of
169 classifying binders and non-binders from the available sequencing data. 70% of the original data set
170  was used to train the models and the remaining 30% was split into two test data sets used for model
171 evaluation: one test data set contained the same class split of sequences used to train the model and
172  the other contained a class split of approximately 10/90 binders/non-binders to resemble physiological
173  frequencies (Figure 2d). Performance of the LSTM-RNN and CNN were assessed by constructing
174  receiver operating characteristic (ROC) curves and precision-recall (PR) curves derived from
175 predictions on the unseen testing data sets (Figure 3b, d). Based on conventional approaches to training
176  classification models, the data set was adjusted to allow for a 50/50 split of binders and non-binders
177  during training. Under these training conditions, the LSTM-RNN and CNN were both able to accurately
178  classify unseen test data (ROC curve AUC: 0.9 + 0.0, average precision: 0.9 £ 0.0, Supplementary Fig.
179  5).

180  Next, we used the trained LSTM-RNN and CNN models to classify a random sample of 1 x 10°
181 sequences from the potential sequence space. We observed, however, an unexpectedly high
182  occurrence of positive classifications (25,318 + 1,643 sequences or 25.3 + 1.6%, Supplementary Table
183  3b). With the knowledge that the physiological frequency of binders should be approximately 10-15%,
184  we sought to adjust the classification split of the training data with the hypothesis that models were
185  being subject to some unknown classification bias. Additional models were then trained on classification
186  splits of both 20/80, and 10/90 binders/non-binders, as well as a classification split with all available
187  data (approximately 30/70 binders/non-binders). Unbalancing the sequence classification led to a
188 significant reduction in the percentage of sequences classified as binders, but also led to a reduction in
189  the model performance on the unseen test data (Supplementary Fig. 4-7, Supplementary Tables 3a,
190  b). Through our analysis, we concluded that the optimal data set for training the models was the set
191 inclusive of all known CDRH3 sequences for the following reasons: 1) the percentage of sequences
192  predicted as binders reflects this physiological frequency, 2) this data set maximizes the information
193 the model sees, and 3) model performance on both test data sets. Final model architecture, parameters,
194 and evaluation are shown in Figure 3. As a final measure of model validation, neural networks were
195  trained with a data set containing randomly shuffled binding and non-binding class labels. Model
196 performance of these networks revealed indiscriminate sequence classification on unseen test data
197  (Supplementary Fig. 8), signifying the identification of learned patterns for networks trained with

198  properly classified data.
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199 Predicted binding sequences are recombinantly expressed and antigen-specific

200 Using our DMS-based combinatorial mutagenesis library as a guide (Figure 2d), 7.2 x107 possible
201 sequence variants were generated in silico. The fully-trained LSTM-RNN and CNN models were used
202  toclassify all 7.2 x 107 sequence variants as either antigen binders or non-binders based on a probability
203  score (P), resulting in a prediction of 8.55 x 108 (LSTM-RNN) and 9.52 x 108 (CNN) potential binders
204 (P > 0.50). This represented a reasonable fraction (11-13%) of antigen-specific variants based on
205  experimental screening (Figure 2d). To increase confidence, we increased the prediction threshold for
206  binder classification to P > 0.75 and took the consensus binders between the LSTM-RNN and CNN.
207  This reduced the antigen-specific sequence space down to 3.1 x 10° variants. To validate the precision
208  of our fully trained LSTM-RNN and CNN models, we randomly selected and tested a subset of 30
209 CDRH3 sequences predicted to be antigen-specific (Figure 4a). To further demonstrate the capacity of
210  deep learning to identify novel sequence variants, we also added the criteria that the selected variants
211 must have a minimum Levenshtein distance (LD) of 5 from the original CDRH3 sequence of
212  trastuzumab. CRISPR-Cas9-mediated HDR was used to generate mammalian display cell lines
213  expressing the 30 different sequence variants. Flow cytometry was performed and revealed that 30 of
214  the 30 variants (100%) were antigen-specific (Supplementary Fig. 9). Further analysis was performed
215 on the 30 antigen-binding variants to more precisely quantify the binding kinetics via biolayer
216  interferometry (BLI, FortéBio Octet RED96e) (Figure 4b). The original trastuzumab sequence was
217  measured to have an affinity towards HER2 of 4.0 x 107" M (equilibrium dissociation constant, Kp); and
218 although the majority of variants tested had a slight decrease in affinity, 80% (24/30) were still in the
219  single-digit nanomolar range, 17% (5/30) remained sub-nanomolar, and even one variant (3%) showed
220  a near 3-fold increase in affinity compared to trastuzumab (Ko = 1.4 x 107" M) (Figure 4a, c). We also
221 investigated if there were correlations between model prediction values and measured affinities
222 (Supplementary Fig. 10). While no strong trend was observable, the highest affinity variants tended to

223  have higher prediction values.
224 Sequence space analysis of deep learning predicted variants

225 In order to investigate the sequence space of the predicted binding and non-binding variants, we
226  conducted a sequence similarity network analysis?® of 5,000 randomly selected binding and non-binding
227  sequences (Supplementary Table 4, Supplementary Fig. 11). When generating similarity networks by
228  clustering CDRH3 sequences with a LD < 3, we observed 99.7% of all sequences to be within a single
229 cluster, but when increasing the clustering stringency to a LD < 2, the fraction of sequences found within
230  thelargest cluster is reduced to 30%, with the majority of other sequences not clustering with any other
231 sequence (Figure 5a). While a large portion of the sequences found within the largest cluster are
232 predicted binding sequences, non-binding sequences are also present, illustrating the complexities of
233 the patterns identified by deep neural networks. To further elucidate the high-dimensional patterns of
234 the antigen-binding landscape that deep learning models have identified, we performed the attribution
235 method of Integrated Gradients?® on closely related sequences (LD < 2) (Figure 5b). This analysis
236  provides a means to visualize non-linear combinations of amino acids that contribute to classification
237  as a binder or non-binder. This revealed that unlike position-weight matrices, LSTM-RNN and CNN
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238  models did not equally weight individual residues and positions and thus learned complex non-linear

239  patterns associated with binding and non-binding.

240  Multi-parameter optimization for developability by in silico screening of antibody sequence

241 space

242 Next, we characterized the full 3.1 x 10 deep learning predicted antigen-specific sequences on a
243  number of parameters to identify highly developable candidates compared to the original trastuzumab
244 sequence. As a preliminary metric, we investigated their sequence similarity to the original trastuzumab
245 sequence by calculating the LD. The majority of sequences showed an edit distance of LD > 4 (Figure
246 6a). The first step in filtering was to calculate the net charge and hydrophobicity index in order to
247 estimate the molecule’s viscosity and clearance?. According to Sharma et al., viscosity decreases with
248 increasing variable fragment (Fv) net charge and increasing Fv charge symmetry parameter (FVvCSP);
249 however, the optimal Fv net charge in terms of drug clearance is between 0 and 6.2 with a
250 CDRL1+CDRL3+CDRH3 hydrophobicity index sum (HI sum) < 4. Based on the wide range of values
251 for these parameters in the 3.1 x 108 predicted variants (Figure 6b, c), we filtered any sequences out
252  that had a FVCSP < 6.61 (trastuzumab FvCSP) or if they contained a Fv net charge > 6.2, and an Hl
253 sum > 4, < 0. This filtering criteria greatly reduced the sequence space down to 4.02 x 10° variants. We
254 next padded the CDRH3 sequences with 10 amino acids on the 5’ and 3’ ends and then ran these
255  sequences through CamSol, a protein solubility predictor developed by Sormanni et al.*°, which
256  estimates and ranks sequence variants based on their theoretical solubility. The remaining variants
257 produced a wide-range of protein solubility scores (Figure 6d) and sequences with a score < 0.5
258  (trastuzumab score) were filtered out, leaving 14,125 candidates for further analysis. As a last step in
259  ourin silico screening process, we aimed at reducing immunogenicity by predicting the peptide binding
260 affinity of the variant sequences to MHC Class Il molecules by utilizing NetMHClIpan, a model
261 previously developed by Jensen et al.>'. One output from the model is a given peptide’s % Rank of
262 predicted affinity compared to a set of 200,000 random natural peptides. Typically, molecules with a %
263  Rank < 2 are considered strong binders and those with a % Rank < 10 are considered weak binders to
264 the MHC Class Il molecules scanned. All possible 15-mers from the padded CDRH3 sequences were
265  run through NetMHClIpan. After predicting the affinities for a set of 26 HLA alleles determined to cover
266  over 98% of the global population®, sequences were filtered out if any of the 15-mers contained a %
267  Rank < 5.5 (trastuzumab minimum % Rank) (Figure 6e). The number of 15-mers with a % Rank less
268  than 10 and the average % Rank across all 15-mers for the remaining sequences were also calculated.
269 Sequences with more than two 15-mers with a % Rank < 10 (Figure 6f) and those with an average %
270  Rank < 60.56 (trastuzumab average % Rank) were also filtered out (Figure 6g). All remaining 4,881
271 variants contain values equal to or greater than the parameters of the original trastuzumab sequence.
272  When applying this same filtering scheme on the 11,300 experimentally determined binding sequences
273  (obtained from training / test data), only 9 variants remained. Lastly, to determine the best developable
274 sequences, we calculated an overall developability improvement score based on the mean of
275  normalized values for each relevant parameter (see Materials and Methods), where trastuzumab would
276 have a developability improvement score equal to 0. Of the remaining 4,881 predicted binding

277 sequences, 293 variants were identified to have a higher developability score compared to the
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278 maximum developability score of the 9 experimentally determined binding sequences (Figure 6h). The
279  filtering parameters and number of remaining variants at each step for the in silico library are provided
280  in Figure 6i.

281
282  DISCUSSION

283  Addressing the limitation of antibody optimization in mammalian cells, we have developed an approach
284  based on deep learning that enables us to identify antigen-specific sequences with high precision.
285 Calculating and predicting various biophysical properties of antigen-specific variants allows for efficient
286 identification of the most developable antibody molecule, resulting in significant time and cost savings
287 and greatly reducing risk for downstream clinical development. Using the clinically approved antibody
288  trastuzumab, we performed single-site DMS followed by combinatorial mutagenesis to determine the
289  antigen-binding landscape of CDRH3. This DMS-based mutagenesis strategy is crucial for attaining
290 high quality training data that is enriched with antigen-binding variants, in this case nearly 10% of our
291 library (Figure 2d). In contrast, if a completely randomized combinatorial mutagenesis strategy was
292  employed (i.e., NNK degenerate codons), it would be unlikely to produce any significant fraction of
293 antigen-binding variants. In the future, other approaches to mutagenesis that generate enriched training
294  data®, such as shotgun scanning mutagenesis®, binary substitution®® and recombination'**¢ may also

295  be explored for training deep neural networks.

296 Our initial single-site DMS libraries screened for enriched mutations through antigen-binding, yet
297 combining these mutations in a cohesive manner to alter biophysical properties while retaining high
298 antigen affinity is challenging. The amino acid composition of binding and non-binding variants is highly
299 similar (Figure 2e), and visually identifying the sequence patterns that lead to binding is a daunting, if
300 not impossible task. Moreover, structure-based modeling was unable to discriminate between binders
301 and non-binders as predicting fine-grained protein-complex affinities is highly challenging using
302  generalistic methods such as Rosetta?’. This is compounded by introducing CDRH3 loop mutations
303  which likely result in challenging loop conformational changes®’. While more advanced, ensemble-
304 based ddG prediction methods® could result in better performance, applying this to millions of
305  sequences may be infeasible, further exemplifying the value of deep neural networks that are able to

306 learn the high-dimensional space of antigen-binding sequences.

307  Aremarkable finding in this study was that experimental screening of a library of only 5 x 10* variants,
308  which reflected a tiny fraction (0.0054%) of the total sequence diversity of the DMS-based combinatorial
309  mutagenesis library (7.17 x 108), was capable of training accurate neural networks. This suggests that
310 physical library size limitations of mammalian expression systems (or other expression platforms such
311 as phage and yeast) and deep sequencing read depth will not serve as a limitation for deep learning-
312 guided protein engineering. Another important result was that deep sequencing of antigen-binding and
313 non-binding populations showed nearly no observable difference in their positional amino acid usage
314 (Figure 2e), revealing that neural networks are effectively capturing high-dimensional and non-linear

315  patterns/interactions (Figure 5b).
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316  In the current study, we selected LSTM-RNNs and CNNs as the basis of our classification models, as
317  they represent two state of the art approaches in deep learning. Other machine learning approaches
318 such as k-nearest neighbors, random forests, and support vector machines are also well-suited at
319 identifying complex patterns from input data, but as data set sizes continue to grow, as is realizable
320 with biological sequence data, deep neural networks tend to outperform these classical techniques'”.
321 Furthermore, deep generative modeling methods such as variational autoencoders and generative
322 adversarial networks may also be used to explore the mutagenesis sequence space from directed

323 evolution®.

324 We in silico generated approximately 7.2 x 107 CDRH3 variants from DMS-based combinatorial
325  diversity and used fully trained LSTM-RNN and CNN models to classify each sequence as a binder or
326 non-binder. The 7.2 x 107 sequence variants comprise only a subset of the potential sequence space
327 and was chosen to minimize the computational effort, however, it still represents a library size several
328 orders of magnitude greater than what is experimentally achievable in mammalian cells. We easily
329 envision extending the screening capacity through script optimization and employing parallel computing
330  on high performance clusters. Out of all variants classified, the LSTM-RNN and CNN predicted
331 approximately 11-13% to bind the target antigen, showing exceptional agreement with the
332  experimentally observed frequencies by flow cytometry (Figure 2d). In order to experimentally validate
333  the precision of neural networks to predict antigen specificity, we randomly selected and expressed 30
334 variants from the library of sequences with a minimum edit distance of 5 from trastuzumab. The
335  precision of the LSTM-RNN and CNN models were each estimated to be ~85% (at P > 0.75) according
336 to predictions made on the test data sets (Figure 3b, d). By taking the consensus between models,
337  however, we experimentally validated that all randomly selected (30/30) of the antigen-predicted
338  sequences were indeed binders, and several of which were high affinity. While we anticipate false
339  positives would be observed by increasing the sample size tested, validation of this subset strongly
340 infers that potentially thousands of optimized lead candidates maintain a binding affinity in the range of
341 therapeutic relevance, while also containing substantial sequence variability from the starting
342  trastuzumab sequence. Future work to increase the stringency of selection during screening or a more
343  detailed investigation of correlations between prediction probability and affinity could prove insightful
344 towards retaining high target affinities. Experimentally validating the accuracy of the models to predict
345  the binding status of sequence variants led us to take a more in depth look at the sequence space of
346 predicted binding and non-binding variants. A sequence similarity network analysis at various LDs
347  revealed no distinct clusters between binding and non-binding sequences, indicating an overall
348  sequence similarity of both classifications. By then quantitatively analyzing neural network predictions,
349  we were able to shed light on the high-dimensional patterns captured by the respective models and

350  decipher amino acid combinations contributing to a sequence’s classification.

351 Once an antibody’s affinity for its target antigen is within a desirable range for efficacious biological
352 modification, addressing other biophysical properties becomes the focus of antibody development. With
353  recent advances in computational predictions*®4', a number of these properties, including viscosity,
354  clearance, stability?, specificity*?, solubility*® and immunogenicity3' can be approximated from sequence

355  information alone. With the aim of selecting antibodies with improved characteristics, we subjected the
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356 library of predicted binders to a number of these in silico approaches in order to provide a ranking
357  structure and filtering strategy for developability (Figure 6). After implementing these methods to
358  remove variants with a high likelihood of having poor viscosity, clearance or solubility, as well as those
359 with high immunogenic potential, nearly 5,000 multi-parameter optimized antibody variants remained
360  with developability scores greater than the original trastuzumab sequence. Although a limited number
361  of developable sequences can be initially identified experimentally (Figure 6h), this only reflects a small
362 fraction of the highly-developable sequence space (0.2%). By screening in silico libraries, the presence
363  of every sequence variant within the defined space is guaranteed, ensuring the identification of globally
364 optimized sequences. Future work to apply more stringent or additional filters which address other
365  developability parameters (e.g. stability, specificity, humanization) could also be implemented to further
366 reduce the sequence space down to the most developable therapeutic candidates across even more
367 parameters. For instance, previous studies have investigated the likeness of therapeutic antibodies to
368  the human antibody repertoire*. We also envision this approach to enable the optimization of other
369 functional properties of therapeutic antibodies, such as pH-dependent antibody recycling** or
370 affinity/avidity tuning*>46. Additionally, extending this approach to other regions across the variable light
371 and heavy chain genes, namely other CDRs, may yield deep neural networks that are able to capture
372 long-range, complex relationships between an antibody and its target antigen. To explore these patterns
373 in greater depth, it may be useful to compare neural network predictions with other advanced structural

374  modeling techniques such as ones that take advantage of geometric deep learning®’.
375

376 METHODS

377  Mammalian cell culture and transfection

378 Hybridoma cells were cultured and maintained according to the protocols described by Mason et al.?.
379  Hybridoma cells were electroporated with the 4D-Nucleofector™System (Lonza) using the SF Cell Line
380  4D-Nucleofector® X Kit L or X Kit S (Lonza, V4XC-2024, V4XC-2032) with the program CQ-104. Cells
381 were prepared as follows: cells were isolated and centrifuged at 125 x G for 10 minutes, washed with
382  Opti-MEM® | Reduced Serum Medium (Thermo, 31985-062), and centrifuged again with the same
383  parameters. The cells were resuspended in SF buffer (per kit manufacturer guidelines), after which Alt-
384 R gRNA (IDT) and ssODN donor (IDT) were added. All experiments performed utilize constitutive
385  expression of Cas9 from Streptococcus pyogenes (SpCas9). Transfections of 1x108 and 1x10” cells
386  were performed in 100 ul, single Nucleocuvettes™ with 0.575 or 2.88 nmol Alt-R gRNA and 0.5 or 2.5
387 nmol ssODN donor respectively. Transfections of 2x10° cells were performed in 16-well, 20 pl
388  Nucleocuvette™ strips with 115 pmol Alt-R gRNA and 100 pmol ssODN donor.

389  Flow cytometry analysis and sorting

390  Flow cytometry-based analysis and cell isolation were performed using the BD LSR Fortessa™ (BD
391 Biosciences) and Sony SH800S (Sony), respectively. When labeling with fluorescently conjugated
392 antigen or anti-IgG antibodies, cells were first washed with PBS, incubated with the labeling antibody

393  and/or antigen for 30 minutes on ice, protected from light, washed again with PBS and then analyzed
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394 or sorted. The labeling reagents and working concentrations are described in Supplementary Table 5.
395  For cell numbers different from 108, the antibody/antigen amount and incubation volume were adjusted

396  proportionally.
397  Sample preparation for deep sequencing

398  Sample preparation for deep sequencing was performed similar to the antibody library generation
399  protocol of the primer extension method described previously*8. Genomic DNA was extracted from 1-
400  5x106 cells using the Purelink™ Genomic DNA Mini Kit (Thermo, K182001). Extracted genomic DNA
401  was subjected to a first PCR step. Amplification was performed using a forward primer binding to the
402 beginning of the VH framework region and a reverse primer specific to the intronic region immediately
403 3 of the J segment. PCRs were performed with Q5® High-Fidelity DNA polymerase (NEB, M0491L) in
404  parallel reaction volumes of 50 ml with the following cycle conditions: 98°C for 30 seconds; 16 cycles
405  of 98°C for 10 sec, 70°C for 20 sec, 72°C for 30 sec; final extension 72°C for 1 min; 4°C storage. PCR
406  products were concentrated using DNA Clean and Concentrator (Zymo, D4013) followed by 0.8X
407 SPRIselect (Beckman Coulter, B22318) left-sided size selection. Total PCR1 product was amplified in
408 a PCR2 step, which added extension-specific full-length lllumina adapter sequences to the amplicon
409 library. Individual samples were lllumina-indexed by choosing from 20 different index reverse primers.
410  Cycle conditions were as follows: 98°C for 30 sec; 2 cycles of 98°C for 10 sec, 40°C for 20 sec, 72°C
411  for 1 min; 6 cycles of 98°C for 10 sec, 65°C for 20 sec, 72°C for 1 min; 72°C for 5 min; 4°C storage.
412  PCR2 products were concentrated again with DNA Clean and Concentrator and run on a 1% agarose
413  gel. Bands of appropriate size (~550bp) were gel-purified using the Zymoclean™ Gel DNA Recovery
414 kit (Zymo, D4008). Concentration of purified libraries were determined by a Nanodrop 2000c
415  spectrophotometer and pooled at concentrations aimed at optimal read return. The quality of the final
416  sequencing pool was verified on a fragment analyzer (Advanced Analytical Technologies) using DNF-
417 473 Standard Sensitivity NGS fragment analysis kit. All samples passing quality control were
418  sequenced. Antibody library pools were sequenced on the lllumina MiSeq platform using the reagent
419 kit v3 (2x300 cycles, paired-end) with 10% PhiX control library. Base call quality of all samples was in

420  the range of a mean Phred score of 34.
421 Bioinformatics analysis and graphics

422 The MiXCR v2.0.3 program was used to perform data pre-processing of raw FASTQ files*®. Sequences
423  were aligned to a custom germline gene reference database containing the known sequence
424  information of the V- and J-gene regions for the variable heavy chain of the trastuzumab antibody gene.
425  Clonotype formation by CDRH3 and error correction were performed as described by Bolotin et al*®.
426 Functional clonotypes were discarded if: 1) a duplicate CDRH3 amino acid sequence arising from
427  MiXCR uncorrected PCR errors, or 2) a clone count equal to one. Downstream analysis was performed
428  using R v3.2.2%0 and Python v3.6.5%'. Graphics were generated using the R packages ggplot2%2,
429  RColorBrewer®, and ggseqlogo®*.
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430  Calculation of enrichment ratios (ERs) in DMS

431 The ERs of a given variant was calculated according to previous methods®. Clonal frequencies of
432  variants enriched for antigen specificity by FACS, fiag+, were divided by the clonal frequencies of the

433  variants present in the original library, fi b+, according to Equation 1.

434 gR = Juast

B fi,Ab+
435  (Eq. 1)

436 A minimum value of -2 was designated to variants with log[ER] values less than or equal -2 and variants
437  not present in the dataset were disregarded in the calculation. A clone was defined based on the exact
438 a.a. sequence of the CDRH3.

439 Redesign of trastuzumab in Rosetta for diversity of sequences

440  The Rosetta program?’ was used to redesign the trastuzumab antibody in complex with the extracellular
441  domain of HER2 (PDB id: 1N8Z)%. Ten residues in the CDRH3 loop of trastuzumab (residues 98-108
442  of the heavy chain) were allowed to mutate to any natural amino acid, while all other residues were
443 allowed to change rotameric conformation. A RosettaScript invoked the PackRotamersMover, a
444  stochastic MonteCarlo algorithm, to optimize the sequence of the antibody to CDRH3 according to the
445  Rosetta energy function, followed by backbone minimization. Energies were computed using Rosetta's
446  ddG filter. Rosetta was run to generate 5000 sequences stochastically, and this resulted in 48

447 sequences. Rosetta's output files were processed using RS-Toolbox®.
448  Classification of experimentally-determined sequences in Rosetta

449 Each of the 11,300 binding and 27,539 non-binding sequences from the combinatorial library were
450 modelled in Rosetta?”. For each experimentally-determined binding or non-binding sequence, the
451 structure of the HER2:trastuzumab complex was used as input and the residues diverging from the
452  wildtype were mutated using the PackRotamersMover in RosettaScripts®’. The backbone and the side
453 chains were minimized with Rosetta's MinMover after the sequence was modeled to optimized intra-
454  and inter-chain contacts. Rosetta's predicted interface score (ddG) was used as the relative

455  classification score.
456  Codon selection for rational library design

457 Codon selection for rational library design was based off the equation provided by Mason et al.Z,
458 (Equation 2), where Yi,qeg represents the amino acid frequency for a given degenerate codon scheme,
459 Yn target is the target amino acid frequency, and n is the number of amino acids, 20. Residues identified
460 in DMS analysis to have a positive enrichment (ER > 1, or log[ER] > 0) were normalized according to
461 their enrichment ratios and were converted to theoretical frequencies and taken as the target amino
462 acid frequencies. Degenerate codon schemes were then selected which most closely reflect these
463  frequencies as calculated by the mean squared error between the degenerate codon and the target

464  frequencies.
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n
1
465 Optimal Codon = argxmin(;Z(Yn,deg — Y, target)?)
i=1

466 (Eq.2)

467 In certain instances, if the selected degenerate codon did not represent desirable amino acid
468  frequencies or contained undesirable amino acids, a mixture of degenerate codons were selected and

469 pooled together to achieve better coverage of the functional sequence space.
470  Deep learning model construction

471 Machine learning models were built in Python v3.6.5. LSTM-RNNs, and CNNs were built using the
472  Keras®® v2.1.6 Sequential model as a wrapper for TensorFlow®® v1.8.0. Model architecture and
473 hyperparameters were optimized by performing a grid search of relevant variables for a given model.
474 These variables include nodes per layer, activation function(s), optimizer, loss function, dropout rate,
475  batch size, number of epochs, number of filters, kernel size, stride length, and pool size. Grid searches

476  were performed by implementing a k-fold cross validation of the data set.
477  Deep learning model training and testing

478 Data sets for antibody expressing, non-binding, and binding sequences (Sequencing statistics:
479  Supplementary Tables 1, 2) were aggregated to form a single, binding/non-binding data set where
480 antibody expressing sequences were classified as non-binders, unless also identified among the
481 binding sequences. Sequences from one round of antigen enrichment were excluded from the training
482  data set. The complete, aggregated data set was then randomly arranged and appropriate class labeled
483  sequences were removed to achieve the desired classification ratio of binders to non-binders (50/50,
484  20/80, 10/90, and non-adjusted). The class adjusted data set was further split into a training set (70%),
485 and two testing sets (15% each), where one test set reflected the classification ratio observed for
486  training and the other reflected a classification ratio of approximately 10/90 to resemble the
487  physiological expected frequency of binders.

488 Sequence similarity and model attribution analysis of predicted variants

489  Sequence similarity networks of sequences predicted to be antigen positive and antigen negative were
490  constructed for Levenshtein Distance 1-6 were constructed using the igraph R package®® v1.2.4. The
491 resulting networks were analyzed with respect to their overall connectivity, the composition of their

492  largest clusters and the overall degree distribution between the classes.

493  The Integrated Gradients technique?® was used to assess the relative attribution of each feature of a
494  given input sequence towards the final prediction score. First, a baseline was obtained by zeroing out
495 the input vector and the path integral of the gradients from baseline to the input vector was then
496  approximated with a step size of 100. Integrated gradients were visualized as sequence logos.

497  Sequence logos were created by the python module Logomaker®'.
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498 In silico sequence classification and sequence parameters

499 All possible combinations of amino acids present in the DMS-based combinatorial mutagenesis libraries
500  were used to calculate the total theoretical sequence space of 7.17 x 108. 7.2 x 107 sequence variants
501 were generated in silico by taking all possible combinations of the amino acids used per position in the
502  combinatorial mutagenesis library designed from the DMS data following three rounds of enrichment
503 for antigen binding variants (Supplementary Fig. 2c, 3c); Alanine was also selected to be included at
504  position 103. All in silico sequences were then classified as a binder or non-binder by the trained LSTM-
505 RNN and CNN models. Sequences were selected for further analysis if they were classified in both

506  models with a prediction probability (P) of more than 0.75.

507 The Fv net charge and Fv charge symmetry parameter (FYCSP) were calculated as described by
508 Sharma et al. Briefly, the net charge was determined by first solving the Henderson-Hasselbalch
509 equation for each residue at a specified pH (here 5.5) with known amino acid pKas®2. The sum across
510  all residues for both the VL and VH was then calculated as the Fv net charge. The FVYCSP was
511 calculated by taking the product of the VL and VH net charges. The hydrophobicity index (HI) was also
512  calculated as described by Sharma et al., according to the following equation: HI = -(3>niEi / Y njEj). E
513 represents the Eisenberg value of an amino acid, n is the number of an amino acid, and i and j are

514  hydrophobic and hydrophilic residues respectively.

515  The protein solubility score was determined for each, full-length CDRH3 sequence (15 a.a.) padded
516  with 10 amino acids on both the 5" and 3’ ends (35 a.a.) by the CamSol method?®°® at pH 7.0.

517  The binding affinities for a reference set of 26 HLA alleles®? were determined for each 15-mer contained
518  within the 10 amino acid padded CDRH3 sequence (35 a.a.) by NetMHCllpan 3.23'. The output provides
519  for each 15-mer a predicted affinity in nM and the % Rank which reflects the 15-mer’s affinity compared
520 to a set of random natural peptides. The % Rank measure is unaffected by the bias of certain molecules
521 against stronger or weaker affinities and is used to classify peptides as weak or strong binders towards
522 the specified MHC Class Il allele. The minimum % Rank, the number of 15-mers with % Rank less than
523 10 (classification of weak binder), and the average % Rank were calculated across all 21 15-mers for

524  asingle CDRH3 sequence across all 26 HLA alleles.

525  Overall developability improvement of the antibody sequences was determined by first normalizing the
526 FvCSP, CamSol score, and average NetMHCII % Rank according to the range of values observed in
527  the remaining sequences post-filtering. The normalized CamSol protein solubility score was then
528  weighted by a factor of 2 for its importance in determining developability. Lastly, the mean across these
529 three parameters was taken to produce the overall developability improvement score. Since the
530 sequences were filtered with the calculated values for trastuzumab, trastuzumab would have an overall

531 developability improvement equal to 0.
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532 Overall developability
533 1 FvCSP — min(FvCSP) CamSol — min(CamSol)
~ 3 \\max(FvCSP) — min(FvCSP) max(CamSol) — min(CamSol)

534 + (

avgNetMHC — min(avgNetMHC)
max(avgNetMHC) — min(avgNetMHC)

535 (Eq.3)
536  Affinity measurements by biolayer interferometry

537  Monoclonal populations of the individual variants were isolated by performing a single-cell sort.
538  Following expansion, supernatant for all variants was collected and filtered through a 0.20 um filter
539  (Sartorius, 16534-K). Affinity measurements were then performed on an Octet RED96e (FortéBio) with
540 the following parameters. Anti-human capture sensors (FortéBio, 18-5060) were hydrated in
541 conditioned media diluted 1 in 2 with kinetics buffer (FortéBio, 18-1105) for at least 10 minutes before
542 conditioning through 4 cycles of regeneration consisting of 10 seconds incubation in 10 mM glycine, pH
543  1.52 and 10 seconds in kinetics buffer. Conditioned sensors were then loaded with 0 pg/mL (reference
544  sensor), 10 pg/mL trastuzumab (reference sample), or hybridoma supernatant (approximately 20
545  ug/mlL) diluted 1 in 2 with kinetics buffer followed by blocking with mouse IgG (Rockland, 010-0102) at
546 50 ug/mL in kinetics buffer. After blocking, loaded sensors were equilibrated in kinetics buffer and
547  incubated with either 5 nM or 25 nM HER2 protein (Sigma-aldrich, SRP6405-50UG). Lastly, sensors
548  were incubated kinetics buffer to allow antigen dissociation. Kinetics analysis was performed in analysis
549  software Data Analysis HT v11.0.0.50.
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Figure 1: Implementing deep learning to predict antibody target specificity

(a) Generating quality data capable of training accurate models. First, deep mutational scanning assesses the impact
mutations have on protein function across many different positions. These insights can then be applied to combinatorial
mutagenesis strategies to guide protein library design capable of producing thousands of binding variants. (b) Sequence
information for binders and non-binders can then be used to train deep neural networks to accurately predict antigen
specificity of unknown antibody variants, producing millions of predicted binders. These binders can then be subjected
to any available in silico methods for predicted various developability attributes.


https://doi.org/10.1101/617860
http://creativecommons.org/licenses/by-nc-nd/4.0/

a Herceptin CDRH3 Variant
Non-specific for HER2

bioRxiv preprint d0| https //d0| org/lO 1101/617860 this version posted
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprln in
available under aCC-BY-NC-ND 4.0 International license.

A [ N o Il
v |
L
I I -
M o
F o
Y e
w e
R
H ||
K
D °
E .
s
T
N |
Q
G o | ]
c
P N N
99 100 101 102 103 104 105 106 107 108
Position
c HER2

s
H
&
<
H
2}
z
H
)

Ray | MTG C TAC VHG HWC VHB

(RZOTHOFT=<A

JITRRI>OT-<A
PRZUITH TR

G 0D
=11

W‘\

1 176
105-!
3
— ]
51 -
)
% i
i~ K
gl
| [BYE
E

| Ab+

"; 33.9

ey Ty ey

0 102 1[)3 ll)4 105 ll)s

EKT MYD i
WGS No Data
rvpl ({||/QNL ©
GV N Ln E2nrichment
AAN =M B
2HC S S
IN/D C -
MY A
KRF VWA A.A. Chemistry
NI T L V M Acidic
3.§gS = = =
ﬁ%g l\éHP = :eutral

i = olar

99 %%5;103 104 105 i;g%%

Position

E

!
QH K NH LE

99 100 101 102 103 104 105 106 107 108
Position

1 Ag+
2004 9.66

SSC-A

Ag+ 250 5 Ag+
49.2 95.7

200K 5

150K =

100K =

50K 5

HER2 (AF647)

e

Binding Frequencies

Non- blndlng Frequenmes

ssss

1 2 3 4 5k

True binders
True non-binders

Frequency
o o o o
s o o &
g & 8 =5

14
o
N

= ROC-curve (area - 0.55)

14

o
, S
=
3

=35 =30 =25 =20 =15 -10 =5
Rosetta predicted DDG score

0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 2: Sequence and structure-based
analysis of the mutational landscape

(a) Flow cytometry profile following
integration of tiled mutations by homology-
directed mutagenesis. Antigen specific
variants underwent 3 rounds of enrichment

Mgay (30 2819 The copyright holder, @U |thl d%/ag) (b) Corresponding

petuny Itis"ma
heatmap (left) following sequencing

analysis of the pre-sorted (Ab+) and post-
sorted (Ag+) populations (Supplementary
Table 1). Wild type amino acids are marked
by black circles. The resulting sequence
logo plot (right) generated by positively
enriched mutations per position. (c) 3D
protein structure of trastuzumab in complex
with its target antigen, HER225.26 (left).
Locations of surface exposed residues:
102D, 103G, 104F, and 105Y are given. The
protein design program Rosetta was run
5,000 times to generate sequence variants
of trastuzumab predicted to bind the
antigen HER2. The resulting sequence logo
plot of the 48 generated CDRH3 loops
(right) differs substantially from the DMS-
based sequence logo plot. (d)
Combinatorial mutagenesis libraries are
designed from enrichment ratios observed
in DMS data and integrated into the
trastuzumab variant by homology-directed
mutagenesis. Flow cytometry plots
resulting from transfection of the rationally
designed library. Deep sequencing was
performed on the library (Ab+), non-binding
variants (Ag-), and binding variants after 1
and 2 rounds of enrichment (Ag+1, Ag+2)
(Supplementary Fig. 3, Supplementary
Table 2). (e) Amino acid frequency plots of
antigen binding and non-binding variants
reveals nearly indistinguishable amino acid
usages across all positions. (f) Distribution
plot for the predicted Rosetta ddG scores
for each sequence in the experimentally
determined binding population (11,300
binders, shown in blue) and non-binding
population (27,539 non-binders, shown in
red) (left). The distribution plot is normalized
for comparison purposes. Receiver
operating characteristic (ROC) curve with
area under curve (AUC) using the Rosetta
ddG score to predict binding and non-
binding variants shows poor classification

(right).
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Figure 3: Deep learning
models accurately predict
antigen specificity
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classification of binding and
non-binding sequences.
Model training was performed
on 70% of the data and
testing was performed by
withholding the remaining
30% and then comparing the
model’s classification of test
sequences with the known
classification. In lieu of
adjusting the data set to a
defined class split of binding/
non-binding sequences, all
known information was utilized
to train and test the networks
(approx. class split of 31%).
(@) LSTM-RNN architecture
and parameters used for
model fitting. (b) ROC (receiver
operating character) curve and
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observed on the classification
of sequences in the test set by
the LSTM-RNN. (c) CNN
architecture and parameters
used for model fitting. (d) ROC
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networks represent robust
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Figure 4: Deep neural network predicted sequences are
experimentally validated to be antigen-specific

(a) To test the precision of the neural network predictions, 30 variants
were randomly selected after increasing the prediction threshold
(P(binder) > 0.75) and taking the consensus sequences between the
LSTM-RNN and CNN. These sequences were integrated into
individual hybridoma cells lines by separately transfecting ssODN
donor sequences with gRNA. (b) Affinities for the 30 variant
sequences were determined by biolayer interferometry (BLI). Although
most sequences display a minor decrease in affinity for the target
antigen, the majority of sequences still exude affinities of therapeutic
relevance in the single nanomolar (24/30) or sub-nanomolar range
(5/30). (c) Iso-affinity graph of the variant sequences.
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(a) A sequence similarity network analysis was completed on 5,000 randomly selected predicted binding (blue) and 5,000 non-

binding variants (black) to investigate potential sequence similarities of the classification choices (left).

performed at a Levenshtein distance (LD) = 2; Similarity network analyses performed with additional LDs can be found in

Clustering was

Supplementary Table 4 and Supplementary Fig. 12. Although the largest cluster within the network (middle) contains 90%
predicted binding variants, this comprises only 30% of all sequences in the network. Conversely, 42% of sequences do not
cluster with any other neighboring sequences, thereby revealing that for the majority of variants, there are no discernible
clusters of binding or non-binding predictions. (b) The Integrated Gradients method efficiently extracts and enables
visualization of the classification patterns established by the LSTM-RNN (left) and the CNN (right). For the specific example,
variants identified in the network with a LD of only 2 were classified as binding and non-binding sequences respectively. The
LSTM-RNN and CNN uniquely identify non-linear combinations of amino acids that contribute to its classification as a binder

(highlighted in green) or its classification as a non-binder (highlighted in red).
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Figure 6: In silico screening of predicted binders identifies globally optimized variants

Antigen specific variants result in a wide range of in silico calculated parameters for developability. The following are staggered
histograms showing the parameter distributions of all deep learning (DL)-predicted binders (light) and the experimentally
observed binders (dark) at the different stages of filtering. Red boxes indicate filtering cut-offs determined by the developability
metric calculated for the original trastuzumab sequence. (a) Levenshtein distance from wild-type trastuzumab. (b) Net charge
of the VH domain. (¢) CDRH3 hydrophobicity index. (d) CamSol intrinsic solubility score. (e) The minimum NetMHCllpan %
Rank (< 2 ~ strong affinity; < 10 ~ weak affinity) across all possible 15-mers for a given CDRH3 sequence and across all HLA
alleles. (f) The number of 15-mers found within a given CDRH3 sequence that have a % Rank < 10 across all alleles. (g) The
average NetMHClIpan % Rank across all possible 15-mers and HLA alleles. (h) Scatter/violin plot for the overall developability
improvement score (Eq. 3) of the remaining sequence variants passing all filtering criteria. 293 sequences of the predicted
binders have a higher overall developability improvement score than the maximum score identified from an experimental binder.
(i) Filtering parameters and the number of sequences at the corresponding stage of filtering.
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