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ABSTRACT (150 words) 13 

Therapeutic antibody optimization is time and resource intensive, largely because it requires 14 
low-throughput screening (103 variants) of full-length IgG in mammalian cells, typically resulting 15 
in only a few optimized leads. Here, we use deep learning to interrogate and predict antigen-16 
specificity from a massively diverse sequence space to identify globally optimized antibody 17 
variants. Using a mammalian display platform and the therapeutic antibody trastuzumab, 18 
rationally designed site-directed mutagenesis libraries are introduced by CRISPR/Cas9-19 
mediated homology-directed repair (HDR). Screening and deep sequencing of relatively small 20 
libraries (104) produced high quality data capable of training deep neural networks that 21 
accurately predict antigen-binding based on antibody sequence. Deep learning is then used to 22 
predict millions of antigen binders from an in silico library of ~108 variants, where experimental 23 
testing of 30 randomly selected variants showed all 30 retained antigen specificity. The full set 24 
of in silico predicted binders is then subjected to multiple developability filters, resulting in 25 
thousands of highly-optimized lead candidates. With its scalability and capacity to interrogate 26 
high-dimensional protein sequence space, deep learning offers great potential for antibody 27 
engineering and optimization. 28 

 29 

INTRODUCTION 30 

In antibody drug discovery, the ‘target-to-hit’ stage is a well-established process, as screening 31 
hybridomas, phage or yeast display libraries typically result in a number of potential lead candidates. 32 
However, the time and costs associated with lead candidate optimization often take up the majority of 33 
the preclinical discovery and development cycle1. This is largely due to the fact that lead optimization 34 
of antibody molecules consists of addressing multiple parameters in parallel, including expression level, 35 
viscosity, pharmacokinetics, solubility, and immunogenicity2,3. Once a lead candidate is discovered, 36 
additional engineering is often required; phage and yeast display offer a powerful method for high-37 
throughput screening of large mutagenesis libraries (>109), however they are primarily only used for  38 
increasing affinity or specificity to the target antigen4. The fact that nearly all therapeutic antibodies 39 
require expression in mammalian cells as full-length IgG means that the remaining development and 40 
optimization steps must occur in this context. Since mammalian cells lack the capability to stably 41 
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replicate plasmids, this last stage of development is done at very low-throughput, as elaborate cloning, 42 
transfection and purification strategies must be implemented to screen libraries in the max range of 103, 43 
meaning only minor changes (e.g., point mutations) are screened5. Interrogating such a small fraction 44 
of protein sequence space also implies that addressing one development issue will frequently cause 45 
rise of another or even diminish antigen binding altogether, making multi-parameter optimization very 46 
challenging. This challenge frequently results in antibodies with suboptimal biophysical properties for 47 
clinical development, which can lead to adverse side effects or even drug failure. For example, self-48 
administered, subcutaneous injection of antibodies is becoming an increasingly used approach for 49 
patients requiring frequent dosing, but the identification of highly soluble, non-viscous antibodies which 50 
retain high biological activity is immensely difficult6. The withdrawal of Pfizer’s anti-PCSK9 antibody, 51 
bococizumab, from clinical trials is an even more drastic example, where the immunogenicity of the 52 
molecule adversely effected long-term treatment efficacy. Conversely, Sanofi and Regeneron’s 53 
clinically approved antibody, alirocumab, has the same molecular target of PCSK9, but shows almost 54 
no immunogenic effects7. 55 

Machine learning applied to biological sequence data offers a powerful approach to augment protein 56 
engineering by constructing models capable of making predictions of genotype-phenotype 57 
relationships8,9. This is due to the capability of models to extrapolate complex relationships between 58 
sequence and function. One of the principle challenges in constructing accurate machine learning 59 
models is the collection of appropriate high-quality training data. Directed evolution platforms are well-60 
suited for this as they rely on the linking of biological sequence data (DNA, RNA, protein) to a phenotypic 61 
output10. In fact, it has long been proposed to use machine learning models trained on data generated 62 
by mutagenesis libraries as a means to guide protein engineering11,12. Recently, Gaussian processes, 63 
a Bayesian learning model, were used to engineer cytochrome enzymes, enabling navigation through 64 
a vast protein sequence space to discover highly thermostable variants13. Similarly, the design and 65 
screening of a structure-guided library of channel rhodopsin membrane proteins was used to train 66 
Gaussian process regression models, which were able to accurately predict variants that could express 67 
and localize on mammalian cell membranes14.  68 

In recent years, access to deep sequencing and parallel computing has enabled the construction of 69 
deep learning models capable of predicting molecular phenotype from sequence data15,16. For example, 70 
deep learning has been used to learn the sequence specificities of RNA- and DNA-binding proteins17, 71 
regulatory grammar of protein expression in yeast18, and HLA-neoantigen presentation on tumor cells19. 72 
In most cases deep (artificial) neural networks represent the class of algorithm utilized. While the 73 
complexity of neural networks has changed drastically since their conception, the fundamental concept 74 
remains the same: mimicking the connections of biological neurons to learn complex relationships 75 
between variables20. As an extension of a single-layer neural network, or perceptron21, deep learning 76 
incorporates multiple hidden layers to decipher relationships buried in large, high-dimensional data sets, 77 
such as the millions of reads gathered from a single deep sequencing experiment. Well trained models 78 
can then be used to make predictions on completely unseen and novel variants. This application of 79 
model extrapolation lends itself perfectly to protein engineering because it provides a way to interrogate 80 
a much larger sequence space than what is physically possible. For example, even for a short stretch 81 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/617860doi: bioRxiv preprint 

https://doi.org/10.1101/617860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep learning enables therapeutic antibody optimization in mammalian cells 

2 

of just 10 amino acids, the combinatorial sequence diversity explodes to 1013, a size which is nearly 82 
impossible to interrogate experimentally.  83 

Here, we leverage the power of deep learning to perform multi-parameter optimization of therapeutic 84 
antibodies (full-length IgG) directly in mammalian cells (Figure 1). Starting with a mammalian display 85 
cell line22 expressing the therapeutic antibody trastuzumab (Herceptin), we use CRISPR-Cas9-86 
mediated homology-directed repair (HDR) to introduce site-directed mutagenesis libraries in the 87 
variable heavy chain complementarity determining region 3 (CDRH3)23. In order to generate information 88 
rich training data, single-site deep mutational scanning (DMS) is first performed24, which is then used 89 
to guide the design of combinatorial mutagenesis libraries. An experimental (physical) library size of 5 90 
x 104 variants was then screened for specificity to the antigen HER2. All binding and non-binding variant 91 
sequences were then used to train recurrent and convolutional deep neural networks, which when fully-92 
trained and optimized were able with high accuracy and precision to predict antigen-specificity based 93 
on antibody sequence. Neural networks are then used to predict antigen-specificity on a subset of 94 
sequence variants from the DMS-based combinatorial mutagenesis library (~108 sequences), resulting 95 
in >3.0 x 106 variants predicted to have a high probability of being antigen-specific. A random selection 96 
of variants were recombinantly expressed and tested, resulting in 30 out of 30 showing antigen-specific 97 
binding. The in silico library of predicted binders are then subjected to several sequence-based in silico 98 
filtering steps to optimize for developability parameters such as viscosity, clearance, solubility and 99 
immunogenicity, resulting in nearly 5,000 antibody sequence variants predicted to have more optimal 100 
properties than the starting trastuzumab sequence.  101 

RESULTS 102 

Deep mutational scanning determines antigen-specific sequence landscapes and guides 103 
rational antibody library design 104 

As the amino acid sequence of an antibody’s CDRH3 is a key determinant of antigen specificity, we 105 
performed DMS on this region to resolve the specificity determining residues. To start, a hybridoma 106 
cell-line was used that expressed a trastuzumab variant that could not bind HER2 antigen (mutated 107 
CDRH3 sequence) (Supplementary Fig. 1). Libraries were generated by CRISPR-Cas9-mediated 108 
homology-directed mutagenesis (HDM)23 by transfecting guide RNA (gRNA) targeting the CDRH3 and 109 
a pool of homology templates in the form of single-stranded oligonucleotides (ssODNs) containing NNK 110 
degenerate codons at single-sites tiled across CDRH3 (Figure 2a, Supplementary Fig. 2). Libraries 111 
were then screened by fluorescence activated cell sorting (FACS), and populations expressing surface 112 
IgG which either were binding or not binding to antigen were isolated and subjected to deep sequencing 113 
(Illumina MiSeq) (Supplementary Table 1). Deep sequencing data was then used to calculate 114 
enrichment scores of the 10 positions investigated, which revealed six positions that were sufficiently 115 
amenable to a wide-range of mutations and an additional three positions that were marginally accepting 116 
to defined mutations (Figure 2b). Although residues 102D, 103G, 104F, and 105Y appear to be 117 
contacting amino acids of the CDRH3 loop with HER225,26, 105Y is the only residue completely fixed. 118 
In addition to DMS, we also explored the capacity of structural modeling to identify the prospective 119 
antigen-binding landscape by using structure-guided modeling with Rosetta, a leading software platform 120 
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for computational protein design27. After performing 5,000 redesigns of trastuzamab (PDB id: 1N8Z), 121 
preceded by a stochastic backbone flexibility (FastRelax) step, 48 possible variants were generated 122 
(Figure 2c). The resulting sequence logo plot from these generated variants, however, differed 123 
substantially from the DMS-based sequence logo plot. 124 

The limited number of predictions and diversity from Rosetta suggested that sequence logo plots 125 
generated by DMS are a better option to guide the rational design of a combinatorial mutagenesis 126 
library, which consisted of degenerate codons across all positions (except 105Y) (Supplementary Fig. 127 
3, Supplementary Table 7). Degenerate codons were selected per position based on their amino acid 128 
frequencies which most closely resembled the degree of enrichment found in the DMS data following 129 
1, 2, and 3 rounds of antigen-specific enrichment (Supplementary Fig. 2, Equation 2). This 130 
combinatorial library possesses a theoretical protein sequence space of 7.17 x 108, far greater than the 131 
single-site DMS library diversity of 200. Libraries containing CDRH3 variants were again generated in 132 
hybridoma cells through CRISPR-Cas9-mediated HDM in the same non-binding trastuzumab clone 133 
described previously (Figure 2d). Antigen binding cells were isolated by two rounds of enrichment by 134 
FACS (Figure 2d, Supplementary Fig. 3) and the binding/non-binding populations were subjected to 135 
deep sequencing. Sequencing data identified 11,300 and 27,539 unique binders and non-binders, 136 
respectively (Supplementary Table 2). These sequence variants represented only a miniscule 0.0054% 137 
of the theoretical protein sequence space of the combinatorial mutagenesis library. 138 

Discriminating between the binding and non-binding sequences in the combinatorial library is 139 
challenging at the sequence level. Amino acid usage per position was comparatively similar between 140 
antigen binding and non-binding populations (Figure 2e), thus making it difficult to develop any sort of 141 
heuristic rules or decipher observable patterns to identify binding sequences. Thus, we investigated 142 
whether structure-based analysis could accurately predict antigen-binding sequences. We used 143 
Rosetta to model each of the 11,300 binder and 27,539 non-binder sequences from the combinatorial 144 
library on the antibody structure of trastuzumab, and used Rosetta's predicted free energy of binding 145 
(ddG) as the discrimination score. This approach, however, yielded a very poor classifier (ROC curve 146 
AUC: 0.55, Figure 2f) and revealed that high-dimensional patterns determining antigen-specificity could 147 
not be extracted by structural modeling. 148 

Training deep neural networks to classify antigen-specificity based on antibody sequence  149 

To learn the high-dimensional patterns that determine antigen binding, we set out to develop and train 150 
sequence-based deep learning models capable of predicting antibody specificity towards the target 151 
antigen HER2. After having compiled deep sequencing data on binding and non-binding CDRH3 152 
variants, amino acid sequences were converted to an input matrix by one-hot encoding, an approach 153 
where each column of the matrix represents a specific residue and each row corresponds to the position 154 
in the sequence, thus a 10 amino acid CDRH3 sequence as here results in a 10 x 20 matrix. Each row 155 
will contain a single ‘1’ in the column corresponding to the residue at that position, whereby all other 156 
columns/rows receive a ‘0’. We utilized long short-term memory recurrent neural networks (LSTM-RNN) 157 
and convolutional neural networks (CNN), which represent two of the main classes of deep learning 158 
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models used for biological sequence data16. LSTM-RNNs and CNNs both stem from standard neural 159 
networks, where information is passed along neurons that contain learnable weights and biases, 160 
however, there are fundamental differences in how the information is processed. LSTM-RNN layers 161 
contain loops, enabling information to be retained from one step to the next, allowing models to 162 
efficiently correlate a sequential order with a given output; CNNs, on the other hand, apply learnable 163 
filters to the input data, allowing it to efficiently recognize spatial dependencies associated with a given 164 
output. Model architecture and hyperparameters (Figures 3a, c) were selected by performing a grid 165 
search across various parameters (LSTM-RNN: nodes per layer, batch size, number epochs and 166 
optimizing function; CNN: number of filters, kernel size, dropout rate and dense layer nodes) using a k-167 
fold cross-validation of the data set. All models were built to assess their accuracy and precision of 168 
classifying binders and non-binders from the available sequencing data. 70% of the original data set 169 
was used to train the models and the remaining 30% was split into two test data sets used for model 170 
evaluation: one test data set contained the same class split of sequences used to train the model and 171 
the other contained a class split of approximately 10/90 binders/non-binders to resemble physiological 172 
frequencies (Figure 2d). Performance of the LSTM-RNN and CNN were assessed by constructing 173 
receiver operating characteristic (ROC) curves and precision-recall (PR) curves derived from 174 
predictions on the unseen testing data sets (Figure 3b, d). Based on conventional approaches to training 175 
classification models, the data set was adjusted to allow for a 50/50 split of binders and non-binders 176 
during training. Under these training conditions, the LSTM-RNN and CNN were both able to accurately 177 
classify unseen test data (ROC curve AUC: 0.9 ± 0.0, average precision: 0.9 ± 0.0, Supplementary Fig. 178 
5). 179 

Next, we used the trained LSTM-RNN and CNN models to classify a random sample of 1 x 105 180 
sequences from the potential sequence space. We observed, however, an unexpectedly high 181 
occurrence of positive classifications (25,318 ± 1,643 sequences or 25.3 ± 1.6%, Supplementary Table 182 
3b). With the knowledge that the physiological frequency of binders should be approximately 10-15%, 183 
we sought to adjust the classification split of the training data with the hypothesis that models were 184 
being subject to some unknown classification bias. Additional models were then trained on classification 185 
splits of both 20/80, and 10/90 binders/non-binders, as well as a classification split with all available 186 
data (approximately 30/70 binders/non-binders). Unbalancing the sequence classification led to a 187 
significant reduction in the percentage of sequences classified as binders, but also led to a reduction in 188 
the model performance on the unseen test data (Supplementary Fig. 4-7, Supplementary Tables 3a, 189 
b). Through our analysis, we concluded that the optimal data set for training the models was the set 190 
inclusive of all known CDRH3 sequences for the following reasons: 1) the percentage of sequences 191 
predicted as binders reflects this physiological frequency, 2) this data set maximizes the information 192 
the model sees, and 3) model performance on both test data sets. Final model architecture, parameters, 193 
and evaluation are shown in Figure 3. As a final measure of model validation, neural networks were 194 
trained with a data set containing randomly shuffled binding and non-binding class labels. Model 195 
performance of these networks revealed indiscriminate sequence classification on unseen test data 196 
(Supplementary Fig. 8), signifying the identification of learned patterns for networks trained with 197 
properly classified data. 198 
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Predicted binding sequences are recombinantly expressed and antigen-specific 199 

Using our DMS-based combinatorial mutagenesis library as a guide (Figure 2d), 7.2 x107 possible 200 
sequence variants were generated in silico. The fully-trained LSTM-RNN and CNN models were used 201 
to classify all 7.2 x 107 sequence variants as either antigen binders or non-binders based on a probability 202 
score (P), resulting in a prediction of 8.55 x 106 (LSTM-RNN) and 9.52 x 106 (CNN) potential binders 203 
(P > 0.50). This represented a reasonable fraction (11-13%) of antigen-specific variants based on 204 
experimental screening (Figure 2d). To increase confidence, we increased the prediction threshold for 205 
binder classification to P > 0.75 and took the consensus binders between the LSTM-RNN and CNN. 206 
This reduced the antigen-specific sequence space down to 3.1 x 106 variants. To validate the precision 207 
of our fully trained LSTM-RNN and CNN models, we randomly selected and tested a subset of 30 208 
CDRH3 sequences predicted to be antigen-specific (Figure 4a). To further demonstrate the capacity of 209 
deep learning to identify novel sequence variants, we also added the criteria that the selected variants 210 
must have a minimum Levenshtein distance (LD) of 5 from the original CDRH3 sequence of 211 
trastuzumab. CRISPR-Cas9-mediated HDR was used to generate mammalian display cell lines 212 
expressing the 30 different sequence variants. Flow cytometry was performed and revealed that 30 of 213 
the 30 variants (100%) were antigen-specific (Supplementary Fig. 9). Further analysis was performed 214 
on the 30 antigen-binding variants to more precisely quantify the binding kinetics via biolayer 215 
interferometry (BLI, FortéBio Octet RED96e) (Figure 4b). The original trastuzumab sequence was 216 
measured to have an affinity towards HER2 of 4.0 x 10-10 M (equilibrium dissociation constant, KD); and 217 
although the majority of variants tested had a slight decrease in affinity, 80% (24/30) were still in the 218 
single-digit nanomolar range, 17% (5/30) remained sub-nanomolar, and even one variant (3%) showed 219 
a near 3-fold increase in affinity compared to trastuzumab (KD = 1.4 x 10-10 M) (Figure 4a, c). We also 220 
investigated if there were correlations between model prediction values and measured affinities 221 
(Supplementary Fig. 10). While no strong trend was observable, the highest affinity variants tended to 222 
have higher prediction values. 223 

Sequence space analysis of deep learning predicted variants 224 

In order to investigate the sequence space of the predicted binding and non-binding variants, we 225 
conducted a sequence similarity network analysis28 of 5,000 randomly selected binding and non-binding 226 
sequences (Supplementary Table 4, Supplementary Fig. 11). When generating similarity networks by 227 
clustering CDRH3 sequences with a LD ≤ 3, we observed 99.7% of all sequences to be within a single 228 
cluster, but when increasing the clustering stringency to a LD ≤ 2, the fraction of sequences found within 229 
the largest cluster is reduced to 30%, with the majority of other sequences not clustering with any other 230 
sequence (Figure 5a). While a large portion of the sequences found within the largest cluster are 231 
predicted binding sequences, non-binding sequences are also present, illustrating the complexities of 232 
the patterns identified by deep neural networks. To further elucidate the high-dimensional patterns of 233 
the antigen-binding landscape that deep learning models have identified, we performed the attribution 234 
method of Integrated Gradients29 on closely related sequences (LD ≤ 2) (Figure 5b). This analysis 235 
provides a means to visualize non-linear combinations of amino acids that contribute to classification 236 
as a binder or non-binder. This revealed that unlike position-weight matrices, LSTM-RNN and CNN 237 
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models did not equally weight individual residues and positions and thus learned complex non-linear 238 
patterns associated with binding and non-binding.  239 

Multi-parameter optimization for developability by in silico screening of antibody sequence 240 
space 241 

Next, we characterized the full 3.1 x 106 deep learning predicted antigen-specific sequences on a 242 
number of parameters to identify highly developable candidates compared to the original trastuzumab 243 
sequence. As a preliminary metric, we investigated their sequence similarity to the original trastuzumab 244 
sequence by calculating the LD. The majority of sequences showed an edit distance of LD > 4 (Figure 245 
6a). The first step in filtering was to calculate the net charge and hydrophobicity index in order to 246 
estimate the molecule’s viscosity and clearance2. According to Sharma et al., viscosity decreases with 247 
increasing variable fragment (Fv) net charge and increasing Fv charge symmetry parameter (FvCSP); 248 
however, the optimal Fv net charge in terms of drug clearance is between 0 and 6.2 with a 249 
CDRL1+CDRL3+CDRH3 hydrophobicity index sum (HI sum) < 4. Based on the wide range of values 250 
for these parameters in the 3.1 x 106 predicted variants (Figure 6b, c), we filtered any sequences out 251 
that had a FvCSP < 6.61 (trastuzumab FvCSP) or if they contained a Fv net charge > 6.2, and an HI 252 
sum > 4, < 0. This filtering criteria greatly reduced the sequence space down to 4.02 x 105 variants. We 253 
next padded the CDRH3 sequences with 10 amino acids on the 5’ and 3’ ends and then ran these 254 
sequences through CamSol, a protein solubility predictor developed by Sormanni et al.30, which 255 
estimates and ranks sequence variants based on their theoretical solubility. The remaining variants 256 
produced a wide-range of protein solubility scores (Figure 6d) and sequences with a score < 0.5 257 
(trastuzumab score) were filtered out, leaving 14,125 candidates for further analysis. As a last step in 258 
our in silico screening process, we aimed at reducing immunogenicity by predicting the peptide binding 259 
affinity of the variant sequences to MHC Class II molecules by utilizing NetMHCIIpan, a model 260 
previously developed by Jensen et al.31. One output from the model is a given peptide’s % Rank of 261 
predicted affinity compared to a set of 200,000 random natural peptides. Typically, molecules with a % 262 
Rank < 2 are considered strong binders and those with a % Rank < 10 are considered weak binders to 263 
the MHC Class II molecules scanned. All possible 15-mers from the padded CDRH3 sequences were 264 
run through NetMHCIIpan. After predicting the affinities for a set of 26 HLA alleles determined to cover 265 
over 98% of the global population32, sequences were filtered out if any of the 15-mers contained a % 266 
Rank < 5.5 (trastuzumab minimum % Rank) (Figure 6e). The number of 15-mers with a % Rank less 267 
than 10 and the average % Rank across all 15-mers for the remaining sequences were also calculated. 268 
Sequences with more than two 15-mers with a % Rank < 10 (Figure 6f) and those with an average % 269 
Rank < 60.56 (trastuzumab average % Rank) were also filtered out (Figure 6g). All remaining 4,881 270 
variants contain values equal to or greater than the parameters of the original trastuzumab sequence. 271 
When applying this same filtering scheme on the 11,300 experimentally determined binding sequences 272 
(obtained from training / test data), only 9 variants remained. Lastly, to determine the best developable 273 
sequences, we calculated an overall developability improvement score based on the mean of 274 
normalized values for each relevant parameter (see Materials and Methods), where trastuzumab would 275 
have a developability improvement score equal to 0. Of the remaining 4,881 predicted binding 276 
sequences, 293 variants were identified to have a higher developability score compared to the 277 
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maximum developability score of the 9 experimentally determined binding sequences (Figure 6h). The 278 
filtering parameters and number of remaining variants at each step for the in silico library are provided 279 
in Figure 6i. 280 

 281 

DISCUSSION 282 

Addressing the limitation of antibody optimization in mammalian cells, we have developed an approach 283 
based on deep learning that enables us to identify antigen-specific sequences with high precision. 284 
Calculating and predicting various biophysical properties of antigen-specific variants allows for efficient 285 
identification of the most developable antibody molecule, resulting in significant time and cost savings 286 
and greatly reducing risk for downstream clinical development. Using the clinically approved antibody 287 
trastuzumab, we performed single-site DMS followed by combinatorial mutagenesis to determine the 288 
antigen-binding landscape of CDRH3. This DMS-based mutagenesis strategy is crucial for attaining 289 
high quality training data that is enriched with antigen-binding variants, in this case nearly 10% of our 290 
library (Figure 2d). In contrast, if a completely randomized combinatorial mutagenesis strategy was 291 
employed (i.e., NNK degenerate codons), it would be unlikely to produce any significant fraction of 292 
antigen-binding variants. In the future, other approaches to mutagenesis that generate enriched training 293 
data33, such as shotgun scanning mutagenesis34, binary substitution35 and recombination14,36 may also 294 
be explored for training deep neural networks. 295 

Our initial single-site DMS libraries screened for enriched mutations through antigen-binding, yet 296 
combining these mutations in a cohesive manner to alter biophysical properties while retaining high 297 
antigen affinity is challenging. The amino acid composition of binding and non-binding variants is highly 298 
similar (Figure 2e), and visually identifying the sequence patterns that lead to binding is a daunting, if 299 
not impossible task. Moreover, structure-based modeling was unable to discriminate between binders 300 
and non-binders as predicting fine-grained protein-complex affinities is highly challenging using 301 
generalistic methods such as Rosetta27. This is compounded by introducing CDRH3 loop mutations 302 
which likely result in challenging loop conformational changes37. While more advanced, ensemble-303 
based ddG prediction methods38 could result in better performance, applying this to millions of 304 
sequences may be infeasible, further exemplifying the value of deep neural networks that are able to 305 
learn the high-dimensional space of antigen-binding sequences. 306 

A remarkable finding in this study was that experimental screening of a library of only 5 x 104 variants, 307 
which reflected a tiny fraction (0.0054%) of the total sequence diversity of the DMS-based combinatorial 308 
mutagenesis library (7.17 x 108), was capable of training accurate neural networks. This suggests that 309 
physical library size limitations of mammalian expression systems (or other expression platforms such 310 
as phage and yeast) and deep sequencing read depth will not serve as a limitation for deep learning-311 
guided protein engineering. Another important result was that deep sequencing of antigen-binding and 312 
non-binding populations showed nearly no observable difference in their positional amino acid usage 313 
(Figure 2e), revealing that neural networks are effectively capturing high-dimensional and non-linear 314 
patterns/interactions (Figure 5b).  315 
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In the current study, we selected LSTM-RNNs and CNNs as the basis of our classification models, as 316 
they represent two state of the art approaches in deep learning. Other machine learning approaches 317 
such as k-nearest neighbors, random forests, and support vector machines are also well-suited at 318 
identifying complex patterns from input data, but as data set sizes continue to grow, as is realizable 319 
with biological sequence data, deep neural networks tend to outperform these classical techniques17.   320 
Furthermore, deep generative modeling methods such as variational autoencoders and generative 321 
adversarial networks may also be used to explore the mutagenesis sequence space from directed 322 
evolution39. 323 

We in silico generated approximately 7.2 x 107 CDRH3 variants from DMS-based combinatorial 324 
diversity and used fully trained LSTM-RNN and CNN models to classify each sequence as a binder or 325 
non-binder. The 7.2 x 107 sequence variants comprise only a subset of the potential sequence space 326 
and was chosen to minimize the computational effort, however, it still represents a library size several 327 
orders of magnitude greater than what is experimentally achievable in mammalian cells. We easily 328 
envision extending the screening capacity through script optimization and employing parallel computing 329 
on high performance clusters. Out of all variants classified, the LSTM-RNN and CNN predicted 330 
approximately 11-13% to bind the target antigen, showing exceptional agreement with the 331 
experimentally observed frequencies by flow cytometry (Figure 2d). In order to experimentally validate 332 
the precision of neural networks to predict antigen specificity, we randomly selected and expressed 30 333 
variants from the library of sequences with a minimum edit distance of 5 from trastuzumab. The 334 
precision of the LSTM-RNN and CNN models were each estimated to be ~85% (at P > 0.75) according 335 
to predictions made on the test data sets (Figure 3b, d). By taking the consensus between models, 336 
however, we experimentally validated that all randomly selected (30/30) of the antigen-predicted 337 
sequences were indeed binders, and several of which were high affinity. While we anticipate false 338 
positives would be observed by increasing the sample size tested, validation of this subset strongly 339 
infers that potentially thousands of optimized lead candidates maintain a binding affinity in the range of 340 
therapeutic relevance, while also containing substantial sequence variability from the starting 341 
trastuzumab sequence. Future work to increase the stringency of selection during screening or a more 342 
detailed investigation of correlations between prediction probability and affinity could prove insightful 343 
towards retaining high target affinities. Experimentally validating the accuracy of the models to predict 344 
the binding status of sequence variants led us to take a more in depth look at the sequence space of 345 
predicted binding and non-binding variants. A sequence similarity network analysis at various LDs 346 
revealed no distinct clusters between binding and non-binding sequences, indicating an overall 347 
sequence similarity of both classifications. By then quantitatively analyzing neural network predictions, 348 
we were able to shed light on the high-dimensional patterns captured by the respective models and 349 
decipher amino acid combinations contributing to a sequence’s classification. 350 

Once an antibody’s affinity for its target antigen is within a desirable range for efficacious biological 351 
modification, addressing other biophysical properties becomes the focus of antibody development. With 352 
recent advances in computational predictions40,41, a number of these properties, including viscosity, 353 
clearance, stability2, specificity42, solubility30 and immunogenicity31 can be approximated from sequence 354 
information alone. With the aim of selecting antibodies with improved characteristics, we subjected the 355 
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library of predicted binders to a number of these in silico approaches in order to provide a ranking 356 
structure and filtering strategy for developability (Figure 6). After implementing these methods to 357 
remove variants with a high likelihood of having poor viscosity, clearance or solubility, as well as those 358 
with high immunogenic potential, nearly 5,000 multi-parameter optimized antibody variants remained 359 
with developability scores greater than the original trastuzumab sequence. Although a limited number 360 
of developable sequences can be initially identified experimentally (Figure 6h), this only reflects a small 361 
fraction of the highly-developable sequence space (0.2%). By screening in silico libraries, the presence 362 
of every sequence variant within the defined space is guaranteed, ensuring the identification of globally 363 
optimized sequences. Future work to apply more stringent or additional filters which address other 364 
developability parameters (e.g. stability, specificity, humanization) could also be implemented to further 365 
reduce the sequence space down to the most developable therapeutic candidates across even more 366 
parameters. For instance, previous studies have investigated the likeness of therapeutic antibodies to 367 
the human antibody repertoire43. We also envision this approach to enable the optimization of other 368 
functional properties of therapeutic antibodies, such as pH-dependent antibody recycling44 or 369 
affinity/avidity tuning45,46. Additionally, extending this approach to other regions across the variable light 370 
and heavy chain genes, namely other CDRs, may yield deep neural networks that are able to capture 371 
long-range, complex relationships between an antibody and its target antigen. To explore these patterns 372 
in greater depth, it may be useful to compare neural network predictions with other advanced structural 373 
modeling techniques such as ones that take advantage of geometric deep learning47. 374 

  375 

METHODS 376 

Mammalian cell culture and transfection 377 

Hybridoma cells were cultured and maintained according to the protocols described by Mason et al.23. 378 
Hybridoma cells were electroporated with the 4D-Nucleofector™System (Lonza) using the SF Cell Line 379 
4D-Nucleofector® X Kit L or X Kit S (Lonza, V4XC-2024, V4XC-2032) with the program CQ-104. Cells 380 
were prepared as follows: cells were isolated and centrifuged at 125 x G for 10 minutes, washed with 381 
Opti-MEM® I Reduced Serum Medium (Thermo, 31985-062), and centrifuged again with the same 382 
parameters. The cells were resuspended in SF buffer (per kit manufacturer guidelines), after which Alt-383 
R gRNA (IDT) and ssODN donor (IDT) were added. All experiments performed utilize constitutive 384 
expression of Cas9 from Streptococcus pyogenes (SpCas9). Transfections of 1x106 and 1x107 cells 385 
were performed in 100 µl, single Nucleocuvettes™ with 0.575 or 2.88 nmol Alt-R gRNA and 0.5 or 2.5 386 
nmol ssODN donor respectively. Transfections of 2x105 cells were performed in 16-well, 20 µl 387 
Nucleocuvette™ strips with 115 pmol Alt-R gRNA and 100 pmol ssODN donor. 388 

Flow cytometry analysis and sorting 389 

Flow cytometry-based analysis and cell isolation were performed using the BD LSR Fortessa™ (BD 390 
Biosciences) and Sony SH800S (Sony), respectively. When labeling with fluorescently conjugated 391 
antigen or anti-IgG antibodies, cells were first washed with PBS, incubated with the labeling antibody 392 
and/or antigen for 30 minutes on ice, protected from light, washed again with PBS and then analyzed 393 
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or sorted. The labeling reagents and working concentrations are described in Supplementary Table 5. 394 
For cell numbers different from 106, the antibody/antigen amount and incubation volume were adjusted 395 
proportionally. 396 

Sample preparation for deep sequencing 397 

Sample preparation for deep sequencing was performed similar to the antibody library generation 398 
protocol of the primer extension method described previously48. Genomic DNA was extracted from 1-399 
5x106 cells using the Purelink™ Genomic DNA Mini Kit (Thermo, K182001). Extracted genomic DNA 400 
was subjected to a first PCR step. Amplification was performed using a forward primer binding to the 401 
beginning of the VH framework region and a reverse primer specific to the intronic region immediately 402 
3’ of the J segment. PCRs were performed with Q5® High-Fidelity DNA polymerase (NEB, M0491L) in 403 
parallel reaction volumes of 50 ml with the following cycle conditions: 98˚C for 30 seconds; 16 cycles 404 
of 98˚C for 10 sec, 70˚C for 20 sec, 72˚C for 30 sec; final extension 72˚C for 1 min; 4˚C storage. PCR 405 
products were concentrated using DNA Clean and Concentrator (Zymo, D4013) followed by 0.8X 406 
SPRIselect (Beckman Coulter, B22318) left-sided size selection. Total PCR1 product was amplified in 407 
a PCR2 step, which added extension-specific full-length Illumina adapter sequences to the amplicon 408 
library. Individual samples were Illumina-indexed by choosing from 20 different index reverse primers. 409 
Cycle conditions were as follows: 98°C for 30 sec; 2 cycles of 98°C for 10 sec, 40°C for 20 sec, 72°C 410 
for 1 min; 6 cycles of 98°C for 10 sec, 65°C for 20 sec, 72°C for 1 min; 72°C for 5 min; 4°C storage. 411 
PCR2 products were concentrated again with DNA Clean and Concentrator and run on a 1% agarose 412 
gel. Bands of appropriate size (~550bp) were gel-purified using the Zymoclean™ Gel DNA Recovery 413 
kit (Zymo, D4008). Concentration of purified libraries were determined by a Nanodrop 2000c 414 
spectrophotometer and pooled at concentrations aimed at optimal read return. The quality of the final 415 
sequencing pool was verified on a fragment analyzer (Advanced Analytical Technologies) using DNF-416 
473 Standard Sensitivity NGS fragment analysis kit. All samples passing quality control were 417 
sequenced. Antibody library pools were sequenced on the Illumina MiSeq platform using the reagent 418 
kit v3 (2x300 cycles, paired-end) with 10% PhiX control library. Base call quality of all samples was in 419 
the range of a mean Phred score of 34. 420 

Bioinformatics analysis and graphics 421 

The MiXCR v2.0.3 program was used to perform data pre-processing of raw FASTQ files49. Sequences 422 
were aligned to a custom germline gene reference database containing the known sequence 423 
information of the V- and J-gene regions for the variable heavy chain of the trastuzumab antibody gene. 424 
Clonotype formation by CDRH3 and error correction were performed as described by Bolotin et al49. 425 
Functional clonotypes were discarded if: 1) a duplicate CDRH3 amino acid sequence arising from 426 
MiXCR uncorrected PCR errors, or 2) a clone count equal to one. Downstream analysis was performed 427 
using R v3.2.250 and Python v3.6.551. Graphics were generated using the R packages ggplot252, 428 
RColorBrewer53, and ggseqlogo54. 429 
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Calculation of enrichment ratios (ERs) in DMS 430 

The ERs of a given variant was calculated according to previous methods55. Clonal frequencies of 431 
variants enriched for antigen specificity by FACS, fi,Ag+, were divided by the clonal frequencies of the 432 
variants present in the original library, fi,Ab+, according to Equation 1. 433 

𝐸𝑅	 = 	
𝑓&,𝐴𝑔*
𝑓&,+,*

 434 

(Eq. 1)  435 

A minimum value of -2 was designated to variants with log[ER] values less than or equal -2 and variants 436 
not present in the dataset were disregarded in the calculation. A clone was defined based on the exact 437 
a.a. sequence of the CDRH3. 438 

Redesign of trastuzumab in Rosetta for diversity of sequences 439 

The Rosetta program27 was used to redesign the trastuzumab antibody in complex with the extracellular 440 
domain of HER2 (PDB id: 1N8Z)25. Ten residues in the CDRH3 loop of trastuzumab (residues 98-108 441 
of the heavy chain) were allowed to mutate to any natural amino acid, while all other residues were 442 
allowed to change rotameric conformation. A RosettaScript invoked the PackRotamersMover, a 443 
stochastic MonteCarlo algorithm, to optimize the sequence of the antibody to CDRH3 according to the 444 
Rosetta energy function, followed by backbone minimization. Energies were computed using Rosetta's 445 
ddG filter. Rosetta was run to generate 5000 sequences stochastically, and this resulted in 48 446 
sequences. Rosetta's output files were processed using RS-Toolbox56.  447 

Classification of experimentally-determined sequences in Rosetta  448 

Each of the 11,300 binding and 27,539 non-binding sequences from the combinatorial library were 449 
modelled in Rosetta27. For each experimentally-determined binding or non-binding sequence, the 450 
structure of the HER2:trastuzumab complex was used as input and the residues diverging from the 451 
wildtype were mutated using the PackRotamersMover in RosettaScripts57. The backbone and the side 452 
chains were minimized with Rosetta's MinMover after the sequence was modeled to optimized intra- 453 
and inter-chain contacts. Rosetta's predicted interface score (ddG) was used as the relative 454 
classification score. 455 

Codon selection for rational library design 456 

Codon selection for rational library design was based off the equation provided by Mason et al.23, 457 
(Equation 2), where Yn,deg represents the amino acid frequency for a given degenerate codon scheme, 458 
Yn,target is the target amino acid frequency, and n is the number of amino acids, 20. Residues identified 459 
in DMS analysis to have a positive enrichment (ER > 1, or log[ER] > 0) were normalized according to 460 
their enrichment ratios and were converted to theoretical frequencies and taken as the target amino 461 
acid frequencies. Degenerate codon schemes were then selected which most closely reflect these 462 
frequencies as calculated by the mean squared error between the degenerate codon and the target 463 
frequencies. 464 
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𝑂𝑝𝑡𝑖𝑚𝑎𝑙	𝐶𝑜𝑑𝑜𝑛	 = 	𝑎𝑟𝑔9𝑚𝑖𝑛(
1
𝑛<(𝑌>,?@A − 𝑌>,CDEA@C)G

>

&HI

) 465 

(Eq. 2)  466 

In certain instances, if the selected degenerate codon did not represent desirable amino acid 467 
frequencies or contained undesirable amino acids, a mixture of degenerate codons were selected and 468 
pooled together to achieve better coverage of the functional sequence space. 469 

Deep learning model construction 470 

Machine learning models were built in Python v3.6.5. LSTM-RNNs, and CNNs were built using the 471 
Keras58 v2.1.6 Sequential model as a wrapper for TensorFlow59 v1.8.0. Model architecture and 472 
hyperparameters were optimized by performing a grid search of relevant variables for a given model. 473 
These variables include nodes per layer, activation function(s), optimizer, loss function, dropout rate, 474 
batch size, number of epochs, number of filters, kernel size, stride length, and pool size. Grid searches 475 
were performed by implementing a k-fold cross validation of the data set. 476 

Deep learning model training and testing 477 

Data sets for antibody expressing, non-binding, and binding sequences (Sequencing statistics: 478 
Supplementary Tables 1, 2) were aggregated to form a single, binding/non-binding data set where 479 
antibody expressing sequences were classified as non-binders, unless also identified among the 480 
binding sequences. Sequences from one round of antigen enrichment were excluded from the training 481 
data set. The complete, aggregated data set was then randomly arranged and appropriate class labeled 482 
sequences were removed to achieve the desired classification ratio of binders to non-binders (50/50, 483 
20/80, 10/90, and non-adjusted). The class adjusted data set was further split into a training set (70%), 484 
and two testing sets (15% each), where one test set reflected the classification ratio observed for 485 
training and the other reflected a classification ratio of approximately 10/90 to resemble the 486 
physiological expected frequency of binders. 487 

Sequence similarity and model attribution analysis of predicted variants 488 

Sequence similarity networks of sequences predicted to be antigen positive and antigen negative were 489 
constructed for Levenshtein Distance 1-6 were constructed using the igraph R package60 v1.2.4. The 490 
resulting networks were analyzed with respect to their overall connectivity, the composition of their 491 
largest clusters and the overall degree distribution between the classes. 492 

The Integrated Gradients technique29 was used to assess the relative attribution of each feature of a 493 
given input sequence towards the final prediction score. First, a baseline was obtained by zeroing out 494 
the input vector and the path integral of the gradients from baseline to the input vector was then 495 
approximated with a step size of 100. Integrated gradients were visualized as sequence logos. 496 
Sequence logos were created by the python module Logomaker61. 497 
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In silico sequence classification and sequence parameters 498 

All possible combinations of amino acids present in the DMS-based combinatorial mutagenesis libraries 499 
were used to calculate the total theoretical sequence space of 7.17 x 108. 7.2 x 107 sequence variants 500 
were generated in silico by taking all possible combinations of the amino acids used per position in the 501 
combinatorial mutagenesis library designed from the DMS data following three rounds of enrichment 502 
for antigen binding variants (Supplementary Fig. 2c, 3c); Alanine was also selected to be included at 503 
position 103. All in silico sequences were then classified as a binder or non-binder by the trained LSTM-504 
RNN and CNN models. Sequences were selected for further analysis if they were classified in both 505 
models with a prediction probability (P) of more than 0.75. 506 

The Fv net charge and Fv charge symmetry parameter (FvCSP) were calculated as described by 507 
Sharma et al. Briefly, the net charge was determined by first solving the Henderson-Hasselbalch 508 
equation for each residue at a specified pH (here 5.5) with known amino acid pKas62. The sum across 509 
all residues for both the VL and VH was then calculated as the Fv net charge. The FvCSP was 510 
calculated by taking the product of the VL and VH net charges. The hydrophobicity index (HI) was also 511 
calculated as described by Sharma et al., according to the following equation: HI = -(∑niEi / ∑njEj). E 512 
represents the Eisenberg value of an amino acid, n is the number of an amino acid, and i and j are 513 
hydrophobic and hydrophilic residues respectively. 514 

The protein solubility score was determined for each, full-length CDRH3 sequence (15 a.a.) padded 515 
with 10 amino acids on both the 5’ and 3’ ends (35 a.a.) by the CamSol method30 at pH 7.0. 516 

The binding affinities for a reference set of 26 HLA alleles32 were determined for each 15-mer contained 517 
within the 10 amino acid padded CDRH3 sequence (35 a.a.) by NetMHCIIpan 3.231. The output provides 518 
for each 15-mer a predicted affinity in nM and the % Rank which reflects the 15-mer’s affinity compared 519 
to a set of random natural peptides. The % Rank measure is unaffected by the bias of certain molecules 520 
against stronger or weaker affinities and is used to classify peptides as weak or strong binders towards 521 
the specified MHC Class II allele. The minimum % Rank, the number of 15-mers with % Rank less than 522 
10 (classification of weak binder), and the average % Rank were calculated across all 21 15-mers for 523 
a single CDRH3 sequence across all 26 HLA alleles. 524 

Overall developability improvement of the antibody sequences was determined by first normalizing the 525 
FvCSP, CamSol score, and average NetMHCII % Rank according to the range of values observed in 526 
the remaining sequences post-filtering. The normalized CamSol protein solubility score was then 527 
weighted by a factor of 2 for its importance in determining developability. Lastly, the mean across these 528 
three parameters was taken to produce the overall developability improvement score. Since the 529 
sequences were filtered with the calculated values for trastuzumab, trastuzumab would have an overall 530 
developability improvement equal to 0.  531 
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦532 

=	
1
3	OP

𝐹𝑣𝐶𝑆𝑃 −min(𝐹𝑣𝐶𝑆𝑃)
max(𝐹𝑣𝐶𝑆𝑃) −min(𝐹𝑣𝐶𝑆𝑃)Y + 2 ∗ P

𝐶𝑎𝑚𝑆𝑜𝑙 − min(𝐶𝑎𝑚𝑆𝑜𝑙)
max(𝐶𝑎𝑚𝑆𝑜𝑙) − min(𝐶𝑎𝑚𝑆𝑜𝑙)Y533 

+ P
𝑎𝑣𝑔𝑁𝑒𝑡𝑀𝐻𝐶 −min(𝑎𝑣𝑔𝑁𝑒𝑡𝑀𝐻𝐶)

max(𝑎𝑣𝑔𝑁𝑒𝑡𝑀𝐻𝐶) −min(𝑎𝑣𝑔𝑁𝑒𝑡𝑀𝐻𝐶)Y` 534 

(Eq. 3)  535 

Affinity measurements by biolayer interferometry 536 

Monoclonal populations of the individual variants were isolated by performing a single-cell sort. 537 
Following expansion, supernatant for all variants was collected and filtered through a 0.20 µm filter 538 
(Sartorius, 16534-K). Affinity measurements were then performed on an Octet RED96e (FortéBio) with 539 
the following parameters. Anti-human capture sensors (FortéBio, 18-5060) were hydrated in 540 
conditioned media diluted 1 in 2 with kinetics buffer (FortéBio, 18-1105) for at least 10 minutes before 541 
conditioning through 4 cycles of regeneration consisting of 10 seconds incubation in 10 mM glycine, pH 542 
1.52 and 10 seconds in kinetics buffer. Conditioned sensors were then loaded with 0 µg/mL (reference 543 
sensor), 10 µg/mL trastuzumab (reference sample), or hybridoma supernatant (approximately 20 544 
µg/mL) diluted 1 in 2 with kinetics buffer followed by blocking with mouse IgG (Rockland, 010-0102) at 545 
50 µg/mL in kinetics buffer. After blocking, loaded sensors were equilibrated in kinetics buffer and 546 
incubated with either 5 nM or 25 nM HER2 protein (Sigma-aldrich, SRP6405-50UG). Lastly, sensors 547 
were incubated kinetics buffer to allow antigen dissociation. Kinetics analysis was performed in analysis 548 
software Data Analysis HT v11.0.0.50. 549 

 550 
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Figure 1: Implementing deep learning to predict antibody target specificity


(a) Generating quality data capable of training accurate models. First, deep mutational scanning assesses the impact 
mutations have on protein function across many different positions. These insights can then be applied to combinatorial 
mutagenesis strategies to guide protein library design capable of producing thousands of binding variants. (b) Sequence 
information for binders and non-binders can then be used to train deep neural networks to accurately predict antigen 
specificity of unknown antibody variants, producing millions of predicted binders. These binders can then be subjected 
to any available in silico methods for predicted various developability attributes.
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Figure 2: Sequence and structure-based 
analysis of the mutational landscape


(a) Flow cytometry profile following 
integration of tiled mutations by homology-
directed mutagenesis. Antigen specific 
variants underwent 3 rounds of enrichment 
(Supplementary Fig. 2) (b) Corresponding 
heatmap (left) following sequencing 
analysis of the pre-sorted (Ab+) and post-
sorted (Ag+) populations (Supplementary 
Table 1). Wild type amino acids are marked 
by black circles. The resulting sequence 
logo plot (right) generated by positively 
enriched mutations per position. (c) 3D 
protein structure of trastuzumab in complex 
with its target antigen, HER225,26 (left). 
Locations of surface exposed residues: 
102D, 103G, 104F, and 105Y are given. The 
protein design program Rosetta was run 
5,000 times to generate sequence variants 
of trastuzumab predicted to bind the 
antigen HER2. The resulting sequence logo 
plot of the 48 generated CDRH3 loops 
(right) differs substantially from the DMS-
based sequence logo plot. (d) 
Combinatorial mutagenesis libraries are 
designed from enrichment ratios observed 
in DMS data and integrated into the 
trastuzumab variant by homology-directed 
mutagenesis. Flow cytometry plots 
resulting from transfection of the rationally 
designed library. Deep sequencing was 
performed on the library (Ab+), non-binding 
variants (Ag-), and binding variants after 1 
and 2 rounds of enrichment (Ag+1, Ag+2) 
(Supplementary Fig. 3, Supplementary 
Table 2). (e) Amino acid frequency plots of 
antigen binding and non-binding variants 
reveals nearly indistinguishable amino acid 
usages across all positions. (f) Distribution 
plot for the predicted Rosetta ddG scores 
for each sequence in the experimentally 
determined binding population (11,300 
binders, shown in blue) and non-binding 
population (27,539 non-binders, shown in 
red) (left). The distribution plot is normalized 
for comparison purposes. Receiver 
operating characteristic (ROC) curve with 
area under curve (AUC) using the Rosetta 
ddG score to predict binding and non-
binding variants shows poor classification 
(right).
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Figure 3: Deep learning 
models accurately predict 
antigen specificity 


The selected network 
architectures and their model 
performance curves for 
classification of binding and 
non-binding sequences. 
Model training was performed 
on 70% of the data and 
testing was performed by 
withholding the remaining 
30% and then comparing the 
model’s classification of test 
sequences with the known 
classification. In lieu of 
adjusting the data set to a 
defined class split of binding/
non-binding sequences, all 
known information was utilized 
to train and test the networks 
(approx. class split of 31%). 
(a) LSTM-RNN architecture 
and parameters used for 
model fitting. (b) ROC (receiver 
operating character) curve and 
PR (precision-recall) curve 
observed on the classification 
of sequences in the test set by 
the LSTM-RNN. (c) CNN 
architecture and parameters 
used for model fitting. (d) ROC 
curve and PR curve observed 
on the classification of 
sequences in the test set by 
the CNN. The high values 
observed for the ROC area 
under curve (AUC) and 
average precision of both 
networks represent robust 
measures of model accuracy 
and precision.
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b

c
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Figure 4: Deep neural network predicted sequences are 
experimentally validated to be antigen-specific


(a) To test the precision of the neural network predictions, 30 variants 
were randomly selected after increasing the prediction threshold 
(P(binder) > 0.75) and taking the consensus sequences between the 
LSTM-RNN and CNN. These sequences were integrated into 
individual hybridoma cells lines by separately transfecting ssODN 
donor sequences with gRNA. (b) Affinities for the 30 variant 
sequences were determined by biolayer interferometry (BLI). Although 
most sequences display a minor decrease in affinity for the target 
antigen, the majority of sequences still exude affinities of therapeutic 
relevance in the single nanomolar (24/30) or sub-nanomolar range 
(5/30). (c) Iso-affinity graph of the variant sequences.

a b

c

Variant CDRH3 Sequence RNN 
P(Binder)

CNN 
P(Binder) LD KD 

(nM)
ka 

(1/Ms)
kd 

(1/s)
1 WQEAAFYAHD 0.833 0.930 5 3.31 2.2E+05 7.3E-04

2 YGGRGMYQLE 0.906 0.973 6 1.74 2.9E+05 5.0E-04

3 WNQLGMYVND 0.874 0.888 6 3.36 2.2E+05 7.5E-04

4 YGMRGLYAYE 0.942 0.948 6 1.47 3.1E+05 4.6E-04

5 WMETGFYTHD 0.895 0.966 5 0.14 1.1E+05 1.4E-05

6 WNAPSFYAND 0.885 0.977 5 7.43 3.0E+05 2.2E-03

7 WQGIGLYELD 0.942 0.889 5 3.20 1.9E+05 6.2E-04

8 WAMLGMYAHD 0.847 0.779 5 2.32 3.0E+05 7.0E-04

9 YQANGLYAYE 0.959 0.886 7 9.77 4.3E+05 4.2E-03

10 YRAVGFYTND 0.783 0.871 6 0.94 2.6E+05 2.4E-04

11 WAPYGLYAHD 0.948 0.959 5 1.28 2.9E+05 3.7E-04

12 WDGPAFYELD 0.860 0.936 5 31.1 1.0E+05 3.2E-03

13 WGIHSFYEHD 0.844 0.869 5 0.54 1.8E+05 9.6E-05

14 YGEYGMYVNK 0.888 0.870 7 1.24 3.2E+05 4.0E-04

15 WRDRGFYEYD 0.858 0.974 5 0.71 2.6E+05 1.9E-04

16 WEEYGLYVHD 0.933 0.992 6 1.98 7.8E+04 1.5E-04

17 YASAGMYTHD 0.927 0.883 7 4.92 3.4E+05 1.7E-03

18 YGDAGMYALK 0.973 0.995 6 4.84 3.7E+05 1.8E-03

19 WQLGGMYTHD 0.919 0.941 6 7.55 1.6E+05 1.2E-03

20 WNSDGLYAYE 0.864 0.961 5 7.22 3.3E+05 2.4E-03

21 WQRGGFYVND 0.956 0.993 5 0.51 2.5E+05 1.3E-04

22 YGARGFYQND 0.892 0.789 5 6.33 4.4E+05 2.8E-03

23 YAGPGMYTNQ 0.870 0.830 7 3.37 2.4E+05 8.2E-04

24 WNPHGLYVND 0.939 0.974 6 1.11 2.4E+05 2.7E-04

25 YGSNGLYANQ 0.914 0.908 6 7.25 3.1E+05 2.3E-03

26 WPKVGLYTND 0.853 0.865 6 2.46 2.6E+05 6.3E-04

27 WGIVSFYEND 0.871 0.873 5 3.90 2.0E+05 8.0E-04

28 YSMPGMYTNA 0.848 0.938 8 3.60 2.6E+05 9.5E-04

29 WAEAGMYEFD 0.880 0.915 6 3.60 1.3E+05 4.5E-04

30 WPMCGMYTHD 0.835 0.855 6 3.86 1.1E+05 4.4E-04
Trastuzumab WGGDGFYAMD 0.962 0.938 0 0.40 2.5E+05 1.0E-04

0.1 nM 1.0 nM 10 nM

Trastuzumab
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a

b

Figure 5: Deep neural networks decipher non-linear interactions to accurately classify binding and non-binding 
sequences


(a) A sequence similarity network analysis was completed on 5,000 randomly selected predicted binding (blue) and 5,000 non-
binding variants (black) to investigate potential sequence similarities of the classification choices (left). Clustering was 
performed at a Levenshtein distance (LD) ≤ 2; Similarity network analyses performed with additional LDs can be found in 
Supplementary Table 4 and Supplementary Fig. 12. Although the largest cluster within the network (middle) contains 90% 
predicted binding variants, this comprises only 30% of all sequences in the network. Conversely, 42% of sequences do not 
cluster with any other neighboring sequences, thereby revealing that for the majority of variants, there are no discernible 
clusters of binding or non-binding predictions. (b) The Integrated Gradients method efficiently extracts and enables 
visualization of the classification patterns established by the LSTM-RNN (left) and the CNN (right). For the specific example, 
variants identified in the network with a LD of only 2 were classified as binding and non-binding sequences respectively. The 
LSTM-RNN and CNN uniquely identify non-linear combinations of amino acids that contribute to its classification as a binder 
(highlighted in green) or its classification as a non-binder (highlighted in red).

Predicted Non-binders
Predicted Binders

LSTM-RNN P(binder) = 0.84

CNN P(binder) = 0.86

LSTM-RNN P(binder) = 0.19

CNN P(binder) = 0.10

CSRWDRYGLYTHDYW

CSRWDRYGLYTYHYW

LSTM-RNN CNN

Binding Non-binding Binding Non-binding
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Figure 6: In silico screening of predicted binders identifies globally optimized variants


Antigen specific variants result in a wide range of in silico calculated parameters for developability. The following are staggered 
histograms showing the parameter distributions of all deep learning (DL)-predicted binders (light) and the experimentally 
observed binders (dark) at the different stages of filtering. Red boxes indicate filtering cut-offs determined by the developability 
metric calculated for the original trastuzumab sequence. (a) Levenshtein distance from wild-type trastuzumab. (b) Net charge 
of the VH domain. (c) CDRH3 hydrophobicity index. (d) CamSol intrinsic solubility score. (e) The minimum NetMHCIIpan % 
Rank (< 2 ~ strong affinity; < 10 ~ weak affinity) across all possible 15-mers for a given CDRH3 sequence and across all HLA 
alleles. (f) The number of 15-mers found within a given CDRH3 sequence that have a % Rank < 10 across all alleles. (g) The 
average NetMHCIIpan % Rank across all possible 15-mers and HLA alleles. (h) Scatter/violin plot for the overall developability 
improvement score (Eq. 3) of the remaining sequence variants passing all filtering criteria. 293 sequences of the predicted 
binders have a higher overall developability improvement score than the maximum score identified from an experimental binder. 
(i) Filtering parameters and the number of sequences at the corresponding stage of filtering.


a b c

d e f

h

DL-predicted BindersExperimental Binders

g
Filtering Parameters No. Predicted 

Binders

RNN P(binder) > 0.5

CNN P(binder) > 0.5

8,552,268

9,519,642

RNN P(binder) > 0.75

CNN P(binder) > 0.75

4,315,323

5,218,706

RNN, CNN consensus 3'159'373

FvCSP > 6.61

Fv charge < 6.2

HI Sum > 0, < 4

402'633

Solubility score > 0.5 14'125

Minimum % Rank > 5.5

No. 15-mers w/ % Rank < 10 ≤ 2

Average % Rank > 60.6

4'881

i
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