

1 **Coordinated circadian timing through the integration of**
2 **local inputs in *Arabidopsis thaliana***

3 Short title: Coordination of circadian timing in *A. thaliana*

4 Mark Greenwood^{1,2}, Mirela Domijan³, Peter D. Gould⁴, Anthony J.W. Hall⁵, James
5 C.W. Locke¹

6 ¹Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK

7 ²Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2
8 1QW, UK

9 ³Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool, L69 7ZB,
10 UK

11 ⁴Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZL, UK

12 ⁵Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 **Abstract**

30 Every plant cell has a genetic circuit, the circadian clock, that times key processes
31 to the day-night cycle. These clocks are aligned to the day-night cycle by multiple
32 environmental signals that vary across the plant. How does the plant integrate
33 clock rhythms, both within and between organs, to ensure coordinated timing?
34 To address this question, we examined the clock at the sub-tissue level across
35 *Arabidopsis thaliana* seedlings under multiple environmental conditions and
36 genetic backgrounds. Our results show that the clock runs at different speeds
37 (periods) in each organ, which causes the clock to peak at different times across
38 the plant in both constant environmental conditions and light-dark cycles. Closer
39 examination reveals that spatial waves of clock gene expression propagate both
40 within and between organs. Using a combination of modeling and experiment,
41 we reveal that these spatial waves are the result of the period differences
42 between organs and local coupling, rather than long distance signaling. With
43 further experiments we show that the endogenous period differences, and thus
44 the spatial waves, are caused by the organ specificity of inputs into the clock. We
45 demonstrate this by modulating periods using light and metabolic signals, as
46 well as with genetic perturbations. Our results reveal that plant clocks are set
47 locally by organ specific inputs, but coordinated globally via spatial waves of
48 clock gene expression.

49

50 **Abbreviations:** LD, light-dark; GI, GIGANTEA; LUC, LUCIFERASE; LL, constant
51 light; h, hours; DD, constant darkness; DCMU, 3-(3,4-dichlorophenyl)-1,1-
52 dimethylurea; MS, Murashige & Skoog; ROI, region of interest; FFT-NLLS, Fast-

53 Fourier Transformed Non-Linear Least Squares; RLL, constant red light; BLL,
54 constant blue light.

55

56 **Introduction**

57 In response to the Earth's predictable light-dark (LD) cycles, many organisms
58 have evolved a circadian clock (1). A common design principle is a central
59 oscillator that receives input from multiple environmental signals and uses them
60 to predict the time of day. This timing information is used to coordinate
61 processes, matching them to the optimum time of day or year. In plants, these
62 processes include photosynthesis, leaf movement, and flowering (2).

63

64 A number of studies have reported that different parts of the plant can generate
65 circadian oscillations with different periods under constant conditions (3). This
66 could be due to the clock network being wired differently in different parts of the
67 plant, or that the sensitivity of the clock to environmental inputs varies across
68 the plant. There is already some evidence that both the network and inputs have
69 some cell or tissue specificity. Previous work has shown that although most clock
70 genes are expressed in most cell types (4–7), some core clock genes have a tissue
71 enriched expression pattern (4,8,9). Additionally, it has been shown that
72 different cell types respond preferentially to temperature or light inputs (10–
73 12), and that the shoot and root clock have different sensitivities to light (6).
74 However, how whole-plant timing is affected by tissue level differences in the
75 clock network, or differences in sensitivity to clock inputs, remains unclear.

76

77 In complex organisms, many physiological processes, including those under
78 control of the clock, require coordinated timing across tissues. In many
79 eukaryotes, cell-cell communication maintains clock coherence across the
80 organism. For example, in mammals clock cells located in the suprachiasmatic
81 nucleus drive rhythms across the body via neural and humoral signals (1,13). In
82 plants, studies of synchronization (5,14–19), grafting experiments (18), and the
83 use of tissue specific promoters (20) suggest cell-cell communication is also
84 important for coherent rhythms. It has been proposed that this communication
85 acts hierarchically, with the root clock dependent on a long-distance signal from
86 the shoot (9,18,21). However, a decentralized structure, with multiple points of
87 coordination across the plant, could potentially explain inconsistencies such as
88 fast cells in the root tip (5), spiral and striped expression patterns in leaves and
89 roots (14–16,22–24), and the entrainment of detached roots by light (6,25).
90 Therefore, how plants coordinate the clock at the organism level is not
91 understood (Fig 1). More specifically, it is not known whether cell-cell
92 communication acts through local or long-distance signaling pathways.

93
94 In this work, we examined the clock at the sub-tissue level across *A. thaliana*
95 seedlings *in vivo*. We observed that each organ of the plant has a different clock
96 phase, even under LD cycles. Sub-tissue level analysis revealed that spatial waves
97 of clock gene expression propagate within and between the organs.
98 Mathematical models propose that waves under both constant light and LD
99 cycles could be due to the combination of different periods in each part of the
100 plant and local cell-cell coupling. We tested these predictions by examining
101 rhythms in dissected plant roots. Waves up and down the root persisted in

102 detached roots, showing that long distance signals from the shoot are not
103 required for coordination. Next, by modulating periods in specific parts of the
104 plant using genetic and environmental perturbations, we found that we could
105 alter wave generation in a predictable manner. Thus, the clock in plants has a
106 decentralized structure, with clocks across the plant coordinating via local cell-
107 cell signaling.

108

109 **Results**

110 **Organ specific clocks entrain to LD cycles with different phases.**

111 To investigate the coordination of clock rhythms, we analyzed rhythms across
112 entire seedlings under different entrainment regimes. To do this, we monitored
113 promoter activity of the core clock gene *GIGANTEA* (*GI*; 22) fused to the
114 *LUCIFERASE* (*LUC*) reporter gene, for multiple days at near cellular resolution
115 (Materials and Methods). This reporter line was chosen due to its strong
116 expression, and its similar spatial expression to other clock components (5).

117

118 In order to observe the endogenous component of the rhythms, we first imaged
119 seedlings under constant light (LL), having previously grown them under LD
120 cycles (LD-to-LL; Fig 2A and Materials and Methods). Under the LD-to-LL
121 condition we observed phase differences of *GI*::*LUC* expression between organs
122 (Fig 2B, C). The cotyledon and hypocotyl peaked before the root, but the tip of
123 the root peaked before the middle region of the root (Fig 2C, S1 Fig and S1
124 Video). Further, we observed a decrease in coherence between regions over
125 time, with a range between the earliest and latest peaking region of 4.92 ± 3.79 h
126 in the first and 18.36 ± 5.67 h in the final oscillation. This is due to the emergence

127 of period differences between all regions (Fig 2D). The cotyledon maintained a
128 mean period of 23.82 ± 0.60 h, whereas the hypocotyl and root ran at $25.41 \pm$
129 0.91 h and 28.04 ± 0.86 h respectively. However, the root tip ran slightly faster
130 than the middle of the root, with a mean period of 26.90 ± 0.45 h, demonstrating
131 the presence of endogenous period differences across all regions. These
132 observations are qualitatively similar to the periods and phases previously
133 observed in isolated organs (6,18,21), and at the cellular level across the seedling
134 (5), validating our whole-plant assay for the circadian clock.

135

136 The phase at which a rhythm entrains to the environment can depend on the
137 mismatch between its endogenous period and the period of the entraining signal
138 (27–29). We therefore tested the consequence of endogenous period differences
139 between organs on the entrainment of the plant, by monitoring rhythms under
140 LD cycles (LD-to-LD; Fig 2A and Materials and Methods). Under the LD-to-LD
141 condition, we observed robust and entrained rhythms of *GI::LUC* (Fig 2E).
142 However, closer inspection of the timing of the peaks of the oscillations revealed
143 significant differences in clock phase between organs (Fig 2F). The cotyledon and
144 hypocotyl consistently peak earlier than the root regions, but the root tip peaks
145 earlier than the middle of the root (Fig 2F, S1 Fig and S2 Video). This is
146 qualitatively similar to the pattern observed under LL (Fig 2C). However, under
147 the LD-to-LD condition, the organs showed a more stable phase relationship than
148 under LL, with a range between the earliest and latest peaking region of $2.08 \pm$
149 1.56 h in the first and 1.10 ± 1.44 h in the final oscillation. This is due to the fact
150 that all organs oscillate with a period of approximately 24 h (Fig 2G).

151

152 **Spatial waves of clock gene expression propagate between and within**
153 **organs.**

154 Spatial waves of clock gene expression have been previously reported in plant
155 leaves (14,15,22,23) and roots (5,16,24) under LL. However, their relation to one
156 another, and the relevance under LD cycles remained unclear. We analyzed our
157 LD-to-LL and LD-to-LD dataset of whole, intact seedlings at the sub-tissue level
158 in order to address these questions. We extracted the phase of the luminescence
159 signal across longitudinal sections of seedlings (S2 Fig, Materials and Methods)
160 and present phase plots and time-lapse videos of single seedlings representative
161 for each light condition (Fig 2H, I, and S1,2 Video). The clearest waves of
162 expression could be observed in the LD-to-LL condition, as phase differences
163 increased with time. In the cotyledon, a wave of *GI::LUC* expression propagated
164 from the tip to the base (Fig 2H, top), and downwards into the hypocotyl (Fig 2H,
165 middle). In the hypocotyl we observed a second wave traveling from the root
166 junction upwards into the hypocotyl (Fig 2H, middle). Finally, within the root we
167 observed two waves; one propagating down from the hypocotyl junction and the
168 second from the root tip upwards into the root, as we have reported previously
169 (Fig 2H, bottom; 5). Evidence of waves of clock gene expression could also be
170 observed under the LD-to-LD condition. Although they are less pronounced,
171 small phase waves could be discerned within the cotyledon (Fig 2I, top),
172 hypocotyl (Fig 2I, middle) and root (Fig 2I, bottom) of the phase plots and time-
173 lapse videos (S2 Video).

174
175 **Spatial waves of clock gene expression persist in the absence of inter-organ**
176 **communication.**

177 Previous work has proposed that spatial waves of clock gene expression are
178 driven by local cell-cell coupling (5,14–16). However, plants can communicate
179 through both local and long-distance, inter-organ pathways (30), and the root
180 clock has been proposed to be driven by long range signals from the shoot (18).
181 To investigate whether rhythms and spatial waves are driven by long-distance
182 communication we blocked signal transmission between organs by cutting the
183 seedling into sections. We cut the root at either the hypocotyl junction, the root
184 tip, or both the hypocotyl junction and the root tip, and then monitored the
185 rhythms for six days under LL (Fig 3A). Surprisingly, we found that sectioning
186 the plant did not significantly affect the phase of the rhythms (Fig 3B–D and S3
187 Fig). We found that this is due to the persistence of period differences across the
188 plant after cutting (Fig 3E–G). Next, we focused our analysis to within the
189 hypocotyl and root, where the simple geometry means the wave patterns can be
190 most easily observed. Strikingly, after all cuts we observed the persistence of
191 waves propagating both from the hypocotyl down into the root and from the root
192 tip upwards (Fig 3I–K and S3 Video). Our results show that in all organs excised,
193 rhythms are autonomous and the spatial waves that travel between them are not
194 dependent on a long-distance signal.

195

196 **Period differences plus local coupling can explain organ specific
197 entrainment and spatial waves.**

198 The persistence of rhythms and spatial waves in the absence of long-distance
199 communication suggests clocks may instead be coupled through local
200 interactions. We extended the mathematical framework we employed in Gould *et
201 al*, 2018 to investigate whether local coupling can explain the entrainment

202 behaviors that we observe under LD and LL. As before, we used a Kuramoto
203 phase oscillator model (27). In this framework each pixel (which in fact
204 represents multiple cells (S4 Fig)) on our seedling template is an individual
205 oscillator with an intrinsic period and is weakly coupled to its nearest neighbors.
206 The intrinsic period of each pixel is set according to its location in the seedling.
207 Pixels from the cotyledon, hypocotyl, root, and root tip were drawn from
208 distributions centered around the mean periods that we observed
209 experimentally in each region under LL (Fig 4A, S4 Fig, Materials and Methods).
210 These period estimates are made from *in vivo* experiments and therefore include
211 the effects of coupling. They are, however, as good an estimation of the cell
212 autonomous periods as possible in a physiologically relevant context. In our LD-
213 to-LL simulations, due to the differences in intrinsic periods, and coupling, we
214 see increasing phase shifts between organs (Fig 4C), and two increasingly large
215 waves in the root (Fig 4E), as observed in experiments (Fig 4G).
216
217 In our model, the amount that each oscillator phase is shifted is set by the
218 mismatch of its intrinsic period and the period of the entraining rhythm (27–29).
219 This prediction is supported by experimental evidence in various organisms,
220 including plants (31), although dawn can also reset the phase of the plant clock
221 in bulk *Arabidopsis* experiments (32). We tested whether the phase differences
222 that we observe between organs in *Arabidopsis* under our LD conditions can be
223 reproduced in our model by this mismatch with the entraining rhythm. In our
224 simulations, organs were forced to oscillate with a period of approximately 24 h,
225 due to entrainment to the external rhythm (Fig 4B). However, due to the
226 mismatch between the intrinsic period and the entraining rhythm, organs

227 entrained with different phases, matching those observed experimentally (Fig
228 4D). Phase shifts could also be observed at the sub-tissue level; two short waves
229 could be observed in the root (Fig 4F), as in experiments (Fig 4H).

230

231 **Local coupling limits desynchrony in the absence of entrainment.**

232 In a set of coupled oscillators, variation in period causes a decrease in synchrony,
233 whereas coupling and external entrainment maintain or increase synchrony
234 (33,34). In order to make predictions about the presence of local coupling in
235 seedlings we simulated our model in the absence of LD entrainment. We
236 simulated the duration of the experiment without entraining the oscillators, and
237 thus assume that the phases are initially random (LL-to-LL; Fig 5A, Materials and
238 Methods). In contrast to the LD-to-LL condition, where oscillators begin
239 synchronous but become less synchronized whilst under LL, in LL-to-LL
240 simulations, oscillators began less synchronous but maintained their order over
241 the six days (Fig 5B). Interestingly, in the root, the model predicted a complex
242 spatial pattern, with multiple phase clusters and spatial waves in a single
243 seedling (Fig 5C and S4 Video). These patterns of gene expression were similar
244 to the zig-zag patterns previously reported by others when roots are grown on
245 sucrose supplemented media (16,24,35). We found that these zig-zag patterns
246 emerged with, but not without, local coupling (S5A and S5B Fig). Simulations of a
247 plausible alternative model without coupling but with a gradient of the intrinsic
248 periods was sufficient to generate the simple waves that we observed under LD-
249 to-LL (S5C and S5D Fig), but not the complex zig-zag waves predicted in the LL-
250 to-LL condition (S5E and S5F Fig).

251

252 In order to test our model and validate the assumption of local coupling, we
253 experimentally tested the LL-to-LL model prediction. We both grew and imaged
254 seedlings under LL conditions (LL-to-LL; Fig 5A), so that seedlings never see an
255 entrainment cue beyond germination (36,37). Roots maintain their coherence
256 over the six days of imaging (Fig 5D) and display a zig-zag expression pattern
257 (Fig 5E and S6 Fig) as predicted by the model, supporting the hypothesis of
258 weak, local coupling.

259

260 **Local light inputs set organ specific periods.**

261 To test our model further, we attempted to manipulate the periods in specific
262 organs, to determine whether we could modulate the spatial waves of gene
263 expression. In the most severe case, removing all period differences across the
264 plant should result in perfectly coherent rhythms. We found mutations to the
265 core clock network to have little effect on the organ specificity of periods (S7
266 Fig), and so we next tested whether we could alter periods in an organ specific
267 manner by modulating inputs to the clock. We first tested the effect of light input,
268 by growing seedlings under LD cycles before imaging seedlings under constant
269 darkness (DD). Under DD we observed a drastic slowing of periods in the
270 cotyledon and hypocotyl but an increase in speed at the root tip (Fig 6A). This
271 caused a reduction of phase shifts between the aerial organs and the root (Fig 6B
272 and S8 Fig), and the loss of spatial waves traveling from the hypocotyl down the
273 root (Fig 6C and S5 Video). Inversely, the faster periods at the root tip caused a
274 larger phase shift between the root tip and the root (Fig 6B and S8 Fig), resulting
275 in a longer spatial wave traveling from the root tip upwards into the root (Fig 6C
276 and S5 Video). We observed the same effect when seedlings were grown

277 hydroponically, so that roots did not see light during entrainment or imaging
278 (S9A-C Fig). Additionally, a qualitatively similar but lesser effect was observed
279 under monochromatic red or blue light (S9D-F Fig).

280

281 We next tested whether the effect of light on organ specificity is direct, through
282 known light signaling pathways. We imaged *GI::LUC* expression in the *phyb-9*
283 background, a null mutant for the primary red light photoreceptor in *A. thaliana*,
284 PHYTOCHROME B (38,39). Under red light, in the *phyb-9* mutant we observed
285 the loss of period differences between the cotyledon, hypocotyl, and root (Fig
286 6D). This caused the loss of phase shifts between the aerial organs and the root
287 (Fig 6E), and the loss of spatial waves traveling down the root (Fig 6F and S6
288 Video). We also observed a decrease in rhythmicity across the seedling (S1 File).
289 The effect was particularly large in the root tip, with only 24 % of root tips
290 classed as rhythmic compared to 96 % in the wild type. In the root tips classed as
291 rhythmic, the period ran approximately 3 h slower, at approximately the same
292 speed as the middle of the root (Fig 6D). Therefore after six days, in all seedlings,
293 the phase shift between the root tip and root (Fig 6E and S10A Fig), and the
294 spatial wave traveling from the root tip upwards, was lost (Fig 6F and S6 Video).
295 The *phyb-9* mutation, however, does not abolish the faster periods observed in
296 the root tip under constant darkness (S10B, C Fig).

297

298 **Local metabolic inputs set organ specific periods.**

299 In addition to the external environment, the circadian clock is exposed to
300 biochemical signals from within the cell (40). We investigated whether these
301 endogenous signals could also alter periods in an organ specific manner,

302 modulating the spatial waves of clock gene expression. First, we imaged
303 seedlings under LL in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea
304 (DCMU), a specific inhibitor of photosynthesis. During inhibition, we observed a
305 slowing of periods specifically in the cotyledon and hypocotyl (Fig 7A), causing a
306 loss of phase shifts between the hypocotyl and root (Fig 7B and S11 Fig), and the
307 loss of spatial waves down the root (Fig 7C).

308

309 Photosynthesis modulates the clock through the production of sugars, which
310 feed into the oscillator (41–43). We next tested whether the application of
311 sucrose to part of the plant could locally reduce clock periods and generate a
312 spatial wave. This is a direct test of the hypothesis that local period differences
313 drive spatial waves of gene expression. We designed a protocol that allowed us
314 to rest only the top portion of the root on sugar supplemented media, and
315 observe the effect throughout the root. We did this with roots cut at the
316 hypocotyl junction, to minimize developmental effects, and under DD, where we
317 ordinarily observe no spatial wave down the root (Fig 7D). In comparison to
318 mannitol (a poorly metabolized sugar that acts as an osmotic control), contact
319 with sucrose supplemented media caused a larger decrease in period length (Fig
320 7E). This caused a larger phase shift from the top to the middle of the root (Fig
321 7F and S12 Fig). Within the root, a clear spatial wave of clock gene expression
322 propagates down from the top of the root when in contact with the sucrose (Fig
323 7G and S7 Video), but not mannitol (Fig 7H and S8 Video) supplemented media.
324 Together these results show that speeding up clocks locally, either via
325 modulating light perception or the addition of photosynthetic sugars, can drive
326 spatial waves of clock gene expression.

327

328 **Discussion**

329 Here, we report how local periods, due to differences in sensitivity to clock
330 inputs, generate spatial waves of circadian clock gene expression across the
331 plant. Using time-lapse imaging we show that spatial waves exist both in
332 constant and entrained conditions and do not require long distance signals.
333 Modeling and experiments show that local coupling can explain our results,
334 including complex synchronization patterns in plants that have never seen an
335 entraining signal. Finally, by the manipulation of environmental inputs, we are
336 able to modulate the waves in a predictable manner by locally altering clock
337 periods. We therefore propose that spatial waves are sufficient to integrate
338 organ specific environmental inputs and coordinate timing across the plant.

339

340 In the laboratory, clocks are most often studied under constant environmental
341 conditions in order to observe the endogenous genetic properties of the
342 oscillator. However, in the wild, plants are exposed to environmental cycles and
343 the interaction between the oscillator and the environment is of importance. It is
344 therefore significant that we observed phase differences between clocks within a
345 plant, even under LD cycles. A previous high resolution study in *A. thaliana*
346 observed phase differences within leaves after the transfer from LL to LD
347 conditions, though rhythms were near synchronous after three days in LD cycles
348 (14). Phase differences have also been observed in *lemna gibba* fronds, where
349 cells in leaves entrain with different phases, causing a centrifugal pattern (17).
350 Phase patterns under LD cycles therefore appears to be a common property of
351 plant circadian systems, and will require further investigation.

352

353 The presence of local cell-cell coupling has been previously suggested to help
354 maintain clock synchrony within *A. thaliana* (5,14–18). In addition, long-distance
355 signals (18,21), and light piped from the shoot (25), have been proposed as
356 mechanisms for coordination. Through a combination of experiments and
357 modeling we show that in seedlings, local signals alone are sufficient to maintain
358 robust rhythms over six days in all organs, as well as generate the observed
359 complex spatial patterns in clock expression. We note that our results do not
360 exclude the possibility that phloem mobile signals, or light piped from the stem,
361 additionally act to synchronize the root with the shoot. However, the waves that
362 we observe in cut roots, combined with the wave up the root apparent in
363 seedlings grown in constant darkness, suggests that these signals do not drive
364 the spatial wave patterns that we observe. In future work it will be important to
365 investigate whether coordination through local coupling also occurs in later
366 stages of plant development, and if so, whether the coordination structure
367 changes as the plant develops to compensate for its increasing size.

368

369 Local coupling is dependent on a signal that is cell-to-cell mobile. Research in
370 cellular communication in plants has intensified in recent years and a number of
371 signals are known to be mobile between cells and tissues. A selection of
372 hormones, sugars, mRNA's, proteins, and ions have been shown to be both
373 mobile, and capable of influencing the clock (3,40). To better understand the
374 mechanism of intercellular coupling of clocks in plants it will be important to
375 investigate whether one, some, or all of these mobile signals act to couple the

376 clock. The study of this will benefit greatly from the development of 'omics'
377 methods at the single cell level (44,45).
378
379 Oscillators in different organs of the plant will be exposed to different
380 environments, both externally from the environment and internally from the
381 cell's biochemistry. We found that these differences in input can drive spatial
382 waves by creating period differences. We demonstrated this by manipulating
383 two environmental inputs, light and sucrose, an external and internal signal
384 respectively. Light intensity is transmitted to the clock by phytochromes and
385 cryptochromes, causing a decrease in period (46,47). Since these genes have
386 tissue specific expression patterns in the plant (48–51), we can modulate the
387 periods locally using light. We did this by controlling the quality of the light or by
388 perturbing light signaling using a *phyb-9* genetic background. In both cases we
389 successfully modulated spatial waves of clock gene expression, and were able to
390 abolish them in the *phyb-9* background under red light, due to the minimization
391 of period differences across the plant. In a similar fashion, by perturbing
392 photosynthesis or by directly applying exogenous sucrose to roots, we found that
393 we can affect periods locally and modulate spatial waves of clock gene
394 expression. There are, however, many other signals known to modulate the
395 speed of the clock (40). In future work it will be important to test how these
396 interact, and the consequence to spatial coordination when plants are under
397 physiological conditions. Of particular interest will be temperature, which is
398 known to differ between the air and the ground (52) and deviate from the
399 photoperiod (53). In fact, it has already been demonstrated that temperature is
400 preferentially sensed by the clock in specific cell types (10,11). Comprehensive *in*

401 *vivo* studies, under a range of environmental conditions, will be required to
402 understand the full complexity.

403

404 For plants, being responsive to the environment whilst being robust to
405 fluctuations necessitates a trade-off. The clock, in its role as master regulator,
406 must balance these two competing requirements. Recently it has been proposed
407 that the clock in plants is dynamically plastic, able to respond to changes in
408 environmental inputs by altering phase and period (54,55). A decentralized
409 structure, with organ specific inputs to clocks that are coupled together, could
410 allow some flexibility in sensing the environment whilst ensuring robust timing.

411 In future, it will be important to better understand the importance of this design
412 principle to physiological outputs of the clock and the development of the plant.

413

414 **Materials and Methods**

415 **Plant materials and growth conditions**

416 The wild type *GI::LUC* line is in the Col-0 background and as described previously
417 (56). The *cca1-11* (TAIR:1008081946; 57; Ws background back-crossed with
418 Col-0 three times), *prr9-1* (TAIR:3481623; 55), *prr7-3* (TAIR:3662906; 55), *toc1-*
419 *101* (TAIR:6533848449; 56), and *lux-4* (TAIR:1008810333; 58) alleles are loss of
420 function mutations that have been previously described, and were transformed
421 with the *GI::LUC* (56) construct by means of *Agrobacterium* mediated
422 transfection (61).

423

424 Seeds were surface sterilized and placed in the dark at 4 °C for 3 days. Seeds
425 were sown at dawn of the fourth day on full strength Murashige & Skoog (MS), 2

426 % agar, pH 5.7 media, without sucrose unless otherwise specified. Seeds were
427 then grown inside of plant growth incubators (MLR-352; Panasonic, Japan) for 4
428 days under $80 \text{ mmol m}^{-2} \text{ s}^{-1}$ cool white light at a constant temperature of 22 °C.
429 Seedlings were grown under 12 h light-12 h dark cycles unless otherwise
430 specified. Plates were orientated vertically during growth.

431

432 For experiments where roots are grown in the dark (S9 Fig), seedlings were
433 grown hydroponically in full strength MS liquid solution as described previously
434 (62). After four days of growth, working under green light only, seedlings were
435 transferred to MS 2 % agar plates and transferred to imaging cabinets.

436

437 **Luciferase imaging**

438 At dusk of the fourth day of growth, seedlings were sprayed with a 5 mM D-
439 Luciferin (Promega, USA), 0.01 % Triton X-100 solution. At dawn of the fifth day,
440 6–8 seedlings were transferred into a 3-by-3 cm area of a media plate in order to
441 fit inside of the camera's field of view. Plates were orientated vertically during
442 imaging.

443

444 Imaging was performed inside of growth incubators (MIR-154; Panasonic, Japan)
445 at a constant temperature of 22 °C and under an equal mix of red and blue light
446 emitting diodes ($40 \mu\text{mol m}^{-2} \text{ sec}^{-1}$ total), unless specified as red light only (RLL;
447 $40 \mu\text{mol m}^{-2} \text{ sec}^{-1}$ red) or blue light only (BLL; $40 \mu\text{mol m}^{-2} \text{ sec}^{-1}$ blue). For
448 experiments under LD cycles, lights were switched on to full intensity at dawn
449 and completely off at dusk. Images were taken every 90 minutes for six days,
450 with an exposure time of 20 minutes. Images were taken using a LUMO

451 (QImaging, Canada) charge-coupled device (CCD) camera, controlled using
452 micro-manager (V2.0; Open Imaging) as previously described (63). The camera
453 lens (Xenon 25 mm f/0.95; Schneider, Germany) was modified with a 5 mm
454 optical spacer (Cosmicar, Japan) to increase the focal length and decrease the
455 working distance.

456

457 **Cuts and treatments**

458 For cut experiments seedlings were cut approximately 3 h after dawn of the fifth
459 day of growth, immediately prior to the commencement of imaging. For
460 'hypocotyl cut' experiments (Fig 3B, E, and I) seedlings were cut in the root as
461 close to the hypocotyl junction as discernible by eye, for 'root tip cut'
462 experiments (Fig 3C, F and J) seedlings were cut approximately 100–200 µm
463 from the root cap. Cuts were made with a pair of Vanna's type microdissection
464 scissors (Agar Scientific, UK). Following all excisions, the organs were gently
465 separated with a pair of forceps to ensure no physical contact.

466

467 DCMU was added to the media at a final concentration of 20 mM. Seedlings were
468 transferred to the DCMU containing media at dusk of the fourth day of growth.
469 For sugar application experiments (Fig 7E–H), media was added in 8-well
470 rectangular dishes (NUNC; Thermo-Fisher Scientific) so that one well contains
471 media supplemented with MS and sugar whilst the adjoining well contains media
472 supplemented with MS only. Wells were filled with equal volumes to the brim of
473 the wells so that the two agar pads form a continual flat surface but do not touch.
474 Sucrose or mannitol was added at a final concentration of 90 mM (3 % w/v).
475 Seedlings were cut at the hypocotyl junction (as described above), and laid

476 across the adjoining agar pads so that approximately the top 1 mm of the excised
477 root rests on the sugar supplemented media, and the remainder of the root rests
478 on the non-sugar supplemented media. Seedlings were cut and transferred to the
479 media at dawn of the fifth day of growth, immediately prior to the
480 commencement of imaging.

481

482 **Organ level analysis of period and phase**

483 For the organ level analysis of the period and phase, organs were first tracked
484 manually in Imaris (BitPlane, Switzerland) using the 'Spots' functionality. We use
485 a circular region of interest (ROI) of approximately 315 mm diameter and track
486 the center of a single cotyledon, hypocotyl, root, and the root tip from each
487 seedling. As the root grows we maintain the root ROI a fixed distance from the
488 hypocotyl junction. A small number of cotyledons and hypocotyls were not
489 trackable due to their orientation or their overlap with each other. These organs
490 were excluded from the analysis. The median of the ROI was extracted to give the
491 time-series. Prior to the analysis of period and phase, the time-series were first
492 background subtracted. Very low expression rhythms with a minimum intensity
493 value of less than zero after background subtraction were then removed. All
494 time-series were inspected by eye after pre-processing steps and prior to
495 analysis.

496

497 Period analysis was conducted in BioDare2, a data server for the analysis of
498 circadian data (biodare2.ed.ac.uk; 61). All period estimates were performed on
499 non-normalized data between 24–144 h from dawn of the day imaging began
500 using the Fast-Fourier Transformed Non-Linear Least Squares (FFT-NLLS)

501 algorithm (65,66). Data was first baseline detrended by subtraction of a
502 polynomial of degree three from the data. Oscillations were classed as rhythmic
503 if the FFT-NLLS algorithm returned a period in the range of 18–36 h with a
504 confidence level (as defined in (61)) below 0.6.

505

506 For the analysis of the times of peaks of expression, peaks were identified using
507 the MATLAB ‘findpeaks’ function. This was done after the application of a third
508 order Butterworth filter to remove high frequency noise. Only peaks where all
509 organs complete the full cycle within 24–144 h from dawn of the day imaging are
510 used. Additionally, peaks were discarded if they are closer than 18 h or further
511 than 36 h apart.

512

513 **Statistical analyses**

514 In all figures data points, measure of error, statistical test used, n , and
515 approximate p values are reported in the figure legend. Exact p values, exact n ,
516 and other test statistics are reported in S1 and S2 File. When values are
517 described in the text, they are quoted as mean \pm standard deviation of the mean.
518 For the comparisons of period estimates, one-way analysis of variance (ANOVA;
519 with Tukey’s *post hoc* method) was used for comparisons of more than two
520 groups, and the t -test (with Welch correction) for comparison of two groups. For
521 comparison of times of peaks of expression, the distribution is often skewed,
522 therefore the Kruskal-Wallis one-way ANOVA (with Dunn’s *post hoc* method)
523 was used for multiple comparisons and the Wilcoxon rank sum test for
524 comparison of two groups. An alpha level of 0.05 was used for all ANOVA tests.

525

526 **Luciferase phase plots**

527 To analyze spatial patterns within the organ, we first create space-time intensity
528 plots of the luciferase images before obtaining a phase representation of the
529 plots using a wavelet transform (henceforth called ‘phase plots’). These phase
530 plots allow interpretation of the space-time dynamics of the signal across the
531 length of the organ independent of amplitude fluctuations.

532

533 Space-time phase plots of the luciferase data were created as described
534 previously Gould *et al*, 2018, though with some modifications. Most importantly
535 of which, we include a modification that better allows us to section curved roots.
536 The method including modifications is outlined here in its entirety. Unless
537 otherwise specified steps are implemented via custom developed MATLAB
538 (MathWorks, UK) scripts.

539

540 ***Image pre-processing***

541 A number of image processing steps were applied prior to the extraction of
542 oscillations:

543

544 1. Each seedling is cropped into individual image stacks using ImageJ (NIH,
545 USA) in order to facilitate the further analysis.

546

547 2. A rectangle ROI encompassing the whole of the organ of interest plus the
548 surrounding background, is defined. When multiple organs are plotted
549 together (Fig 2H, I) the regions are defined so that there is neither
550 longitudinal gaps nor overlap between them. The ROI is manually

551 checked for signal from neighboring organs or seedlings. These pixels are
552 removed using ImageJ.

553

554 3. A 3-by-3 median filter was applied to images to deal with background
555 intensity spikes supposed to be from cosmic rays and camera sensor
556 imperfections

557

558 4. The luminescent signal from the organ is segmented from background
559 pixels by applying a threshold to each image individually. The mean of the
560 intensity count across the whole ROI was used as the threshold value.

561

562 5. Small objects remaining in the image that are not connected to the organ
563 are removed by applying a morphological opening algorithm. Connected
564 objects less than 50 pixels are removed.

565

566 ***Intensity space-time plots***

567 To create the space-time plot, we average the signal across longitudinal sections
568 of the organ. However, because plant organs naturally curve during growth we
569 take our longitudinal sections to be perpendicular to the angle of growth. We do
570 this as follows:

571

572 1. For a ROI of dimensions m,n (with m representing the horizontal
573 dimension and n the vertical dimension) the grey-level-weighted centroid
574 across each vertical section (n) is calculated as

575
$$C^n(t) = \frac{\sum_{m=1}^{Np} m \cdot W_{m,n}(t)}{\sum_{m=1}^{Np} W_{m,n}(t)},$$

576 where W represents the pixel intensity value and Np the width of the
577 plant as the number of segmented pixels.

578

579 2. A polynomial function of seventh degree is fitted to the centroids to give a
580 curve that describes the shape of the hypocotyl and root $\{C(t)\}$ (S2A Fig).

581

582 3. At each horizontal position of the ROI $\{C^n(t): n=1, 2, \dots\}$ the tangent and
583 normal line is calculated (S2A Fig).

584

585 4. The slope of the normal line is rasterized to give pixel coordinates (S2B
586 Fig). The Bresenham algorithm was utilized for this purpose (67),
587 implemented in MATLAB (68).

588

589 5. The rasterized line is limited to 10 pixels, centered around the intersect
590 with the root curve fit $\{C(t)\}$. This prevents multiple intersects with the
591 hypocotyl or root.

592

593 6. The mean intensity of the pixels corresponding to the coordinates is taken
594 to give the intensity value for section n at time t in the space-time
595 intensity plots (S2C Fig).

596

597 ***Phase space-time plots***

598 We use the wavelet transform (69) to obtain phase plots (S2D Fig) from intensity
599 space-time plots (S2C Fig). The continuous wavelet transform is closely related
600 to the Fourier transform. However, unlike the Fourier transform, the continuous
601 wavelet transform does not assume a stationary signal. This allows the
602 observation of more complex signals including non-constant periods. This could
603 be relevant to our data, given that a clocks response to perturbagens may be
604 transient or changing.

605

606 Given a time series $V = (V_1, \dots, V_n)$, the continuous wavelet transform of V is given
607 by

608

$$W_s(t) = \frac{1}{\sqrt{s}} \sum_{p=1}^n V_p Z^* \left(\frac{p-t}{s} \right),$$

609

610 where Z is a wave-like function known as the mother wavelet, and s is a
611 dimensionless frequency scale variable. Z^* denotes the complex conjugate of Z .
612 For Z , we choose the Morlet wavelet,

613

$$Z(u) = \frac{e^{6iu} e^{-u^2/2}}{\pi^{1/4}}.$$

614

615 The wavelet transform can instead be expressed in terms of its phase and
616 magnitude,

617

$$W_s(t) = Q_s(t) e^{i\varphi_s(t)}.$$

618

619 For meaningful interpretation of the phase values s must be chosen close to the
620 characteristic period of the times series V . However, the resultant phases are

621 robust to small variations of s . We therefore select a single s for each
622 experimental condition, matching s to the frequency of the rhythms that we
623 observe in the root under that condition. Carrying out this procedure for every
624 row of the intensity kymographs results in a phase plot (S2D Fig) corresponding
625 to the intensity plot (S2C Fig). For comparison between plots, we plot the first 16
626 pixels (approximately 1 mm) of the hypocotyl and the entirety of the root.

627

628 **Synchrony analysis**

629 By looking at the all-to-all synchrony between pixels within the hypocotyl and
630 root, the synchrony of oscillators in these tissues can be estimated. We exclude
631 the cotyledons from the analysis because their orientation and movement make
632 phase extraction difficult. For each time point the order parameter (27) R , at
633 time t , was obtained as

$$634 R(t) = \frac{1}{N} \sum_{j=1}^N e^{i\theta_j(t)},$$

635 where N is the total number of pixels in the hypocotyl and root combined and θ_j
636 the phase of the j -th pixel. R values range from 0 to 1, with a value of 1 indicating
637 a set of completely synchronized oscillators and a value of zero a set of
638 completely desynchronized oscillators.

639

640 **Phase oscillator model**

641 As in Gould *et al.*, 2018, we use the Kuramoto phase oscillator model to describe
642 the dynamics of *GI::LUC* in each pixel (here a pixel represents a set of individual,
643 neighbor cells). We view the plant in 2 dimensions with positions in horizontal
644 and vertical (longitudinal) direction described by index positions i and j ,

645 respectively, so that every pixel, $P(i,j)$ have an associated position (i,j) . The phase
646 at the pixel $P(i,j)$ is represented by $\theta^{(i,j)}$ where its dynamics in time, t , are
647 governed by the following equation

$$648 \quad \frac{d\theta^{(i,j)}}{dt} = \omega^{(i,j)} + K \sum_{\langle m,n \rangle} \sin(\theta^{(m,n)} - \theta^{(i,j)}) - K_{LD} \sin\left(\frac{\pi}{12}t - \theta^{(i,j)}\right).$$

649 Here the first term is the intrinsic frequency of the pixel, $\omega^{(i,j)}$. The second term
650 is the coupling contribution from the nearest-neighbor pixels in positions (m,n)
651 that are closest to (i,j) , namely, $m=i-1, i, i+1$ while $n=i-1, i, i+1$. We assume a plant
652 template that is symmetric and resembles the shape of a seedling (S4 Fig). For
653 sake of simplicity we assume that the coupling constant, K , is the same across all
654 pixels and we set it arbitrarily to $K=1$. The final term represents the coupling of
655 the oscillator to the external force, in this case the light force. Here K_{LD} is the
656 constant for the intensity of the light forcing, where all oscillators are subject to
657 24 h forcing. Note that when the clocks are not entrained to the LD cycles, $K_{LD}=0$.
658 Since GI tends to peak at onset of dusk in 12 h light-12 h dark cycles and shorter
659 photoperiods (8) we assume that the phase of GI will be antiphase to light, hence
660 the negative sign in front of K_{LD} . In our simulations of the LD-to-LD model, we set
661 $K_{LD}=1$.

662
663 Intrinsic periods are different across different sections of the plant. Intrinsic
664 periods of the pixels in each section are taken from Normal distributions with
665 means of 23.82 h, 25.41 h, 29.04 h and 26.90 h for cotyledon, hypocotyl, root and
666 root tip pixels respectively, with standard deviation at 10 % of the mean value,
667 respectively. The root tip is 5 pixels long and wide.

668

669 Initial values of all phases in the LD-to-LL and LD-to-LD simulations are at the
670 time of the start of measurement identical, with first peaks occurring
671 approximately 11 h after the first measurement. In the LL-to-LL model, since we
672 have no information about the phases, we set them to be uniformly distributed
673 across a cycle (i.e. random). We note that in the LL-to-LL model, setting the
674 phases to be in phase, or close to in phase (e.g. approximately 11 h after first
675 measurement ± 2 h (standard deviation)), we could not obtain the results seen.
676 ODEs are solved using the Euler method and simulations were performed in
677 MATLAB.

678

679 Since the seedlings in our experiments grow, here we also introduce growth to
680 the template seedling: we allow the root to grow by 1 pixel every five hours.
681 Every newborn cell (and hence the new pixel) has the same phase as the closest
682 set of cells (pixels) in the template, namely new pixels $P(i,j)$, $P(i+1,j)$, $P(i+2,j)$
683 will inherit the phases from $P(i,j-1)$, $P(i+1,j-1)$ and $P(i+2,j-1)$, respectively. Their
684 periods will be taken from the Normal distribution with the mean 26.90 h and
685 the standard deviation of 10 % of the mean value.

686

687 After root growth, the root tip should stay fixed in size (of 5-by-5 pixels), so the
688 previous most upper set of root tip pixels at the root/root tip junction will from
689 now on be considered as root tissue instead. This means that their periods
690 lengthen and they will be chosen from a Normal distribution with the mean of
691 28.04 h and the standard deviation of 10 % of the mean value.

692

693 The expression of GI for each pixel, $GI^{(i,j)}$, is calculated from the phase model as:

694 $GI^{(i,j)}(t) = \cos(\theta^{(i,j)}(t)) + 1$. It follows that the total sum of the luminescence

695 for every longitudinal position j is $GI_{tot}^{(j)} = \sum_{i=1}^{n_j} GI^{(i,j)}$ where total number of

696 cells measuring across that section of the plant is n_j . The total luminescence is

697 normalized so the maximum peak of expression in every longitudinal position is

698 1. The phases are extracted from the luminescence using the wavelet transform,

699 as described above for the experimental data in *Phase space-time plots*.

700

701 To calculate the periods of the tissues as shown in Fig 4A, B we take regions of 5-

702 by-5 pixels in each tissue (S4C Fig) and calculate the median GI expression level

703 for each region. Periods are calculated as the mean of the peak-to-peak periods

704 of the median trace.

705

706 An alternative model which could give rise to the LD-to-LL spatial wave

707 behaviors observed is one where there is no coupling but periods increase

708 towards the middle of the root. This means that $K=0$, and we set periods in the

709 root to increase linearly from 25.41 h at the hypocotyl/root junction to 28.04 h

710 in the middle of the root, and then decrease linearly again to 26.90 h at the

711 root/root tip junction. All other previous assumptions are adopted. Here, though

712 a bow-shaped wave of expression can be obtained in the LD-to-LL simulations

713 (S5C and S5D Fig), the model fails to reproduce the behavior observed in LL-to-

714 LL (S5E and S5F Fig).

715

716 **Data and code availability**

717 Project code and datasets will be available from the project GitLab page
718 (www.gitlab.com/slcu/teamJL/greenwood_etal_2019). The following MATLAB
719 File Exchange submissions were also used for the making of figures:
720 'shadedErrorBar' (70), 'legendflex' (71), and 'Alternative box plot' (72). Fig 1
721 utilized graphics available from the Plant Illustrations repository (73).

722

723 **Acknowledgments**

724 We thank Alex A. R. Webb (University of Cambridge) and Ozgur E. Akman
725 (University of Exeter) for critical reading of the manuscript and Laszlo Kozma-
726 Bognar (Hungarian Academy of Sciences) for gifts of transgenic material.

727

728 **References**

- 729 1. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas
730 TL, et al. Circadian rhythms from multiple oscillators: lessons from diverse
731 organisms. *Nat Rev Genet.* 2005 Jul 10;6(7):544–56.
- 732 2. McClung CR. Plant circadian rhythms. *Plant Cell.* 2006 Apr 1;18(4):792–
733 803.
- 734 3. Endo M. Tissue-specific circadian clocks in plants. *Curr Opin Plant Biol.*
735 2016 Feb;29:44–9.
- 736 4. Para A, Farré EM, Imaizumi T, Pruneda-Paz JL, Harmon FG, Kay SA. PRR3 Is
737 a vascular regulator of TOC1 stability in the *Arabidopsis* circadian clock.
738 *Plant Cell.* 2007 Nov 1;19(11):3462–73.
- 739 5. Gould PD, Domijan M, Greenwood M, Tokuda IT, Rees H, Kozma-Bognar L,
740 et al. Coordination of robust single cell rhythms in the *Arabidopsis*
741 circadian clock via spatial waves of gene expression. *Elife.* 2018 Apr

742 26;7:e31700.

743 6. Bordage S, Sullivan S, Laird J, Millar AJ, Nimmo HG. Organ specificity in the
744 plant circadian system is explained by different light inputs to the shoot
745 and root clocks. *New Phytol.* 2016 Oct;212(1):136–49.

746 7. Koo J, Kim Y, Kim J, Yeom M, Lee IC, Nam HG. A GUS/Luciferase Fusion
747 Reporter for Plant Gene Trapping and for Assay of Promoter Activity with
748 Luciferin-Dependent Control of the Reporter Protein Stability. *Plant Cell*
749 *Physiol.* 2007 Aug 1;48(8):1121–31.

750 8. Edwards J, Martin AP, Andriunas F, Offler CE, Patrick JW, McCurdy DW.
751 GIGANTEA is a component of a regulatory pathway determining wall
752 ingrowth deposition in phloem parenchyma transfer cells of *Arabidopsis*
753 *thaliana*. *Plant J.* 2010 Aug;63(4):651–61.

754 9. Lee HG, Seo PJ. Dependence and independence of the root clock on the
755 shoot clock in *Arabidopsis*. *Genes Genomics.* 2018 Jun 13;1–6.

756 10. Shimizu H, Katayama K, Koto T, Torii K, Araki T, Endo M. Decentralized
757 circadian clocks process thermal and photoperiodic cues in specific
758 tissues. *Nat Plants.* 2015 Nov 2;1(11):15163.

759 11. Shimizu H, Araki T, Endo M. Photoperiod sensitivity of the *Arabidopsis*
760 circadian clock is tissue-specific. *Plant Signal Behav.*
761 2015;10(6):e1010933.

762 12. Michael TP, Salome PA, McClung CR. Two *Arabidopsis* circadian oscillators
763 can be distinguished by differential temperature sensitivity. *Proc Natl
764 Acad Sci U S A.* 2003 May 27;100(11):6878–83.

765 13. Brown SA, Azzi A. Peripheral Circadian Oscillators in Mammals. In
766 Springer, Berlin, Heidelberg; 2013. p. 45–66.

767 14. Wenden B, Toner DLK, Hodge SK, Grima R, Millar AJ. Spontaneous
768 spatiotemporal waves of gene expression from biological clocks in the leaf.
769 Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6757–62.

770 15. Fukuda H, Nakamichi N, Hisatsune M, Murase H, Mizuno T.
771 Synchronization of Plant Circadian Oscillators with a Phase Delay Effect of
772 the Vein Network. Phys Rev Lett. 2007 Aug;99(9):098102.

773 16. Fukuda H, Ukai K, Oyama T. Self-arrangement of cellular circadian rhythms
774 through phase-resetting in plant roots. Phys Rev E. 2012
775 Oct;86(4):041917.

776 17. Muranaka T, Oyama T. Heterogeneity of cellular circadian clocks in intact
777 plants and its correction under light-dark cycles. Sci Adv. 2016;2(7).

778 18. Takahashi N, Hirata Y, Aihara K, Mas P. A Hierarchical Multi-oscillator
779 Network Orchestrates the *Arabidopsis* Circadian System. Cell. 2015
780 Sep;163(1):148–59.

781 19. Yakir E, Hassidim M, Melamed-Book N, Hilman D, Kron I, Green RM. Cell
782 autonomous and cell-type specific circadian rhythms in *Arabidopsis*. Plant
783 J. 2011 Nov;68(3):520–31.

784 20. Endo M, Shimizu H, Nohales MA, Araki T, Kay SA. Tissue-specific clocks in
785 *Arabidopsis* show asymmetric coupling. Nature. 2014 Oct 29;515:419–22.

786 21. James AB, Montreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, et al. The
787 circadian clock in *Arabidopsis* roots is a simplified slave version of the
788 clock in shoots. Science. 2008 Dec 19;322(5909):1832–5.

789 22. Rascher U, Hütt MT, Siebke K, Osmond B, Beck F, Lüttge U. Spatiotemporal
790 variation of metabolism in a plant circadian rhythm: the biological clock as
791 an assembly of coupled individual oscillators. Proc Natl Acad Sci U S A.

792 2001 Sep 25;98(20):11801–5.

793 23. Ukai K, Inai K, Nakamichi N, Ashida H, Yokota A, Hendrawan Y, et al.

794 Traveling Waves of Circadian Gene Expression in Lettuce. *Environ Control*

795 *Biol.* 2012 Oct 30;50(3):237–46.

796 24. Ukai K, Murase H, Fukuda H. Spatiotemporal dynamics of circadian clock in

797 lettuce. *IFAC Proc Vol.* 2013 Jan 1;46(4):214–7.

798 25. Nimmo HG. Entrainment of *Arabidopsis* roots to the light:dark cycle by

799 light piping. *Plant Cell Environ.* 2018 Aug 1;41(8):1742–8.

800 26. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, et al. Control of

801 circadian rhythms and photoperiodic flowering by the *Arabidopsis*

802 *GIGANTEA* gene. *Science* (80-). 1999;285(5433):1579–82.

803 27. Kuramoto Y. *Chemical Oscillations, Waves, and Turbulence*. Berlin,

804 Heidelberg: Springer Berlin Heidelberg; 1984. (Springer Series in

805 Synergetics; vol. 19).

806 28. Pittendrigh CS. Circadian Systems: Entrainment. In: *Biological Rhythms*.

807 Boston, MA: Springer US; 1981. p. 95–124.

808 29. Bordyugov G, Abraham U, Granada A, Rose P, Imkeller K, Kramer A, et al.

809 Tuning the phase of circadian entrainment. *J R Soc Interface*. 2015 Jul

810 6;12(108):20150282.

811 30. Chen X-Y, Kim J-Y. Transport of macromolecules through plasmodesmata

812 and the phloem. *Physiol Plant.* 2006 Mar 30;126(4):560–71.

813 31. Aschoff J, Pohl H. Phase relations between a circadian rhythm and its

814 zeitgeber within the range of entrainment. *Naturwissenschaften*. 1978

815 Feb;65(2):80–4.

816 32. Dodd AN, Dalchau N, Gardner MJ, Baek S-J, Webb AAR. The circadian clock

817 has transient plasticity of period and is required for timing of nocturnal
818 processes in *Arabidopsis*. *New Phytol.* 2014 Jan;201(1):168–79.

819 33. Gonze D, Bernard S, Waltermann C, Kramer A, Herzl H, Albrecht U, et al.
820 Spontaneous synchronization of coupled circadian oscillators. *Biophys J.*
821 2005 Jul;89(1):120–9.

822 34. Sakaguchi H. Cooperative Phenomena in Coupled Oscillator Systems under
823 External Fields. *Prog Theor Phys.* 1988 Jan 1;79(1):39–46.

824 35. Seki N, Tanigaki Y, Yoshida A, Fukuda H. Spatiotemporal Analysis of
825 Localized Circadian Arrhythmias in Plant Roots. *Environ Control Biol.*
826 2018;56(3):93–7.

827 36. Zhong HH, Painter JE, Salomé PA, Straume M, McClung CR. Imbibition, but
828 not release from stratification, sets the circadian clock in *Arabidopsis*
829 seedlings. *Plant Cell.* 1998 Dec;10(12):2005–17.

830 37. Salomé PA, Xie Q, McClung CR, Hangarter RP, McClung CR. Circadian
831 timekeeping during early *Arabidopsis* development. *Plant Physiol.* 2008
832 Jul 1;147(3):1110–25.

833 38. Whitelam GC, Devlin PF. Roles of different phytochromes in *Arabidopsis*
834 photomorphogenesis. *Plant, Cell Environ.* 1997 Jun 1;20(6):752–8.

835 39. Sharrock RA, Quail PH. Novel phytochrome sequences in *Arabidopsis*
836 *thaliana*: structure, evolution, and differential expression of a plant
837 regulatory photoreceptor family. *Genes Dev.* 1989 Nov;3(11):1745–57.

838 40. Sanchez SE, Kay SA. The Plant Circadian Clock: From a Simple Timekeeper
839 to a Complex Developmental Manager. *Cold Spring Harb Perspect Biol.*
840 2016 Sep 23;a027748.

841 41. Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, et al.

842 The circadian oscillator gene GIGANTEA mediates a long-term response of
843 the *Arabidopsis thaliana* circadian clock to sucrose. *Proc Natl Acad Sci U S*
844 A. 2011 Mar 22;108(12):5104–9.

845 42. Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR.
846 Photosynthetic entrainment of the *Arabidopsis thaliana* circadian clock.
847 *Nature*. 2013 Oct 31;502(7473):689–92.

848 43. Frank A, Matiolli CC, Viana AJC, Hearn TJ, Kusakina J, Belbin FE, et al.
849 Circadian Entrainment in *Arabidopsis* by the Sugar-Responsive
850 Transcription Factor bZIP63. *Curr Biol*. 2018 Aug 20;28(16):2597–
851 2606.e6.

852 44. Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the
853 Single-Cell Level. *Trends Plant Sci*. 2017 Nov 1;22(11):949–60.

854 45. Duncan S, Rosa S. Gaining insight into plant gene transcription using
855 smFISH. *Transcription*. 2018 May 27;9(3):166–70.

856 46. Somers DE, Devlin PF, Kay SA. Phytochromes and cryptochromes in the
857 entrainment of the *Arabidopsis* circadian clock. *Science*. 1998 Nov
858 20;282(5393):1488–90.

859 47. Aschoff J. Circadian rhythms: influences of internal and external factors on
860 the period measured in constant conditions. *Z Tierpsychol*. 1979
861 Mar;49(3):225–49.

862 48. Somers DE, Quail PH, Elich T, Fagan M, Chory J. Phytochrome-Mediated
863 Light Regulation of PHYA- and PHYB-GUS Transgenes in *Arabidopsis*
864 thaliana Seedlings. *Plant Physiol*. 1995 Feb 1;107(2):523–34.

865 49. Somers DE, Quail PH. Temporal and spatial expression patterns of PHYA
866 and PHYB genes in *Arabidopsis*. *Plant J*. 1995 Mar 1;7(3):413–27.

867 50. Bognar LK, Adam AH, Thain SC, Nagy F, Millar AJ. The circadian clock
868 controls the expression pattern of the circadian input photoreceptor,
869 phytochrome B. *Proc Natl Acad Sci USA*. 1999;96:14652–7.

870 51. Tóth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L. Circadian clock-
871 regulated expression of phytochrome and cryptochrome genes in
872 *Arabidopsis*. *Plant Physiol.* 2001 Dec;127(4):1607–16.

873 52. Dawson GB, Fisher RG. Diurnal and seasonal ground temperature
874 variations at Wairakei. *New Zeal J Geol Geophys*. 1964 Feb;7(1):144–54.

875 53. Ahrens C. *Meteorology today: An introduction to weather, climate, and the*
876 *environment*. *Meteorology today: An introduction to weather, climate, and*
877 *the environment*. Pacific Grove, California: Thomson/Brooks/Cole; 2003.
878 64-66 p.

879 54. Webb AAR, Seki M, Satake A, Caldana C. Continuous dynamic adjustment of
880 the plant circadian oscillator. *Nat Commun*. 2019 Dec 1;10(1):550.

881 55. Hearn TJ, Marti Ruiz MC, Abdul-Awal SM, Wimalasekera R, Stanton CR,
882 Haydon MJ, et al. BIG Regulates Dynamic Adjustment of Circadian Period in
883 *Arabidopsis thaliana*. *Plant Physiol.* 2018 Sep 1;178(1):358–71.

884 56. Palagyai A, Terecskei K, Adam E, Kevei E, Kircher S, Merai Z, et al. Functional
885 Analysis of Amino-Terminal Domains of the Photoreceptor Phytochrome
886 B. *PLANT Physiol.* 2010 Aug 1;153(4):1834–45.

887 57. Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, et al. The
888 TIME FOR COFFEE gene maintains the amplitude and timing of
889 *Arabidopsis* circadian clocks. *Plant Cell*. 2003 Nov;15(11):2719–29.

890 58. Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and
891 distinct roles of PRR7 and PRR9 in the *Arabidopsis* circadian clock. *Curr*

892 Biol. 2005 Jan 11;15(1):47–54.

893 59. Kikis EA, Khanna R, Quail PH. ELF4 is a phytochrome-regulated
894 component of a negative-feedback loop involving the central oscillator
895 components CCA1 and LHY. Plant J. 2005 Sep 12;44(2):300–13.

896 60. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA. LUX
897 ARRHYTHMO encodes a Myb domain protein essential for circadian
898 rhythms. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10387–92.

899 61. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-
900 mediated transformation of *Arabidopsis thaliana*. Plant J. 1998
901 Dec;16(6):735–43.

902 62. Conn SJ, Hocking B, Dayod M, Xu B, Athman A, Henderson S, et al. Protocol:
903 optimising hydroponic growth systems for nutritional and physiological
904 analysis of *Arabidopsis thaliana* and other plants. Plant Methods. 2013 Feb
905 5;9(1):4.

906 63. Litthauer S, Battle MW, Lawson T, Jones MA. Phototropins maintain robust
907 circadian oscillation of PSII operating efficiency under blue light. Plant J.
908 2015 Sep;83(6):1034–45.

909 64. Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and
910 limitations of period estimation methods for circadian data. PLoS One.
911 2014 Jan 8;9(5):e96462.

912 65. Johnson M, Frasier S. Nonlinear least squares analysis. Methods Enzym.
913 1985;117:301–42.

914 66. Straume M, Frasier-Cadoret SG, Johnson ML. Least-Squares Analysis of
915 Fluorescence Data. In: Topics in Fluorescence Spectroscopy. Boston:
916 Kluwer Academic Publishers; 2002. p. 177–240.

917 67. Bresenham JE. Algorithm for computer control of a digital plotter. IBM Syst
918 J. 1965;4(1):25-30.

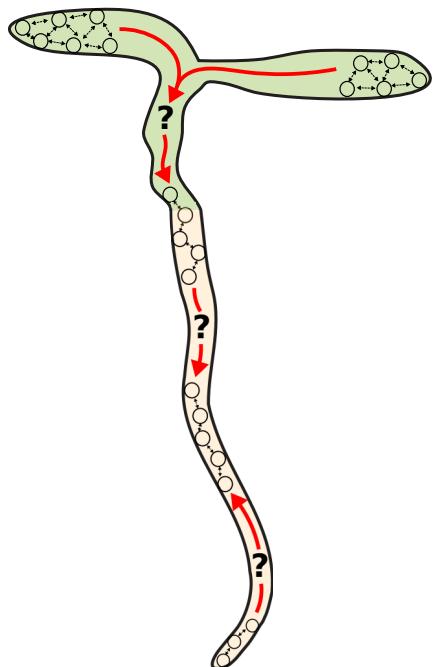
919 68. Wetzler A. Bresenham optimized for Matlab [Internet]. 2010 [cited 2017
920 Jan 10]. Available from:
921 [https://uk.mathworks.com/matlabcentral/fileexchange/28190-
922 bresenham-optimized-for-matlab](https://uk.mathworks.com/matlabcentral/fileexchange/28190-bresenham-optimized-for-matlab)

923 69. Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P. Performance of
924 different synchronization measures in real data: A case study on
925 electroencephalographic signals. Phys Rev E. 2002 Mar 15;65(4):041903.

926 70. Campbell R. shadedErrorBar [Internet]. [cited 2019 Feb 12]. Available
927 from: [https://www.mathworks.com/matlabcentral/fileexchange/26311-
928 raacampbell-shadederrorbar](https://www.mathworks.com/matlabcentral/fileexchange/26311-raacampbell-shadederrorbar)

929 71. Kearney K. legendflex [Internet]. [cited 2019 Jan 31]. Available from:
930 [https://uk.mathworks.com/matlabcentral/fileexchange/31092-
931 legendflex-m-a-more-flexible-customizable-legend](https://uk.mathworks.com/matlabcentral/fileexchange/31092-legendflex-m-a-more-flexible-customizable-legend)

932 72. Hummersone C. Alternative box plot [Internet]. [cited 2019 Feb 12].
933 Available from:
934 [https://www.mathworks.com/matlabcentral/fileexchange/46545-
935 alternative-box-plot](https://www.mathworks.com/matlabcentral/fileexchange/46545-alternative-box-plot)


936 73. Illustrations P. Root illustrations [Internet]. figshare. 2018 [cited 2019 Mar
937 28]. Available from:
938 https://figshare.com/collections/Root_illustrations/3701038

939

940

941

942 **Figures**

943

944 **Fig 1. How do circadian clocks in different organs coordinate together?**

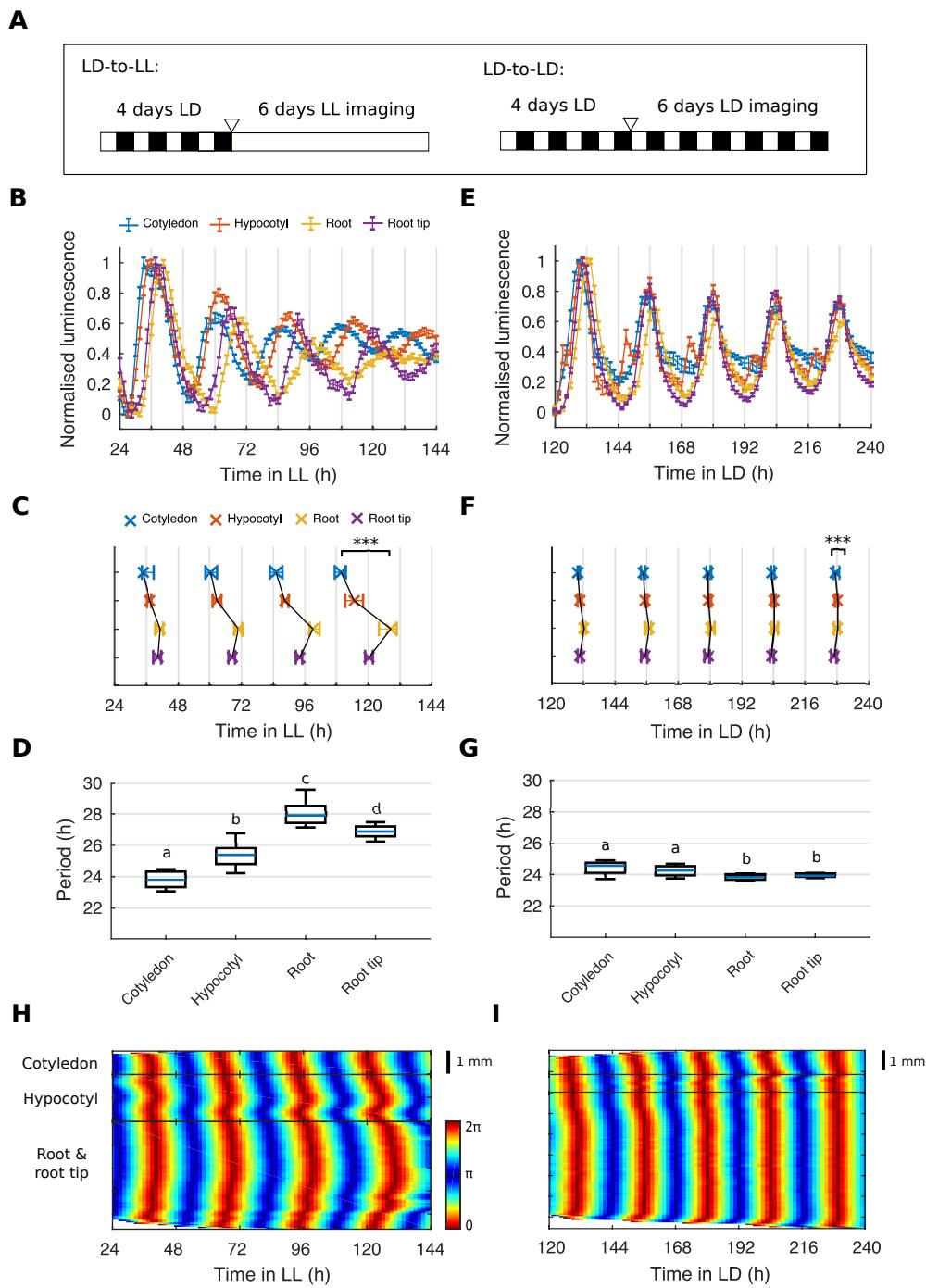
945 Individual clocks could communicate both within (black arrows) and between
946 (red arrows) organs in order to coordinate plant timing.

947

948

949

950


951

952

953

954

955

956

957 **Fig 2. Organ specific clocks show phase differences under constant
958 environmental conditions and light-dark cycles.**

959

960 A. Schematic depicting the experimental conditions used. Seedlings were grown
961 for 4 days under light-dark (LD) cycles and imaged either under constant light
962 (LD-to-LL) or LD (LD-to-LD). The white triangle represents the beginning of

963 imaging.

964

965 B. Expression of *GI::LUC* from different organs imaged under the LD-to-LL
966 condition. Luminescence counts were normalised to the minimum and maximum
967 value of the time-series. Data represents the mean \pm S.E.M. of all rhythmic time-
968 series.

969

970 C. Times of peaks of expression in different organs under LD-to-LL condition.

971 Plots represent the 25th percentile, median, and the 75th percentile for the peak
972 times of the oscillations of each tissue. Organs show significant phase
973 differences, *** $p < 0.001$, by Kruskal-Wallis ANOVA. Pairwise comparisons are
974 shown in S1 Fig.

975

976 D. Period estimates for different organs imaged under LD-to-LL condition. The
977 means of organs are statistically different ($p < 0.05$, by one-way ANOVA, Tukey's
978 *post hoc* tests) if they do not have a letter in common.

979

980 E. Expression of *GI::LUC* from different organs imaged under the LD-to-LD
981 condition. Luminescence counts were normalised to the minimum and maximum
982 value of the time-series. Data represents the mean \pm S.E.M. of all rhythmic time-
983 series. Color legend is as in B.

984

985 F. Times of peaks of expression in different organs imaged under LD-to-LD
986 condition. Plots represent the 25th percentile, median, and the 75th percentile for
987 the peak times of the oscillations of each tissue. Organs show significant phase

988 differences, *** $p < 0.001$, by Kruskal-Wallis ANOVA. Pairwise comparisons are

989 shown in S1 Fig. Color legend is as in C.

990

991 G. Period estimates for different organs imaged under LD-to-LD condition. The

992 means of organs are statistically different ($p < 0.05$, by one-way ANOVA, Tukey's

993 *post hoc* tests) if they do not have a letter in common.

994

995 H, I. Representative phase plot of *GI::LUC* expression across longitudinal sections

996 of the cotyledon (top), hypocotyl (middle), and root (bottom) of a single seedling

997 under LD-to-LL (A) and LD-to-LD (B) condition. Colorbars are as in H.

998

999 For LD-to-LL data, $N = 4$; LD-to-LD, $N = 3$; For both, $n \approx 25$. N represents the

1000 number of independent experiments, n the total number of seedlings. See S1 and

1001 S2 File for exact n and test statistics. All boxplots indicate the median, upper and

1002 lower quartile, and whiskers the 9th and 91st percentile.

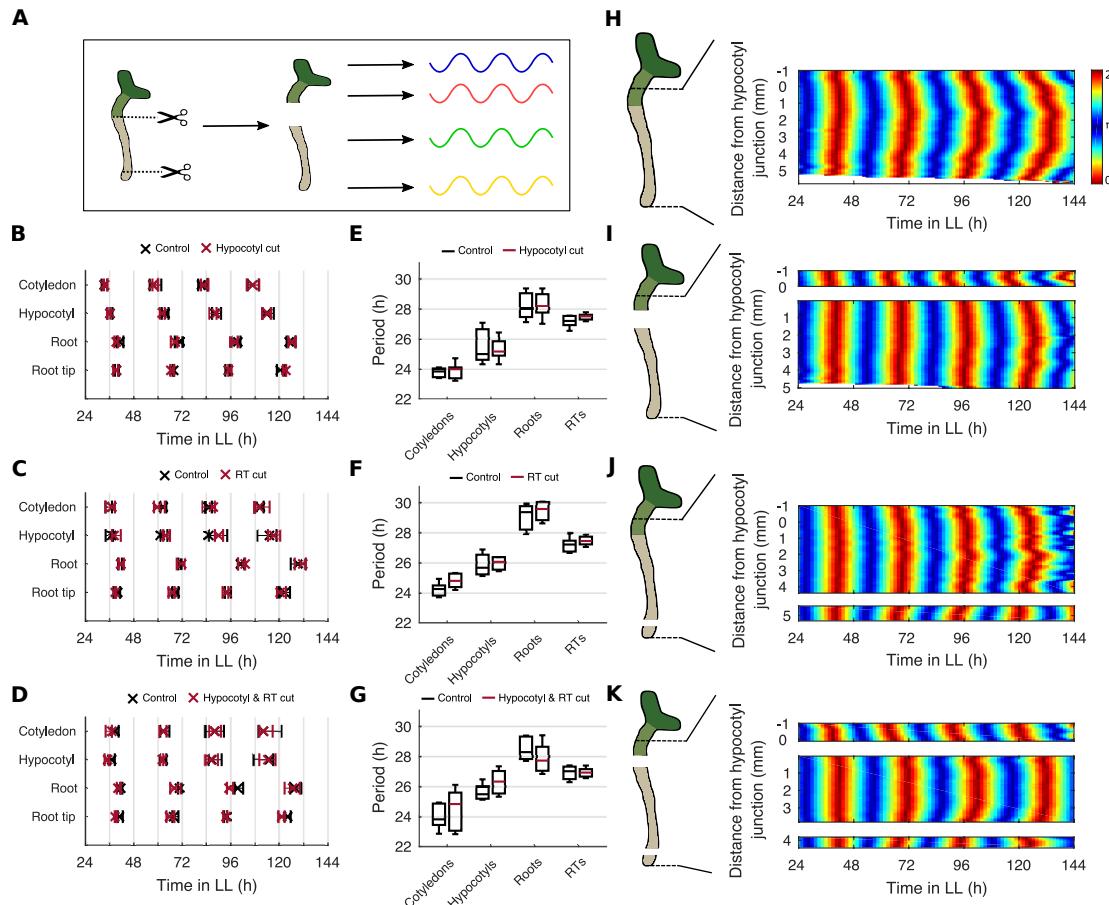
1003

1004

1005

1006

1007


1008

1009

1010

1011

1012

1013

1014 **Fig 3. Spatial waves of clock gene expression persist in the absence of long-
1015 distance signals.**

1016

1017 A. Schematic depicting the experimental design. Seedlings were cut at the
1018 hypocotyl junction, root tip (RT), or at both the hypocotyl junction and the RT.
1019 The rhythm of both the excised organs and the remaining intact organs were
1020 subsequently analyzed.

1021

1022 B-D. Times of peaks of expression in different organs following a cut at the
1023 hypocotyl junction (B), RT (C), or both the hypocotyl junction and RT (D). Plots
1024 represent the 25th percentile, median, and the 75th percentile for the peak times
1025 of the oscillations of each tissue.

1026

1027 E-G. Period estimates for different organs following a cut at the hypocotyl
1028 junction (E), RT (F), and both the hypocotyl junction and RT (G). All comparisons
1029 of means are not significantly different, $p > 0.05$, by two-tailed t -test, Welch
1030 correction.

1031

1032 H-K. Representative phase plot of *GI::LUC* expression across longitudinal sections
1033 of the hypocotyl and root of a single seedling without a cut (H) or with a cut at
1034 either the hypocotyl junction (I), RT (J), or both the hypocotyl junction and RT
1035 (K). Schematic shows the approximate cut position and the region analyzed.

1036 Colormaps are as in H.

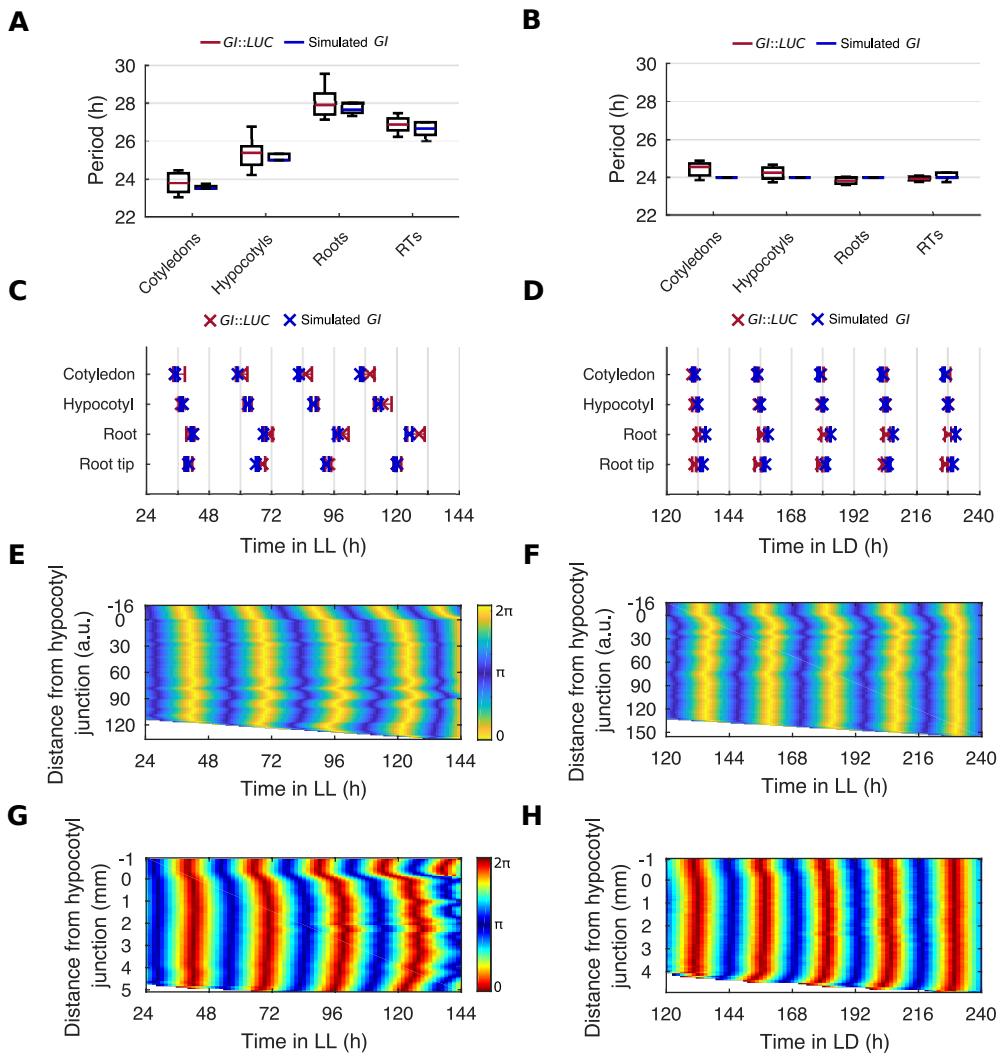
1037

1038 For hypocotyl cut experiments, $N = 4$; root tip cut, $N = 4$; hypocotyl and root tip
1039 cut, $N = 4$. For all, $n \approx 13$. N represents the number of independent experiments, n
1040 the total number of seedlings. See S1 and S2 File for exact n and test statistics. All
1041 boxplots indicate the median, upper and lower quartile, whiskers the 9th and 91st
1042 percentile.

1043

1044

1045


1046

1047

1048

1049

1050

1051

1052 **Fig 4. Period differences and local coupling can explain spatial waves of**
 1053 **clock gene expression.**

1054

1055 A, B. Period estimates of simulated *GI* for different organs imaged under LD-to-

1056 LL (A) and LD-to-LD (B) condition.

1057

1058 C, D. Times of peaks of expression for simulations and experimental data in
 1059 different organs under LD-to-LL (C) or LD-to-LD (D) conditions. Plots represent
 1060 the 25th percentile, median, and the 75th percentile for the peak times of the
 1061 oscillations of each tissue.

1062

1063 E, F. Representative phase plot of simulated *GI* expression across longitudinal
1064 sections of the hypocotyl and root of a single seedling under LD-to-LL (E), or LD-
1065 to-LD (F) conditions. Colormaps are as in E.

1066

1067 G, H. Representative phase plot of *GI::LUC* expression across longitudinal
1068 sections of the hypocotyl and root of a single seedling under LD-to-LL (G) and
1069 LD-to-LD (H) conditions. Colormaps are as in G.

1070

1071 For experimental data N and n are as in Fig 2. For simulations, $n = 24$. N
1072 represents the number of independent experiments, n the total number of
1073 seedlings. See S1 and S2 File for exact n and test statistics. All boxplots indicate
1074 the median, upper and lower quartile, whiskers the 9th and 91st percentile.

1075

1076

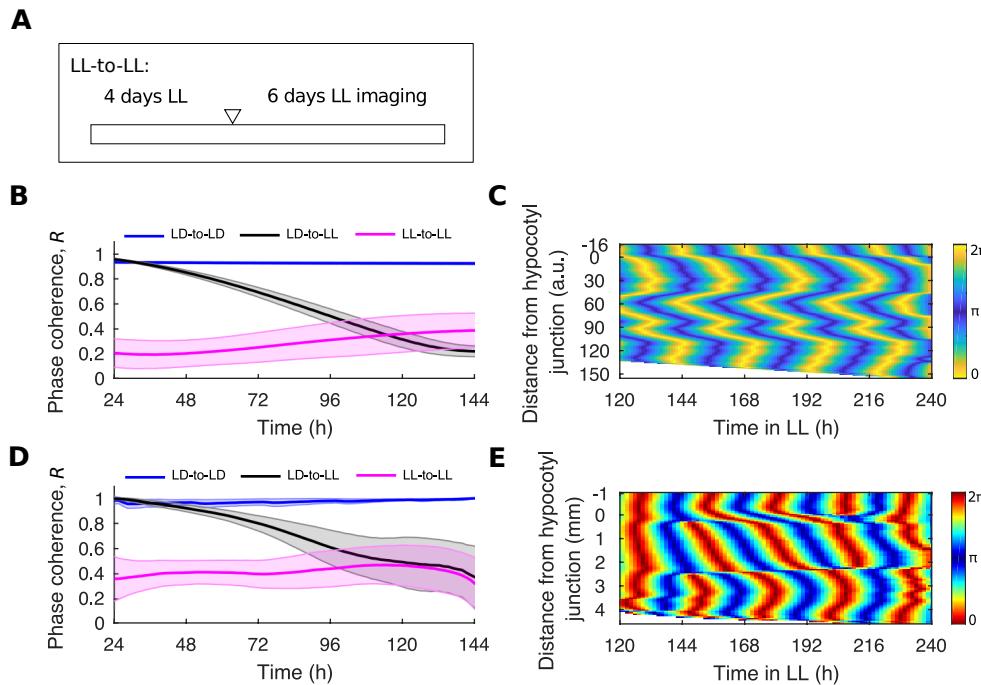
1077

1078

1079

1080

1081


1082

1083

1084

1085

1086

1087

Fig 5. Local coupling limits desynchrony in the absence of light-dark cycles.

1088

1089

1090 A. Schematic depicting the experimental conditions used. Seedlings were grown
1091 for 4 days under LL and then imaged also under LL (LL-to-LL), so that seedlings
1092 have never seen an LD cycle. The white triangle represents the beginning of
1093 imaging.

1094

1095 B. Quantification of phase coherence by time evolution of the Kuramoto order
1096 parameter, R , for simulated *GI* expression. Solid lines indicate the mean and the
1097 shaded region one S.D. of the mean.

1098

1099 C. Representative phase plot of simulated *GI* expression across longitudinal
1100 sections of the hypocotyl and root of a single seedling under LL-to-LL condition.

1101

1102 D. Quantification of phase coherence by time evolution of the Kuramoto order

1103 parameter, R , for *GI::LUC* expression. Solid lines indicate the mean and the
1104 shaded region one S.D. of the mean.

1105

1106 E. Representative phase plot of *GI::LUC* expression across longitudinal sections of
1107 the hypocotyl and root of a single seedling under the LL-to-LL condition.

1108

1109 For *GI* model simulations, $n = 24$; for LL-to-LL *GI::LUC* data, $N = 3$ and $n \approx 25$. N
1110 represents the number of independent experiments, n the total number of
1111 seedlings. See S1 and S2 File for exact n and test statistics.

1112

1113

1114

1115

1116

1117

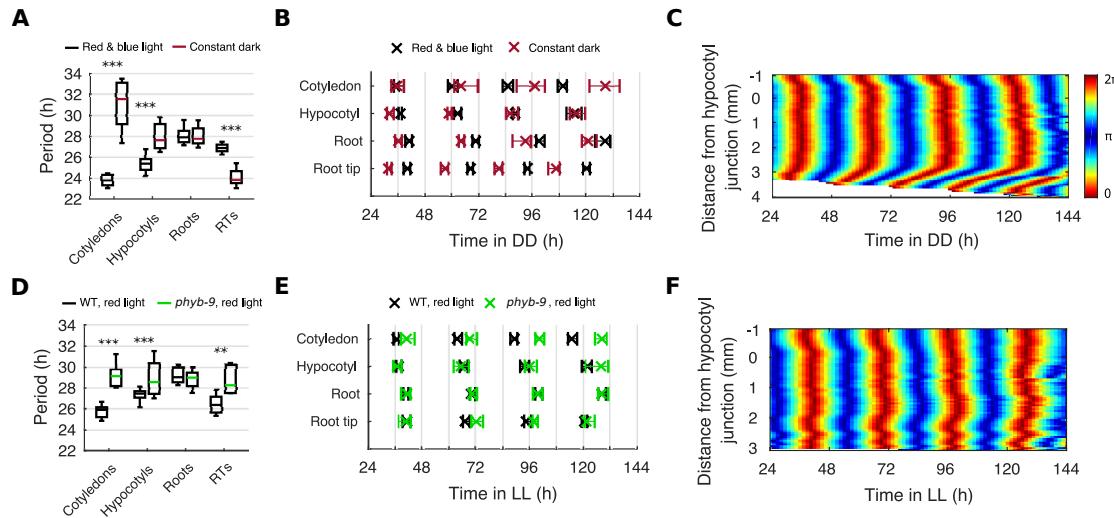
1118

1119

1120

1121

1122


1123

1124

1125

1126

1127

Fig 6. Light input sets the period of clocks organ specifically.

1128

1129 A. Period estimates for different organs under constant red and blue light or
1130 constant darkness (DD). *** $p < 0.001$, by two-tailed t -test, Welch correction.

1131 B. Times of peaks of expression in different organs under constant red and blue
1132 light or constant darkness. Plots represent the 25th percentile, median, and the
1133 75th percentile for the peak times of the oscillations of each tissue.

1134 C. Representative phase plot of *GI::LUC* expression across longitudinal sections of
1135 the hypocotyl and root of a single seedling under DD.

1136

1137

1138 D. Period estimates for different organs under constant red light in the *phyb-9*
1139 mutant. ** $p < 0.01$, *** $p < 0.001$, by two-tailed t -test, Welch correction.

1140

1141 E. Times of peaks of expression in different organs under constant light in
1142 the *phyb-9* mutant. Plots represent the 25th percentile, median, and the 75th

1146 percentile for the peak times of the oscillations of each tissue.

1147

1148 F. Representative phase plot of *GI::LUC* expression across longitudinal sections of
1149 the hypocotyl and root of a single seedling under constant red light in the *phyb-9*
1150 mutant.

1151

1152 For constant red & blue light, $N = 4$; DD, $N = 3$; *phyb-9*, $N = 4$. For all, $n \approx 25$. N
1153 represents the number of independent experiments, n the total number of
1154 seedlings. See S1 and S2 File for exact n and test statistics. All boxplots indicate
1155 the median, upper and lower quartile, and whiskers the 9th and 91st percentile.

1156 Red & blue light data is a re-plot of LD-to-LL data from Fig 2, for comparison.

1157

1158

1159

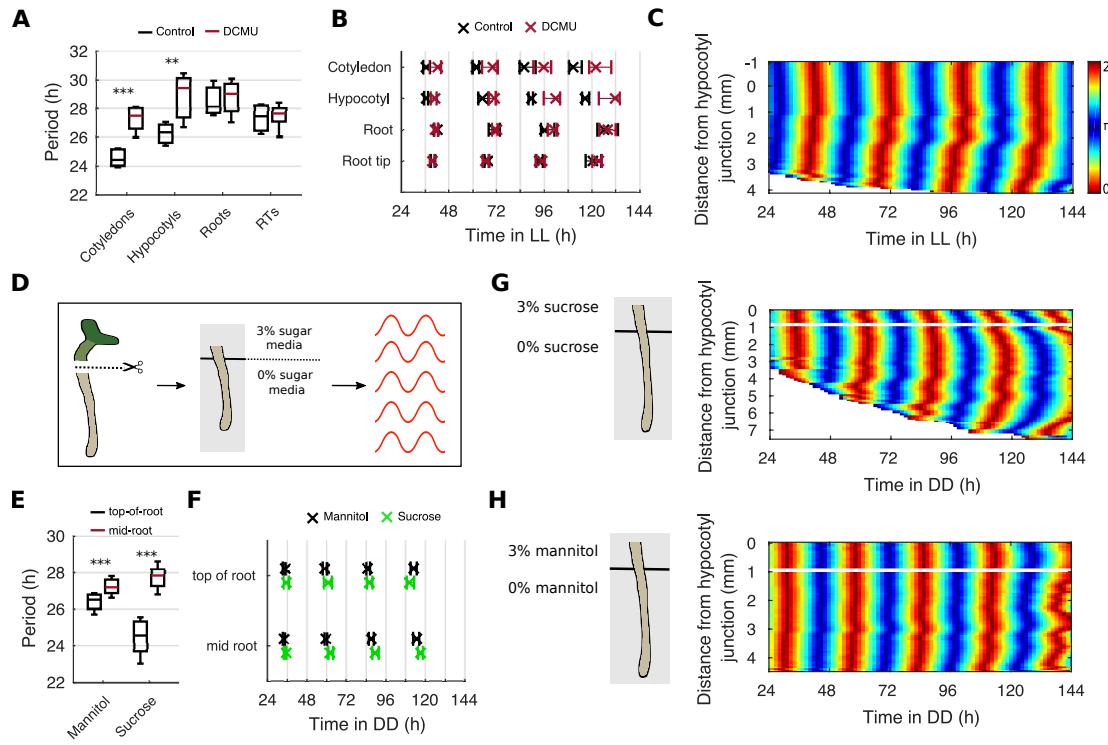
1160

1161

1162

1163

1164


1165

1166

1167

1168

1169

Fig 7. Photosynthetic sugar sets the period of clocks organ specifically.

1170

1171

1172

1173 A. Period estimates for different organs during the inhibition of photosynthesis

1174 by DCMU. ** $p < 0.01$, *** $p < 0.001$, by two-tailed t -test, Welch correction.

1175

1176 B. Times of peaks of expression in different organs during the inhibition of

1177 photosynthesis by DCMU. Plots represent the 25th percentile, median, and the

1178 75th percentile for the peak times of the oscillations of each tissue. *** $p < 0.001$,

1179 by Kruskal-Wallis ANOVA. Color legend is as in A.

1180

1181 C. Representative phase plot of *GI::LUC* expression across longitudinal sections of

1182 the hypocotyl and root of a single seedling during the inhibition of

1183 photosynthesis by DCMU.

1184

1185 D. Schematic representing the experimental design. Seedlings are cut at the
1186 hypocotyl junction and the excised root laid across two adjacent agar pads, one
1187 containing sugar supplemented media and the other not, so that only the top
1188 part of the root is in contact with sugar. Roots are then imaged under constant
1189 darkness.

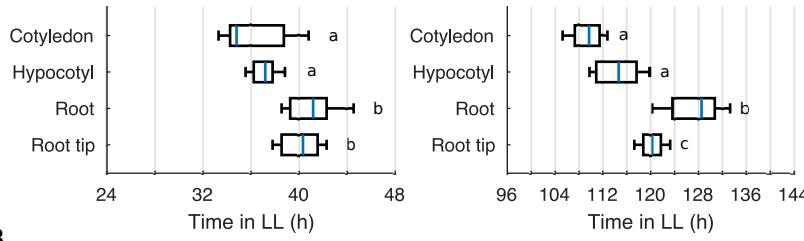
1190

1191 E. Period estimates for the top and middle region of the root during the partial
1192 contact of the root with sucrose or mannitol, under constant darkness. *** $p <$
1193 0.001, by two-tailed *t*-test, Welch correction.

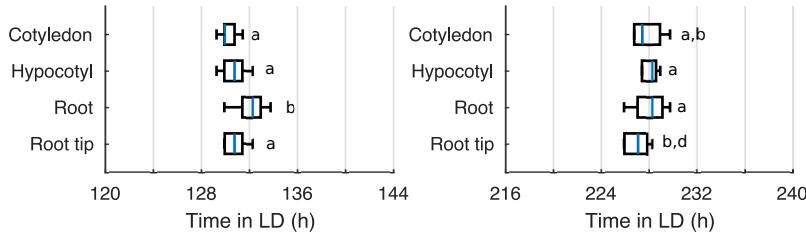
1194

1195 F. Times of peaks of expression for the top and middle region of the root during
1196 the partial contact of the root with exogenous sucrose or mannitol, under
1197 constant darkness.

1198


1199 G, H. Representative phase plot of *GI::LUC* expression across longitudinal
1200 sections of the hypocotyl and root of a single seedling during the partial contact
1201 of the root with exogenous sucrose (G) or mannitol (H), under constant
1202 darkness. Schematic shows the approximate root positioning on the agar pads.
1203 Colorbars are as in C.

1204


1205 For DCMU, $N = 3$; exogenous sugar experiments, $N = 3$; For all, $n \approx 25$. N
1206 represents the number of independent experiments, n the total number of
1207 seedlings. See S1 and S2 File for exact n and test statistics. All boxplots indicate
1208 the median, upper and lower quartile, and whiskers the 9th and 91st percentile.

1209

A

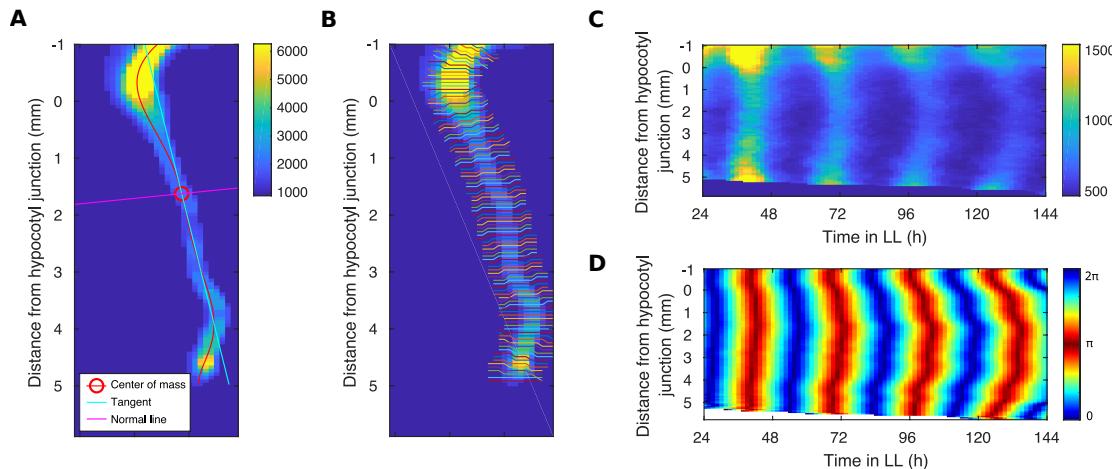
B

1210

1211 **S1 Fig. Organ specific clocks show phase differences under constant
1212 environmental conditions and light-dark cycles from the first to the final
1213 oscillation.**

1214

1215 A. Times of peaks of expression in different organs during the first (left) and final
1216 (right) observed oscillation under LD-to-LL condition. Means are statistically
1217 different ($p < 0.05$, one-way ANOVA, Tukey's *post hoc* tests) if they do not have a
1218 letter in common.


1219

1220 B. Times of peaks of expression in different organs during the first (left) and final
1221 (right) observed oscillation under LD-to-LD condition. Means are statistically
1222 different ($p < 0.05$, one-way ANOVA, Tukey's *post hoc* tests) if they do not have a
1223 letter in common.

1224

1225 See S1 and S2 File for exact n and test statistics. All boxplots indicate the median,
1226 upper and lower quartile, and whiskers the 9th and 91st percentile.

1227

1228

1229 **S2 Fig. Space-time phase plots from luciferase images.**

1230

1231 A. Luciferase images are thresholded and a line fitted through the center of mass
1232 of the tissue. At each index on this line, the normal line is taken.

1233

1234 B. Each normal line is rasterized and limited to 5 pixels around the center of
1235 mass to give pixel coordinates for longitudinal sections.

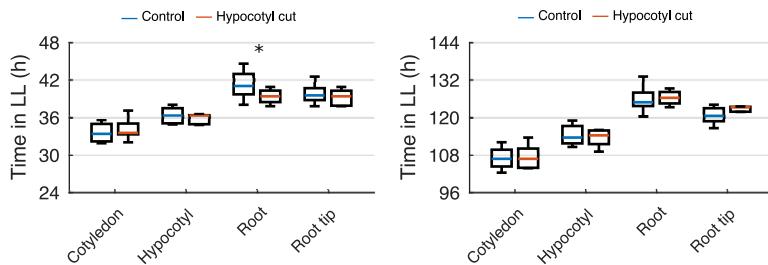
1236

1237 C. The mean value across longitudinal sections is taken at each time point to
1238 create a raw intensity space-time plot of a single seedling.

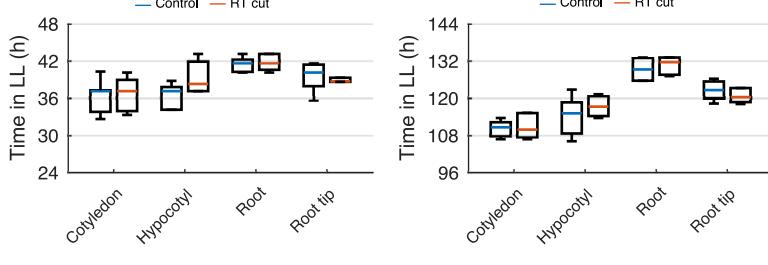
1239

1240 D. The phase of the oscillations is extracted using a wavelet transform to give a
1241 space-time map of the phase.

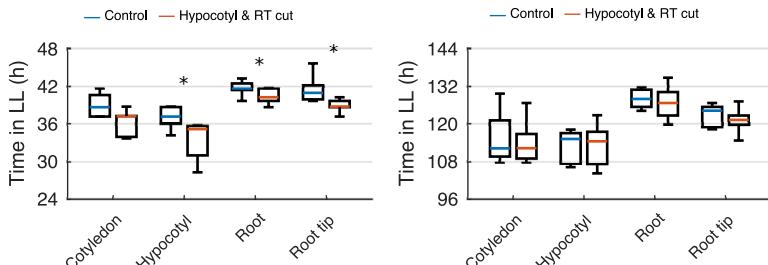
1242


1243

1244


1245

1246


A

B

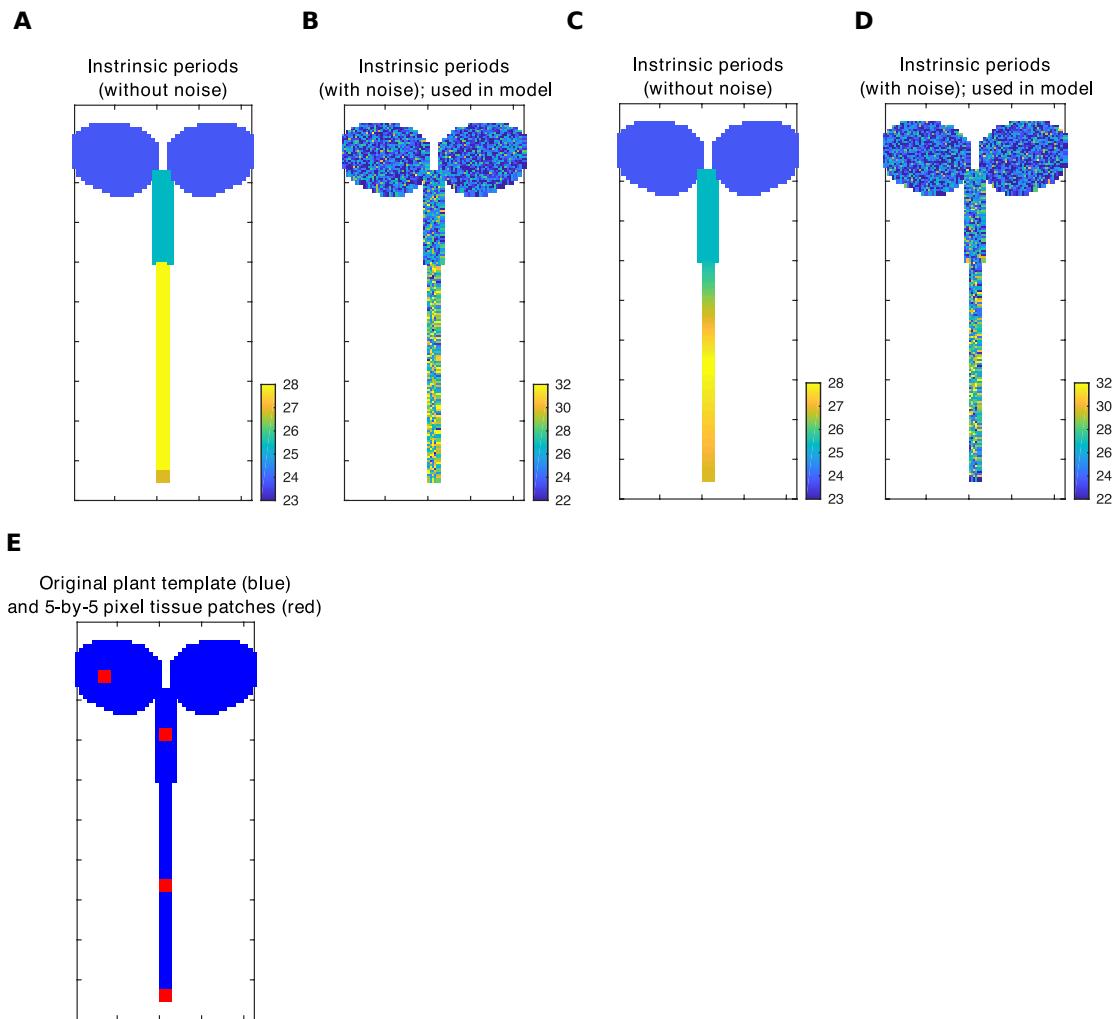
C

1247

1248 **S3 Fig. Phase differences between organs following cuts is comparable to**
1249 **controls.**

1250

1251 A-C. Times of peaks of expression in different organs for the first (left) and final
1252 (right) observed oscillation following a cut at the hypocotyl junction (A), root tip
1253 (B), or both the hypocotyl junction and root tip (C) conditions. * $p < 0.05$,
1254 Wilcoxon rank-sum test.


1255

1256 See S1 and S2 File for exact n and test statistics. All boxplots indicate the median,
1257 upper and lower quartile, and whiskers the 9th and 91st percentile.

1258

1259

1260

1261

1262 **S4 Fig. Template for simulations with organ specific periods and the ROI
1263 used for analysis.**

1264

1265 A, B. Template for simulations where in (A) periods of the pixels in each tissue
1266 are set to the mean periods measured in the LD-to-LL experimental data. In (B), a
1267 representative set of periods for each region are shown, as drawn from the
1268 period distributions described in Materials and Methods.

1269

1270 C, D. Template for simulations of the alternative model where in (C) periods of
1271 the pixels in each tissue are set to the mean periods measured in the LD-to-LL
1272 experimental data, but with a gradient of periods in the root as described in

1273 Materials and Methods. In (D), a representative set of seedling periods are
1274 shown, drawn from the period distributions and gradient described in Materials
1275 and Methods.

1276

1277 E. The 5-by-5 pixel ROIs used for phase and period analysis are identified on the
1278 template.

1279

1280

1281

1282

1283

1284

1285

1286

1287

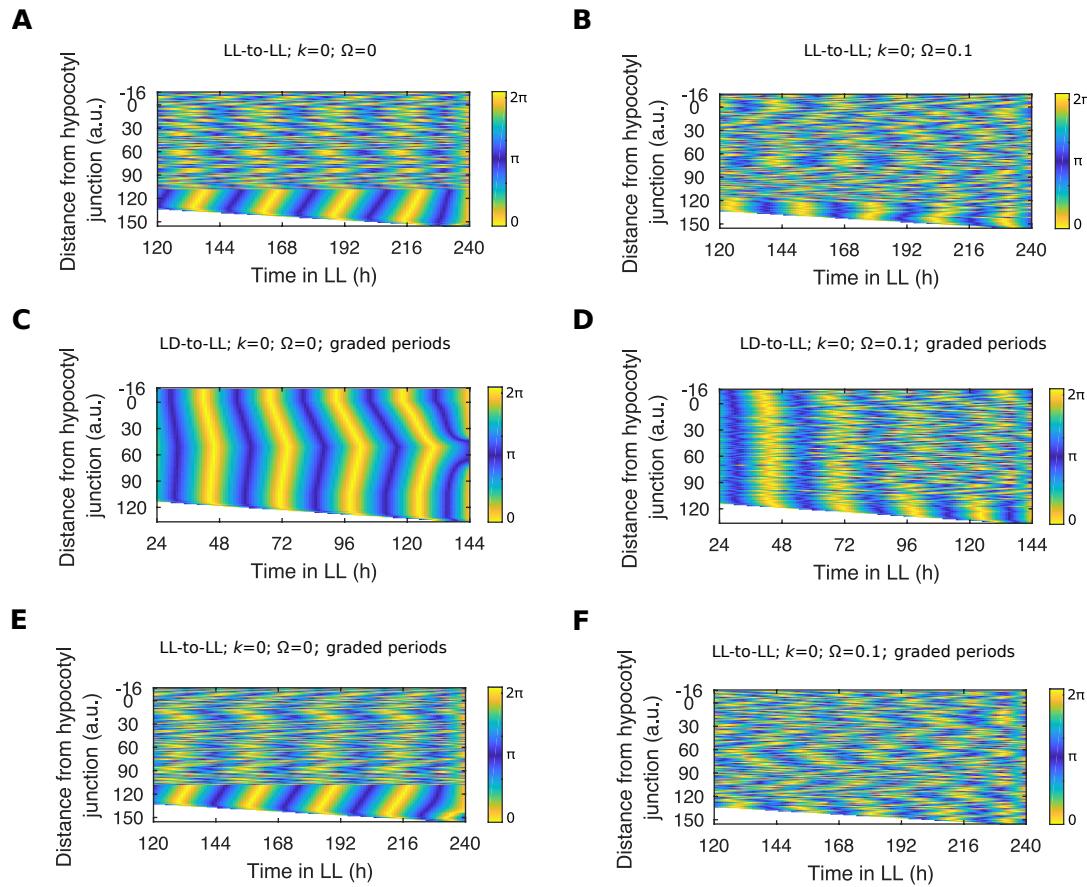
1288

1289

1290

1291

1292


1293

1294

1295

1296

1297

1298

1299 **S5 Fig. Alternative model simulations.**

1300

1301 A, B. Phase plot of simulated *GI* expression across longitudinal sections of the
1302 hypocotyl and root of a single seedling for LL-to-LL condition in the absence of
1303 coupling ($k = 0$), but with period differences. In A, periods of the pixels in each
1304 tissue are set to the mean periods measured in the LD-to-LL experimental data,
1305 without noise ($\Omega = 0$). In B, a representative set of periods for each region are
1306 shown, as drawn from the period distributions described in Materials and
1307 Methods ($\Omega = 0.1$).

1308

1309 C, D. Phase plot of simulated *GI* expression across longitudinal sections of the
1310 hypocotyl and root of a single seedling for LD-to-LL condition in the absence of
1311 coupling ($k = 0$). In C, periods in the root region are graded with a maximum

1312 period in the middle of the root, without noise ($\Omega = 0$). In D, periods are also
1313 graded in the root but periods are drawn from a distribution ($\Omega = 0.1$). See
1314 Materials and Methods for details.

1315

1316 E, F. Phase plot of simulated *GI* expression across longitudinal sections of the
1317 hypocotyl and root of a single seedling for LL-to-LL condition in the absence of
1318 coupling ($k = 0$). In E, periods in the root region are graded with a maximum
1319 period in the middle of the root, without noise ($\Omega = 0$). In F, periods are also
1320 graded in the root but periods are drawn from a distribution ($\Omega = 0.1$). See
1321 Materials and Methods for details.

1322

1323

1324

1325

1326

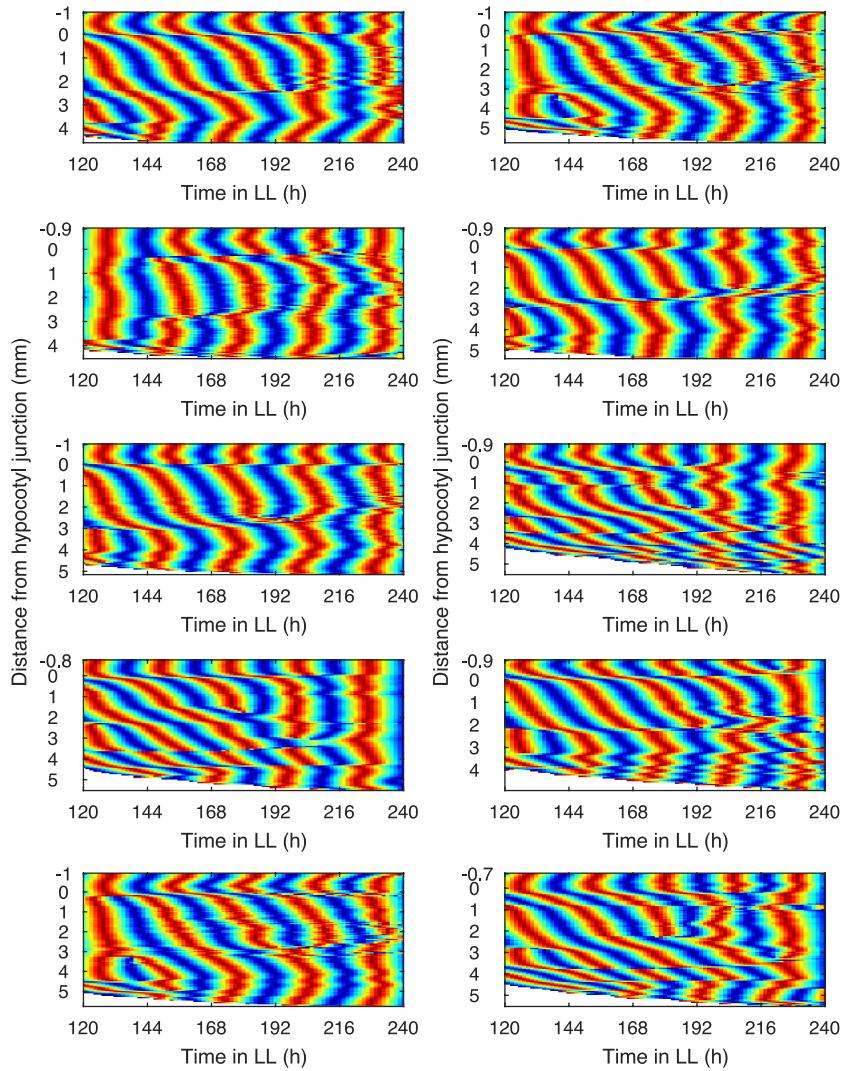
1327

1328

1329

1330

1331


1332

1333

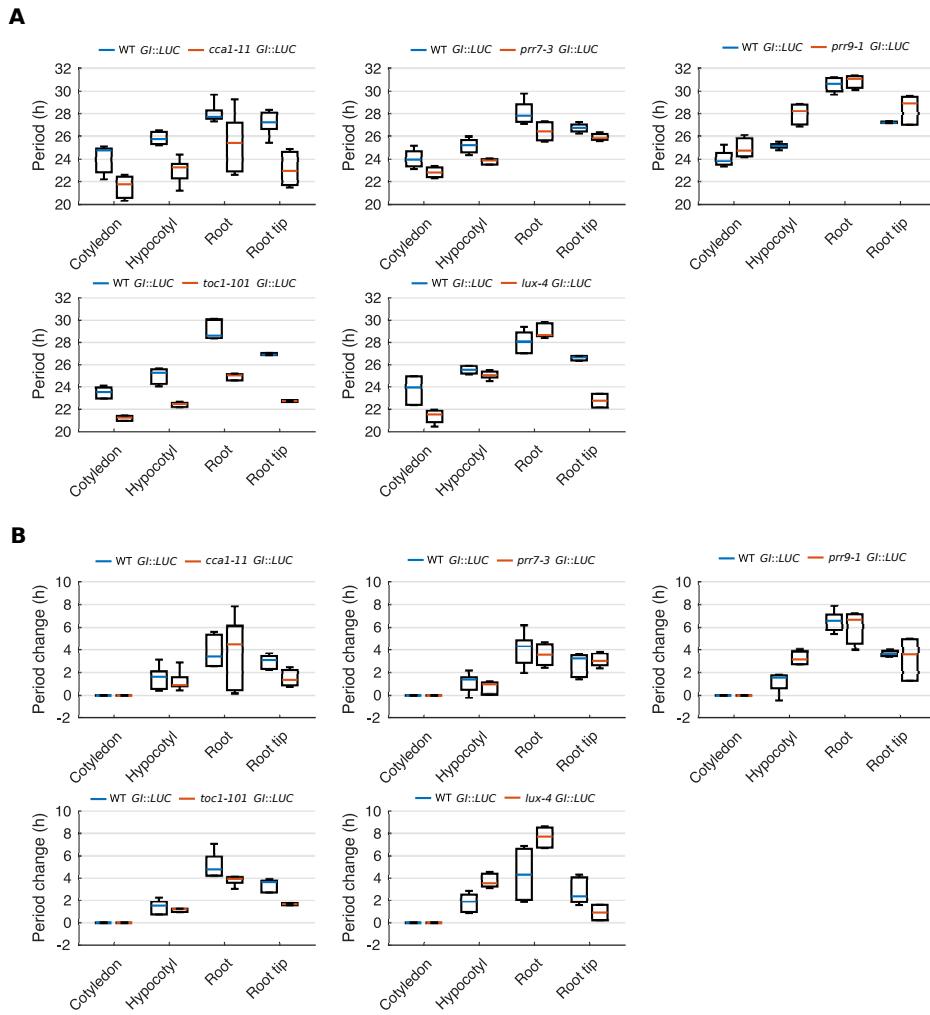
1334

1335

1336

1337

1338 **S6 Fig. Representative phase plots for LL-to-LL condition.**


1339

1340 Phase plots of *GL::LUC* expression across longitudinal sections of the hypocotyl
1341 and root. Each phase plot is of a single seedling that is representative for the LL-
1342 to-LL condition.

1343

1344

1345

1346

1347 **S7 Fig. Core clock network mutations affect the period of different regions**
 1348 **proportionately.**

1349

1350 A. Period estimates for *GI::LUC* expression from different organs imaged under
 1351 LD-to-LL condition in circadian mutants lines.

1352

1353 B. Period change relative to the cotyledon for *GI::LUC* expression from different
 1354 organs imaged under LD-to-LL condition in circadian mutant lines.

1355

1356 For *cca1-11*, $N = 4$; *prr7-3*, $N = 4$; *prr9-1*, $N = 2$; *toc1-101*, $N = 2$; *lux-4*, $N = 2$. For
 1357 all, $n \approx 12$. N represents the number of independent experiments, n the total

1358 number of seedlings. See S1 and S2 File for exact n and test statistics. All boxplots
1359 indicate the median, upper and lower quartile, and whiskers the 9th and 91st
1360 percentile.

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

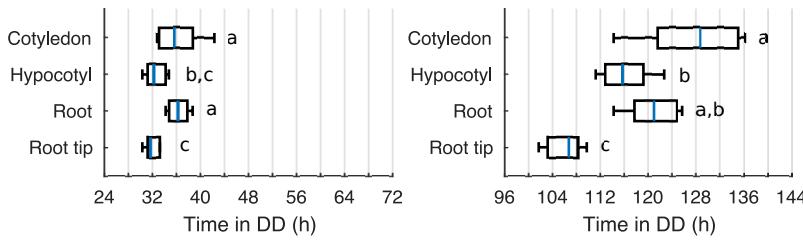
1375

1376

1377

1378

1379


1380

1381

1382

1383

A

1384

1385 **S8 Fig. Phase shifts between aerial organs and the root are reduced under**
1386 **constant darkness.**

1387

1388 A. Times of peaks of expression in different organs during the first (left) and final
1389 (right) observed oscillation under constant darkness. Means are statistically
1390 different ($p < 0.05$, one-way ANOVA, Tukey's *post hoc* tests) if they do not have a
1391 letter in common.

1392

1393 See S1 and S2 File for exact n and test statistics. Boxplots indicate the median,
1394 upper and lower quartile, and whiskers the 9th and 91st percentile.

1395

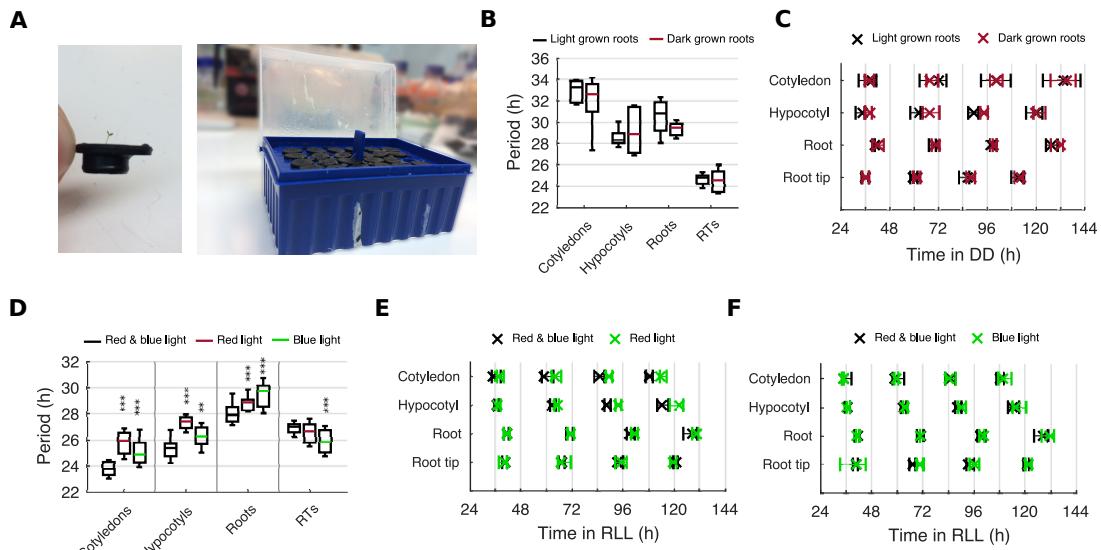
1396

1397

1398

1399

1400


1401

1402

1403

1404

1405

1406

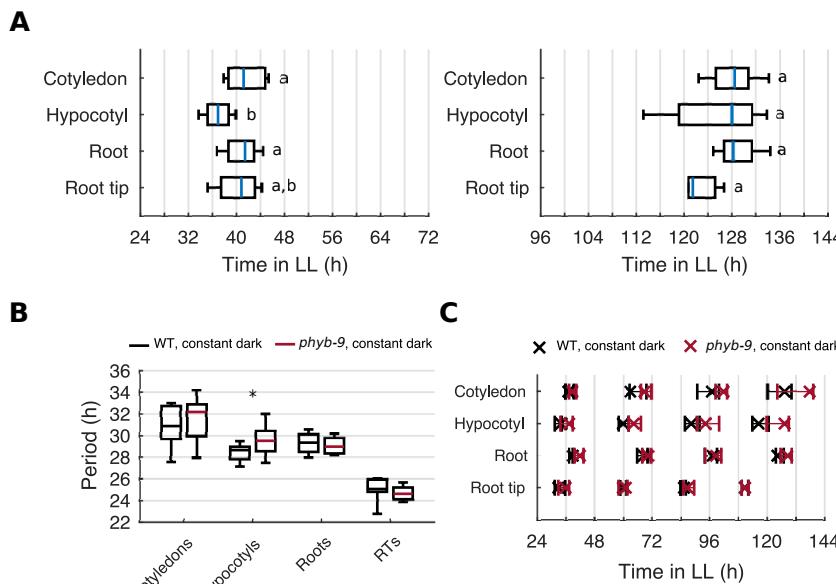
1407 **S9 Fig. The quality of light input effects rhythms organ specifically.**

1408

1409 A. Seeds are sown on agar filled black micro-centrifuge tube lids, with a piercing
1410 in the lid (left), and suspended in MS liquid in a floating micro-centrifuge tube
1411 rack (right), as described previously (62). Note that images include a blur
1412 selectively on the background in order to highlight these components.

1413

1414 B. Period estimates for different organs in light grown and dark grown roots. All
1415 comparisons between period estimates are not significant, $p < 0.05$, by two-
1416 tailed t -test, Welch correction.


1417

1418 C. Times of peaks of expression in different organs for light grown and dark
1419 grown roots. Imaging is under constant darkness (DD). Plots represent the 25th
1420 percentile, median, and the 75th percentile for the peak times of the oscillations
1421 of each tissue.

1422

1423 D. Period estimates for different organs under constant red and blue light, red
1424 light only, or blue light only. Statistical comparison is to red & blue light data, ***
1425 $p < 0.001$, by two-tailed t -test, Welch correction.
1426
1427 E, F. Times of peaks of expression in different organs imaged under constant red
1428 (RLL; B) or constant blue (BLL; C). Plots represent the 25th percentile, median,
1429 and the 75th percentile for the peak times of the oscillations of each tissue.
1430
1431 For dark grown roots, $N = 3$; RLL, $N = 2$; BLL, $N = 2$. For all, $n \approx 20$. N represents
1432 the number of independent experiments, n the total number of seedlings. See S1
1433 and S2 File for exact n and test statistics. All boxplots indicate the median, upper
1434 and lower quartile, and whiskers the 9th and 91st percentile. BLL data is an
1435 analysis of time-lapse movies carried out in Gould *et al.*, 2018.
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

1448

1449

1450 **S10 Fig. PHYTOCHROME B sets clock periods organ specifically under red**
1451 **light and constant darkness.**

1452

1453 A. Times of peaks of expression in different organs during the first (left) and final
1454 (right) observed oscillation in the *phyb-9* mutant imaged under constant red
1455 light. Means are statistically different ($p < 0.05$, one-way ANOVA, Tukey's *post*
1456 *hoc* tests) if they do not have a letter in common.

1457

1458 B. Period estimates for different organs in the *phyb-9* mutant imaged under
1459 constant darkness. * $p < 0.05$, by two-tailed *t*-test, Welch correction.

1460

1461 C. Times of peaks of expression in different organs in the *phyb-9* mutant imaged
1462 under constant darkness. Plots represent the 25th percentile, median, and the
1463 75th percentile for the peak times of the oscillations of each tissue.

1464

1465 For *phyb-9* red light, $N = 4$; *phyb-9* DD, $N = 2$; For both $n \approx 20$. N represents the
1466 number of independent experiments, n the total number of seedlings. See S1 and
1467 S2 File for exact n and test statistics. All boxplots indicate the median, upper and
1468 lower quartile, and whiskers the 9th and 91st percentile.

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

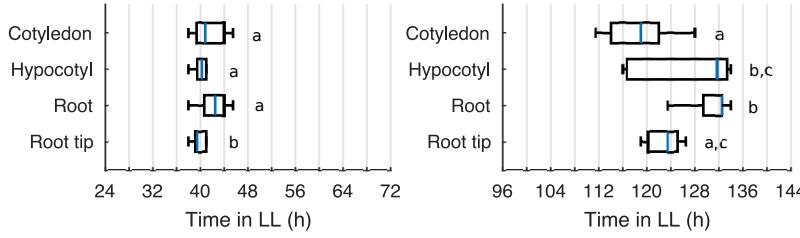
1479

1480

1481

1482

1483


1484

1485

1486

1487

A

1488

1489 **S11 Fig. Phase shifts between aerial organs and the root are reduced**

1490 **following the inhibition of photosynthesis by DCMU.**

1491

1492 A. Times of peaks of expression in different organs during the first (left) and final

1493 (right) observed oscillation during the inhibition of photosynthesis by DCMU.

1494 Means are statistically different ($p < 0.05$, one-way ANOVA, Tukey's *post hoc*

1495 tests) if they do not have a letter in common.

1496

1497 See S1 and S2 File for exact n and test statistics. Boxplots indicate the median,

1498 upper and lower quartile, and whiskers the 9th and 91st percentile.

1499

1500

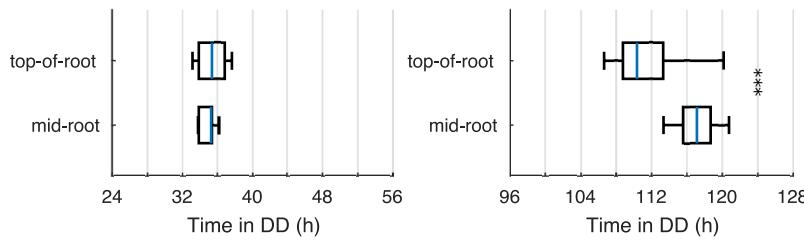
1501

1502

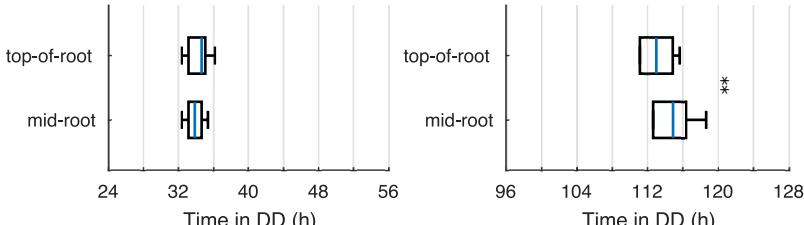
1503

1504

1505


1506

1507


1508

1509

A

B

1510

1511 **S12 Fig. The application of sugar to the top of the root creates a phase shift
1512 from the top to the middle of the root under constant darkness.**

1513

1514 A. Times of peaks of expression in different regions during the first (left) and
1515 final (right) observed oscillation during the partial contact of the root with
1516 sucrose. *** $p < 0.001$, Wilcoxon rank-sum test.

1517

1518 B. Times of peaks of expression in different regions during the first (left) and
1519 final (right) observed oscillation during the partial contact of the root with
1520 mannitol. ** $p < 0.01$, Wilcoxon rank-sum test.

1521

1522 See S1 and S2 File for exact n and test statistics. Boxplots indicate the median,
1523 upper and lower quartile, and whiskers the 9th and 91st percentile.

1524

1525

1526

1527 **S1 Video. Spatial waves of *GI::LUC* expression under the LD-to-LL condition.**

1528 *GI::LUC* luminescence from 24–144 h after transfer to constant light. Frame

1529 intervals are 90 minutes and scale bar shows 0.5 mm.

1530

1531 **S2 Video. Spatial waves of *GI::LUC* expression under the LD-to-LD condition.**

1532 *GI::LUC* luminescence from 24–144 h after transfer to constant light. Frame

1533 intervals are 90 minutes and scale bar shows 0.5 mm.

1534

1535 **S3 Video. Spatial waves of *GI::LUC* expression in a cut root. *GI::LUC***

1536 luminescence from 24–144 h after transfer to constant light, following following

1537 excision of the root tip 2 h after transfer to constant light. Frame intervals are 90

1538 minutes and scale bar shows 0.5 mm.

1539

1540 **S4 Video. Spatial waves of *GI::LUC* expression under the LL-to-LL condition.**

1541 *GI::LUC* luminescence from 24–144 h after transfer to constant light. Frame

1542 intervals are 90 minutes and scale bar shows 0.5 mm.

1543

1544 **S5 Video. Spatial waves of *GI::LUC* expression under constant darkness.**

1545 *GI::LUC* luminescence from 24–144 h after transfer to constant darkness. Frame

1546 intervals are 90 minutes and scale bar shows 0.5 mm.

1547

1548 **S6 Video. Spatial waves of *GI::LUC* expression under constant red light in**

1549 **the *phyb-9* background.** *GI::LUC* luminescence from 24–144 h after transfer to

1550 constant darkness. Frame intervals are 90 minutes and scale bar shows 0.5 mm.

1551

1552 **S7 Video. Spatial waves of *GI::LUC* expression in the root following**
1553 **application of exogenous sucrose to the top of the root.** *GI::LUC* luminescence
1554 from 24–144 h after transfer to constant darkness. The top portion of the root
1555 (approximately 1 mm) is in contact with sucrose supplemented media whilst the
1556 remainder of the root is in contact with media without sugar. Frame intervals are
1557 90 minutes and scale bar shows 0.5 mm.

1558

1559 **S8 Video. Spatial waves of *GI::LUC* expression in the root following**
1560 **application of exogenous mannitol to the top of the root.** *GI::LUC*
1561 luminescence from 24–144 h after transfer to constant darkness. The top portion
1562 of the root (approximately 1 mm) is in contact with mannitol supplemented
1563 media whilst the remainder of the root is in contact with media without sugar.
1564 Frame intervals are 90 minutes and scale bar shows 0.5 mm.

1565

1566 **S1 File. Test statistic values relating to period estimates presented in**
1567 **Figures.**

1568

1569 **S2 File. Test statistic values relating to phase estimates presented in**
1570 **Figures.**