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Abstract

Identifying copy number variants (CNVS) can provide diagnoses to patients and provide important
biological insights into human health and disease. Current exome and targeted sequencing
approaches cannot detect clinically and biologically-relevant CNVs outside their target area. We
present SavvyCNV, a tool which uses off-target read data to call CNVs genome-wide. Up to 70% of
sequencing reads from exome and targeted sequencing fall outside the targeted regions - SavvyCNV
exploits this ‘free data’.

We benchmarked SavvyCNV using truth sets generated from genome sequencing data and Multiplex
Ligation-dependent Probe Amplification assays. SavvyCNV called CNVs with high precision and recall,
outperforming five state-of-the-art CNV callers at calling CNVs genome-wide using off-target or on-
target reads from targeted panel and exome sequencing. Furthermore SavvyCNV was able to call
previously undetected clinically-relevant CNVs from targeted panel data highlighting the utility of
this tool within the diagnostic setting. SavvyCNV is freely available.
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Copy number variants (CNVs) are an important class of biological variation. They can cause
monogenic disease (1,2), are associated with polygenic traits (3) and may exert pharmacogenetic
effects(4). CNVs are structural rearrangements where bases are gained (duplication) or lost
(deletion) from the genome causing an altered copy number compared to the reference.

The importance of CNVs is highlighted by the role they play in many diseases, including cancers (5),
autism (6), developmental disorders (7), and heart disease (8). Single or partial gene deletions can
cause disease where haploinsufficiency would result in the disease phenotype. For example, both
single nucleotide variants and whole gene deletions of PKD1 cause polycystic kidney disease (1).
Duplications can also cause disease as a result of gene disruption at the site of insertion or through
increased gene expression. For example, paternal duplication of the chromosome 6¢24 region
causes neonatal diabetes by overexpression of the imprinted gene PLAGL1 (2,9). Larger CNVs are
likely to cause syndromic disease as they affect multiple genes. An extreme case is Down syndrome
where duplication of chromosome 21 results in characteristic facial features and intellectual
disability (10).

CNVs can be detected by a range of methods. In the clinical setting DNA microarrays are routinely
used to detect larger rearrangements whilst multiplex ligation-dependent probe amplification
(MLPA) is often used to detect single or partial gene CNVs (11). With next generation sequencing
(NGS) increasingly employed to investigate genetic variation, the detection of CNVs from NGS data
has become increasingly important. While genome sequencing is the optimal method to capture all
sequence variation across the genome, due to speed and cost exome sequencing and targeted NGS
panels are the most commonly used testing methods, particularly as a first line test in clinical
diagnostic laboratories.

Many methods have been published to call CNVs from exome and targeted gene panel data(12).
These are designed to detect CNVs within the genes which are targeted by the assay, however
biologically interesting and disease causing CNVs will often fall outside of the targeted regions.
Existing methods will typically be able to identify if a particular gene is deleted/duplicated however
they will not necessarily be able to map the extent of the CNV as the breakpoints will often be
located outside the targeted regions.

Current approaches to gene targeting for NGS are imperfect. Samuels et ol reported that between
40% and 60% of sequence reads generated map outside the target regions (13). This in effect
produces ultra-low depth genome sequence data. While there is insufficient information (<1X
coverage) to call single nucleotide variants over the untargeted region this ‘off target’ data can be
exploited to call large CNVs by detecting read depth changes over a wide area. The ability to use off-
target reads to call CNVs across the genome increases the diagnostic utility of targeted next-
generation sequencing panels and also allows for more accurate mapping of breakpoints of CNVs
which reside outside of the targeted regions. Previous tools have been designed to detect CNVs in
off-target reads from exome data (14) and large targeted panels (15,16).

We have developed a new tool, SavvyCNV, for calling CNVs from off-target reads. We investigated
the utility of SavvyCNV by comparing it to the current tools for calling CNVs in off-target regions in
both targeted sequencing and whole exome sequencing (using a truth set derived from genome
sequencing), and in on-target regions (using a truth set derived from MPLA). We then used
SavvyCNV in a patient cohort tested with a small targeted gene panel (75 genes) to perform a
genome-wide analysis to detect CNVs of clinical relevance.

Material & Methods

Targeted panel data
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2591 patients were referred to the molecular genetics department at the Royal Devon and Exeter
Hospital for genetic testing for maturity onset diabetes of the young (MODY), neonatal diabetes
(NDM) or hyperinsulinemic hypoglycemia (HH). Informed consent was obtained from the probands
or their parents/guardians and the study was approved by the North Wales ethics committee. The
study was conducted in accordance with the Declaration of Helsinki. Samples were sequenced on a
targeted gene panel test for monogenic diabetes and HH using a custom Agilent SureSelect panel of
75 genes, targeting 200kb and obtaining 3.4 million reads on average per sample (standard deviation
1.6 million)(17), using an Illumina HiSeq 2500 or an lllumina NextSeq 500. Based on the GATK best
practice guidelines(18) reads were aligned to the hg19/GRCh37 human reference genome with BWA
mem(19), duplicates were removed using Picard (https://broadinstitute.github.io/picard/) and GATK
IndelRealigner was used for local re-alignment. CNV analysis was carried out on these BAM files.

Exome sequencing data

Following testing using the targeted panel, samples from 86 patients underwent exome sequencing
with Agilent SureSelect Whole Exome versions 1, 3, 4, and 5, obtaining 76 million reads on average
(standard deviation 20 million). Sequencing, alignment and variant calling was as above for the
targeted panel.

Truth set for targeted and exome data

170 of the targeted panel samples and 42 of the exome samples were subsequently genome
sequenced on an lllumina HiSeq 2500 or an lllumina HiSeq X10. These were used to create a truth
set of CNVs for testing the off-target CNV calling from targeted panel or exome data. The CNVs in the
truth set were called by GenomeStrip(20) from the genome sequencing data. In order to remove
false positive calls CNVs were filtered based on their allele balance ratios —whether the allele
balance of the variants within the called CNV was consistent with it being a true call. We used the X
chromosome in males to calibrate the expected allele ratio for a deletion and used the allele ratio of
normal, two copy regions to evaluate if the allele ratio for duplications fell above that. In addition 37
CNVs were added to the targeted panel truth set as they were validated by other methods such as
Multiplex Ligation-dependent Probe Amplification (MLPA) or were aneuploidies reported by the
clinician at time of referral for genetic testing.

The ICR96 data set (21) was used to benchmark on-target CNV calling. This data set consists of 96
samples sequenced on a targeted panel where the truth set of CNVs is based on 68 positive and
1752 negative MLPA tests.

Calling clinically-relevant CNVs

The remaining 2479 targeted panel samples from unsolved patients with MODY, NDM and HH were
analysed with SavvyCNV to look for off-target CNVs which might explain their phenotype. For clinical
evidence of the CNVs, see Table 4.

CNV tool comparisons

To ensure a fair comparison between the different tools, for each data set all tools were run with a
variety of configurations. The size of genomic regions that were analysed was varied for all six tools
(targeted panel: 150kbp to 300kbp or 50kbp to 2Mbp for CopywriteR; exomes: 6kbp to 50kbp or
20kbp to 2Mbp for CopywriteR; ICR96: 200bp to 600bp). The hidden Markov model transition
probability was varied for DeCON and SavvyCNV (10™° to 0.1). All six tools provide quality metrics for
the CNV calls. These metrics were used to filter the CNV calls to reject false positive calls and retain
true positive calls. All possible quality cut-off values were tried. The best precision achieved for each
possible recall was then selected for each tool from all the generated results, and plotted in
precision-recall graphs. EXCAVATOR2(14) did not run on the ICR96 data set - we contacted the
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authors of the tool but did not receive a response. CopywriteR was not run on the ICR96 data set, as
it is not designed to use on-target data.

Statistics

We defined recall as the percentage of true positive CNVs that were found by the tool. We defined
precision as the percentage of the total CNVs called by the tool that were true. Several figures use
the f statistic to compare tools; this is the harmonic mean of precision and recall.

Results

How much off-target read data is there?

For our small targeted panel (17) of 75 genes, 3.4 (SD 1.6) million reads are sequenced on average
per sample. 55% (SD 10%) of these map to off-target regions of the genome. This gives a mean read
depth in off-target regions of 0.065 (SD 0.044). In the exome samples that we used as a
benchmarking data set there are an average of 76 (SD 20) million reads per sample with 20.3% (SD
6.6%) off-target, equating to mean read depth of 0.52 (SD 0.20) in off-target regions. This compares
to a typical genome sequencing experiment where sufficient reads are sequenced to give >30X mean
coverage across the genome.

SavvyCNV can call off-target CNVs from targeted panels

To evaluate SavvyCNV's ability to call off-target CNVs accurately from targeted panel data we
benchmarked its performance against a truth set (see Methods) and compared it to five other tools
for calling CNVs: GATK gCNV(18), DeCON(22), EXCAVATOR2(14), CNVkit(15), and CopywriteR(16). To
prevent bias due to software configuration tuning, we ran all six tools with multiple configurations,
and plotted the best results for each tool on a precision-recall graph (Figure 1). The best recall
(sensitivity) where precision is at least 50% is shown in Table 1.
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Figure 1. Benchmarking off-target CNV calling from targeted panel data.

The data points on the plot are generated by a parameter sweep for each tool and show the

precision and recall that can be achieved with each tool. The f statistic is the harmonic mean of
precision and recall (see methods for details).
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Table 1. Benchmarking off-target CNV calling from targeted panel data.

The table shows the performance of the different CNV calling software based on the size of the
CNV. The tools were run with multiple different parameters. For this comparison, we have
selected the configuration for each tool that provides the highest recall with a precision of at least
50%. More variants may be detected by each tool with different configuration, but with precision
less than 50%.

Size CNVs Software True False Recall Precision
positives positives

All sizes 267 SavvyCNV 68 67 25.5% 50.4%
GATK gCNV | 40 31 14.9% 56.3%
DeCON 41 40 15.4% 50.6%
Excavator2 | 30 20 11.2% 60.0%
CnvKit 27 23 10.1% 54.0%
CopywriteR | 18 13 6.7% 58.1%

>=1Mb 42 SavvyCNV 41 11 97.6% 78.8%

(including GATK gCNV | 39 32 92.9% 54.9%

>=5Mb) DeCON 36 31 85.7% 53.7%
Excavator2 | 29 19 69.0% 60.4%
CnvKit 26 24 61.9% 52.0%
CopywriteR | 18 13 42.9% 58.1%

>=5Mb 26 SavvyCNV 26 0 100% 100%
GATK gCNV | 26 3 100% 89.7%
DeCON 26 19 100% 74.3%
Excavator2 | 26 3 100% 89.7%
CnvKit 25 23 96.2% 52.1%
CopywriteR | 17 8 65.4% 68.0%

All tools except CopywriteR called all of the CNVs larger than 5Mb (although not necessarily with
precision of at least 50%), however only SavvyCNV did so without any false positive calls. All CNVs
larger than 1Mb were called by SavvyCNV, GATK gCNV, and DeCON (with precision less than 50%),
although SavvyCNV called the most (97.6%) at a precision of at least 50% (as in table 1). For all CNVs,
SavvyCNV had the highest recall (25.5%) with precision of at least 50%. For all three CNV size
categories, SavvyCNV had the greatest detection power. It can call CNVs that are larger than 1Mb
from off-target reads from a targeted panel with good recall (97.6%) and precision (78.8%).

SavvyCNV can call on-target CNVs from targeted panels

To evaluate the performance of SavvyCNV at calling CNVs from on-target data we used the ICR96
validation series(21) and compared its performance to GATK gCNV, DeCON, and CNVkit. ICR96 is a
set of 96 samples sequenced using a small targeted sequencing panel (TruSight Cancer Panel v2, 100
genes), with exon CNVs detected independently using MLPA (25 single-exon CNVs, 43 multi-exon
CNVs, and 1752 normal copy number genes). SavvyCNV had the highest recall for precision of at
least 50% though GATK gCNV and DeCON also performed well - these 3 tools had a recall >95%
(Table 2). Precision can only be compared between tools if recall is identical. While GATK gCNV
achieves 85.7% precision at its highest recall of 97.1%, SavvyCNV has a precision of 93.0% at the
same recall (this is shown in Figure 2). DeCON was the next-best performing tool while CnvKit did
not call the majority of CNVs. Excavator2 did not run on this data set. Figure 2 shows the recall and
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precision of the four tools. SavvyCNV was the only tool capable of detecting all the CNVs although
only with a precision of 29.1%.

Table 2 Benchmarking on-target CNV calling from the ICR96 targeted panel data.

The table shows the performance of the different CNV calling software based on the size of the
CNV. The tools were run with multiple different parameters. For this comparison, we have
selected the configuration for each tool that provides the highest recall with a precision of at least

50%.
Size CNVs Software True False Recall Precision
positives positives

All (single 68 SavvyCNV 67 42 98.5% 61.5%

exon and GATK gCNV | 66 11 97.1% 85.7%

multi-exon) DeCON 65 65 95.6% 50.0%
CnvKit 12 12 17.6% 50.0%

Multi-exon | 43 SavvyCNV 43 11 100% 79.6%
GATK gCNV | 43 11 100% 79.6%
DeCON 42 14 97.7% 75.0%
CnvKit 10 8 23.2% 55.5%

Two of the CNVs within the ICR96 dataset cover less than a complete exon and have one breakpoint
within the targeted region. These two CNVs are the hardest to detect by read-depth methods, as the
read depth is only altered over a fraction of the exon area. Both CNVs are detected only by
SavvyCNV, even when the highest sensitivity settings are used with the other CNV callers.

Multi-exon CNVs are easier to detect than single-exon CNVs. SavvyCNV, GATK gCNV, and DeCON can
detect all 43 multi-exon CNVs, although only SavvyCNV and GATK gCNV did this with a precision of at
least 50%.


https://doi.org/10.1101/617605
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617605; this version posted June 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

8

1 = =
S~ N E
o

0.8

0.6
T
(9}
Q
4

0.4

0.2 +

Hescs
X
CnvKit \\\,‘
DeCON i TR
GATK gCNV e —
SavvyCNV
O T T T T
0 0.2 0.4 0.6 0.8 1
Precision

Figure 2. Benchmarking on-target CNV calling from targeted panel data.

The data points on the plot are generated by a parameter sweep for each tool and show the
precision and recall that can be achieved with each tool. The f statistic is the harmonic mean of
precision and recall (see methods for details).

SavvyCNV can call off-target CNVs from exome data

To assess SavvyCNV’s ability to call CNVs from off-target reads generated by exome sequencing we
benchmarked it against a truth set (see Methods) and compared its performance to GATK gCNV,
DeCON, EXCAVATOR2, CNVKkit, and CopywriteR. The best recall where precision is at least 50% is
shown in Table 3 for two different size categories, and recall/precision is shown in Figure 3 for all
CNVs.

SavvyCNV was the best performing tool on this data set, able to call 86.7% of the CNVs with at least
50% precision, while the next best tool (DeCON) called 46.7% of CNVs with at least 50% precision.
The chief difference between the performances of the tools is SavvyCNV’s ability to call CNVs smaller
than 200kb. SavvyCNV is able to call an additional 30 CNVs that are smaller than 200kB at >=50%
precision while GATK gCNV, EXCAVATOR2, and CNVKkit call no true CNVs smaller than 200kB, DeCON
calls 10, and CopywriteR calls 4.


https://doi.org/10.1101/617605
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617605; this version posted June 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

9
1 Fan\
Excavator2z ——
CnvKit ——
DeCON
GATK gCNV
CopywriteR
SavvyCNV
0.8
0.6
T
O
]
o
D
0.4
R
0.2
0 T T T T
0 0.2 0.4 0.6 0.8 1

Precision

Figure 3. Benchmarking off-target CNV calling from exome data.

The data points on the plot are generated by a parameter sweep for each tool and show the
precision and recall that can be achieved with each tool. The f statistic is the harmonic mean of
precision and recall (see methods for details).
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Table 3. Benchmarking on-target CNV calling from the exome data.

The table shows the performance of the different CNV calling software based on the size of the
CNV. The tools were run with multiple different parameters. For this comparison, we have
selected the configuration for each tool that provides the highest recall with a precision of at least

50%.
Size CNVs Software True False Recall Precision
positives positives

All sizes 75 SavvyCNV 65 58 86.7% 52.8%
GATKgCNV | 9 9 12.0% 50.0%
DeCON 35 34 46.7% 50.7%
Excavator2 | 6 6 8.0% 50.0%
CnvKit 3 1 4.0% 75.0%
CopywriteR | 10 0 13.3% 100%

>=200kb 40 SavvyCNV 35 34 87.5% 50.7%
GATKgCNV | 9 9 22.5% 50.0%
DeCON 25 24 62.5% 51.0%
Excavator2 | 6 6 15.0% 50.0%
CnvKit 3 1 7.5% 75.0%
CopywriteR | 6 0 15.0% 100%

SavvyCNV can detect clinically relevant CNVs

Having validated the ability of SavvyCNV to call CNVs from off-target reads we proceeded to screen
for CNVs in our cohort of targeted panel samples from patients referred for genetic testing to
identify the cause of their diabetes or hyperinsulinism(17). We were able to detect 11 clinically
relevant CNVs both within and outside of the targeted regions (Table 4). Of these, 4 provided a new
genetic diagnosis for diabetes/hyperinsulinism (rows 1-4 in table 4), providing information which will
guide clinical management and allow accurate counselling on recurrence risk in family members and
future offspring. The remaining 7 CNVs (rows 5-11 in table 4) confirmed clinically-reported
diagnoses unrelated to the diabetes/hyperinsulinism. These findings demonstrate the ability of
SavvyCNV to detect clinically relevant CNVs and aneuploidies from off-target data from a small
targeted panel.
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Table 4 — Clinically-relevant CNVs detected.

Row | CNV detected | CNVsize | Clinical confirmation Reason Clinical implications
for
referral

1 Chr8:6,800,00 | 5Mb Deletion includes GATA4, | Diabetes | Genetic diagnosis of
0-11,800,000 causative of the patient’s monogenic diabetes
deletion neonatal diabetes and (23).

additional features.

2 Chr8:8,000,00 | 2.4Mb Deletion includes GATA4, | Diabetes | Genetic diagnosis of
0-10,400,000 and causative of the patient’s monogenic diabetes
duplication 1.4Mb neonatal diabetes and (23).
8:10,600,000- additional features.

12,000,000
deletion

3 Chr18:19,400, | 2.4Mb Deletion includes GATA6, | Diabetes Genetic diagnosis of
000- causative of the patient’s monogenic diabetes
21,800,000 neonatal diabetes and (24).
deletion additional features.

4 ChrX:0- 57Mb and | Ring X chromosome Hyperinsu | Genetic diagnosis of
57,000,000 79.2Mb confirmed by linism Turner syndrome, a
deletion cytogenetics. known cause of
X:76,200,000- hyperinsulinism (25).
155,400,000
deletion

5 Chr21:9,400,0 | Chromos | Patient known to have Hyperinsu | Confirms the
00-48,200,000 | ome Down Syndrome at linism diagnosis of Down
duplication referral. syndrome.

6 Chr21:10,000, | Chromos | Patient known to have Diabetes | Confirms the
000- ome Down Syndrome at diagnosis of Down
48,200,000 referral. syndrome (26).
duplication

7 Chr21:11,000, | Chromos | Patient known to have Hyperinsu | Confirms the
000- ome Down Syndrome at linism diagnosis of Down
48,200,000 referral. syndrome.
duplication

8 Chr21:14,400, | Chromos | Patient known to have Hyperinsu | Confirms the
000- ome Down Syndrome at linism diagnosis of Down
48,200,000 referral. syndrome.
duplication

9 Chr22:18,800, | 1.8Mb Confirmed by array CGH. | Diabetes | Provided the
000- diagnosis of
21,600,000 DiGeorge syndrome.
deletion

10 Chr22:18,800, | 1.8Mb Patient known to have Hyperinsu | Confirms the
000- DiGeorge syndrome at linism diagnosis of
21,600,000 referral. DiGeorge syndrome.
deletion

11 ChrX:0- Chromos | Patient known to have Diabetes | Confirms the
155,400,000 ome XXX syndrome at referral. diagnosis of XXX
duplication syndrome.
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Discussion
SavvyCNV can detect CNVs genome-wide from off-target reads

We benchmarked SavvyCNV on its ability to call off-target and on-target CNVs from targeted panel
and exome sequencing data. This new tool outperformed five existing tools, three of which
(CNVKit(15), Excavator2 (14), and CopywriteR(16)) were specifically designed to call off-target CNVs.
GATK gCNV performed similarly to SavvyCNV in the on-target (ICR96) analysis. However, SavvyCNV
considerably outperforms all other tools in the off-target analyses.

SavvyCNV finds the greatest number of true positive CNVs in all data sets while other tools did not
call certain CNVs. For example, the two partial exon CNVs in the on-target (ICR96) data set are
detected only by SavvyCNV. This is likely because of the improved error correction and error
modelling that is incorporated into SavvyCNV over existing tools. SavvyCNV uses singular vector
decomposition to reduce noise. CNVkit, EXCAVATOR2 and CopywriteR only correct for GC content,
while GATK gCNV uses Bayesian principle component analysis
(https://www.broadinstitute.org/videos/scalable-bayesian-model-copy-number-variation-bayesian-
pca), and DeCON uses sample matching (it searches for samples in the control set that have a similar
noise profile). Unlike the other tools tested, CopywriteR does not normalise against other samples
but excludes on-target reads to make read counts representative of the true copy number.
Supplementary figure 1 demonstrates how error correction improves the recall and precision.
Supplementary figure 2 shows that the bespoke error model used by SavvyCNV (see supplementary
methods) performed better than the Poisson error model used by the other tools, as this uses the
error information available from having multiple control samples.

SavvyCNV had a higher precision than other tools when calling off-target CNVs, an important
consideration in diagnostic and research laboratories as if false positives are reduced, fewer CNVs
will require orthogonal testing to identify the true positive results. Many of the false positives
produced by DeCON, CNVKit, and EXCAVATOR?2 have a read depth ratio indicating that they are
either mosaic CNVs or random noise. The prior probability is overwhelmingly that these are random
noise. This is why the default for SavvyCNV and GATK gCNV is to call only non-mosaic CNVs as this
hugely reduces the number of false positives called. Mosaic CNV calling can be enabled in SavvyCNV
for projects where it is applicable. Supplementary figure 3 demonstrates the improvement in
precision of the default mode compared to the mode that includes calling of mosaic CNVs.

Estimates of precision and recall rely on the quality of the truth set

On-target CNV calling from a targeted panel was tested on the ICR96 data set in which the truth set
was verified by MLPA. The truth sets for the off-target CNV calling from targeted panel and exome
sequence data were generated from CNV calls from genome sequencing data. Genome sequencing
has a much higher coverage than that generated from only off-target reads which allows CNVs to be
called more accurately enabling them to be used as a truth set. GenomeStrip(20) was used to call
the truth set as it was designed to call CNVs from genome data and was not one of the tools under
examination in this study. However, it is possible that there could be some false positive and
negative calls in the truth set. This would lower the precision and recall of the tools under
examination but should not bias the results in favour of a particular tool.

Sensitivity depends on the size of the CNV

Smaller CNVs are harder for all software to detect. For all tools tested the larger the CNV the better
the precision and recall, however SavvyCNV performs better than the other tools tested. SavwyCNV
detects CNVs above 1Mb with 100% recall in off-target data from both targeted panel and exome
data.
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CNV calling can be optimised for precision or recall by adjusting configuration

When calling CNVs, precision and recall are a trade-off; high recall will maximise the number of true
CNVs that are called, with the consequence that it also reduces precision resulting in a large number
of false positive CNV calls. Different precision levels are appropriate in different situations,
influenced both by the experimental methodology and the aims of the project. When calling CNVs
on-target on a small gene panel there will be fewer false positive calls generated due to the smaller
target area thus it may be preferable to adjust settings to enable a higher recall at the cost of a
lower precision. This could also be true in a clinical context where the most important aim is to not
miss a true causative variant. In contrast, when calling CNVs genome-wide in a gene-agnostic
approach such as genome sequencing, a higher precision is likely to be desirable to avoid generating
an unmanageably long list of CNVs. The user can choose their preferred settings for SavvyCNV for
different project requirements.

Off-target CNV calling is ‘free’ data and increases diagnostic yield

SavvyCNV utilises data already generated by targeted panel and exome tests. These tests are carried
out in order to detect single nucleotide variants and small insertions or deletions (<50 base pairs). In
some laboratories CNVs are also detected within the targeted regions using CNV calling software
while other laboratories use array-CGH or MLPA to detect CNVs. Using SavvyCNV allows CNVs to be
detected not just within the targeted regions but allows genome-wide CNV calling. This will provide
a genetic diagnosis for more patients, increasing the diagnostic yield of these tests. We have
demonstrated the ability to find relevant genetic diagnoses using off-target CNV calling from our
small targeted panel. Existing data can be reanalysed with our method to reveal additional CNVs. As
an illustration of this, two of the CNVs in the ICR96 data set were found to actually be large CNVs
(15Mb and 56Mb), which may have clinical implications beyond the targeted gene.

SavvyCNV calls CNVs from off-target reads from exomes and small targeted gene panels with high
precision and recall, and performs better than existing tools including those designed for off-target
CNV calling. Calling CNVs from off-target reads is exploiting ‘free’ data to increase the diagnostic
yield of targeted panel and exome sequencing tests and reveal important biological findings.

Data Availability

SavvyCNV is available for download from https://github.com/rdemolgen/SavvySuite

The targeted panel and exome sequencing data analysed during the current study is not publicly
available due to patient confidentially.
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