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Abstract

As next generation sequencing (NGS) and liquid biopsy become more prevalent in clinical
and research area, especially cancer diagnosis, targeted therapy guidance and disease
surveillance, there is an increasing need for better methods to reduce cost and to improve
sensitivity and specificity. Since the error rate of NGS is around 1%, it is difficult to identify
mutations with frequency lower than 1% accurately and efficiently because of low Signal-to-
Noise Ratio (SNR). Here we propose a likelihood-based approach, low-frequency mutation
detector (LFMD), combining the advantages of duplex sequencing (DS) and bottleneck

sequencing system (BotSeqS) to maximize utilization of duplicate sequenced reads.
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Compared with DS, the new method achieves higher sensitivity (improved ~16%), higher
specificity (improved ~1%) and lower cost (reduced ~70%) without involving additional
experimental steps, customized adapters and molecular tags. In addition, this method can also
be used to improve sensitivity and specificity of other variant calling algorithms by replacing
a step in traditional NGS analysis: removing polymerase chain reaction (PCR) duplication.

Thus, LFMD can be a promising method used in genomic research and clinical fields.

Introduction

At the individual level, low-frequency mutations (LFMs) are defined as mutations with allele
frequency lower than 5% or 1%. LFMs increase power to predict early stage of cancer and
Alzheimer’s Disease (AD)', distinguish samples with different age®, identify disease-causing
variants®, diagnose before tri-parental in vitro fertilization®, and track the mutational spectrum
in viral genomes, malignant lesions, and somatic tissues>°. To effectively improve signal-to-
noise ratio (SNR) and detect LFMs, stringent thresholds, complex experimental skills'”,

: . 811 . . 12 . 13,14
single cell sequencing” ', circle sequencing °, and more precise models ™

were developed.
The bottleneck sequencing system' (BotSeqS) and duplex sequencing'® (DS) utilize
duplicate reads generated by polymerase chain reaction (PCR), which are discarded by other
methods, to achieve much higher accuracy. However, current methods still have some

limitations in detecting LFMs.

Disadvantages of single cell sequencing and circle sequencing

For single cell sequencing, DNA extraction is laborious and exacting, with point mutations
and copy number biases introduced during amplification of small amounts of fragile DNA.
To increase specificity, only variants shared by at least two cells are accepted as true
variants''. This method is not cost efficient and cannot be used in large-scale clinical
applications because a large number of single cells need to be sequenced to identify rare

mutations.

Circle sequencing only utilizes a single strand of DNA, so its specificity is limited by the
error rate of PCR. It obtains errors at a rate as low as 7.6 x 10 ° per base sequenced'” while

: -10 16
DS can achieve 4 x 10 "~ errors per base sequenced .
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Disadvantages of BotSeqS

In contrast, BotSeqS uses endogenous molecular tags, the positions of the aligned read pair,
to group reads from the same DNA template and construct double strand consensus reads. As
a result, it can detect very rare mutations (<10°°) while it is cheap enough to sequence the
whole human genome'”. But it introduces highly diluted DNA templates before PCR
amplification to reduce endogenous tag conflicts and ensure sufficient sequencing of each
DNA template. Thus, it has high specificity with poor sensitivity. In addition, it discards

clonal variants and small insertions/deletions (InDels) in order to limit false positives.

Disadvantages of DS

Another compromising method to eliminate tag conflicts is Duplex sequencing (DS). It
ligates exogenous random molecular tags (also known as unique molecular identifier, UID or
UMI) to both ends of each DNA template before PCR amplification. Although sensitive and
accurate, it wastes many data to sequence tags, fixed sequences and a large proportion of read
families that contain only one read pair because of a sequencing error on a tag. Since random
molecular tags are synthesized with customized adapters, batch effects might occur during
DNA library construction. Additionally, DS only works on targeted small genome

6,13,17

regions rather than on the whole genome.

A new approach

In order to avoid the aforementioned problems, we present here a new, efficient approach that
combines the advantages of BotSeqS and DS. It uses a likelihood-based model'>'* to
dramatically reduce endogenous tag conflicts. Then it groups reads into read families and
constructs double strand consensus reads to detect ultra-rare mutations accurately while
maximizing utilization of non-duplicate read pairs. Without exogenous molecular tags, our
method can also work with the 50 bp short reads of BGISEQ as well as the longer reads of
HiSeq. In summary, it simplifies the DNA sequencing procedure, saves data and cost,

achieves higher sensitivity and specificity, and can be used in whole genome sequencing.


https://doi.org/10.1101/617381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617381; this version posted June 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Using digital PCR to validate thousands of low-frequency sites is prohibitively expensive and
laborious'®. A new method which works on an independent platform can be used as a method
to validate HiSeq results. Additionally, our new method is a statistical solution of the
problem of PCR duplication in the basic analysis pipeline of next generation sequencing
(NGS) data and can improve sensitivity and specificity of other variant calling algorithms
without requiring specific experimental designs. As the price of sequencing is falling, the
depth and the rate of PCR duplication are rising. The method we present here might help deal
with such high depth data more accurately and efficiently.

Methodology

Intuitively, to distinguish LFMs (signal) from background PCR and sequencing errors
(noise), we need to increase the SNR. To increase SNR, we need to either increase the
frequency of mutations or inhibit sequencing errors. Single cell sequencing increases the
frequency of mutations by isolating single cells from the bulk population, while BotSeqS and
DS inhibit sequencing errors by identifying the major allele at each site of multiple reads

from the same DNA template. In this paper, we only focus on the latter strategy.

To group reads from the same DNA template, the simplest idea is to group properly mapped
reads with the same coordinates (i.e., chromosome, start position, and end position) because
random shearing of DNA molecular can provide natural differences, called endogenous tags,
between templates. A group of reads is called a read family. However, as the length of DNA
template is approximately determined, random shearing cannot provide enough differences to
distinguish each DNA template. Thus, it is common that two original DNA templates share
the same coordinates. If two or more DNA templates shared the same coordinates, and their
reads were grouped into a single read family, it is difficult to determine, using only their
frequencies as a guide, whether an allele is a potential error or a mutation. Thus, BotSeqS
introduced a strategy of dilution before PCR amplification to dramatically reduce the number
of DNA templates in order to reduce the probability of endogenous tag conflicts. And DS
introduced exogenous molecular tags before PCR amplification to dramatically increase the
differences between templates. Thus, BotSeqS sacrifices sensitivity and DS sequences extra

data: the tags.
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Here we introduce a third strategy to eliminate tag conflicts. It is a likelihood-based approach
based on an intuitive hypothesis: that if reads of two or more DNA templates group together,
a true allele’s frequency in this read family is high enough to distinguish the allele from
background sequencing errors. The pipeline of LFMD is shown in Figure 1, and a

comparison of DS and LFMD is shown in Figure 2.

Likelihood-based model

We aim to identify alleles at each potential heterozygous position in a read family (grouped
according to endogenous tags). Then based on those heterozygous sites, we split the mixed
read family into smaller ones, and compress each one into a consensus read. Finally, we

detect mutations based on all consensus reads, which have much lower error rates than 0.1%.

First, we define a Watson strand as a read pair for which read 1 is the plus strand while read 2
is the minus strand. A Crick strand is defined as a read pair for which read 1 is the minus
strand while read 2 is the plus strand. The plus and minus strands are also known as the
forward and reverse strands according to the reference genome. Read 1 and 2 are derived
from raw pair-end fastq files. Thus a read family which contains Watson and Crick strand
reads simultaneously is an ideal read family because it is supported by both strands of the
original DNA template. Second, we select potential heterozygous sites which meet the
following criteria: 1) the minor allele is supported by both Watson and Crick reads; 2) minor
allele frequencies in both Watson and Crick read family are greater than approximately the
average sequencing error rate, often 1% or 0.1%; 3) low quality bases (<Q20) and low quality
alignments (<Q30) are excluded. Finally, we calculate genotype likelihood in the Watson and

Crick family independently in order to eliminate PCR errors during the first PCR cycle.

At each position of a Watson or Crick read family, let X denotes the sequenced base and 6
the allele frequencies. Let P(x|60) be the probability mass function of the random variable X,
indexed by the parameter 8 = (8,4, 0., 0;,07)T, where 6 belongs to a parameter space (. Let
g €{4,C,G, T}, and 6, represents the frequency of allele g at this position. Obviously, we

have boundary constraints for §: 6; € [0,1] and }} 6, = 1.
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Assuming N reads cover this position, x; represents the base onread i € {1,2, ..., N}, and ¢;

denotes sequencing error of the base, we get

P(x;|8) = P(no sequencing error | the base is g) - P(the base is g)
+ P(sequencing error with specific direction | the base is not g)
- P(the base is not g)

e.
=(1-¢)8, +§l(1 -6;), g=x
So the log-likelihood function can be written as

£(0) = z log P(x;|0) = z log ((1 —e;) b, +%(1 — Hg)>, g = x;

Thus, for each candidate allele g, under the null hypothesis Hy: 6, = 0,6 € Q, and the

alternative hypothesis Hy: 8, # 0,6 € (, the likelihood ratio test is
tg = —2{€o(0) — £1(6)} ~ x7

However, as 6, = 0 lies on the boundary of the parameter space, the general likelihood ratio
test needs an adjustment to fit yZ. Because the adjustment is related to calculation of a
tangent cone'” in a constrained 3-dimensional parameter space, and the computation is too
complicated and time consuming for large scale NGS data, here we use a simplified,

straightforward adjustment™ presented by Yong et al in 2017.

In order to utilize Yong et al’s method, we need to introduce conditional events. Let
{A4, ..., Ag} denotes the set of conditional events which are mapped to four alleles at the
position. Let k = 1, ..., K, and K = 4 be the total number of events, we get the log likelihood

component

£(6; A} = ) logP(xil6)

Xi€EA

Then the composite conditional log likelihood can be constructed as

a@=iimm&ﬂmn

i=1k=1
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in which we set
wi =1
Let 8, = argmax ge,, £(6) be the maximum composite likelihood estimator, and define the

composite score function, sensitivity matrix and variability matrix respectively as

04.(6)
U.(0) = Y
: 1 (9%¢.(6)
H=lm-y E{amae}

1
V= lim

N—)DONE

9£.(0)) (9£:.(0))"
i

The corresponding estimators of H and V are denoted by H and ¥ evaluated at ,. The

modified composite likelihood under boundary constraints was given by Yong et al*’ as

£11(0) = £c(8.) — {T(O)"H,T(6)}¢(6)
where
T(6) = N"Y2H7'U.(6.) — N*/*(6 — 6.)
A,=HV'A
£:(6) —£:(6.)
—T©)TAT(0) + N-'U,(8,) AU, (6,)

$(0) =

Thus, we derive the adjusted likelihood ratio test

tg = —2{tw(80) — €u(On)} ~ X3
where 8, = argmax g¢,, £ (6) and 8, is the parameter 6 under null hypothesis H,,.

To facilitate the calculation of H and V, we let pmf (e) denote the probability mass function

of sequencing error rate e, the expected number of bases with e is represented as
lim N - pmf(e)
N—oo

Then, the expected number of bases g with e is

Alli_r)r(}oN-pmf(e)'{(l —e) b, +§(1 —99)}
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Thus,
34.(0) z e 1-2¢
c BT . . _ _ — . 3
g l a6 - ’\l’l“r)r"l" e Nopmyle) {(1 ¢ 0 ¥ 3 S 99)} (1-e)b, + %(1 - 9g)

. 4e .
-3, oo (- ) = g
where C is a finite constant. Then we derive

1 _[(a2.(0)) (2.6 Lt
L ¢ c o 2)J1 1 1 1
V = lim { }{ }]—llmNC‘ 11 1 1

N—>00NE

69 09 N—oo

As aresult, V=1 tends to 0 in the model, which means the adjustment is not necessary. To be
clear, the special form of matrix V with all equal elements is due to the infinite N which
insures all possible e and g occur in the function £,(6). The V does not have the special form

when N is a finite number.

Thus, we finally arrive at a general conclusion that the further adjustment of y? is not helpful
in similar cases, although the asymptotic distribution we use is not perfect when N is small
(e.g., N<5), and alternative approaches might be derived in the future. We also compared
theoretical P-values with empirical P-values from Monte Carlo procedures (Supplementary
Material, Figures S1) and explored the power of our model under uniformly and truly
distributed sequencing errors (Supplementary Material, Figures S2). The simulation results

support the theoretical conclusion sufficiently.

Because the null and alternative hypotheses have two and three free variables respectively,
the Chi-square distribution has 1 degree of freedom. Type I error of the allele g can then be
given

P, =1—cdf(t,)

where cdf(x) is the cumulative density function of the y? distribution. If F,is less than a

given threshold a, the null hypothesis is rejected and the allele g is treated as a candidate

allele of the read family.
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Although P, cannot be interpreted as the probability that H, 4 is true and allele g is an error,
it is a proper approximation of the error rate of allele g. We only reserve alleles with F; < «
in both Watson and Crick families and substitute others with “N”. Then Watson and Crick
families are compressed into several single strand consensus sequences (SSCSs). The SSCSs
might contain haplotype information if more than one heterozygous site is detected. Finally,
SSCSs which are consistent in both Watson and Crick families are claimed as double strand

consensus sequences (DCSs).

For each allele on a DCS, let B, and P, represent the relative error rates of the given allele in
the Watson and Crick family respectively, and let P,,. denote the united error rate of the

allele. Thus,
Byc = Py + P, — B,F,

For a read family which proliferated from n original templates, a coalescent model can be
used to model the PCR procedure®'. According to the model, a PCR error proliferates and its
fraction decreases exponentially with the number, m, of PCR cycles. For example, an error
that occurs in the first PCR cycle would occupy half of the PCR products, an error that occurs
in the second cycle occupies a quarter, the third only 1/8, and so on. As we only need to
consider PCR errors which are detectable, the coalescent PCR error rate is defined as the

probability to detect a PCR error whose frequency > 27™/n, and it is equal to

1— (1 — error rate per cycle)?" 1

Let ey, denote the coalescent PCR error rate and P, the united PCR error rate of the
double strand consensus allele. Empirically we get

~ 2
Ppcr ~ 10 * epcr

Because BBy = 0, the combined base quality of the allele on the DCS is

Q= -10 logIO(ch + Ppcr)

Then Q is transferred to an ASCII character, and a series of characters make a base quality
sequence for the DCS. Finally, we generate a BAM file with DCSs and their quality

sequences.
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With the BAM file which contains all the high quality DCS reads, the same approach is used
to give each allele a P-value at each genomic position which is covered by DCS reads.
Adjusted P-values (g-values) are given via the Benjamin-Hochberg procedure. The threshold
of g-values is selected according to the total number of tests conducted and false discovery

rate (FDR) which can be accepted.

A similar mathematical model was described in detail in previous papers by Jun et al'® and
Yan et al'®. Jun et al. used this model to reliably call mutations with frequency > 4%. In
contrast, we use this model to deal with read families rather than non-duplicate reads. In a
mixed read family, most of the minor allele frequencies are larger than 4%, so the power of

the model meets our expectation.

For those reads containing InDels, the CIGAR strings in BAM files contain [ or D. It is
obvious that reads with different CIGAR strings cannot fit into one read family. Thus,
CIGAR strings can also be used as part of endogenous tags. In contrast, the soft-clipped part
of CIGAR strings cannot be ignored when considering start and end positions because low-
quality parts of reads tend to be clipped, and the coordinates after clipping are not a proper

endogenous tag for the original DNA template.

Results

Comparison between DS and LFMD

Simulated data

We used Python scripts developed by the Du novo™ team to simulate mixed double-strand
sequencing data and then compared the results of LFMD and DS. Although the simulation
was not perfect, the analysis was still useful to demonstrate the power and the potential
drawbacks of LFMD and DS because we knew the true mutations explicitly, and true positive

(TP) and false positive (FP) could be defined and calculated clearly. The numbers of TP and

FP are shown in Tables 1 and 2.
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We found that DS induces several false positives due to mapping errors. LFMD eliminates
mapping errors of DCSs by outputting DCSs directly into BAM files. LFMD is much more

sensitive than DS according to Figures 3, 4, and 5.

Mouse mtDNA

In order to evaluate the performance of LFMD, we compared LFMD with DS on a DS data
from mouse mtDNA: SRR1613972. The analysis pipeline is shown in Figure 4. We
controlled almost all parameters to be exactly the same in DS and LFMD and then compared
the results. Because DS is the current gold standard, we treated the DS results as the true set
and then calculated the true positive rate (TP), false positive rate (FP), and positive predictive
value (PPV) of LFMD based on all proper mapped reads (Table 1) and unique proper mapped
reads (Table 2). We found that mapping quality influenced the performance of both methods.

Although the majority of mutations are identified by both methods, some mutations are
detected only by DS or only by LFMD. We investigated these discordant mutations one by
one. It is interesting that most of them (42 out of 62 LFMD-only point mutations) can be
identified if we consider 1-2 bp sequencing errors and PCR errors in the 24 bp tag sequences
of DS. Two of them are potential true positive mutations because there is only one support
read in one of the 2 families. The last 18 LFMD-only mutations did not have matched tags to
make DCSs. They are potential FPs of LFMD or FNs of DS. But when we consider more
than 2 bp mismatches in tags, most of the last 18 LFMD-only mutations had double strand
support. This phenomenon implies contamination of DS tags or potential false positive hints

of LFMD which should be validated in future research.

Twenty-six samples from Prof. Kennedy’s laboratoryl

We compared the performance of DS and LFMD on 26 samples from Prof. Scott R.
Kennedy’s laboratory. Only unique mapped reads were used to detect LFMs. The majority of
LFMs were detected by both tools. Almost all LFMs only detected by DS were false
positives due to alignment errors of DCS, while LFMD outputs BAM files directly and
avoids alignment errors. LFMs only detected by LFMD are supported by raw reads if

considering PCR and sequencing errors on molecular tags. As a result, LFMD is much more

11
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sensitive and accurate than DS. The improvement on sensitivity is about 16% according to

Table 5.

YH cell line

We sequenced the YH cell line, passage 19, 8 times in order to validate the stability of the
method. All results, shown in Table 6 and Figure 6, are highly consistent.

ABLI data

Using the duplex sequencing method in 2015, Schmitt et al. analyzed an individual with
chronic myeloid leukemia who relapsed after treatment with the targeted therapy imatinib
(the Short Read Archive under accession SRR1799908). We analyzed this individual and
found 5 extra LFMs. Two of them were in the coding region of the ABL1 gene. It was
reported that E255G (E255VDK, Dasatinib, Imatinib, Nilotinib) and V256G (V256L,
Imatinib) were associated with drug resistance™. The annotation results of 5 LEMs are shown

in Table 7.

Materials

Subject recruitment and sampling

A lymphoblastoid cell line (YH cell line) established from the first Asian genome donor™*
was used. Total DNA was extracted with the MagPure Buffy Coat DNA Midi KF Kit
(MAGEN). The DNA concentration was quantified by Qubit (Invitrogen). The DNA integrity
was examined by agarose gel electrophoresis. The extracted DNA was kept frozen at -80°C

until further processing.

Mitochondrial whole genome DNA isolation

Mitochondrial DNA (mtDNA) was isolated and enriched by double/single primer set
amplifying the complete mitochondrial genome. The samples were isolated using a single
primer set (LR-PCR4) by ultra-high-fidelity Q5 DNA polymerase following the protocol of
the manufacturer (NEB) (Table 8).

12
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Library construction and mitochondrial whole genome DNA sequencing

For the BGISeq-500 sequencing platform, mtDNA PCR products were fragmented directly
by Covaris E220 (Covaris, Brighton, UK) without purification. Sheared DNA ranging from
150 bp to 500 bp without size selection was purified with an Axygen™ AxyPrep™ Mag PCR
Clean-Up Kit. 100 ng of sheared mtDNA was used for library construction. End-repairing
and A-tailing was carried out in a reaction containing 0.5 U Klenow Fragment
(ENZYMATICS™ P706-500), 6 U T4 DNA polymerase (ENZYMATICS™ P708-1500),
10 U T4 polynucleotide kinase (ENZYMATICS™ Y904-1500), 1 U rTag DNA polymerase
(TAKARA™ R500Z), 5 pmol dANTPs (ENZYMATICS™ N205L), 40 pmol dATPs
(ENZYMATICS™ N2010-A-L), 1 X PNK buffer (ENZYMATICS™ B904) and water with
a total reaction volume of 50 pl. The reaction mixture was placed in a thermocycler running
at 37°C for 30 minutes and heat denatured at 65°C for 15 minutes with the heated lid at 5°C
above the running temperature. Adaptors with 10 bp tags (Ad153-2B) were ligated to the
DNA fragments by T4 DNA ligase (ENZYMATICS™ L603-HC-1500) at 25°C. The ligation
products were PCR amplified. Twenty to twenty-four purified PCR products were pooled
together in equal amounts and then denatured at 95°C and ligated by T4 DNA ligase
(ENZYMATICS™ L603-HC-1500) at 37°C to generate a single-strand circular DNA library.
Pooled libraries were made into DNA Nanoballs (DNB). Each DNB was loaded into one lane

for sequencing.

Sequencing was performed according to the BGISeq-500 protocol (SOP AO) employing the
PES50 mode. For reproducibility analyses, YH cell line mtDNA was processed four times
following the same protocol as described above to serve as library replicates, and one of the
DNBs from the same cell line was sequenced twice as sequencing replicates. A total of 8
datasets were generated using the BGISEQ-500 platform. MtDNA sequencing was performed
on the BGISeq-500 with 50 bp paired-end reads. The libraries were processed for high-
throughput sequencing with a mean depth of ~20000x.

The data that support the findings of this study have been deposited in the CNSA
(https://db.cngb.org/cnsa/) of CNGBdb with accession code CNP0000297.

Discussion
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LFMD is still expensive for target regions >2 Mbp in size because of the high depth. As the
cost of sequencing continues to fall, it will become increasingly practical. Only accepting
random sheered DNA fragments, not working on short amplicon sequencing data, and only
working on pair-end sequencing data are known limitations of LFMD. Moreover, LFMD’s
precision is limited by the accuracy of alignment software. Although tags were excluded in
this paper, LFMD still has the potential to utilize tags and deal with amplicon sequencing
data.

To estimate the theoretical limit of LFMD, let read length equal 100 bp and let the standard
deviation (SD) of insert size equal 20 bp. Let N represent the number of position families
across one point. Then, N = (2 * 100) * (20 * 6) = 24000 if only considering +3 SD. As the
sheering of DNA is not random in the real world, it is safe to set N as 20,000. Ideally, the
likelihood ratio test can detect mutations whose frequency is greater than 0.2% in a read

family with Q30 bases. Thus, the theoretical limit of minor allele frequency is around le-7 (=

0.002 /20000).

Conclusion

To eliminate endogenous tag conflicts, we use a likelihood-based model to separate the read
family of the minor allele from that of the major allele. Without additional experimental steps
and the customized adapters of DS, LFMD achieves higher sensitivity and almost the same
specificity with lower cost. It is a general method which can be used in several cutting-edge

arcas.

14


https://doi.org/10.1101/617381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/617381; this version posted June 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figures and tables

Table 1. Number of true positives detected by DS and LFMD. There are 67 single nucleotide
variants (SNVs), 13 insertions (INSs), and 3 deletions (DELSs) in the simulated data at every
level of alternative allele frequency (AAF).

AAF SNV INS DEL
DS LFMD DS LFMD DS LFMD
1.0E-04 14 23 1 2 1 1
2.0E-04 21 45 3 6 2 3
3.0E-04 28 53 2 9 1 2
4.0E-04 32 51 6 11 0 2
5.0E-04 35 56 5 9 3 3
6.0E-04 43 61 4 12 1 3
7.0E-04 47 63 8 13 3 3
8.0E-04 58 64 8 13 1 3
9.0E-04 58 66 8 13 3 3
1.0E-03 56 64 8 13 1 3
2.0E-03 63 67 13 13 3 3
3.0E-03 67 67 11 13 3 3
4.0E-03 67 66 13 13 3 3
5.0E-03 67 67 13 13 3 3
1.0E-02 67 67 13 13 3 3
Table 2. Number of false positives detected by DS and LFMD.
AAF SNV INS DEL
DS LFMD DS LFMD DS LFMD
1.0E-04 0 0 0 0 0 0
2.0E-04 0 0 0 0 0 0
3.0E-04 0 0 0 0 0 0
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4.0E-04 0 0 0 0 0 0
5.0E-04 1 0 0 0 0 0
6.0E-04 0 0 0 0 0 0
7.0E-04 0 0 0 0 0 0
8.0E-04 0 0 0 0 0 0
9.0E-04 0 0 0 0 0 0
1.0E-03 0 1 0 0 0 0
2.0E-03 0 0 0 0 0 0
3.0E-03 2 0 0 0 0 0
4.0E-03 0 0 0 0 0 0
5.0E-03 0 0 0 0 0 0
1.0E-02 0 0 0 0 0 0

Table 3. Results of DS and LFMD based on all proper mapped reads. FNR, TPR, and PPV

are calculated based on the assumption that results of DS are the complete and true mutation

sets.
DS_only Overlap LFMD only FNR TPR PPV
A>C 0 7 12 0.00% 100.00% 36.84%
A>G 3 118 19 2.48% 97.52% 86.13%
A>T 0 43 5 0.00% 100.00% 89.58%
A>del 0 3 1 0.00% 100.00% 75.00%
A>ins 0 4 1 0.00% 100.00% 80.00%
C>A 0 12 6 0.00% 100.00% 66.67%
C>G 0 3 1 0.00% 100.00% 75.00%
C>T 0 &3 20 0.00% 100.00% 80.58%
C>del 0 4 3 0.00% 100.00% 57.14%
C>ins 0 4 0 0.00% 100.00% 100.00%
G>A 2 39 18 4.88% 95.12% 68.42%
G>C 0 5 0 0.00% 100.00% 100.00%
G>T 0 3 5 0.00% 100.00% 37.50%
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G>del 0 4 1 0.00% 100.00% 80.00%
G>ins 0 2 1 0.00% 100.00% 66.67%
T>A 0 20 4 0.00% 100.00% 83.33%
>C 0 137 19 0.00% 100.00% 87.82%
=G 1 12 5 7.69% 92.31% 70.59%
T>del 1 11 1 8.33% 91.67% 91.67%
T>ins 0 1 0 0.00% 100.00% 100.00%
total 7 515 122 1.34% 98.66% 80.85%

Table 4. Results of DS vs LFMD based on all unique proper mapped reads. FNR, TPR, and
PPV are calculated based on the assumption that results of DS are the complete and true

mutation sets.

DS_only Overlap LFMD only FNR TPR PPV
A>C 0 5 11 0.00% 100.00% 31.25%
A>G 2 70 9 2.78% 97.22% 88.61%
A>T 0 28 4 0.00% 100.00% 87.50%
A>del 0 2 0 0.00% 100.00% 100.00%
A>ins 0 3 1 0.00% 100.00% 75.00%
C>A 0 8 4 0.00% 100.00% 66.67%
C>G 0 2 1 0.00% 100.00% 66.67%
C>T 0 57 10 0.00% 100.00% 85.07%
C>del 0 2 2 0.00% 100.00% 50.00%
C>ins 0 4 0 0.00% 100.00% 100.00%
G>A 1 19 5 5.00% 95.00% 79.17%
G>C 0 4 0 0.00% 100.00% 100.00%
G>T 0 2 4 0.00% 100.00% 33.33%
G>del 0 1 1 0.00% 100.00% 50.00%
G>ins 0 1 1 0.00% 100.00% 50.00%
T>A 0 11 2 0.00% 100.00% 84.62%
>C 0 82 11 0.00% 100.00% 88.17%
=G 0 10 1 0.00% 100.00% 90.91%
T>del 1 7 0 12.50% 87.50% 100.00%
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T>ins 0 1 0 0.00% 100.00% 100.00%
total 4 319 67 1.24% 98.76% 82.64%

Table 5. DS vs LFMD on 26 samples from Prof. Kennedy’s laboratory.

DS-only LFMD-only

Sample DS-only Overlap LFMD-only
/Overlap /Overlap
1440B 27 928 110 2.91% 11.85%
1440E 10 491 66 2.04% 13.44%
2384H 13 500 171 2.60% 34.20%
2384P 4 200 60 2.00% 30.00%
3080H 5 231 68 2.16% 29.44%
3080P 23 504 104 4.56% 20.63%
334B 14 592 100 2.36% 16.89%
334E 13 1332 142 0.98% 10.66%
409B 20 649 76 3.08% 11.71%
409E 10 994 134 1.01% 13.48%
511H 15 669 104 2.24% 15.55%
523B 2 494 57 0.40% 11.54%
523E 6 675 73 0.89% 10.81%
533B 1 216 52 0.46% 24.07%
533E 1 111 35 0.90% 31.53%
54TH 4 411 104 0.97% 25.30%
547P 10 799 94 1.25% 11.76%
552B 14 467 87 3.00% 18.63%
552E 12 576 76 2.08% 13.19%
558P 7 82 40 8.54% 48.78%
626H 6 189 101 3.17% 53.44%
626P 5 165 76 3.03% 46.06%
652B 10 684 78 1.46% 11.40%
652E 3 595 54 0.50% 9.08%
670B 8 753 73 1.06% 9.69%
670E 1 116 41 0.86% 35.34%
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Median / / / 2.02% 16.22%

Table 6. Number of mutations found in mtDNA of 8 YH cell lines. Under the hypothesis that
true mutations should be identified from at least two samples, we detected 68 “true”

mutations and then calculated TP, FP, TPR, and FPR.

Samples # of mutations TP FP TPR FPR
LO1 501 64 63 1 92.65% 1.56%
LO1 502 68 67 1 98.53% 1.47%
LO1 503 62 62 0 91.18% 0.00%
LO1 504 65 63 2 92.65% 3.08%
LO1 505 62 60 2 88.24% 3.23%
L0l 506 61 59 2 86.76% 3.28%
LO1 507 65 62 3 91.18% 4.62%
LO1 508 62 61 1 89.71% 1.61%
Mean 63.63 62.13 1.50 91.36% 2.36%
SD 233 242 0.93 3.55% 1.45%

Table 7. Five low-frequency SNVs found only by LFMD

cDNA CDS AA AA
SNP Variant Transcript Function
Position Position Position Change
chr9:133738364 A>G NM_005157 coding 767 764 255 E>G
chr9:133738364 A>G NM_ 007313 coding 1260 821 274 E>G
chr9:133738367 >G NM_005157 coding 770 767 256 V>G
chr9:133738367 >G NM_ 007313 coding 1263 824 275 V>G

chr9:133748236 C>T NM 005157  intronic
chr9:133748236 C>T NM 007313  intronic
chr9:133748343 >G NM_005157  coding 1007 1004 335 V>G
chr9:133748343 >G NM_007313  coding 1500 1061 354 V>G
chr9:133756073 A>C NM 005157  intronic
chr9:133756073 A>C NM 007313  intronic

Table 8. Long range polymerase chain reaction (LR-PCR) primer sets

Product

Name Sequence (5'->3") Start Stop
Length
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AACCAAACCCCAAAGACACC 550 569
LR-PCRI1 9290
GCCAATAATGACGTGAAGTCC 9839 9819
TCCCACTCCTAAACACATCC 9592 9611
LR-PCR2 7626
TTTATGGGGTGATGTGAGCC 645 626
AAGAGTGCTACTCTCCTCGCTCCG 16432 16455
LR-PCR4 16569

GTGCGGGATATTGATTTCACGGAGG 16431 16407

Figure 1. Overview of LFMD pipeline. The Y-shaped adapters determine read 1 (purple bar)
and 2 (green bar). The directions of reads determine +/- strands. So after the first cycle of the
PCR amplification, the Watson and Crick families are well defined. Then within a read
family, true alleles (green dots) and accumulated PCR errors (blue dots) are detected via
likelihood-base model and given a combined error rate. Sequencing errors (red dots) are
eliminated. Combining SSCSs of paired read families, high quality DCSs with estimated

error rates are generated and used in the downstream analysis.

PCR duplicates both
strands

Watson family

double strand consensus sequence(DCS)

® trueallele ® PCRerror @ sequenceerror

Figure 2. Pipelines of DS and LFMD
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Figure 3. SNV sensitivity of DS and LFMD
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Fig. 6. Distribution of mutations found in mtDNA of YH cell lines compared with human

Revised Cambridge Reference Sequence (rCRS).
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Figure S1. The comparison between theoretical and empirical P-values from Monto Carlo
procedures under truly distributed sequencing error rates. With the null hypothesis, 1e6 times

of simulations were conducted.
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Figure S2. ROC curves of the likelihood-based model under uniformly distributed

sequencing errors (Q20).
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