

1 **Impaired alanine transport or exposure to D-cycloserine increases the susceptibility of**
2 **MRSA to β -lactam antibiotics**

3

4 Laura A. Gallagher¹, Rebecca K. Shears², Claire Fingleton¹, Laura Alvarez³, Elaine M.
5 Waters^{1,2}, Jenny Clarke², Laura Bricio-Moreno², Christopher Campbell¹, Akhilesh K. Yadav³,
6 Fareha Razvi⁴, Eoghan O'Neill⁵, Alex J. O'Neill⁶, Felipe Cava³, Paul D. Fey⁴, Aras Kadioglu² and
7 James P. O'Gara^{1*}

8

9 ¹School of Natural Sciences, National University of Ireland, Galway, Ireland.

10 ²Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and
11 Global Health, University of Liverpool, UK.

12 ³MIMS-Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå
13 University, Umeå, Sweden.

14 ⁴Department of Pathology and Microbiology, University of Nebraska Medical Center,
15 Omaha, Nebraska, USA.

16 ⁵Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Connolly
17 Hospital, Dublin 15, Ireland.

18 ⁶Antimicrobial Research Centre, School of Molecular and Cellular Biology, Faculty of
19 Biological Sciences, University of Leeds, Leeds, UK.

20

21 ***Correspondence:** jamesp.ogara@nuigalway.ie

22

23 **Running title:** Re-sensitization of MRSA to β -lactams

24 **Abstract.** Prolonging the clinical effectiveness of β -lactams, which remain first-line antibiotics
25 for many infections, is an important part of efforts to address antimicrobial resistance. We
26 report here that inactivation of the predicted D-cycloserine (DCS) transporter gene *cycA* re-
27 sensitized MRSA to β -lactam antibiotics. The *cycA* mutation also resulted in hyper-
28 susceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and D-
29 alanine ligase required for D-alanine incorporation into cell wall peptidoglycan (PG). Alanine
30 transport was impaired in the *cycA* mutant and this correlated with increased susceptibility
31 to oxacillin and DCS. The *cycA* mutation or exposure to DCS were both associated with the
32 accumulation of muropeptides with tripeptide stems lacking the terminal D-ala-D-ala and
33 reduced PG crosslinking, prompting us to investigate synergism between β -lactams and DCS.
34 DCS re-sensitised MRSA to β -lactams *in vitro* and significantly enhanced MRSA eradication by
35 oxacillin in a mouse bacteraemia model. These findings reveal alanine transport as a new
36 therapeutic target to enhance the susceptibility of MRSA to β -lactam antibiotics.

37

38 Abstract word count: 161

39 Manuscript word count: 3,494

40

41 **Introduction**

42 Whilst many bacteria can exhibit resistance to select antimicrobials, isolates of the human
43 pathogen *Staphylococcus aureus* can express resistance to all licensed anti-staphylococcal
44 drugs. This results in significant morbidity and mortality, with up to 20% of patients with
45 systemic methicillin resistant *S. aureus* (MRSA) infections dying, despite receiving treatment
46 with anti-staphylococcal drugs [1]. As part of our efforts to identify improved therapeutic
47 approaches for MRSA infections, we recently described the novel use of β -lactam antibiotics
48 to attenuate the virulence of MRSA-induced invasive pneumonia and sepsis [2]. We
49 demonstrated that oxacillin-induced repression of the Agr quorum-sensing system and
50 altered cell wall architecture resulted in downregulated toxin production and increased MRSA
51 killing by phagocytic cells, respectively [2]. Supporting this *in vitro* data, a randomised
52 controlled trial involving 60 patients showed that the β -lactam antibiotic flucloxacillin in
53 combination with vancomycin shortened the duration of MRSA bacteraemia from 3 days to
54 1.9 days [3, 4].

55 Because expression of methicillin resistance in *S. aureus* impacts fitness and virulence and is
56 a regulated phenotype, further therapeutic interventions may also be possible. The
57 complexity of the methicillin resistance phenotype is evident among clinical isolates of MRSA,
58 which express either low-level, heterogeneous (HeR) or homogeneous, high-level methicillin
59 resistance (HoR) [5-7]. Exposure of HeR isolates to β -lactam antibiotics induces expression of
60 *mecA*, which encodes the alternative penicillin binding protein 2a (PBP2a) and can select for
61 mutations in accessory genes resulting in a HoR phenotype, including mutations that affect
62 the stringent response and c-di-AMP signalling [8-12]. Because accessory genes can influence
63 the expression of methicillin resistance in MRSA, targeting the pathways associated with such
64 genes may identify new ways to increase the susceptibility of MRSA to β -lactams. To pursue
65 this, we performed a forward genetic screen to identify loci that impact the expression of
66 resistance to β -lactam antibiotics in MRSA. Using the Nebraska Transposon Mutant Library,
67 which comprises 1,952 sequence-defined transposon insertion mutants [13], inactivation of
68 a putative amino acid permease gene, *cycA*, was found to reduce resistance to cefoxitin, the
69 β -lactam drug recommended by the Clinical and Laboratory Standards Institute for measuring
70 *mecA*-mediated methicillin resistance in MRSA isolates. Amino acid transport and

71 susceptibility to oxacillin and D-cycloserine (DCS) were compared in the wild-type and *cycA*
72 mutant grown in chemically defined media (CDM), CDM supplemented with glucose (CDMG)
73 and other complex media. The activity of DCS and β -lactams, alone and in combination,
74 against MRSA was measured *in vitro* and in a mouse model of bacteraemia. Peptidoglycan
75 analysis was performed to compare the impact of the *cycA* mutation or exposure to DCS on
76 cell wall structure and crosslinking. Our experiments suggest that therapeutic strategies
77 targeting alanine transport, which was required for resistance to β -lactams and DCS, and a re-
78 evaluation of DCS may be important as part of efforts to restore the efficacy of β -lactam
79 antibiotics against MRSA.

80 **Results**

81 **Mutation of *cycA* increases the susceptibility of MRSA to β -lactam antibiotics and D-
82 cycloserine.** To identify new ways of controlling expression of methicillin resistance, we
83 sought to identify novel mutations involved in this phenotype. An unbiased screen of the
84 NTML to identify mutants with increased susceptibility to cefoxitin identified NE810
85 (SAUSA300_1642) (Fig. S1A), which also exhibited a >128-fold increase in susceptibility to
86 oxacillin (Fig. S1B). NE810 was previously identified among several NTML mutants reported
87 to be more susceptible to amoxicillin [14], but was not investigated further. Expression of
88 *mecA* was not affected in NE810 (Fig. S1C) and genome sequence analysis revealed an intact
89 SCC*mec* element and the absence of any other mutations. NE810 was successfully
90 complemented (Fig. S1B), and transduction of the SAUSA300_1642 allele into several MRSA
91 strains from a number of clonal complexes and with different SCC*mec* types was also
92 accompanied by increased cefoxitin and oxacillin susceptibility (Table 1).

93 SAUSA300_1642 is annotated as a serine/alanine/glycine transporter with homology to CycA
94 in *Mycobacterium tuberculosis* [15, 16], which influences D-cycloserine (DCS) susceptibility in
95 *Mycobacteria* [15, 16]. In contrast to the observations in *Mycobacteria*, our data showed that
96 NE810 and several unrelated MRSA strains carrying the *cycA* mutation were significantly more
97 susceptible to DCS than the wild type JE2 (Fig. S1D, Table 1). The *cycA* mutation also reduced
98 the DCS MIC of the MSSA strains 8325-4 and ATCC29213 from 32 to 4 μ g/ml. DCS inhibits
99 alanine racemase (Alr) that converts L-alanine to D-alanine and the Ddl D-alanyl:D-alanine
100 ligase [17]. A mutant in the putative *ddl* SAUSA300_2039 gene is not available in the NTML
101 library, suggesting that it may be essential. However, the *alr* mutant NE1713 was more
102 susceptible to cefoxitin (Fig. S2A; MIC=16 μ g/ml) and DCS (Fig. S2B; MIC <0.25 μ g/ml),
103 consistent with an important role for D-alanine in resistance to both antibiotics.

104
105 **CycA is required for alanine transport and D-ala-D-ala incorporation into the peptidoglycan
106 stem peptide.** To investigate the role of CycA in amino acid transport, JE2 and NE810 were
107 grown for 8 h in chemically defined media containing 14mM glucose (CDMG) and amino acid
108 consumption in spent media was measured. Although no growth rate or yield difference was
109 noted between JE2 and NE810 in CDMG (Fig. 1A), alanine uptake by NE810 was significantly
110 impaired compared to JE2 (Fig. 1B). Utilisation of other amino acids by NE810 and JE2,
111 including serine and glycine, were similar (Fig. S3). Impaired alanine transport in the *cycA*

112 mutant grown in CDMG correlated with increased susceptibility to oxacillin (1 μ g/ml) (Fig. 1C)
113 and DCS (1 μ g/ml) (Fig. 1D). These data demonstrate for the first time that CycA in *S. aureus*
114 is required for alanine transport.

115 Quantitative peptidoglycan compositional analysis was performed using UPLC analysis of
116 muramidase-digested muropeptide fragments extracted from exponential phase cultures of
117 JE2 and NE810 grown for 220 mins in TSB media (Fig. S4). The PG profile of the *cycA* mutant
118 revealed a significant accumulation of tripeptides compared to wild-type JE2 (Fig. 2A,B),
119 which was associated with a significant reduction in crosslinking (Fig. 2C). In NE810, the dimer,
120 trimer and tetramer fractions were decreased, which was accompanied by a concomitant
121 increase in the monomer fraction (Fig. 2D). Consistent with this data, exposure of JE2 to DCS
122 8 μ g/ml was also associated with a similar accumulation in muropeptides with tripeptide
123 stems (Fig. 2B), reduced cross-linking (Fig. 2C), increased muropeptide monomers and
124 reduced dimers, trimers and tetramers (Fig. 2D). DCS had a strong dose-dependent effect on
125 the accumulation of muropeptides with tripeptide stems, reduced cross-linking and
126 accumulation of monomers (Fig. 2A-D). Sub-inhibitory (0.25 \times MIC) and 4 \times MIC DCS
127 concentrations, were previously shown to be associated with incorporation of an incomplete
128 stem peptide (tripeptide) [17] and reduced D-ala-D-ala levels [18], respectively. These data
129 show that impaired D-ala incorporation in the *cycA* mutant or following exposure to DCS is
130 accompanied by reduced PG cross-linking and increased β -lactam susceptibility.

131
132 **Mutation of *cycA* or exposure to D-cycloserine increases the susceptibility of MRSA to β -**
133 **lactam antibiotics.** Previously reported synergy between DCS and β -lactam antibiotics [17,
134 19] suggests that impaired alanine uptake in the *cycA* mutant may have the same impact on
135 cell wall biosynthesis as DCS-mediated inhibition of Alr and Ddl. To further investigate this,
136 we compared the activity of DCS and β -lactam antibiotics, alone and in combination, against
137 JE2 and NE810. Checkerboard microdilution assay fractional inhibitory concentration indices
138 (Σ FICs \leq 0.5) revealed synergy between DCS and several licensed β -lactam antibiotics with
139 different PBP selectivity against JE2 and USA300 FPR3757 (Table 1). Oxacillin and nafcillin
140 were not included in checkerboard assays because measurement of their MICs involves
141 supplementing the media with 2% NaCl, which distorts the MIC of DCS (data not shown).
142 Using the MRSA strains JE2, USA300, DAR173, DAR22, DAR169 and their corresponding *cycA*
143 mutants, the kinetics of killing by DCS, oxacillin and cefoxitin, alone and in combination was

144 measured over 24h using antibiotic concentrations corresponding to $0.125\times$, $0.25\times$ and $0.5\times$
145 MICs. Recovery of growth in media supplemented with oxacillin or cefoxitin alone was evident
146 after 8 h (Fig. 3), reflecting the selection and expansion of HoR mutants as described
147 previously [2, 18, 20]. Recovery of growth in cultures exposed to DCS alone was also evident
148 (Fig. 3), which may correlate with our observation that mutants resistant to DCS (on BHI agar
149 supplemented with 128 $\mu\text{g}/\text{ml}$ DCS) arise at a rate of approximately 5.5×10^{-8} per cell per
150 generation. Using combinations of DCS and oxacillin or cefoxitin at $0.125\times$ MIC did not achieve
151 a $\geq 2 \log^{10}$ reduction in the number of CFU/ml (data not shown). However, at $0.5\times$ MIC for
152 strains JE2, USA300, DAR173 and DAR22, DCS (16 $\mu\text{g}/\text{ml}$)/oxacillin (32 $\mu\text{g}/\text{ml}$) and DCS (16
153 $\mu\text{g}/\text{ml}$)/cefoxitin (32 $\mu\text{g}/\text{ml}$) combinations achieved a $\geq 5 \log^{10}$ reduction in the number of
154 CFU/ml compared to oxacillin, cefoxitin or DCS alone (Fig. 3). For strain DAR169, DCS/ β -lactam
155 combinations at $0.25\times$ MIC was sufficient to achieve a $\geq 5 \log^{10}$ reduction in CFUs recovered
156 compared to the individual antibiotics (Fig. 3). DCS/ β -lactam combinations at $0.5\times$ MIC were
157 also able to achieve $\geq 5 \log^{10}$ reduction in the number of CFU/ml against the methicillin
158 resistant *S. epidermidis* (MRSE) strain RP62A [21] compared to either antibiotic alone (Fig. S5).
159 Checkerboard experiments with fourteen MRSA strains and MRSE strain RP62A further
160 revealed synergy ($\Sigma\text{FICs} \leq 0.5$) between DCS and a range of β -lactam antibiotics with different
161 penicillin binding protein (PBP) specificity, namely cefoxitin (PBP4), cefaclor (PBP3),
162 cefotaxime (PBP2), piperacillin-tazobactin (PBP3/ β -lactamase inhibitor) and imipenem (PBP1)
163 (Table 1).

164 This synergy appears to be specific to β -lactams and no synergy ($\Sigma\text{FICs} > 0.5$) was measured
165 between DCS and several antibiotics that are used topically or systemically for the
166 decolonization or treatment of patients colonized/infected with *S. aureus* or MRSA
167 (clindamycin, trimethoprim, mupirocin, ciprofloxacin), or several antibiotics to which *S.*
168 *aureus* isolates commonly exhibit resistance (tobramycin, kanamycin and spectinomycin)
169 (Table S1). Furthermore the *cycA* mutation had no impact on susceptibility to any of these
170 non- β -lactam antibiotics (apart from *ermB*-encoded clindamycin resistance on the
171 transposon).

172
173 **Combination therapy with DCS and oxacillin significantly reduces the bacterial burden in**
174 **the kidneys and spleen of mice infected with MRSA.** The virulence of the NE810 mutant and
175 the therapeutic potential of oxacillin in combination with DCS in the treatment of MRSA

176 infections were assessed in mice. Treatment with oxacillin or DCS alone significantly reduced
177 the number of CFUs recovered from the kidneys of mice infected with JE2 (Fig. 4).
178 Furthermore the oxacillin/DCS combination was significantly more effective than either
179 antibiotic alone and the combination was equally effective in reducing the bacterial burden
180 in the kidneys of animals infected with JE2 or NE810 when compared to no treatment
181 ($p \leq 0.0001$) (Fig. 4) demonstrating the capacity of DCS to significantly potentiate the activity
182 of β -lactam antibiotics against MRSA under *in vivo* conditions. Unexpectedly, oxacillin- or DCS-
183 mediated eradication of NE810 infections in the kidneys was similar to JE2 (Fig. 4). In the
184 spleen, only oxacillin/DCS combination treatment was associated with a significant reduction
185 in the number of CFUs recovered from mice infected with JE2 or NE810 (Fig. S6).

186
187 **Alanine transport and resistance to oxacillin and DCS in chemically defined medium are not**
188 **dependent on cycA.** The failure of oxacillin or DCS treatment to enhance the eradication of
189 NE810 infections in the mouse bacteraemia model prompted us to further characterise the
190 growth conditions used for the *in vitro* antibiotic susceptibility assays. Specifically we
191 investigated the role of glucose, which we previously reported to increase the growth
192 requirement for amino acids [22], and which we reasoned may be important for CycA-
193 dependent alanine transport. Growth of JE2 and NE810 was similar in CDM lacking glucose
194 (Fig. 5A) and uptake of alanine (Fig. 5B) and other amino acids (Fig. S7) was unchanged in
195 NE810 compared to JE2. Furthermore NE810 and JE2 grew equally well in CDM supplemented
196 with oxacillin and DSC (Fig. 5C and D). These data explain in part why the *cycA* mutant does
197 not exhibit increased β -lactam and DCS susceptibility in the mouse bacteraemia model and
198 further reveal the strong correlation between alanine transport and susceptibility to oxacillin
199 and DCS.

200 **Discussion**

201 The exploitation of antibiotic re-purposing as part of concerted efforts to address the
202 antimicrobial resistance crisis has been hampered by a lack of mechanistic data to explain
203 demonstrated therapeutic potential and the perception that studies attempting to identify
204 new uses for existing drugs are not hypothesis-driven. In this study, we revealed that CycA
205 was required for full expression of resistance to β -lactam antibiotics and DCS. Loss of function
206 of this putative alanine transporter significantly increased the susceptibility of MRSA to β -
207 lactam antibiotics, an outcome that could be reproduced through exposure to DCS, which
208 targets the *Alr* and *Ddl* enzymes in the early steps of cell wall biosynthesis.

209 The potential of β -lactam/DCS combinations for treatment of MRSA infections follows a
210 recent report that DCS can also potentiate the activity of vancomycin against a laboratory-
211 generated vancomycin highly-resistant *S. aureus* (VRSA) strain *in vitro* and in a silkworm
212 infection model [23]. The excellent safety profile of β -lactam antibiotics makes these drugs
213 particularly attractive as components of combination antimicrobial therapies. When used in
214 the treatment of tuberculosis DCS (trade name Seromycin, The Chao Centre) is typically
215 administered orally in 250 mg tablets twice daily for up to two years. At this dosage, the DCS
216 concentration in blood serum is generally 25-30 μ g/ml, which is similar to the concentrations
217 used in our *in vitro* and *in vivo* experiments. The known neurological side effects associated
218 with DCS therapy [24, 25] mean that this antibiotic is unlikely to be considered for the
219 treatment of MRSA infections unless alternative therapeutic approaches have been
220 exhausted. Oxacillin/DCS combination therapy was significantly more effective than DCS or
221 oxacillin alone over a 5-day therapeutic window suggesting that further studies on using DCS
222 to augment β -lactams as a treatment option for recalcitrant staphylococcal infections are
223 merited.

224 Mutation of *cycA* increases the susceptibility of MRSA to β -lactam antibiotics and results in
225 hyper-susceptibility to D-cycloserine, whereas a *cycA* point mutation in *M. bovis* contributes,
226 in part, to increased DCS resistance presumably by interfering with transport into the cell [16].
227 In *E. coli*, *cycA* mutations can also result in increased resistance or have no effect on DCS
228 susceptibility depending on the growth media [26-30], suggesting that CycA is primarily
229 important for DCS resistance under conditions when its contribution to amino acid transport

230 is also important. Our data showing that mutation of *cycA* was not associated with increased
231 DCS resistance strongly suggests that CycA has no role in uptake of this antibiotic in *S. aureus*.
232 Under growth conditions where CycA is required for alanine transport (in nutrient/glucose-
233 replete media), mutation of *cycA* or DCS-exposure have similar effects on the structure of *S.*
234 *aureus* peptidoglycan (Fig. 8). Consistent with previous studies in *S. aureus* [17] and in *M.*
235 *tuberculosis* [31], our studies showed a dose-dependent accumulation of muropeptides with
236 a tripeptide stem in MRSA exposed to DCS. The *cycA* mutation was also associated with the
237 increased accumulation of muropeptides with a tripeptide stem. These data indicate that a
238 reduced intracellular alanine pool or inhibition of Alr and Ddl is associated with reduced D-
239 ala-D-ala incorporation into the PG stem peptide. The increased accumulation of tripeptides
240 in turn interferes with normal PBP transpeptidase activity and offers a plausible explanation
241 for increased susceptibility to β -lactam antibiotics. The importance of the terminal stem
242 peptide D-ala-D-ala for β -lactam resistance has previously been reported. Mutation of the
243 *murF*-encoded ligase, which catalyses the D-ala-D-ala into the stem peptide also increased
244 β -lactam (but not DCS) susceptibility [32, 33]. Similarly growth of a HoR MRSA strain in media
245 supplemented with high concentrations of glycine was accompanied by replacement of the
246 D-ala-D-ala with D-ala-gly and decreased methicillin resistance [34].
247 Impaired uptake of alanine in CDMG correlated with increased susceptibility to oxacillin and
248 DCS, suggesting that alanine utilisation via CycA is important to make D-alanine available for
249 cell wall biosynthesis and consequently resistance to β -lactams. Consistent with this, NE810
250 also exhibited increased oxacillin susceptibility in BHI, TSB and MH media. However no change
251 in alanine transport or susceptibility to oxacillin and DCS was measured in CDM lacking
252 glucose, which may explain the failure of oxacillin and DCS to more efficiently eradicate NE810
253 infections in the mouse bacteraemia model. The availability of nutrients such as glucose and
254 amino acids varies in different niches colonised by *S. aureus* during infection ranging from
255 glucose-rich in organs such as the liver [35], to glucose-depleted in established abscesses [36].
256 In turn this impacts the role of amino acids as carbon sources [22, 37], and potentially the
257 activity of CycA in alanine transport and β -lactam susceptibility. Furthermore, normal alanine
258 transport in the *cycA* mutant grown in CDM indicates that an alternative alanine transport
259 mechanism(s) may be active under these growth conditions (Fig. 6). Identification of this
260 alternative alanine permease may be important in the development of therapeutic strategies

261 targeting alanine transport to increase β -lactam susceptibility in MRSA, while elucidation of
262 the role of glucose in the control of alanine transport should provide new insights into β -
263 lactam resistance.

264 **Materials and Methods**

265 **Bacterial strains, growth conditions and antimicrobial susceptibility testing.** Bacterial strains
266 (Table S2) were grown in Luria Bertoni (LB), brain heart infusion (BHI), Mueller Hinton (MH),
267 nutrient, sheep blood BHI, chemically defined media (CDM) [38] or CDM 14mM glucose
268 (CDMG) [38].

269 Minimum inhibitory concentrations (MICs) were determined in accordance with CLSI
270 guidelines using plate and broth dilution assays in MH, or MH 2% NaCl for oxacillin and
271 nafcillin. Oxacillin MICs were also measured using E-tests (Oxoid) on MH 2% NaCl. Quality
272 control strains ATCC29213 and ATCC25923 were used for oxacillin and cefoxitin MIC assays,
273 respectively.

274 **Identification of cefoxitin susceptible MRSA mutant NE810.** Cefoxitin (30 μ g) disks (Oxoid)
275 were used to measure susceptibility of NTML mutants. The zone diameter for JE2 was 18mm
276 NE1868 (*mecA*::*Em*^r) was >35mm and NE810 was 22mm. The *cycA* transposon insertion in
277 NE810 was verified by PCR using the primers NE810_Fwd and NE810_Rev (Table S3). Phage
278 80 α was used to transduce the NE810 *cycA* allele into JE2 and other strains. Genome
279 sequencing was performed by MicrobesNG using the USA300_FPR3757 genome as a
280 reference. To complement NE810, *cycA* was amplified from JE2 on a 1608 bp fragment using
281 primers NE810F1_Fwd and NE810F1_Rev (Table S3) and cloned into pLI50 using the Clontech
282 In-fusion kit.

283 ***mecA* transcription analysis.** RT-qPCR was performed on a Roche LightCycler with primers
284 *mecA1*_Fwd and *mecA1*_Rev for *mecA* and *gyrB*_Fwd and *gyrB*_Rev for *gyrB* (internal
285 standard) (Table S3), as described previously [2]. Data presented are the average of three
286 experiments with standard errors.

287 **Amino acid transport studies.** Amino acid analysis in spent media from cultures grown in
288 CDM or CDMG was performed as described previously [22].

289 **Analysis of peptidoglycan composition in NE810 and JE2 treated with D-cycloserine.**
290 Independent quadruplicate 50ml cultures were grown to $A_{600}=0.5$, dosed with DCS at 0, 8, 20
291 or 32 μ g/ml for 100 mins, then harvested and resuspended in 5ml PBS (Fig. S4) before
292 peptidoglycan was extracted as described previously [39]. Mass spectrometry was performed
293 on a Waters XevoG2-XS QTof mass spectrometer. Structural characterization of muropeptides

294 was determined based on their MS data and MS/MS fragmentation pattern, matched with PG
295 composition and structure reported previously [34, 40-42].

296 **Antibiotic synergy analysis using the microdilution checkerboard assay.** Antibiotic synergism
297 was measured using the checkerboard microdilution method in 96-well plates inoculated with
298 5×10^5 CFU/ml. Growth or no growth was recorded after 24 h at 37°C. The fractional inhibitory
299 concentration index (Σ FIC) was calculated for each drug combination in triplicate experiments
300 with an FIC index ≤ 0.5 considered synergistic.

301 **Kill curve assays.** Overnight cultures adjusted to 10^7 CFU/ml were exposed to $0.125\times$, $0.25\times$,
302 and $0.5\times$ MIC of oxacillin, cefoxitin and DCS alone or in combination, and the number of
303 colony forming units (CFU)/ml enumerated at 0, 2, 4, 8 and 24 h. Data is presented at the
304 antibiotic concentrations where synergy was measured i.e. $0.5\times$ MIC for JE2, USA300,
305 DAR173, DAR22, DAR113, BH1CC, and RP62A, and $0.25\times$ MIC for DAR169. Synergism was
306 defined as a $\geq 2 \log^{10}$ decrease in the number of CFU/ml in cell suspensions exposed to DCS/ β -
307 lactam combinations compared to the most effective individual drug after 8 h.

308 **Mouse infection experiments.** 6-8 week-old, age matched, outbred CD1 female mice (Charles
309 River, UK) were used in a non-lethal model of bacteremia. JE2 and NE810 cultures were grown
310 to $A_{600}=0.5$ in BHI, washed in PBS, adjusted to 1×10^8 CFU/ml. Mice were infected
311 intravenously (via the tail vein) with 5×10^6 CFU ($n=10$ mice per group). The infections were
312 left untreated (PBS control) or treated with either 75mg oxacillin/Kg/12 hours, 30mg
313 DCS/Kg/12 hours or a combination of both (first antibiotic dose administered 16 hours post
314 infection), before being sacrificed after 5 days. Bacteria present in homogenised spleens and
315 kidneys recovered from the mice were enumerated on blood agar.

316 **Ethics Statement.** Mouse experiments were approved by the UK Home Office (License
317 Number 40/3602) and the University of Liverpool Animal Welfare and Ethics Committee. This
318 study was carried out in strict accordance with the UK Animals (Scientific Procedures) Act
319 1986. All efforts were made to minimize suffering.

320 **Statistical analysis.** Two-tailed Student's t-Tests and one-way ANOVA with Kruskal-Wallis test
321 followed by Dunn's multiple comparisons test in the GraphPad Prism application (for the
322 mouse infection experiments) were used to determine statistically significant differences in
323 assays performed during this study. A p value <0.05 was deemed significant.

324 **Acknowledgements.** We thank Craig Winstanley and Kate Reddington for generously
325 providing bacterial strains.

326

327 **Footnotes**

328 **Financial support.** This study was funded by grants from the Irish Health Research Board
329 (HRA_POR/2012/51, HRA-POR-2015-1158) and Science Foundation Ireland (16/TIDA/4137) to
330 (J.P.O'G), the UK Medical Research Council (MR/M020045/1) to (A.K), the National Institutes
331 of Health (AI083211) to (P.D.F) and Svenska Forskningsrådet Formas to (F.C).

332 **Disclaimer.** The funders had no role in study design, data collection and analysis, decision to
333 publish, or preparation of the manuscript.

334 **Potential conflicts of interest.** The authors declare no conflicts of interest relating to this
335 study.

336 **Correspondence:** Prof James P. O'Gara, Discipline of Microbiology, School of Natural
337 Sciences, National University of Ireland, Galway, Ireland. Tel: +353 91 492250; Email:
338 jamesp.ogara@nuigalway.ie

339 **Figure Legends**

340 **Figure 1. Mutation of *cycA* impairs alanine uptake. A.** Growth of JE2 and NE810 in chemically
341 defined media supplemented with glucose (CDMG). Cell density was measured at A_{600} . **B.**
342 Alanine consumption by JE2 and NE810 grown aerobically in CDMG. Residual amino acid was
343 measured in spent media after 2, 4, 6 and 8 h growth. **C and D.** Growth of JE2 and NE810
344 cultures for 12 h in CDMG supplemented with 1 μ g/ml oxacillin (C) or 1 μ g/ml D-cycloserine
345 (D). Cell density was measured at A_{600} .

346 **Figure 2. Mutation of *cycA* or D-cycloserine (DCS) treatment impacts peptidoglycan peptide
347 stem length and reduces cell wall crosslinking. A.** Representative UV chromatograms of
348 peptidoglycan from wild-type JE2, NE810 and JE2 treated with increasing concentrations of
349 DCS (8, 20 and 32 μ g/ml). Muropeptides with tripeptide stems are numbered 1-3. The
350 Proposed structures of the three muropeptides with tripeptide stems identified in NE810 and
351 DCS-treated JE2 cells. NAG, N-acetylglucosamine; NAM, N-acetylmuramic acid; L-Ala, L-
352 alanine; D-Gln, D-glutamine; D-Glu, D-glutamic; L-Lys, L-lysine. The theoretical and observed
353 neutral masses determined by MS are indicated. **B.** Relative abundance of muropeptides with
354 tripeptides in the stem. **C.** Relative crosslinking efficiency. **D.** Relative proportions of cell wall
355 muropeptide fractions based on oligomerization. All errors bars represent 95% confidence
356 interval ($n = 4$). Significant differences determined using Students t-test are denoted using
357 asterisks (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$).

358 **Figure 3. *In vitro* kill curves for D-cycloserine (DCS), oxacillin and cefoxitin with JE2, USA300
359 FPR3757, DAR173, DAR22, DAR169 and their isogenic *cycA* mutants.** Antibiotics at the
360 concentrations indicated (μ g/ml) were added to suspensions of overnight bacterial cultures
361 adjusted to 10^7 CFU/ml in BHI ($A_{600}=0.05$), incubated at 37°C and the number of CFU/ml
362 enumerated at 0, 2, 4, 8 and 24 h. The data presented are the mean of three independent
363 experiments, and standard error of the mean is shown. Antibiotic synergism was defined as a
364 $\geq 2 \log^{10}$ decrease in the number of CFU/ml in cell suspensions exposed to DCS/ β -lactam
365 combinations compared to the most effective individual antibiotic alone.

366 **Figure 4. Combination therapy with D-cycloserine and oxacillin significantly reduces the
367 bacterial burden in the kidneys of mice infected with MRSA.** The number of colony-forming
368 units (CFU) recovered from the kidneys of mice infected by tail vein injection with 5×10^6 JE2
369 or NE810 (CycA) and left untreated or treated with 75mg of oxacillin (Ox)/kg, 30mg of DCS/kg
370 or a combination of both Ox and DCS delivered subcutaneously every 12 hours for 5 days. The
371 first antibiotic dose was given 16 hours after infection. Significant differences determined
372 using one-way ANOVA with Kruskal-Wallis test followed by Dunn's multiple comparisons
373 test are denoted using asterisks (* $p \leq 0.05$, ** $p \leq 0.01$, **** $p \leq 0.0001$). The limit of detection
374 (50 colonies) is indicated with a hashed red line.

375 **Figure 5. Alanine transport and resistance to oxacillin and D-cycloserine in chemically
376 defined medium are *cycA*-independent. A.** Growth of JE2 and NE810 in chemically defined
377 medium lacking glucose (CDM). Cell density was measured at A_{600} . **B.** Alanine consumption by

378 JE2 and NE810 grown aerobically in CDM. Residual amino acid was measured in spent media
379 after 2, 4, 6 and 8 h growth. **C and D.** Growth (cell density at A_{600}) of JE2 and NE810 cultures
380 for 12 h in CDM supplemented with 1 μ g/ml oxacillin (C) or 1 μ g/ml DCS (D).

381 **Figure 6.** Proposed model depicting how impaired alanine transport associated with mutation
382 of CycA or exposure to DCS can inhibit the D-alanine pathway for peptidoglycan biosynthesis
383 leading to increased susceptibility to β -lactam antibiotics.

384 **References**

- 385
- 386 1. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy.
387 *Nat Chem Biol* **2007**; 3:541-8.
- 388 2. Waters EM, Rudkin JK, Coughlan S, et al. Redeploying beta-lactam antibiotics as a novel
389 antivirulence strategy for the treatment of methicillin-resistant *Staphylococcus aureus* infections. *J*
390 *Infect Dis* **2017**; 215:80-7.
- 391 3. Davis JS, Sud A, O'Sullivan MV, et al. Combination of Vancomycin and beta-Lactam Therapy for
392 Methicillin-Resistant *Staphylococcus aureus* Bacteremia: A Pilot Multicenter Randomized Controlled
393 Trial. *Clin Infect Dis* **2016**; 62:173-80.
- 394 4. Tong SY, Nelson J, Paterson DL, et al. CAMERA2 - combination antibiotic therapy for methicillin-
395 resistant *Staphylococcus aureus* infection: study protocol for a randomised controlled trial. *Trials*
396 **2016**; 17:170.
- 397 5. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical
398 implications. *Clin Microbiol Rev* **1997**; 10:781-91.
- 399 6. Chambers HF, Hackbarth CJ. Effect of NaCl and nafcillin on penicillin-binding protein 2a and
400 heterogeneous expression of methicillin resistance in *Staphylococcus aureus*. *Antimicrob Agents*
401 *Chemother* **1987**; 31:1982-8.
- 402 7. Sabath LD, Wallace SJ. The problems of drug-resistant pathogenic bacteria. Factors influencing
403 methicillin resistance in staphylococci. *Annals New York Academy of Sciences* **1971**; 182:258-66.
- 404 8. Griffiths JM, O'Neill AJ. Loss of function of the gdpP protein leads to joint beta-lactam/glycopeptide
405 tolerance in *Staphylococcus aureus*. *Antimicrobial agents and chemotherapy* **2012**; 56:579-81.
- 406 9. Dengler V, McCallum N, Kiefer P, et al. Mutation in the C-di-AMP cyclase dacA affects fitness and
407 resistance of methicillin resistant *Staphylococcus aureus*. *PLoS one* **2013**; 8:e73512.
- 408 10. Geiger T, Goerke C, Fritz M, et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in
409 stringent response and virulence of *Staphylococcus aureus*. *Infection and immunity* **2010**; 78:1873-83.
- 410 11. Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C. Two small (p)ppGpp synthases in *Staphylococcus*
411 *aureus* mediate tolerance against cell envelope stress conditions. *J Bacteriol* **2014**; 196:894-902.
- 412 12. Mwangi MM, Kim C, Chung M, et al. Whole-genome sequencing reveals a link between beta-
413 lactam resistance and synthetases of the alarmone (p)ppGpp in *Staphylococcus aureus*. *Microb Drug*
414 *Resist* **2013**; 19:153-9.
- 415 13. Fey PD, Endres JL, Yajjala VK, et al. A genetic resource for rapid and comprehensive phenotype
416 screening of nonessential *Staphylococcus aureus* genes. *MBio* **2013**; 4:e00537-12.
- 417 14. Mlynek KD, Callahan MT, Shimkevitch AV, et al. Effects of Low-Dose Amoxicillin on *Staphylococcus*
418 *aureus* USA300 Biofilms. *Antimicrobial agents and chemotherapy* **2016**; 60:2639-51.
- 419 15. Desjardins CA, Cohen KA, Munsamy V, et al. Genomic and functional analyses of *Mycobacterium*
420 tuberculosis strains implicate ald in D-cycloserine resistance. *Nat Genet* **2016**; 48:544-51.
- 421 16. Chen JM, Uplekar S, Gordon SV, Cole ST. A point mutation in cycA partially contributes to the D-
422 cycloserine resistance trait of *Mycobacterium bovis* BCG vaccine strains. *PLoS One* **2012**; 7:e43467.
- 423 17. Sieradzki K, Tomasz A. Suppression of beta-lactam antibiotic resistance in a methicillin-resistant
424 *Staphylococcus aureus* through synergic action of early cell wall inhibitors and some other antibiotics.
425 *J Antimicrob Chemother* **1997**; 39 Suppl A:47-51.
- 426 18. Pozzi C, Waters EM, Rudkin JK, et al. Methicillin resistance alters the biofilm phenotype and
427 attenuates virulence in *Staphylococcus aureus* device-associated infections. *PLoS Pathog* **2012**;
428 8:e1002626.
- 429 19. Soper TS, Manning JM. Synergy in the antimicrobial action of penicillin and beta-chloro-D-alanine
430 in vitro. *Antimicrobial agents and chemotherapy* **1976**; 9:347-9.
- 431 20. Plata KB, Riosa S, Singh CR, Rosato RR, Rosato AE. Targeting of PBP1 by beta-lactams determines
432 recA/SOS response activation in heterogeneous MRSA clinical strains. *PLoS One* **2013**; 8:e61083.

- 433 21. Conlon KM, Humphreys H, O'Gara JP. icaR encodes a transcriptional repressor involved in
434 environmental regulation of ica operon expression and biofilm formation in *Staphylococcus*
435 *epidermidis*. *J Bacteriol* **2002**; 184:4400-8.
- 436 22. Halsey CR, Lei S, Wax JK, et al. Amino Acid Catabolism in *Staphylococcus aureus* and the Function
437 of Carbon Catabolite Repression. *MBio* **2017**; 8.
- 438 23. Tabuchi F, Matsumoto Y, Ishii M, et al. D-cycloserine increases the effectiveness of vancomycin
439 against vancomycin-highly resistant *Staphylococcus aureus*. *J Antibiot (Tokyo)* **2017**; 70:907-10.
- 440 24. Fujihira T, Kanematsu S, Umino A, Yamamoto N, Nishikawa T. Selective increase in the extracellular
441 D-serine contents by D-cycloserine in the rat medial frontal cortex. *Neurochem Int* **2007**; 51:233-6.
- 442 25. Batson S, de Chiara C, Majce V, et al. Inhibition of D-Ala:D-Ala ligase through a phosphorylated
443 form of the antibiotic D-cycloserine. *Nat Commun* **2017**; 8:1939.
- 444 26. Baisa G, Stabo NJ, Welch RA. Characterization of *Escherichia coli* D-cycloserine transport and
445 resistant mutants. *J Bacteriol* **2013**; 195:1389-99.
- 446 27. Curtiss R, 3rd, Charamella LJ, Berg CM, Harris PE. Kinetic and genetic analyses of D-cycloserine
447 inhibition and resistance in *Escherichia coli*. *Journal of bacteriology* **1965**; 90:1238-50.
- 448 28. Russell RR. Mapping of a D-cycloserine resistance locus in *escherichia coli* K-12. *Journal of*
449 *bacteriology* **1972**; 111:622-4.
- 450 29. Wargel RJ, Hadur CA, Neuhaus FC. Mechanism of D-cycloserine action: transport mutants for D-
451 alanine, D-cycloserine, and glycine. *Journal of bacteriology* **1971**; 105:1028-35.
- 452 30. Feher T, Cseh B, Umenhoffer K, Karcagi I, Posfai G. Characterization of cycA mutants of *Escherichia*
453 *coli*. An assay for measuring in vivo mutation rates. *Mutat Res* **2006**; 595:184-90.
- 454 31. Prosser GA, Rodenburg A, Khouri H, et al. Glutamate Racemase Is the Primary Target of beta-
455 Chloro-d-Alanine in *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* **2016**; 60:6091-9.
- 456 32. Sobral RG, Ludovice AM, Gardete S, Tabei K, De Lencastre H, Tomasz A. Normally functioning murF
457 is essential for the optimal expression of methicillin resistance in *Staphylococcus aureus*. *Microb Drug*
458 *Resist* **2003**; 9:231-41.
- 459 33. Sobral RG, Ludovice AM, de Lencastre H, Tomasz A. Role of murF in cell wall biosynthesis: isolation
460 and characterization of a murF conditional mutant of *Staphylococcus aureus*. *J Bacteriol* **2006**;
461 188:2543-53.
- 462 34. de Jonge BL, Chang YS, Gage D, Tomasz A. Peptidoglycan composition of a highly methicillin-
463 resistant *Staphylococcus aureus* strain. The role of penicillin binding protein 2A. *J Biol Chem* **1992**;
464 267:11248-54.
- 465 35. Li C, Sun F, Cho H, et al. CcpA mediates proline auxotrophy and is required for *Staphylococcus*
466 *aureus* pathogenesis. *J Bacteriol* **2010**; 192:3883-92.
- 467 36. Thurlow LR, Joshi GS, Richardson AR. Peroxisome Proliferator-Activated Receptor gamma Is
468 Essential for the Resolution of *Staphylococcus aureus* Skin Infections. *Cell Host Microbe* **2018**; 24:261-
469 70 e4.
- 470 37. Lehman MK, Nuxoll AS, Yamada KJ, Kielian T, Carson SD, Fey PD. Protease-Mediated Growth of
471 *Staphylococcus aureus* on Host Proteins Is opp3 Dependent. *MBio* **2019**; 10.
- 472 38. Hussain M, Hastings JG, White PJ. A chemically defined medium for slime production by coagulase-
473 negative staphylococci. *Journal of medical microbiology* **1991**; 34:143-7.
- 474 39. Alvarez L, Hernandez SB, de Pedro MA, Cava F. Ultra-Sensitive, High-Resolution Liquid
475 Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall
476 Chemistry and Structure. *Methods Mol Biol* **2016**; 1440:11-27.
- 477 40. De Jonge BL, Gage D, Xu N. The carboxyl terminus of peptidoglycan stem peptides is a determinant
478 for methicillin resistance in *Staphylococcus aureus*. *Antimicrob Agents Chemother* **2002**; 46:3151-5.
- 479 41. Kuhner D, Stahl M, Demircioglu DD, Bertsche U. From cells to muropeptide structures in 24 h:
480 peptidoglycan mapping by UPLC-MS. *Sci Rep* **2014**; 4:7494.
- 481 42. Boneca IG, Xu N, Gage DA, de Jonge BL, Tomasz A. Structural characterization of an abnormally
482 cross-linked muropeptide dimer that is accumulated in the peptidoglycan of methicillin- and
483 cefotaxime-resistant mutants of *Staphylococcus aureus*. *J Biol Chem* **1997**; 272:29053-9.

Table 1. Antibacterial activity (minimum inhibitory concentrations, MIC) and drug synergy (fractional inhibitory concentration indices, Σ FIC) of D-cycloserine (DCS) and several β -lactam antibiotics with different PBP specificity, namely oxacillin (OX; PBP1, 2, 3), naftillin (NAF; PBP1), cefoxitin (FOX; PBP4), cefaclor (CEC; PBP3), cefotaxime (CTX; PBP2), piperacillin-tazobactam (TZP; PBP3/ β -lactamase inhibitor) and imipenem (IMP; PBP1), alone and in β -lactam combinations, against fourteen *S. aureus* strains and *S. epidermidis* RP62A.

Antibiotic →	OX*	NAF*	DCS*	FOX*	DCS/FOX** (ΣFIC)***	CEC*	DCS/CEC** (ΣFIC)***	CTX*	DCS/CTX** (ΣFIC)***	TZP*	DCS/TZP** (ΣFIC)***	IPM*	DCS/IPM** (ΣFIC)***
↓ Strain	OX*	NAF*	DCS*	FOX*	DCS/FOX** (ΣFIC)***	CEC*	DCS/CEC** (ΣFIC)***	CTX*	DCS/CTX** (ΣFIC)***	TZP*	DCS/TZP** (ΣFIC)***	IPM*	DCS/IPM** (ΣFIC)***
JE2	64	32	32	64	8/8 (0.37)	64	8/2 (0.28)	64	8/4 (0.31)	32	8/0.5 (0.26)	1	ND
NE810 (cycA)	0.25	0.5	2	8	ND	4	ND	8	ND	2	ND	0.125	ND
USA300	64	32	32	64	8/8 (0.37)	64	8/8 (0.37)	64	8/8 (0.37)	64	8/2 (0.28)	1	ND
USA300 cycA	0.25	1	2	8	ND	4	ND	8	ND	4	ND	0.125	ND
DAR173	128	128	32	256	4/32 (0.25)	128	8/4 (0.28)	512	8/4 (0.25)	128	4/4 (0.15)	64	4/2 (0.15)
DAR173 cycA	0.5	8	4	32	ND	16	ND	16	ND	4	ND	1	ND
DAR22	128	128	32	128	8/8 (0.31)	128	8/8 (0.31)	512	8/4 (0.25)	128	4/4 (0.15)	128	4/1 (0.13)
DAR22 cycA	0.5	8	0.5	16	ND	16	ND	16	ND	4	ND	0.5	ND
DAR169	32	32	32	32	8/2 (0.31)	128	4/32 (0.37)	64	4/8 (0.25)	8	4/1 (0.25)	2	ND
DAR169 cycA	16	4	0.5	16	ND	64	ND	16	ND	2	ND	0.5	ND
COL	512	256	64	512	8/128 (0.37)	128	16/32 (0.5)	>2048	ND	128	32/0.5 (0.5)	256	8/64 (0.37)
DAR113	128	64	32	128	8/8 (0.3)	64	8/4 (0.3)	256	8/8 (0.2)	128	8/4 (0.2)	16	8/0.5 (0.2)
BH1CC	256	512	32	256	8/32 (0.3)	128	8/8 (0.3)	1028	8/16 (0.2)	256	8/4 (0.2)	64	8/1 (0.2)
BH14B(04)	128	64	16	128	4/32 (0.5)	128	4/32 (0.5)	512	4/32 (0.31)	64	4/1 (0.26)	64	2/8 (0.25)
BH8(03)	128	128	32	128	8/32 (0.5)	256	8/64 (0.5)	128	8/16 (0.25)	128	8/8 (0.3)	64	8/0.5 (0.1)
BH6	128	128	32	128	8/16 (0.37)	256	8/64 (0.5)	512	8/32 (0.31)	128	8/4 (0.28)	32	8/0.5 (0.26)
DAR202	64	64	32	128	4/32 (0.37)	128	4/32 (0.37)	64	8/16 (0.5)	64	8/2 (0.28)	4	8/1 (0.5)
DAR45	2	0.5	32	4	ND	32	8/2 (0.31)	4	ND	2	ND	0.5	ND
DAR13	128	32	32	128	4/32 (0.37)	128	8/4 (0.28)	128	4/32 (0.37)	32	8/1 (0.28)	8	4/2 (0.37)
RP62A	128	2	32	64	6/16 (0.5)	64	6/16 (0.5)	32	8/8 (0.5)	8	8/2 (0.5)	32	8/1 (0.2)

* MIC values for each antibiotic when measured individually; μ g/ml

** MIC values for each antibiotic when measured in combination, also known as the fractional inhibitory concentration (FIC); μ g/ml

*** FIC indices (Σ FIC) for antibiotic combinations. Σ FIC = FIC A + FIC B, where FIC A is the MIC of DCS in combination with the β -lactam/MIC of DCS alone, and FIC B is the MIC of the β -lactam in combination with DCS/MIC of the β -lactam alone. Combinations are synergistic when the Σ FIC is ≤ 0.5 and indifferent when the Σ FIC is >0.5 to <2 .

[†]ND. Not determined if strain is susceptible (or hyper-resistant) to β -lactam antibiotic or for cycA mutants with reduced DCS & β -lactam MICs.

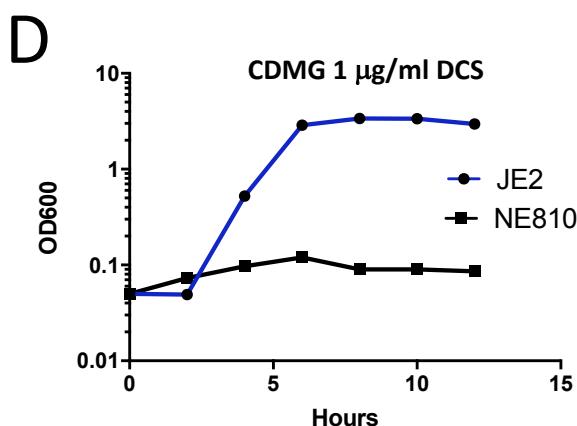
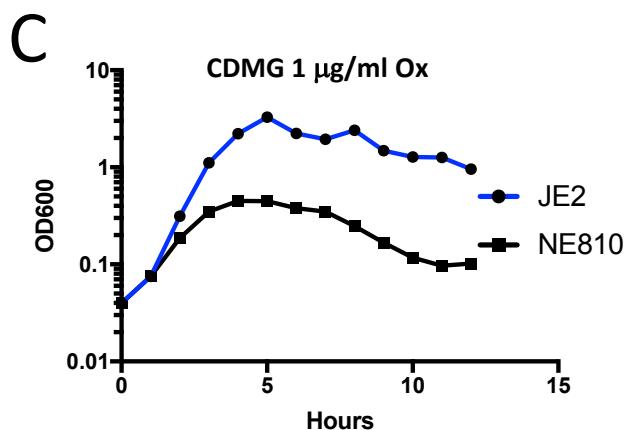
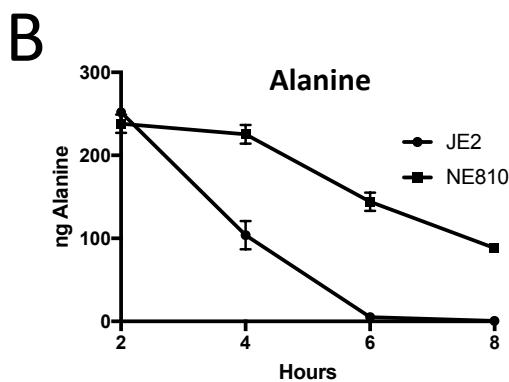
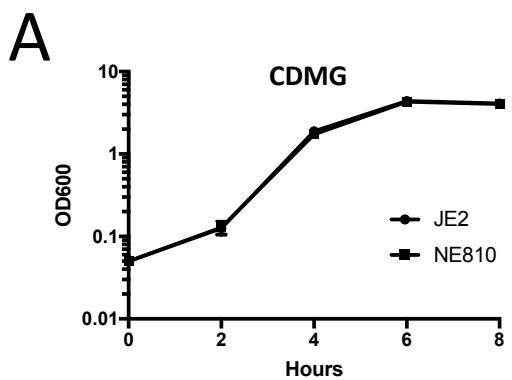
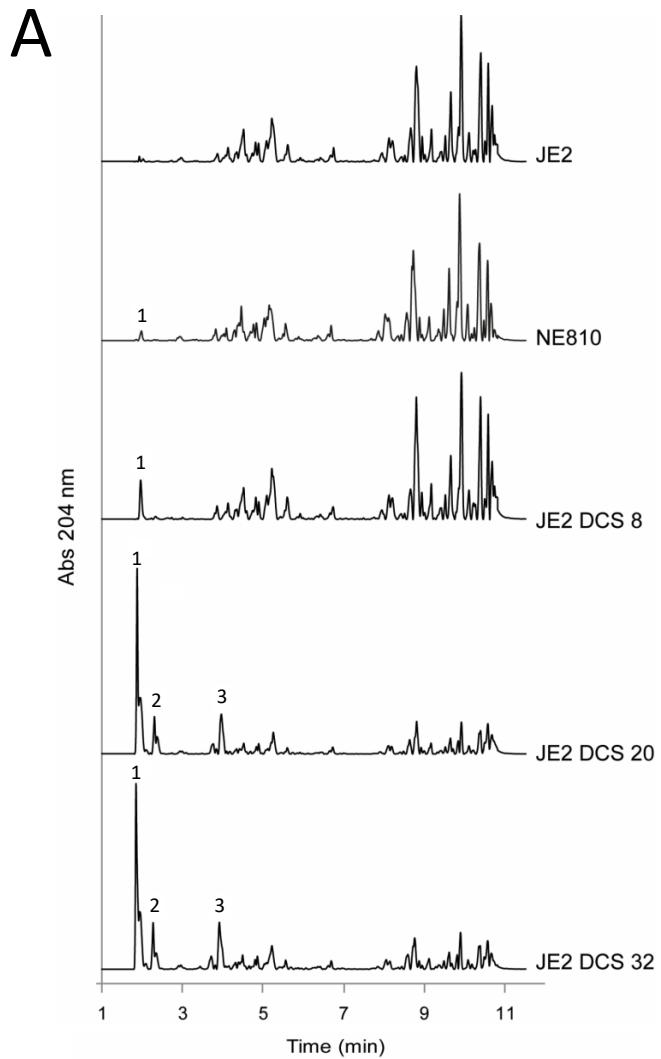
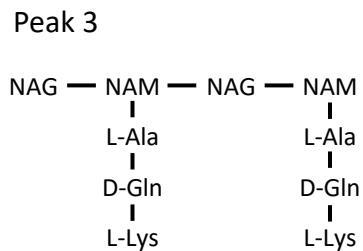
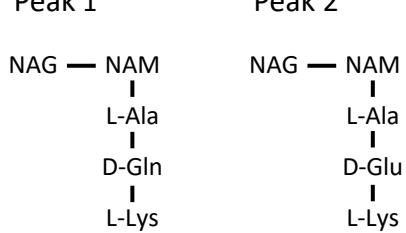
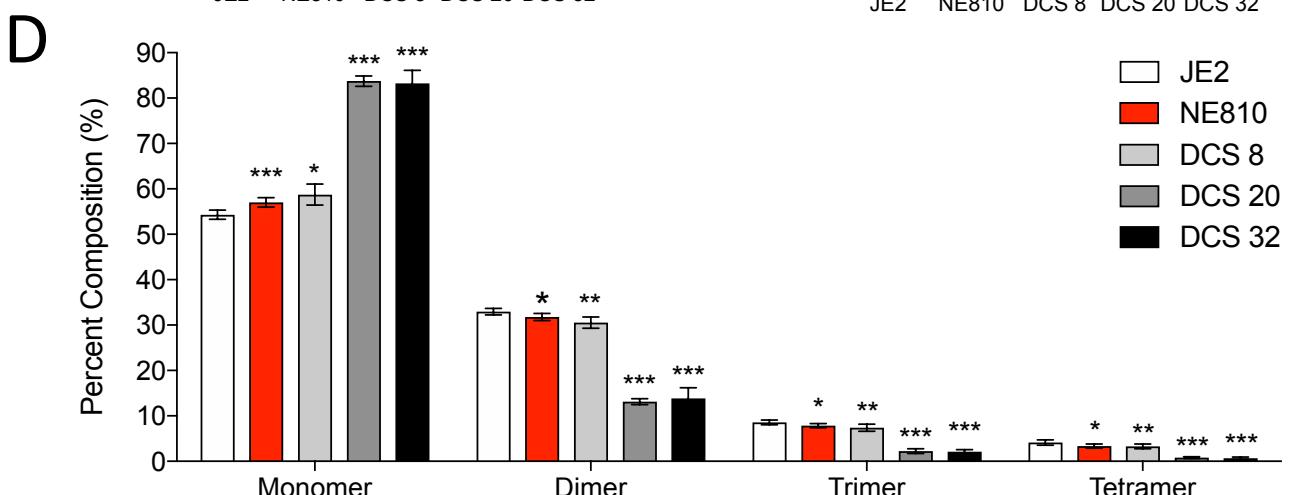
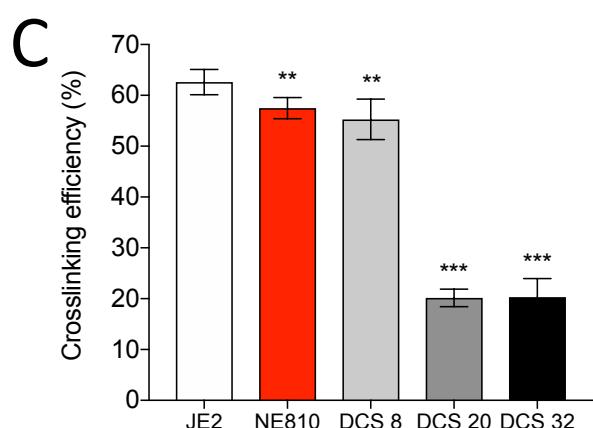
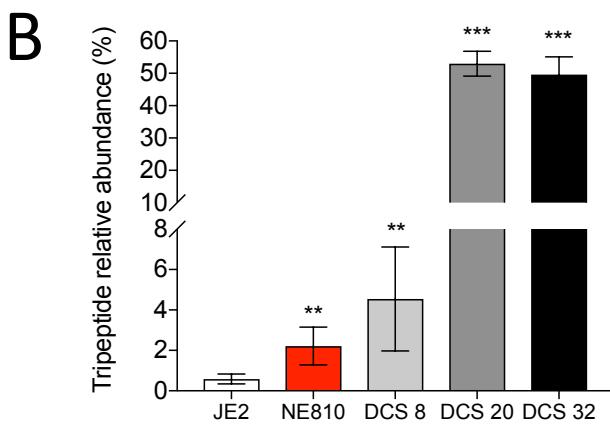
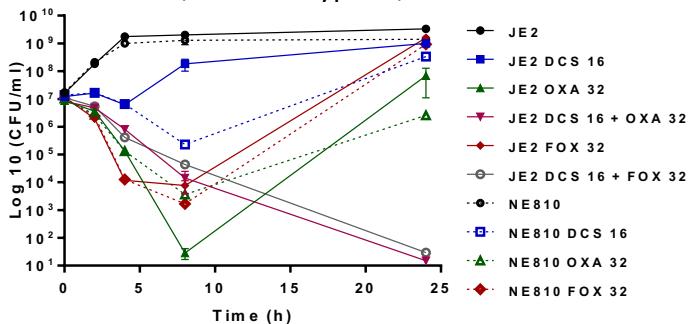
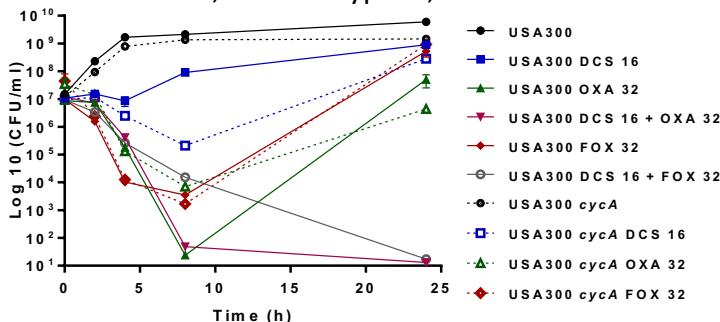
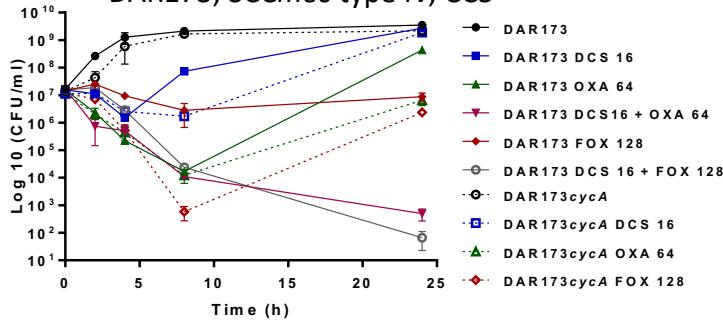





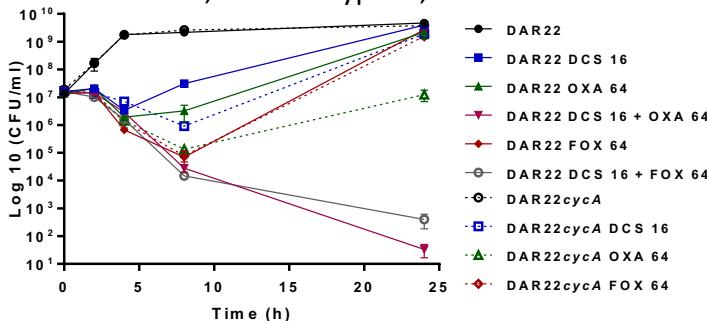
Fig. 1

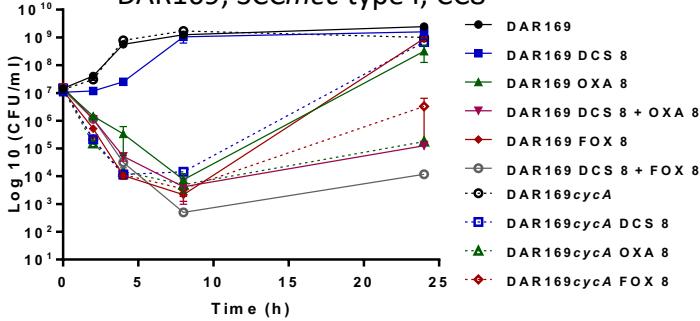








Fig. 2


Peak	Muropeptide	Neutral mass (Da)	
		Theoretical	Observed
1	Monomer tripeptide (Gln)	825.3967	825.3976
2	Monomer tripeptide (Glu)	826.3815	826.3818
3	Chain of two monomers tripeptide (Gln)	1630.7673	1630.7627


JE2; SCCmec type IV; CC8


USA300; SCCmec type IV; CC8


DAR173; SCCmec type IV; CC5

DAR22; SCCmec type III; CC5

DAR169; SCCmec type I; CC8

Kidneys

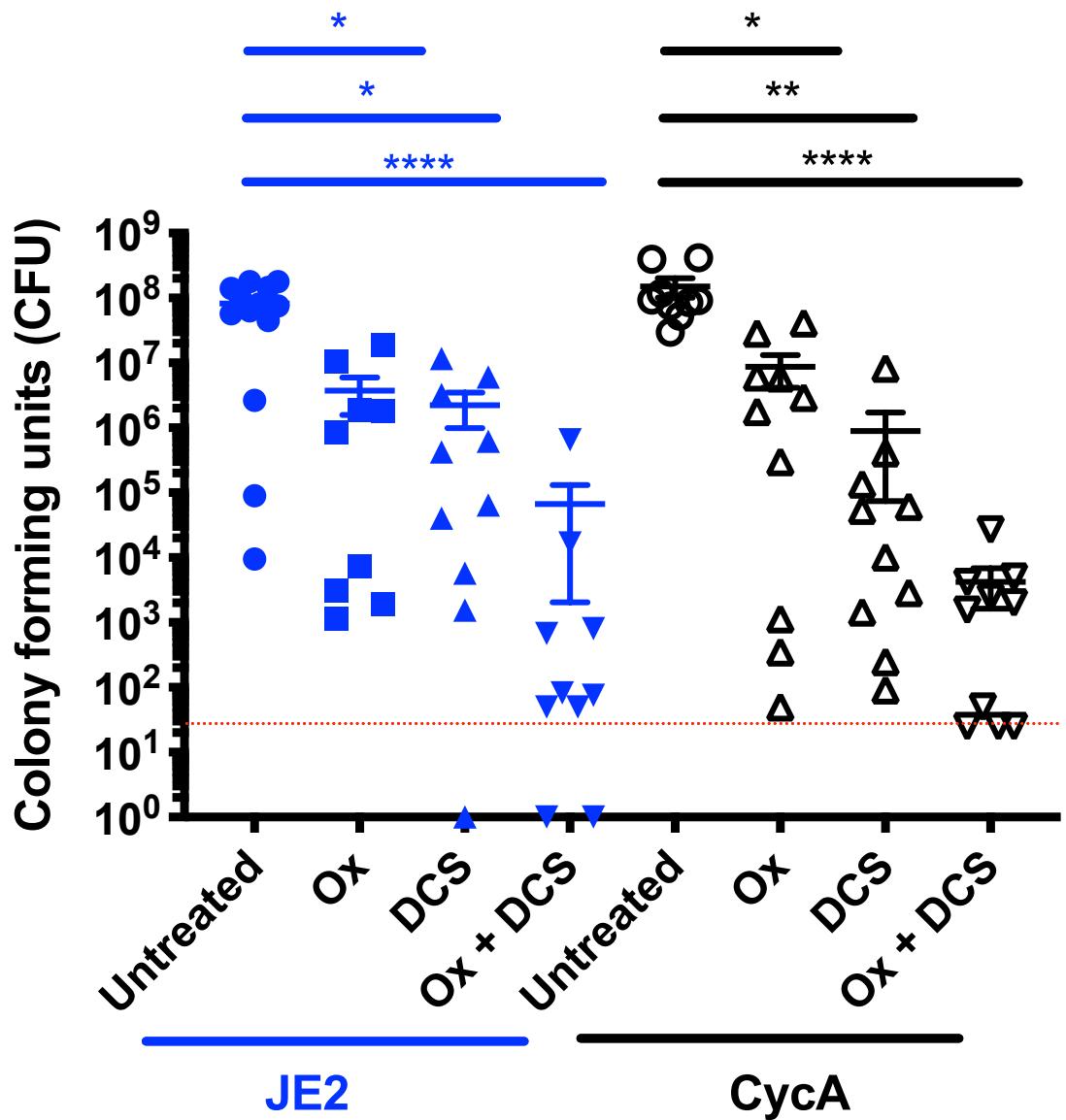


Fig. 4

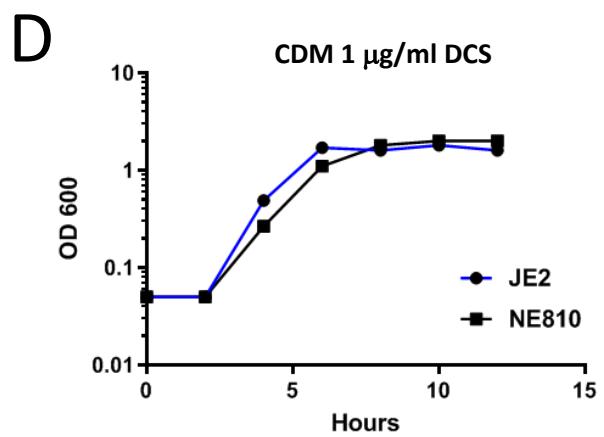
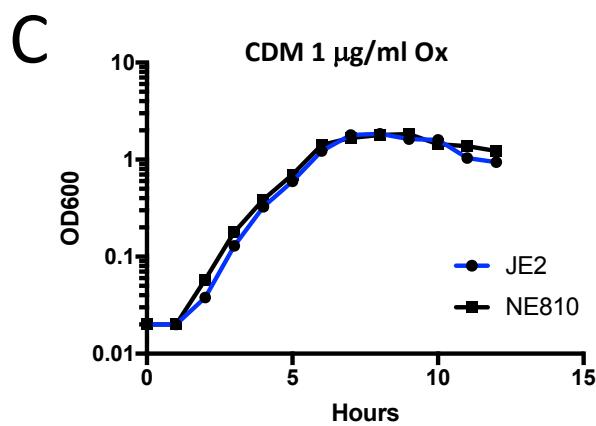
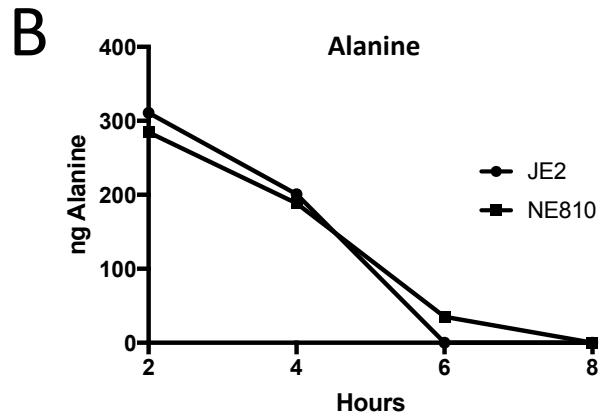
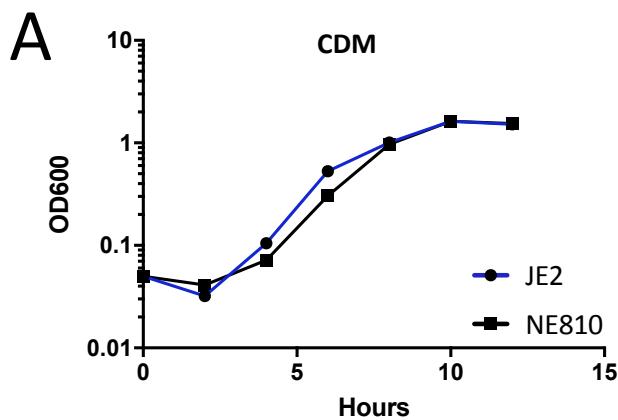





Fig. 5

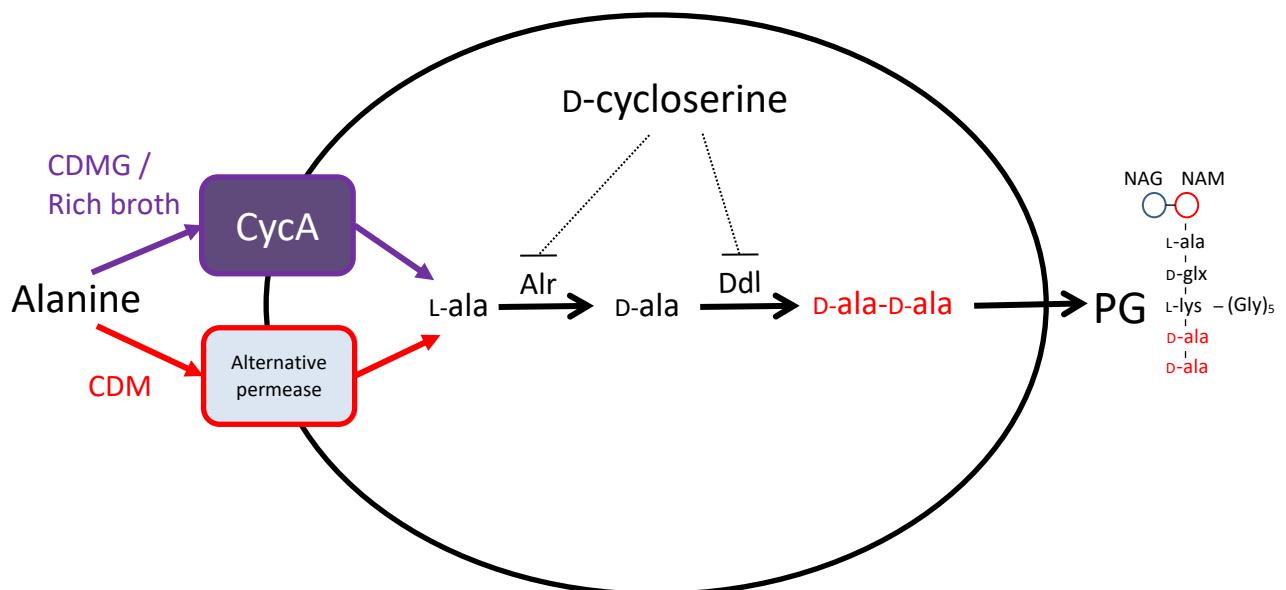


Fig. 6

SUPPLEMENTARY DATA

Impaired alanine transport or exposure to D-cycloserine increases the susceptibility of MRSA to β -lactam antibiotics

Laura A. Gallagher¹, Rebecca K. Shears², Claire Fingleton¹, Laura Alvarez³, Elaine M. Waters^{1,2}, Jenny Clarke², Laura Bricio-Moreno², Christopher Campbell¹, Akhilesh K. Yadav³, Fareha Razvi⁴, Eoghan O'Neill⁵, Alex J. O'Neill⁶, Felipe Cava³, Paul D. Fey⁴, Aras Kadioglu² and James P. O'Gara^{1*}

Supplementary Tables

Table S1. Antibacterial activity (minimum inhibitory concentrations, MIC) and drug synergy (fractional inhibitory concentration indices, Σ FIC) of D-cycloserine (DCS), and clindamycin (CLI), tobramycin (TOB), trimethoprim (TMP), mupirocin (MUP), ciprofloxacin (CIP), kanamycin (KAN) and spectinomycin (SPT) alone and in DCS/antibiotic combinations, against fourteen *S. aureus* strains and *S. epidermidis* RP62A.

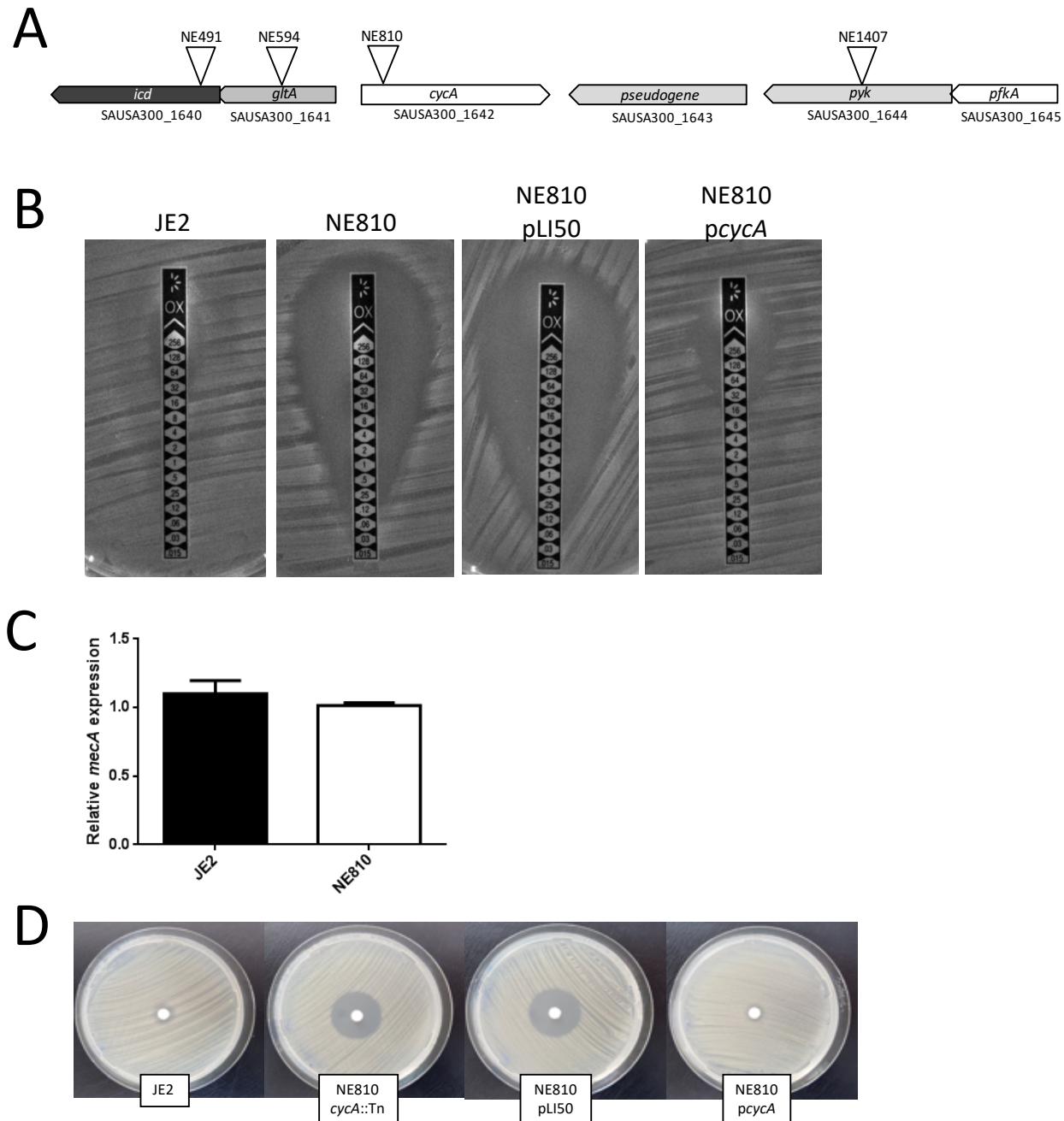
Antibiotic →	DCS*	CLI*	DCS/CLI** (ΣFIC)***	TOB	DCS/TOB (ΣFIC)	TMP	DCS/TMP (ΣFIC)	CIP	DCS/CIP (ΣFIC)	KAN	DCS/KAN (ΣFIC)	SPT	DCS/SPT (ΣFIC)	MUP	DCS/MUP (ΣFIC)
↓ Strain															
JE2	32	0.25	ND	1	ND	1	ND	32	16/16 (1)	2	ND	64	16/32 (1)	0.25	ND
USA300	32	2048	32/2048 (2)	0.5	ND	1	ND	32	16/16 (1)	2	ND	64	16/32 (1)	2048	32/2048 (2)
DAR173	32	0.5	ND	512	32/512 (2)	0.5	ND	256	16/128 (1)	512	16/256 (1)	64	16/32 (1)	0.5	ND
DAR22	32	0.5	ND	512	16/256 (1)	0.5	ND	256	16/128 (1)	256	16/128 (1)	64	16/32 (1)	0.5	ND
DAR169	32	0.5	ND	0.5	ND	0.5	4/8 (0.25)	1	ND	2	ND	64	16/32 (1)	0.5	ND
COL	64	0.5	ND	0.5	ND	0.5	ND	1	ND	0.5	ND	64	16/32 (1)	0.5	ND
DAR113	32	0.25	ND	0.5	ND	1	ND	0.5	ND	2	ND	64	16/32 (1)	0.25	ND
BH1CC	32	1024	32/1024 (2)	32	32/32 (2)	256	32/256 (2)	32	16/16 (1)	>1024	ND	>1024	ND	32	16/8 (0.75)
BH14B(04)	16	0.5	ND	0.5	ND	0.5	ND	128	16/128 (1.5)	2	ND	64	8/32 (1)	0.5	ND
BH8(03)	32	1024	32/1024 (2)	0.5	ND	0.5	ND	256	16/128 (1)	8	32/4 (2)	128	16/64 (1)	4	32/4 (2)
BH6	32	0.5	ND	0.5	ND	0.5	ND	>512	16/256 (1)	1	ND	128	16/64 (1)	0.5	ND
DAR202	32	0.5	ND	128	16/64 (1)	0.5	ND	2	ND	>1024	ND	>1024	ND	0.5	ND
DAR45	32	1024	32/1024 (2)	512	16/256 (1)	0.5	ND	128	16/64 (1)	128	16/64 (1)	512	32/1024 (2)	0.5	ND
DAR13	32	0.5	ND	0.5	ND	32	16/16 (1)	32	16/16 (1)	2048	ND	>1024	ND	0.5	ND
RP62A	32	2048	32/2048 (2)	16	16/8 (1)	256	32/256 (2)	0.25	ND	>1024	ND	>1024	ND	0.25	ND

* MIC values for each antibiotic when measured individually; μ g/ml

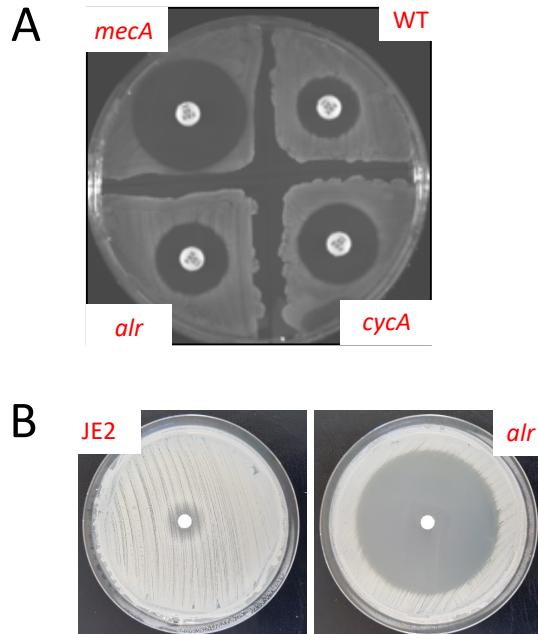
** MIC values for each antibiotic when measured in combination, also known as the fractional inhibitory concentration (FIC); μ g/ml

*** FIC indices (Σ FIC) for the antibiotic combination. Σ FIC = FIC A + FIC B, where FIC A is the MIC of DCS in combination with the antibiotic/MIC of DCS alone, and FIC B is the MIC of the antibiotic in combination with DCS/MIC of the antibiotic alone. The combination is considered synergistic when the Σ FIC is ≤ 0.5 , indifferent when the Σ FIC is >0.5 to <2 .

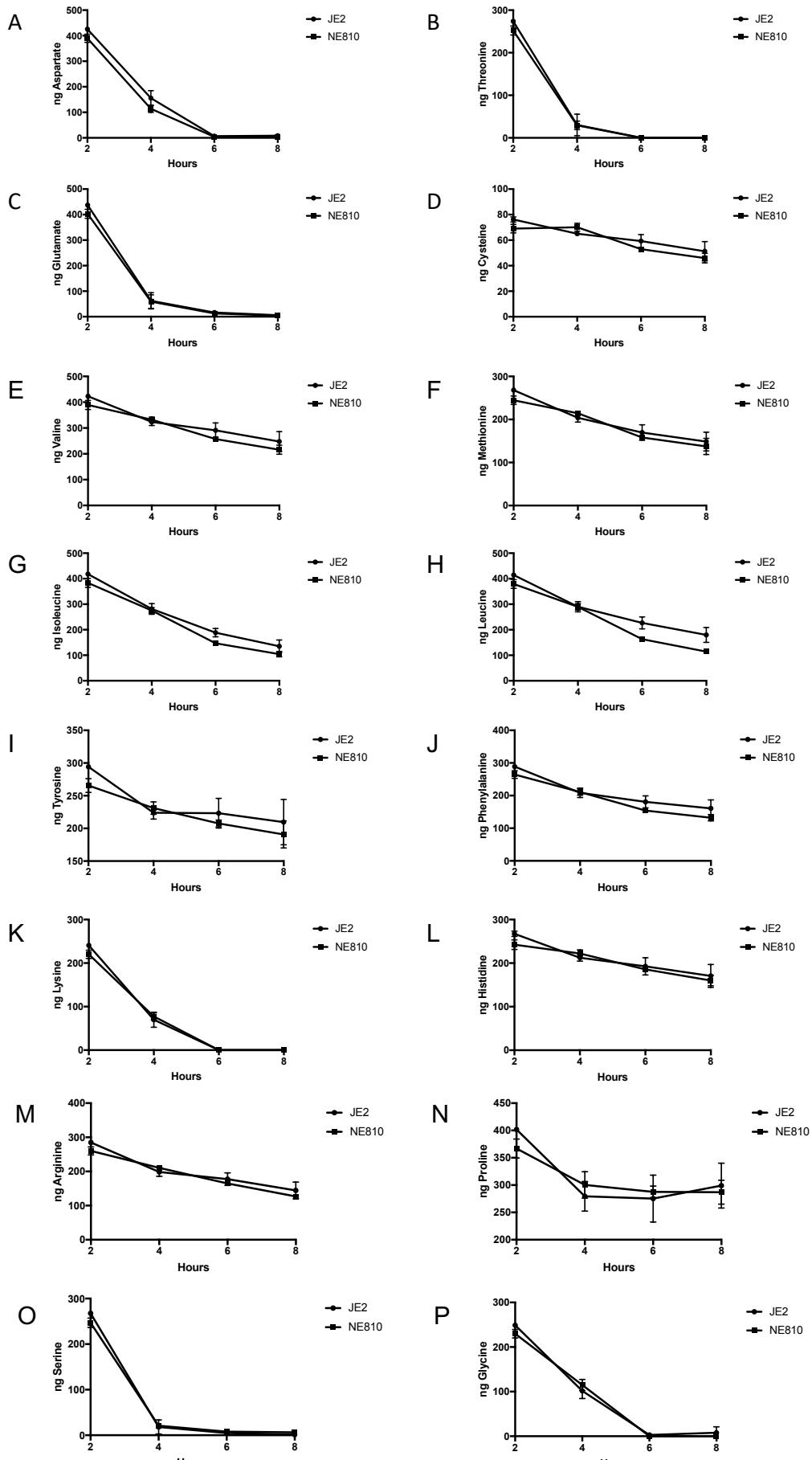
†ND. Not determined if strain is susceptible (or hyper-resistant) to the antibiotic or for *cycA* mutants with reduced DCS & antibiotic MICs.

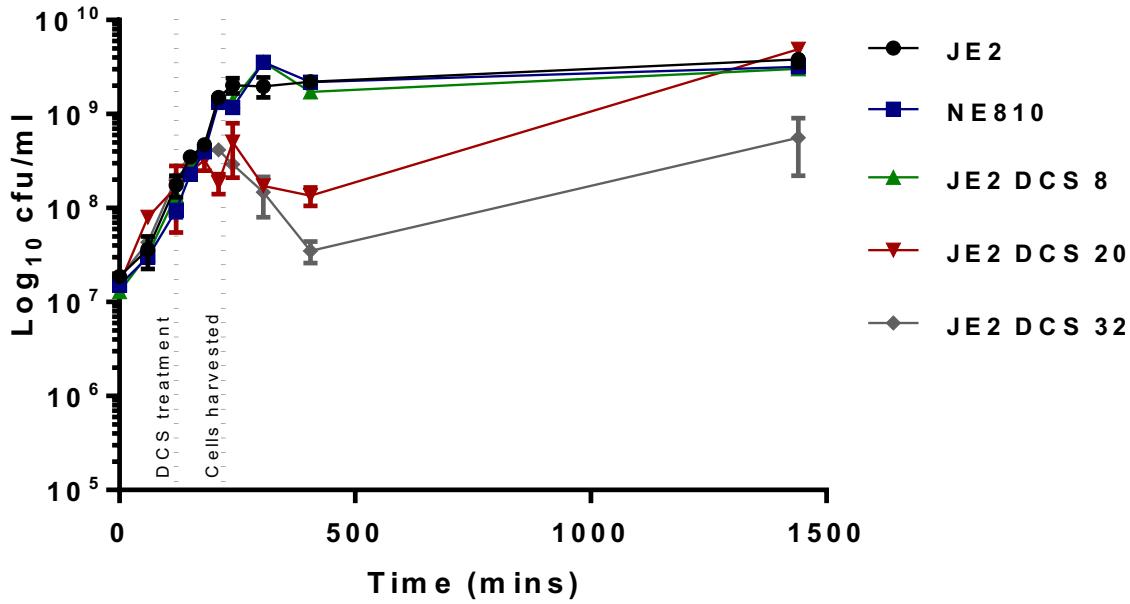

Table S2. Bacterial strains and plasmids used in this study

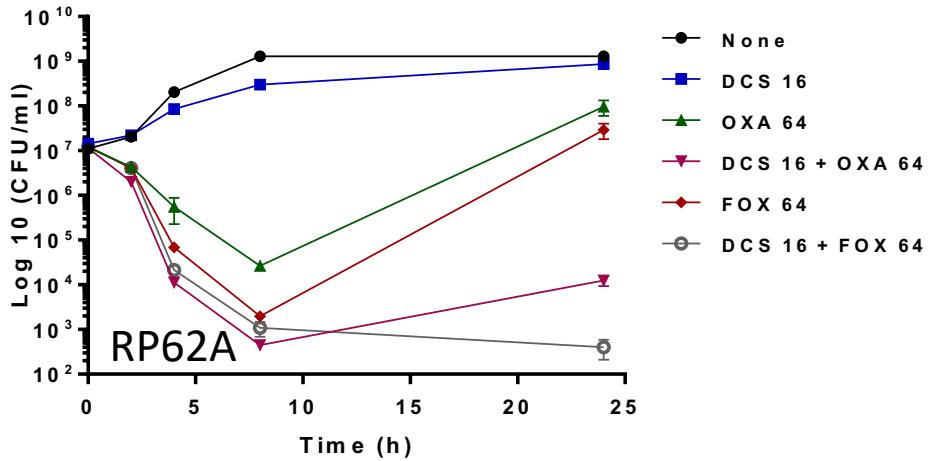
Strains/plasmids	Relevant Details
RN4220	Restriction-deficient laboratory <i>S. aureus</i>
USA300 FPR3757	Community associated MRSA isolate of the USA300 lineage [43]. SCCmec type IV. CC8.
JE2	USA300 cured of p01 & p03. Parent of Nebraska Transposon Mutant Library (NTML).
NE810	JE2 NTML <i>cycA</i> (SAUSA300_1642) mutation. <i>Erm</i> ^r .
USA300 <i>cycA</i>	USA300 FPR3757 <i>cycA</i> . Constructed by transduction of <i>cycA</i> ::Tn allele from NE810.
NE1868	JE2 NTML <i>mecA</i> mutation.
NE1713	JE2 NTML <i>alr</i> (SAUSA300_2027) mutation.
BH1CC	MRSA clinical isolate; SCCmec type II; CC8 [44]
COL	MRSA reference strain; SCCmec type I; CC8 [45]
BH14(04)	MRSA clinical isolate; SCCmec type IV; CC22 [44]
BH8(03)	MRSA clinical isolate; SCCmec type IV; CC22 [44]
BH6(03)	MRSA clinical isolate; SCCmec type II; CC8 [44]
DAR113	MRSA reference isolate; SCCmec type IV; CC22 [44, 46]
DAR13	MRSA reference isolate; SCCmec type IV; CC8 [44, 46]
DAR45	MRSA reference isolate; SCCmec type II; CC30 [44, 46]
DAR202	MRSA reference isolate; SCCmec type III; CC239 [44, 46]
DAR173	MRSA reference isolate; SCCmec type IV; CC5 [44, 46]
DAR173 <i>cycA</i>	DAR173 <i>cycA</i> mutant (<i>cycA</i> ::Tn allele from NE810)
DAR22	MRSA reference isolate; SCCmec type III; CC5 [44, 46]
DAR22 <i>cycA</i>	DAR22 <i>cycA</i> mutant (<i>cycA</i> ::Tn allele from NE810)
DAR169	MRSA Reference strain; SCCmec type I; CC8 [44, 46]
DAR169 <i>cycA</i>	DAR169 <i>cycA</i> mutant (<i>cycA</i> ::Tn allele from NE810)
8325-4	NCTC 8325 derivative cured of prophages [47], methicillin susceptible, CC8.
8325-4 <i>cycA</i>	8325-4 <i>cycA</i> mutant (<i>cycA</i> ::Tn allele from NE810).
ATCC 29213	Methicillin susceptible <i>S. aureus</i> strain for antibiotic susceptibility testing.
ATCC 29213 <i>cycA</i>	ATCC 29213 <i>cycA</i> mutant (<i>cycA</i> ::Tn allele from NE810).
ATCC 25923	Methicillin susceptible <i>S. aureus</i> strain for antibiotic susceptibility testing.
<i>S. epidermidis</i> RP62A	ATCC 35984. Methicillin resistant, biofilm positive. [21]
<i>E. coli</i>	<i>E. coli</i> HST08
Plasmids	
pLI50	<i>E. coli</i> - <i>Staphylococcus</i> shuttle vector. Ap ^r (<i>E. coli</i>), Cm ^r . (<i>Staphylococcus</i>)
pcycA	pLI50 carrying <i>cycA</i> from JE2

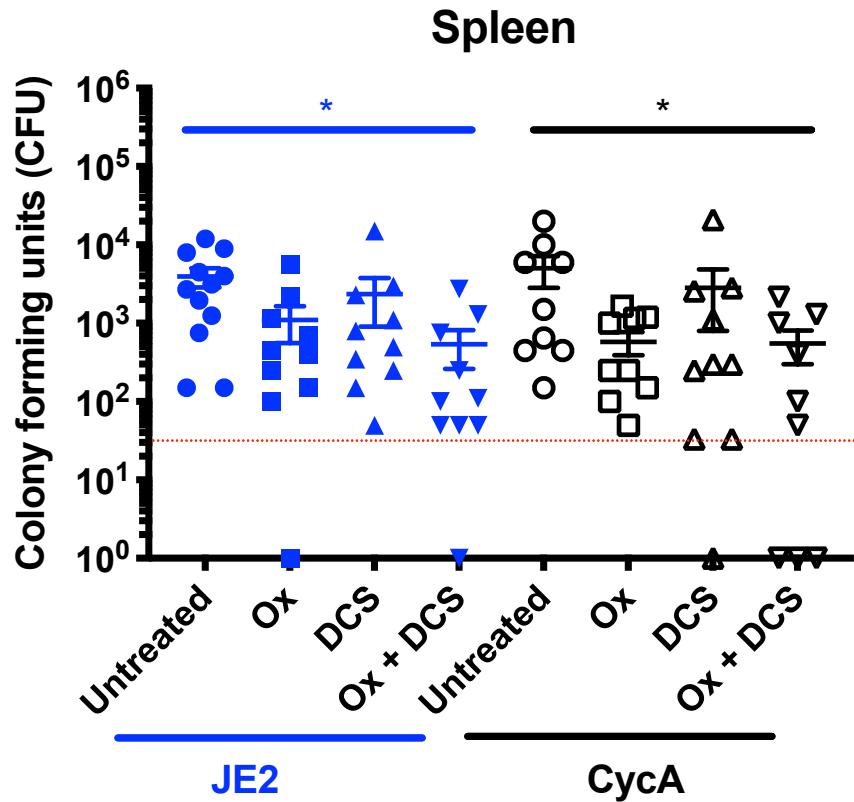

Table S3. Oligonucleotide primers used in this study

Target Gene	Primer Name	Primer Sequence (5'-3')
<i>cycA</i>	NE810_Fwd	ACAGAAATGCCACAAATAGCACCC
	NE810_Rev	ACAGAAATGCCACAAATAGCACCC
<i>cycA</i>	NE810F1_Fwd	GTCTTCAAGAATTGGCCACAAATAGCACCATTAA
	NE810F1_Rev	CGACTCTAGAGGATCATGTCCCAGGCCCTAAAC
<i>mecA</i>	mecA1_Fwd	TGCTCAATATAAAATTAAAACAAACTACGGTAAC
	mecA1_Rev	GAATAATGACGCTATGATCCAA
<i>gyrB</i>	gyrB_Fwd	CCAGGTAATTAGCCGATTGC
	gyrB_Rev	AAATCGCTGCGTTAGAG


Supplementary Figures


Figure S1. Mutation of cycA increases the susceptibility of MRSA to β -lactam antibiotics and d-cycloserine. A. Chromosomal location of cycA and neighbouring genes *icd* (isocitrate dehydrogenase), *gltA* (citrate synthase), *pyk* (pyruvate kinase) and *pfkA* (6-phosphofructokinase). The locations of transposon insertions in NE810, NE491, NE594 and NE1407 mutants from the Nebraska library are indicated. **B.** E-test measurement of oxacillin minimum inhibitory concentrations (MICs) in JE2 (wild type), NE810 (*cycA*::Tn), NE810 carrying pLI50 (control) and pcycA. **C.** Comparison of relative *meca* gene expression by LightCycler RT-PCR in JE2 and NE810 grown to $A_{600}=3$ in BHI media. The data are the average of three independent experiments and standard deviations are shown **D.** Comparison of zones of inhibition around d-cycloserine 30 μ g disks on lawns of JE2, NE810 (*cycA*::Tn), NE810 pLI50 (control) and NE810 pcycA grown on Mueller Hinton (MH) agar.


Figure S2. A. Susceptibility of JE2 (wild type), NE1868 (*mecA*::Tn), NE810 (*cycA*::Tn), and NE1713 (*alr*::Tn) grown on MH agar to cefoxitin (FOX, 30 μ g disks). **B.** Susceptibility of JE2 (wild type) and NE1713 (*alr*::Tn) grown on MH agar to D-cycloserine (DCS, 30 μ g disks).


Figure S3. Amino acid consumption by JE2 and NE810 grown aerobically in chemically defined media containing 14mM of glucose (CDMG). Residual amino acids were measured in spent media after 2, 4, 6 and 8 h growth.

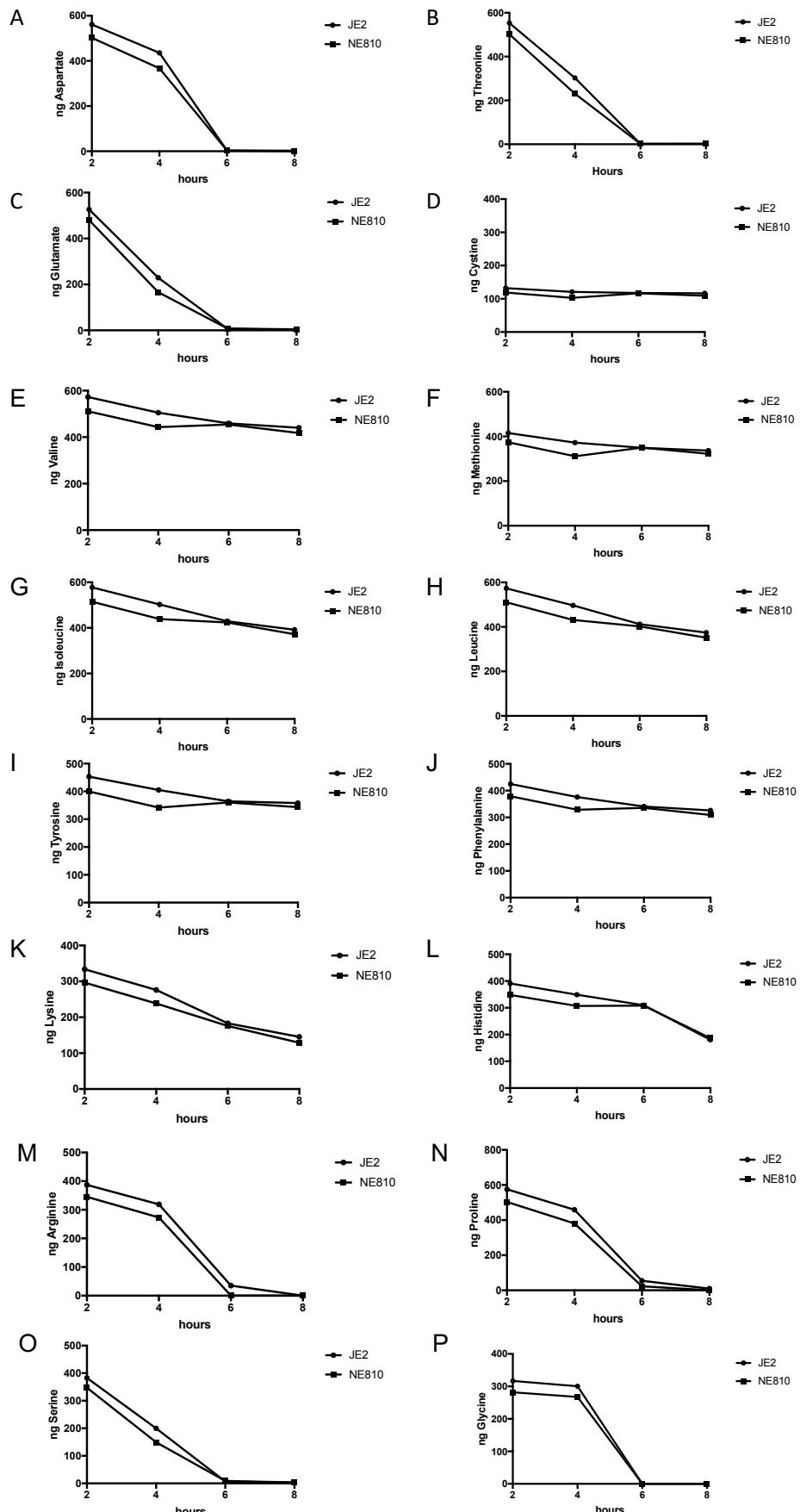

Figure S4. Preparation of cell suspensions for peptidoglycan extraction and structural analysis by UPLC-MS. 50 ml flask cultures were inoculated into fresh BHI media from overnight cultures at a starting cell density of $A_{600}=0.05$ and incubated at 37°C. The number of CFU/ml was enumerated every 1-2 h for 6 h and again after 24 hours. For JE2 cultures being dosed with DCS, the antibiotic was added after approximated 2 h ($A_{600}\approx0.5$) and the cells collected after a further 100 mins. Cells from untreated JE2 and NE810 control cultures were collected at the same time point.

Figure S5. *In vitro* kill curves for D-cycloserine (DCS), oxacillin and cefoxitin with methicillin resistant *S. epidermidis* strain RP62A. Antibiotics at the concentrations indicated (equivalent to 0.5×MIC) were added to suspensions of overnight bacterial cultures adjusted to 10⁷CFU/ml in BHI, incubated at 37°C and the number of CFU/ml enumerated at 0, 2, 4, 8 and 24 h. The data presented are the mean of three independent experiments. Antibiotic synergism was defined as a ≥2 log¹⁰ decrease in the number of CFU/ml in cell suspensions exposed to DCS/β-lactam combinations compared to the most effective individual antibiotic alone.

Figure S6. Combination therapy with D-cycloserine and oxacillin significantly reduces the bacterial burden in the spleen of mice infected with MRSA. The number of colony-forming units (CFU) recovered from the spleens of mice infected by tail vein injection with 5×10^6 JE2 or NE810 (CycA) and left untreated or treated with 75mg of oxacillin (Ox)/kg, 30mg of DCS/kg or a combination of both Ox and DCS delivered subcutaneously every 12 hours for 5 days. The first antibiotic dose was given 16 hours after infection. Significant differences determined using one-way ANOVA with Kruskal-Wallis test followed by Dunn's multiple comparisons test are denoted using asterisks (* $p \leq 0.05$). The limit of detection (50 colonies) is indicated with a dashed red line.

Figure S7. Amino acid consumption by JE2 and NE810 grown aerobically in chemically defined media lacking glucose (CDM). Residual amino acids were measured in spent media after 2, 4, 6 and 8 h growth.