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Abstract 22 

Synthetic biological circuits are promising tools for developing sophisticated systems for medical, 23 

industrial, and environmental applications. So far, circuit implementations commonly rely on gene 24 

expression regulation for information processing using digital logic. Here, we present a new 25 

approach for biological computation through metabolic circuits designed by computer-aided tools, 26 

implemented in both whole-cell and cell-free systems. We first combine metabolic transducers to 27 

build an analog adder, a device that sums up the concentrations of multiple input metabolites. 28 

Next, we build a weighted adder where the contributions of the different metabolites to the sum 29 

can be adjusted. Using a computational model trained on experimental data, we finally implement 30 

two four-input “perceptrons” for desired binary classification of metabolite combinations by 31 

applying model-predicted weights to the metabolic perceptron. The perceptron-mediated neural 32 

computing introduced here lays the groundwork for more advanced metabolic circuits for rapid 33 

and scalable multiplex sensing.   34 
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 1 

Introduction 2 

Living organisms are information-processing systems that integrate multiple input signals, 3 

perform computations on them, and trigger relevant outputs. The multidisciplinary field of 4 

synthetic biology has combined their information-processing capabilities with modular 5 

and standardized engineering approaches to design sophisticated sense-and-respond 6 

behaviors1-3. Due to similarities in information flow in living systems and electronic 7 

devices4, circuit design for these behaviors has often been inspired by electronic circuitry, 8 

with substantial efforts invested in implementing logic circuits in living cells4–6. 9 

Furthermore, synthetic biological circuits have been used for a range of applications 10 

including biosensors for detection of pollutants7,8 and medically-relevant biomarkers9,10, 11 

smart therapeutics11,12, and dynamic regulation and screening in metabolic 12 

engineering13,14. 13 

 14 

Synthetic circuits can be implemented at different layers of biological information 15 

processing, such as: (i) the genetic layer comprising transcription15 and translation16,  (ii) 16 

the metabolic layer comprising enzymes17,18, and (iii) the signal transduction layer 17 

comprising small molecules and their receptors19,20. Most designs implemented thus far 18 

have focused on the genetic layer, developing circuits that perform computations using 19 

elements such as feedback control21, memory systems22,23, amplifiers24,25, toehold 20 

switches26, or CRISPR machinery27,28. However, gene expression regulation is not the 21 

only way through which cells naturally perform computation. In nature, cells carry out 22 

parts of their computation through metabolism, receiving multiple signals and distributing 23 

information fluxes to metabolic, signaling, and regulatory pathways17,29,30. Integrating 24 

metabolism into synthetic circuit design can expand the range of input signals and 25 

communication wires used in biological circuits, while bypassing some limitations of 26 

temporal coordination of gene expression cascades31,32. 27 

The number of inputs processed by synthetic biological circuits has steadily increased 28 

over the years, including physical inputs like heat, light, and small molecules such as 29 

oxygen, IPTG, aTc, arabinose and others21,33-36. However, most of these circuits process 30 

input signals using digital logic, which despite its ease of implementation lacks the power 31 

that analog logic can offer1,37,38. The power of combining digital and analog processing is 32 

exemplified by the “perceptron”, the basic block of artificial neural networks inspired by 33 

human neurons39 that can, for instance, be trained on labelled input datasets to perform 34 

binary classification. After the training, the perceptron computes the weighted sum of 35 

input signals (analog computation) and makes the classification decision (digital 36 

computation) after processing it through an activation function. 37 

Here we describe the development of complex metabolic circuitry implemented using 38 

analog logic in whole-cell and cell-free systems by means of enzymatic reactions. For 39 
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circuit design, we first employ computational design tools, Retropath40 and Sensipath41, 1 

that use biochemical retrosynthesis to predict metabolic pathways and biosensors. We 2 

then build and model three whole-cell metabolic transducers and an analog adder to 3 

combine their outputs. Next, we transfer our metabolic circuits to a cell-free system42,43 in 4 

order to take advantage of the higher tunability and the rapid characterization it offers44-5 
46, expanding our system to include multiple weighted transducers and adders. Finally, 6 

using our integrated model trained on the cell-free metabolic circuits we build a more 7 

sophisticated device called the “metabolic perceptron”, which allows desired binary 8 

classification of multi-input metabolite combinations by applying model-predicted weights 9 

on the input metabolites before analog addition, and demonstrate its utility through two 10 

examples of four-input binary classifiers. Altogether, in this work we demonstrate the 11 

potential of synthetic metabolic circuits, along with model-assisted design, to perform 12 

complex computations in biological systems. 13 

 14 

 15 

Results 16 

 17 

Whole-cell processing of hippurate, cocaine and benzaldehyde inputs  18 

To identify the metabolic circuits to build, we use our metabolic pathway design tools, 19 

Retropath40 and Sensipath41. These tools function using a set of sink compounds at the 20 

end of a metabolic pathway, here metabolites from a dataset of detectable compounds47, 21 

and a set of source compounds that can be used as desired inputs for the circuit. The 22 

tools then propose pathways and the enzymes that can catalyze the necessary reactions, 23 

allowing for promiscuity. Our metabolic circuit layers are organized according to the main 24 

processing functions: transduction and actuation (Figure 1a). Transducers are the 25 

simplest metabolic circuits that function as sensing enabling metabolic pathways 26 

(SEMP)48, consisting of one or more enzymes that transform an input metabolite into a 27 

transduced metabolite. The transduced molecule, in turn, is detected through an actuation 28 

function that is implemented using a transcriptional regulator.     29 

 30 

We used benzoate as our transduced metabolite, its associated transcriptional activator 31 

BenR, and the responsive promoter pBen to construct the actuator layer of our whole-cell 32 

metabolic circuits49. To compare the shape of the response curve, we constructed the 33 

actuator layer in two formats: (i) an open-loop circuit (Figure 1b) and (ii) a feedback-loop 34 

circuit (Figure S1). When compared to the open-loop format, the feedback-loop circuit 35 

has previously been shown to exhibit linear dose-response to input21,50. We found that 36 

while the feedback-loop format does linearize the actuator response curve, apparent 37 

toxicity at high benzoate concentrations reduces the usable activator dynamic range 38 

(Figure S1). Therefore, we selected the open-loop format due to its higher dynamic range 39 
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of activation (Figure 1c), setting the maximum concentration of benzoate used in this 1 

work to the saturation point of this open-loop circuit. 2 

    3 

Building on our previous work48, we next implemented three upstream transducers that 4 

convert different input metabolites into benzoate for detection by the actuator layer 5 

already tested. The transducer layers were composed of enzymes HipO for hippurate 6 

(Figure 1d), CocE for cocaine (Figure 1e), and vdh for benzaldehyde (Figure 1f). 7 

Compared to the benzoate output signal, we found that the transduction capacities of the 8 

three transducers were 99.6%, 49.2%, and 77.8%, respectively (Supplementary Figure 9 

S2), indicating a partial dissipation in signal.  10 

 11 

 12 

 13 
Figure 1. Whole-cell actuator and metabolic transducers. (a) Designed synthetic metabolic circuits 14 

using Retropath40 or Sensipath41 consist of a transducer layer and an actuator layer. (b) Open-loop circuit 15 

construction of the benzoate actuator, which is used downstream of transducer metabolic circuits in this 16 

work. For the open-loop circuit, the transcription factor (TF) is expressed constitutively under control of the 17 

promoter J23101 and RBS B0032. (c) Dose-response plot of the open-loop circuit for the benzoate actuator. 18 
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The gray curve is a model-fitted curve (see Methods section) for the open-loop circuit. (d,e,f) Whole-cell 1 

metabolic transducers for hippurate (d), cocaine (e) and benzaldehyde (f) represented in dose-response 2 

plots (orange circles) and their associated dose-response when there is no enzyme present (blue circles). 3 

The red dotted lines refer to the maximum signal from the actuator (c). The transducer output benzoate is 4 

reported through the open-loop circuit actuator. The enzymes are expressed under constitutive promoter 5 

J23101 and RBS B0032. All data points and the error bars are the mean and standard deviation of 6 

normalized values from three measurements. 7 

 8 

 9 

A Whole-cell metabolic concentration adder  10 

A metabolic concentration adder is a device composed of more than one transducer that 11 

converts their respective input metabolites into a common transduced output metabolite. 12 

For our whole-cell concentration adder, we combined two transducers to build a 13 

hippurate-benzaldehyde adder actuated by the benzoate circuit (Figure 2a). Unlike digital 14 

bit-adders that exhibit an ON-OFF digital behavior, our metabolic adders exhibit a 15 

continuous analog behavior that is natural for metabolic signal conversion51 (Figure 2b 16 

and Supplementary Figure S3) . Increasing the concentration of one of the inputs at any 17 

fixed concentration of the other shows an increase in the output benzoate, and thus in the 18 

resulting fluorescence (Figure 2b and Supplementary Figure S3). 19 

 20 

The maximum output signal for our adder, when hippurate and benzaldehyde were both 21 

at the maximum concentration of 1000 µM, was lower than the maximum signal produced 22 

by hippurate and benzaldehyde transducers alone (Supplementary Figure S2). 23 

However, as seen above, the difference between the maximum signal of their transducers 24 

and the actuator was smaller. This dissipation in signal from the transducers to the adders 25 

and from the actuators to the transducers (Supplementary Figure S2) could either be 26 

because of resource competition (as a result of adding more genes) or because of 27 

enzyme efficiency (as a result of poorly balanced enzyme stoichiometries). To test these 28 

two hypotheses, we investigated the effect of the enzymes on cellular resource allocation. 29 

For this purpose, the cocaine transducer and the hippurate-benzaldehyde adder were 30 

characterized by adding benzoate to these circuits (Supplementary Figures S4 and S5). 31 

Comparing the results of these characterizations with the benzoate actuator reveals that 32 

dissipation in signal from the transducers to the adders is due to resource competition, 33 

whereas that from the actuators to the transducers is due to enzyme efficiency. 34 

 35 

In order to gain quantitative understanding of the circuits’ behavior, we empirically 36 

modeled their individual components to see if we were able successfully capture their 37 

behavior. We first modeled the actuator (gray curve in Figure 1c) using Hill formalism52 38 

as it is the component that is common to all of our outputs and therefore constrains the 39 

rest of our system. We then modeled our transducers, considering enzymes to be 40 

modules that convert their respective input metabolites into benzoate, which is then 41 
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converted to the fluorescence output already modeled above. This simple empirical 1 

modeling strategy reproduces our transducer data (results not shown). To incorporate 2 

observations made in Supplementary Figure S4 and S5, we included resource 3 

competition in our models to explain circuits with one or more transducers. To this end, 4 

we extended the Hill model to account for resource competition following previous 5 

works53,54, with a fixed pool of available resources for enzyme and reporter protein 6 

production that is depleted by the transducers. This extension is further presented in the 7 

Methods section. We trained our model on all transducers, with and without resource 8 

competition (i.e. individual transducers, or transducers where another enzyme competes 9 

for the resources). This model (presented in gray lines in Figure 1d,e,f and Figure 2c), 10 

which was not trained on adder data but only on actuator, transducer, and transducers 11 

with resource competition data, recapitulates it well. This indicates that the model 12 

accounts for all important effects underlying the data. The full training process is 13 

presented in the Methods section, and a table summarising scores of estimated goodness 14 

of fit of our model is presented in Supplementary Table S1. 15 

 16 

 17 
Figure 2. Whole-cell metabolic adder of hippurate and benzaldehyde. (a) Hippurate and benzaldehyde 18 

transducers are combined to build a metabolic adder producing a common output, benzoate, which is 19 

reported through the benzoate actuator. The enzymes are expressed in one operon under control of 20 

constitutive promoter J23101 and RBSs B0032 for HipO and B0034 for vdh. (b) Heatmap representing the 21 

output of the adder while increasing the concentration of both inputs, hippurate and benzaldehyde.  All data 22 

points are the mean of normalized values from three measurements. (c) Model simulations for experimental 23 

conditions presented in (b). The model was fitted on transducer data and resource competition data. 24 

 25 

 26 
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Cell-free processing of multiple metabolic inputs  1 

Cell-free systems have recently emerged as a promising platform42 that provide rapid 2 

prototyping of large libraries by serving as an abiotic chassis with low susceptibility to 3 

toxicity. We took advantage of an E. coli cell-free system with the aim of increasing the 4 

computational potential of metabolic circuits in several ways (Figure 3a). Firstly, a higher 5 

number of genes can be simultaneously and combinatorially used to increase the 6 

complexity and the number of inputs for our circuits. Secondly, the lower noise provided 7 

by the absence of cell growth and maintenance of cellular pathways55 improves the 8 

predictability and accuracy of the computation. Thirdly, having genes cloned in separate 9 

plasmids enables independent tunability of circuit behavior by varying the concentration 10 

of each part individually. Finally, cell-free systems are highly adjustable for different 11 

performance parameters and components. In all, these advantages of cell-free systems 12 

enable us to develop more complex computations than the whole-cell adder.  13 

 14 

Following from our recent work56, we first characterized a cell-free benzoate actuator to 15 

be used downstream of other metabolic transducers. Figure 3a shows a schematic of the 16 

cell-free benzoate actuator composed of a plasmid encoding the BenR transcriptional 17 

activator and a second plasmid expressing sfGFP reporter under the control of a pBen 18 

promoter. This actuator showed a higher operational range than the whole-cell 19 

counterpart (Figure 1c). The optimal concentration of the TF plasmid (30 nM) and the 20 

reporter plasmid (100 nM) were taken from our recent study56. Following successful 21 

implementation of the actuator, we proceeded to build five upstream cell-free transducers 22 

for hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol (Figure 23 

3c,d,e,f,g) that convert these compounds to benzoate. Each of the five transducers used 24 

10 nM of enzyme DNA per reaction, except the biphenyl-2,3-diol transducer that used two 25 

metabolic enzymes with 10 nM DNA each.   26 

 27 

Compared to its whole-cell counterpart (Figure 1f), in the cell-free transducer reaction 28 

(Figure 3e) benzaldehyde appears to spontaneously oxidise to benzoate without the 29 

need of the transducer enzyme vdh. This behavioral difference between the whole-cell 30 

and cell-free setups could be due to the difference in redox states inside an intact cell and 31 

the cell-free reaction mix57,58. Furthermore, benzamide and biphenyl-2,3-diol transducers 32 

exhibit inhibition in fluorescence outputs at very high (1000 μM) input concentrations. 33 

 34 
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 1 
Figure 3. Cell-free actuator and metabolic transducers. (a) Implementing benzoate actuator and 2 

transducers in E. coli transcription/translation (TXTL) cell-free system. Cell-free reactions are composed of 3 

cell lysate, reaction buffer (energy source, tRNAs, amino acids, etc.) and DNA plasmids. (b) Dose-response 4 

plot of the benzoate actuator in the cell-free system with 30 nM of TF-plasmid (constitutively expressed 5 

BenR) and 100 nM of reporter plasmid (pBen-sfGFP) per reaction. The data points represent the dose-6 

response of the actuator to different concentrations of benzoate and the gray curve is a model-fitted curve 7 

on actuator data (c,d,e,f,g). Cell-free transducers coupled with the benzoate actuator for hippurate (c), 8 

cocaine (d), benzaldehyde (e), benzamide (f), and biphenyl-2,3-diol (g), which is composed of two 9 

enzymes. All enzymes are cloned in a separate plasmid under the control of a constitutive promoter J23101 10 

and RBS B0032. 10 nM of each plasmid was added per reaction. The bars are the response of the circuits 11 

to different concentrations of input with (transducers, black bars) and without enzyme (red bars). All data 12 

are the mean and the error bars are the standard deviation of normalized values from three measurements 13 

(RFU: Relative Fluorescence Unit). 14 

 15 

 16 

 17 
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Cell-free weighted transducers and adders  1 

After characterizing different transducers in the cell-free system that enable building a 2 

multiple-input metabolic circuit, we sought to rationally tune the transducers. Cell-free 3 

systems allow independent tuning of each plasmid by pipetting different amounts of DNA. 4 

We applied this advantage to weight the flux of enzymatic reactions in cell-free 5 

transducers (Figure 4a). The concentration range we used was taken from our recent 6 

study56, in order to have an optimal expression with minimum resource competition. We 7 

built four weighted transducers for hippurate (Figure 4b), cocaine (Figure 4c), 8 

benzamide (Figure 4d) and biphenyl-2,3-diol (Figure 4e). Increasing the concentration 9 

of the enzymes produces a higher amount of benzoate from the input metabolites, and 10 

hence higher GFP fluorescence. Compared to the others, the hippurate transducer 11 

reached higher GFP expression at a given concentration of the enzyme and the input, 12 

and biphenyl-2,3-diol reached the weakest signal. For the biphenyl-2,3-diol transducer 13 

built with two enzymes (Figure 4e), both enzymes are added at the same concentration 14 

(e.g., 1 nM of “enzyme DNA” indicates 1 nM each of plasmids encoding enzymes bphC 15 

and bphD). 16 

 17 
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 1 
Figure 4. Cell-free weighted transducers characterized by varying the concentration of the enzyme 2 

DNA. (a) In the cell-free system, the circuits can be tuned by varying the amount of each enzyme pipetted 3 

per reaction. Weighted transducers are characterized by varying the concentration of the enzymes in 4 

transducers which then are reported through the benzoate actuator. The range of the concentrations was 5 

varied to get optimal expression and minimum resource competition. (b,c,d,e) Heatmaps representing 6 

weighted transducers at different concentrations of input molecules and enzymes DNA for hippurate (b), 7 

cocaine (c), benzamide (d) and biphenyl-2,3-diol (e). For the biphenyl-2,3-diol weighted transducer (e), 8 

concentrations represent those of each metabolic plasmid (e.g., 1 nM of “enzyme DNA” refers to 1 nM of 9 

bphC plus 1 nM of bphD). See Supplementary Figure S6 for model results of each weighted transducer. 10 

All data are the mean of normalized values from three measurements. (RFU: Relative Fluorescence Unit). 11 

 12 

 13 

 14 
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Data in Figure 4 show that similar output levels can be achieved for different input 1 

concentrations, provided the appropriate transducer concentrations are used. In the next 2 

step, we applied this finding to build hippurate-cocaine weighted adders by altering either 3 

the concentration of the enzymes or the concentration of the inputs (Figure 5a). The 4 

fixed-input adder is an adder in which the concentration of inputs, hippurate and cocaine, 5 

are fixed to 100 µM and the concentration of the enzymes is altered (top panel in Figure 6 

5b). In this device, the weight of the reaction fluxes is continuously tunable. We then 7 

characterized a fixed-enzyme adder by fixing the concentration of the enzymes (1 nM for 8 

HipO, 3 nM for CocE; the cocaine signal is weaker, which is why a higher concentration 9 

of its enzyme is used) and varying the inputs, hippurate and cocaine (top panel in Figure 10 

5c).  11 

 12 

In order to have the ability to build any weighted adder with predictable results, we 13 

developed a model that accounts for the previous data. We first empirically modeled the 14 

actuator (gray curve in Figure 3b) since all other functions are constrained by how the 15 

actuator converts metabolite data (benzoate) into a detectable signal (GFP). We then 16 

trained our model with individual weighted transducers (Supplementary Figure S6) and 17 

predicted the behaviors of the weighted adders (bottom panel in Figure 5b,c). The results 18 

shown in Figure 5b,c indicate that our model describes the adders well, despite being 19 

trained only on transducer data. Supplementary Table S2 summarizes the different 20 

scores to estimate goodness of fit of our model. Briefly, the model quantitatively captures 21 

the data but tends to overestimate values at intermediate enzyme concentration ranges 22 

and does not capture the inhibitory effect observed at the high concentration of 23 

benzamide or biphenyl-2,3-diol, as this was not accounted for in the model.  24 

 25 

Using the above strategy, we can build any weighted adder for which we have pre-26 

calculated the weights using the model on weighted transducers. We use this ability in 27 

the following section to perform more sophisticated computation for a number of 28 

classification problems.  29 

 30 

 31 

 32 

 33 
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 1 

 2 

Figure 5. Multiple transducers are combined to shape an adder while weighing inputs or enzymes. 3 

(a) Cell-free adder characterization by varying the concentration of either inputs or enzymes producing 4 

different levels of fluorescence through the actuator. (b) Heatmap showing fixed-input adder in which the 5 

inputs, hippurate and cocaine, are fixed to 100 µM and concentrations of associated enzyme are altered 6 

by altering the concentration of plasmid DNA encoding them. Top: Cell-free experiment of hippurate-7 

cocaine fixed-input (weighted) adder. Bottom: Model simulation (prediction) of hippurate-cocaine fixed-input 8 

(weighted) adder. (c) Fixed-enzyme adder with fixed concentrations of the enzyme DNAs, 1 nM for HipO 9 

and 3 nM for CocE, and various concentrations of the inputs, hippurate and cocaine. Top: Cell-free 10 

experiment of hippurate-cocaine fixed-enzyme adder. Bottom: Model simulations (prediction) of hippurate-11 

cocaine fixed-enzyme adder. All data are the mean of normalized values from three measurements. (RFU: 12 

Relative Fluorescence Unit). 13 

 14 

 15 
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Cell-free perceptron for binary classifications 1 

The perceptron algorithm was first developed to computationally mimic the neuron’s 2 

ability to process information, learn, and make decisions59. Perceptrons are the basic 3 

blocks of artificial neural networks enabling the learning of deep patterns in datasets by 4 

training the model’s input weights60. Like a neuron, the perceptron receives multiple input 5 

signals (xi) and triggers an output depending on the weighted (wi) sum of the inputs39. A 6 

perceptron can be used to classify a set of input combinations after it is trained on labeled 7 

data. In binary classification, the weighted sum is first calculated (Σwi.xi) and an activation 8 

function (f), coupled with a decision threshold d, finally makes the decision: ON if f(Σwi.xi) 9 

> d, OFF otherwise (Figure 6a). The activation function could be linear or non-linear 10 

(Sigmoid, tanh, ReLU, etc.) depending on the problem61, although a sigmoid is generally 11 

used for classification.  12 

 13 

Since our weighted transducer models have already been trained on the cell-free 14 

experimental data, we checked if we could use them to calculate the weights needed to 15 

classify different combinations of two inputs: hippurate and cocaine. We tested our model 16 

on five different binary classification problems, A to E (Supplementary Figure 7). For 17 

each problem, the two types of data were represented as a cluster of dots on the scatter 18 

plot. The trained model was then used to identify weights needed to be applied to the 19 

weighted transducers such that a decision threshold ‘d’ exists to classify the two clusters 20 

into red (ON, >d) or blue (OFF, <= d). The lines shown in Supplementary Figure 7 plots 21 

show three iso-fluorescence lines that represent the threshold that classifies the data into 22 

the binary categories: ON and OFF. These theoretical classification problems 23 

demonstrate the ability of our trained perceptron model to successfully carry out binary 24 

classification. 25 

 26 

Using the integrated model from our weighted transducers and adders, we next sought 27 

to design four-input classifiers using a metabolic perceptron, and test them 28 

experimentally. Our metabolic perceptron is a device enabling signal integration of 29 

multiple inputs with associated weights, represented by enzyme DNA concentrations 30 

(Figure 6b). The 4-input adder performs the weighted sum and the benzoate actuator 31 

acts as the activation function of the metabolic perceptron. The weights can be adjusted 32 

to implement different classification functions. To illustrate the potential of building 33 

perceptrons with metabolic weighted adders, we computed adder weights using our 34 

model for two different classifiers: a simple classifier equivalent to a “full OR” gate (Figure 35 

6c), and a more complex classifier equivalent to a “[cocaine AND hippurate] OR 36 

benzamide OR biphenyl-2,3-diol” gate (Figure 6d). Weight calculation methods are 37 

reported in the Methods section. 38 

 39 
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For the classifiers, the input metabolites are fixed to 100 µM, as it allows the best ON-1 

OFF behavior for all inputs and weight-tuning according to model simulations (results not 2 

shown). The model accurately predicted weights to obtain the simple “full OR” classifier 3 

behavior (Figure 6d), as well as cocaine, benzamide, and biphenyl-2,3-diol weights for 4 

the second complex classifier. The initial weights computed by the model are presented 5 

in Supplementary Figure S8. The optimal weight of HipO (hippurate transducing 6 

enzyme) was calculated to be 0.1 nM, which leads to higher signals than predicted, 7 

particularly for the “ON” behavior with only hippurate. To further characterize the HipO 8 

weights at still lower concentrations of the enzyme, we performed an additional 9 

complementary characterization (Supplementary Figure S9). Our aim here was to find 10 

a weight for HipO through which a classifier outputs a low signal (“OFF”) with only 11 

hippurate and high signal (“ON”) when coupled with other inputs. We arrived at 0.03 nM 12 

HipO which exhibited this shifting behavior between “OFF” and “ON” (Figure 6d and 13 

Supplementary Figure S9). Using our model-guided design and rapid cell-free 14 

prototyping on the HipO weight, we were able to design two 4-input binary classifiers. In 15 

Figure 6c,d red circles are the weights predicted with 0.03 nM for HipO and the bars are 16 

experimental results. All actual values of the model and the experiments are provided in 17 

Supplementary Table S7.  18 
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 1 
Figure 6. Cell-free perceptron enabling development of classifiers. (a) A perceptron scheme showing 2 

the inputs and their associated weights, the computation core, and the output. The perceptron computes 3 

the weights and actuates the weighted sum through an activation function. (b) Metabolic perceptron 4 

integrating multiple inputs and actuating an output. The benzoate actuator acts as the activation function of 5 

the perceptron reporting the sum of benzoate produced by the metabolic perceptron. Hippurate, cocaine, 6 

benzamide, and biphenyl-2,3-diol are the inputs of the metabolic perceptron fixed to 100 µM. The weights 7 

of the perceptron are the concentration of the enzymes calculated using the model made on weighted 8 

metabolic circuits (red circles). These weights are calculated to develop two classifiers using the metabolic 9 

perceptron and benzoate actuator. “Full OR” classifier (c), “[cocaine (C) AND hippurate (H)] OR benzamide 10 

(B) OR biphenyl-2,3-diol (F)” classifier (d) are the two classifiers built using this metabolic perceptron. The 11 

“Full OR” classifier (c) classifies to “OFF” when none of the inputs is present and it passes an arbitrary 12 
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threshold to “ON” when any of the inputs or their combinations are present. The second classifier (d) 1 

performs a more complex computation. The shading represents the arbitrary threshold that allows for 2 

perceptron decision making and the panel of “OFF” and “ON” at the top of the bars are the expected output 3 

of the classifiers. All data are the mean and the error bars are the standard deviation of normalized values 4 

from three measurements and red circles are the model predictions. (RFU: Relative Fluorescence Unit).   5 

 6 

 7 

Discussion  8 

 9 

Computing in synthetic biological circuits has largely relied on digital logic-gate circuitry 10 

for almost two decades5,62, treating inputs as either absent (0) or present (1). While such 11 

digital abstraction of input signals provides conceptual modularity for circuit design, it is 12 

less compatible with the physical-world input signals that vary between low and high 13 

values on a continuum37. As a result, digital biological circuits must carefully match input-14 

output dynamic ranges at each layer of signal transmission to ensure successful signal 15 

processing2,30. More recently, the higher efficiency of analog computation on continuous 16 

input has been recognized63, and some analog biological circuits have started 17 

emerging21. In this regard, using metabolic pathways for cellular computing seems like a 18 

natural progression for analog computation in biological systems21,30. 19 

 20 

In this study, we investigated the potential of metabolism to perform analog computations 21 

using synthetic metabolic circuits. To that end, we first established a benzoate actuator 22 

to report the output from our metabolic circuits in both whole-cell and cell-free systems 23 

(Figures 1c and 3b). Upstream of the actuator, we constructed hippurate, cocaine, and 24 

benzaldehyde transducers in the whole-cell system (Figures 1d,e,f) and a metabolic 25 

adder by combining the benzaldehyde and hippurate transducers (Figure 2). Similarly, 26 

we constructed hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol 27 

transducers in the cell-free system (Figures 3c,d,e,f,g) and weighted adders by 28 

combining them (Figure 5). Compared to the numerous digital biological devices, which 29 

compute through multi-layered genetic logic circuits, the metabolic adder is a simple one-30 

layered device with fast execution times. 31 

 32 

Our computational models trained only on the actuator and transducer data predicted 33 

adder behaviors with high accuracy (Supplementary Tables S1 and S2). This further 34 

enabled us to calculate the required weights for more complex “metabolic perceptrons” 35 

that compute weighted sums from multiple inputs and use them to classify the multi-input 36 

combinations in a binary manner (Figures 6 and S7). Although we used fixed 37 

concentrations of inputs to demonstrate the ability of our perceptrons to classify, models 38 

trained on characterization data from weighted transducers should enable one to build 39 

classifiers for other concentrations in the operational range of the transducers 40 

(Supplementary Figure S10). Indeed, as shown in Figures 4 and 5, for different input 41 
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concentrations in the operational range the weight of the input can be tuned through the 1 

concentration of the enzyme DNA. To the best of our knowledge, the metabolic adders 2 

and perceptrons presented in this work are the first engineered biological circuits that use 3 

metabolism for analog computation.   4 

 5 

Unlike genetic circuits that experience expression delays2, metabolic circuits have the 6 

advantage of faster response times since the enzymes have already been expressed in 7 

the system. Yet, metabolic circuits can be connected with the other layers of cellular 8 

information processing (like genetic or signal transduction layers) when needed, to build 9 

more complex sense-and-respond behaviors. The actuator layer of our perceptrons is a 10 

good example of this, where the calculated weighted sum is converted to fluorescence 11 

output via the genetic layer. In addition, we took advantage of the properties of cell-free 12 

systems, such as higher tunability and lack of toxicity56,64, to rapidly build and characterize 13 

multiple combinations of transducer-actuator circuits. Cell-free systems can be lyophilized 14 

on paper and stored at ambient temperature for <1 year for diagnostic applications16. This 15 

expands the potential scope of cell-free metabolic perceptrons for use in multiplex 16 

detection of metabolic profiles in medical or environmental samples16,56. 17 

 18 

Here, we have built a single-layer perceptron, with positive weights, that can classify 19 

different profiles of input metabolites by applying different weights to each transducer. In 20 

the future, by adding competing or attenuating reactions that reduce the concentration of 21 

the transduced metabolite in response to an input, it may be possible to expand the 22 

training space by applying negative weights to certain inputs65. Furthermore, a single-23 

layer perceptron can only classify data that is linearly separable66, which means that it 24 

should be possible to draw a line between the two classes of data points in order for the 25 

perceptron to classify them (Supplementary Figure S7). In contrast, multi-layer 26 

perceptrons, can approximate any function67 and can be used for more complex pattern 27 

recognition tasks68. With the use of bioretrosynthesis-based computational tools for 28 

metabolic pathway design, like Retropath40 and Sensipath41, it will be possible to build 29 

multiple layers of metabolic perceptrons that can classify complex patterns of metabolic 30 

states in vivo, or identify different metabolite concentrations in analytical samples. Finally, 31 

it may also be possible to apply in situ learning  (within the whole-cell or cell-free 32 

environment) by applying winner selection strategies on successful classifiers69. 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
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 25 

Methods 26 

 27 

Designing synthetic metabolic circuits 28 

Retropath40 and Sensipath41 were used to design the metabolic circuits between potential 29 

input metabolites and detectable metabolites as outputs47. These tools function using a 30 

set of sink compounds, a set of source compounds, and a set of chemical rules47,70 31 

implementing enzyme-mediated chemical transformations. They then use retrosynthesis 32 

to propose pathways and the enzymes that can catalyze the necessary reactions, 33 

allowing promiscuity, between compounds from the sink and compounds from the source. 34 

To design the adder, the Retropath software was used with a set of detectable 35 

compounds as the sink and the molecules we wish to use as circuit inputs as the source. 36 

The results were potential pathways and the associated enzymes, which were then 37 

analyzed for feasibility. The sequences of the enzymes were codon-optimized, 38 

synthesized and implemented in E. coli or taken from a previous study.  39 
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 1 

Molecular biology 2 

All plasmids were made using Golden Gate assembly in E. coli Mach1 chemically 3 

competent cells. Whole-cell constructs were cloned in BioBrick standard vectors pSB1K3 4 

(high-copy plasmid) and pSB4C5 (low-copy plasmid) and the TF and all the enzymes 5 

were constitutively expressed under constitutive promoter J23101 and RBS B0032. All 6 

cell-free plasmids were cloned in pBEAST56 (a derived vector from pBEST71). BenR cell-7 

free plasmid and its cognate responsive prompter, pBen, expressing super-folder GFP 8 

were taken from our recent work56. All other cell-free enzymes were cloned under 9 

constitutive promoter J23101 and RBS B0032. Sequence and source of all the genes and 10 

parts are available in Supplementary Table S5. Synthetic sequences were provided by 11 

Twist Bioscience. Enzymes for cloning including Q5 DNA polymerase, BsaI, and T4 DNA 12 

ligase were purchased from New England Biolabs. DNA plasmids for cell-free reactions 13 

were prepared using the Macherey-Nagel maxiprep kit.  14 

  15 

 16 

Characterization of whole-cell circuits 17 

For each circuit separate colonies of E. coli top10 strains harboring the circuit plasmids 18 

were cultured overnight at 37℃ in LB with appropriate antibiotic. The next day each culture 19 

was diluted 100x in LB with antibiotics. 95 µL of fresh cultures were distributed in 96-well 20 

plate (Corning 3603) and the plate was incubated to reach the OD ~ 0.1 in a plate reader 21 

(Biotek Synergy HTX). Then 5 µL of the input metabolites (100x ethanol solutions 5x 22 

diluted in LB) were added and the plate was incubated for 18 hours at 37℃. During the 23 

incubation, the OD600 and GFP fluorescence (gain: 35, ex: 458 nm, em: 528 nm) were 24 

measured. Benzoate, hippurate, cocaine hydrochloride, benzaldehyde, benzamide and 25 

biphenyl-2,3-diol (2,3-dihydroxy-biphenyl) were purchased from Sigma-Aldrich. 26 

Permission to purchase cocaine hydrochloride was given by the French drug regulatory 27 

agency (Agence Nationale de Sécurité du Médicament et des Produits de Santé). For all 28 

chemicals, serial dilutions of 100x concentrations were prepared in ethanol. The formula 29 

presenting the results of the circuits’ characterization is shown in data normalization 30 

section. The mean and standard deviation of all normalized data are provided in 31 

Supplementary Table S6.  32 

 33 

 34 

Cell-free extract and buffer preparation 35 

Cell-free E. coli extract was produced as previously described56,72,73. Briefly, an overnight 36 

culture of BL21 Star (DE3)::RF1-CBD3 E. coli was used to inoculate 4L of 2xYT-P media 37 

in six 2 L flasks at a dilution of 1:100. The cultures were grown at 37°C with 220 rpm 38 

shaking for approximately 3.5-4 hours until the OD 600 = 2-3. Cultures were centrifuged 39 

at 5000 x g at 4°C for 12 minutes. Cell pellets were washed twice with 200 mL S30A 40 
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buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7), centrifuging after 1 

each wash at 5000 x g at 4°C for 12 minutes. Cell pellets were then resuspended in 40 2 

mL S30A buffer and transferred to pre-weighed 50 mL Falcon conical tubes where they 3 

were centrifuged twice at 2000 x g at 4°C for 8 and 2 minutes, respectively, removing the 4 

supernatant after each. Finally, the tubes were reweighed and flash frozen in liquid 5 

nitrogen before storing at -80°C. 6 

 7 

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram of cell 8 

pellet. Cell suspensions were lysed via a single pass through a French press 9 

homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at 12000 10 

x g at 4°C for 30 minutes to separate out cellular cytoplasm. After centrifugation, the 11 

supernatant was collected and incubated at 37°C with 220 rpm shaking for 60 minutes. 12 

The extract was recentrifuged at 12000 x g at 4°C for 30 minutes, and the supernatant 13 

was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs; Spectra/Por4) and 14 

dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60 mM K-glutamate, ~5 mM 15 

Tris, pH 8.2) overnight at 4°C. The following day, the extract was re-centrifuged one final 16 

time at 12000 x g at 4°C for 30 minutes, aliquoted, and flash frozen in liquid nitrogen 17 

before storage at -80°C. 18 

 19 

The buffer for cell-free reactions is composed such that final reaction concentrations were 20 

as follows: 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM HEPES, 21 

1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM 22 

NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, and 2% 23 

PEG-8000. Additionally, the Mg-glutamate (0-6 mM), K-glutamate (20-140 mM), and DTT 24 

(0-3 mM) levels were serially calibrated for each batch of cell-extract for maximum signal. 25 

One batch of buffer was made for each batch of extract, aliquoted, and flash frozen in 26 

liquid nitrogen before storage at -80°C. 27 

 28 

Characterization of cell-free circuits 29 

Cell-free reactions were performed in 15.75 µL of the mixture of 33.3% cell extract, 41.7% 30 

buffer, and 25% plasmid DNA, input metabolites, and water. The reactions were prepared 31 

in PCR tubes on ice and 15 µL of each was pipetted into 384-well plates (Thermo 32 

Scientific 242764). GFP fluorescence out of each circuit was recorded in the plate reader 33 

at 30℃ (gain: 50, ex: 458 nm, em: 528 nm). The background (cell-free reaction without 34 

any plasmid) corrected fluorescence data were normalized by 20 ng/µL of a plasmid 35 

expressing strong constitutive sfGFP (under OR2-OR1-Pr promoter56) and were plotted 36 

after 8 hours incubation. The mean and standard deviation of all normalized data are 37 

provided in Supplementary Table S7.  38 

 39 
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Data normalization: 1 

For whole-cell data, we use the following normalization: 2 

 3 

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒(𝑖𝑛𝑝𝑢𝑡) =  
𝐺𝐹𝑃(𝑖𝑛𝑝𝑢𝑡) − 𝐺𝐹𝑃(𝐿𝐵)

𝑂𝐷(𝑖𝑛𝑝𝑢𝑡) − 𝑂𝐷(𝐿𝐵)
−  

𝐺𝐹𝑃(𝑒𝑚𝑝𝑡𝑦_𝑝𝑙𝑎𝑠𝑚𝑖𝑑) − 𝐺𝐹𝑃(𝐿𝐵)

𝑂𝐷(𝑒𝑚𝑝𝑡𝑦_𝑝𝑙𝑎𝑠𝑚𝑖𝑑) − 𝑂𝐷(𝐿𝐵)
 4 

 5 

Reference: cells harboring empty plasmids 6 

 7 

For cell-free data, we consider Relative Fluorescence Unit (RFU): 8 

 9 

𝑅𝐹𝑈(𝑖𝑛𝑝𝑢𝑡) =  
𝐺𝐹𝑃(𝑖𝑛𝑝𝑢𝑡) − 𝐺𝐹𝑃(𝑒𝑥𝑡𝑟𝑎𝑐𝑡)

𝐺𝐹𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) − 𝐺𝐹𝑃(𝑒𝑥𝑡𝑟𝑎𝑐𝑡)
 10 

Reference: 20 ng/µL of a plasmid expressing the constitutive sfGFP under OR2-OR1-Pr 11 

promoter56. 12 

 13 

Simulation tools and parameter fitting: 14 

All data analysis and simulations were run on R (version 3.2.3)74. Dose-response curves 15 

were fitted using ordinary least squares errors and the R optim function (from Package 16 

stats version 3.2.3, using the L-BFGS-B method implementing the Limited-memory 17 

Broyden Fletcher Goldfarb Shanno algorithm, which is a quasi-Newton method). For the 18 

random parameter sampling around the mean fit, values were sampled from within +-1.96 19 

standard error of the mean of the parameter estimation. The seed was set so as to ensure 20 

reproducibility. All simulations were run in the Rstudio development environment75.  21 

All parameters are presented in Supplementary Tables S3 and S4. 22 

 23 

 24 

Whole-cell model 25 

The whole-cell model is composed of three parts: the actuator, the transducers (which all 26 

obey the same law) and the resource competition.  27 

 28 

𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟(𝑡𝑜𝑡𝑎𝑙) = (
(𝑡𝑜𝑡𝑎𝑙)ℎ𝑖𝑙𝑙_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(𝐾𝑀)ℎ𝑖𝑙𝑙_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + (𝑡𝑜𝑡𝑎𝑙)ℎ𝑖𝑙𝑙_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
∗ 𝑓𝑜𝑙𝑑𝑐ℎ𝑎𝑛𝑔𝑒 + 1) ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 29 

 30 

where total is the concentration of the considered input (in µM), KM is the concentration 31 

that allows for half-maximum induction (in µM), also termed IC50, hill_transfer is the Hill 32 

coefficient that characterizes the cooperativity of the induction system, fold_change is the 33 

dynamic range (in AU) and baseline is the basal GFP fluorescence without input 34 

(benzoate). 35 

 36 
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𝑇𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟(𝑖𝑛𝑑𝑢𝑐𝑒𝑟) = 𝑖𝑛𝑑𝑢𝑐𝑒𝑟 ∗ 𝑟𝑎𝑛𝑔𝑒_𝑒𝑛𝑧𝑦𝑚𝑒 1 

Where input is the input concentration in µM and range_enzyme is a dimensionless 2 

number characterizing the capacity of the enzyme to transduce the signal. When 3 

combining transducers with the actuator, transducer results are added before being fed 4 

into the actuator equation, just as benzoate concentrations are added before being 5 

converted to a fluorescent signal in the cell. 6 

 7 

To account for resource competition, given our experimental results where there is little 8 

competition with one enzyme and significant competition with two, we used an equation 9 

including cooperativity of resource competition. This reduces the fold change of the 10 

actuator as there are less resources available for producing transcription factors and 11 

GFP.  12 

 13 
𝑅𝑒𝑠𝑢𝑙𝑡(𝑣𝑎𝑙𝑢𝑒) = 14 

𝑟𝑎𝑛𝑔𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∗ 𝑣𝑎𝑙𝑢𝑒 ∗ (
(𝑡𝑜𝑡𝑎𝑙𝑒𝑛𝑧𝑦𝑚𝑒)𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

(𝑡𝑜𝑡𝑎𝑙𝑒𝑛𝑧𝑦𝑚𝑒)𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 + (𝑐𝑜𝑐𝑒 + 𝑏𝑒𝑛𝑧 + 𝑟𝑎𝑡𝑖𝑜ℎ𝑖𝑝𝑏𝑒𝑛𝑧 ∗ ℎ𝑖𝑝𝑜)𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
) 15 

 16 

where value is the result of the actuator transfer function before accounting for resource 17 

competition, range_resources, total_enzyme, cooperativity resources characterize the 18 

Hill function that accounts for competition, coce, benz and hipo are the enzyme plasmid 19 

concentrations. ratio_hip_benz accounts for the differences in burden from different 20 

enzymes, its value around 0.8 is close to the ratio between enzyme lengths (1500 for 21 

benzaldehyde transducing enzyme and 1200 for HipO). 22 

 23 

 24 

Cell-free model 25 

The model is composed of two parts: the actuator and the transducers. 26 

 27 

𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟(𝑡𝑜𝑡𝑎𝑙) = (
(𝑡𝑜𝑡𝑎𝑙)ℎ𝑖𝑙𝑙_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(𝐾𝑀)ℎ𝑖𝑙𝑙_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟+ (𝑡𝑜𝑡𝑎𝑙)ℎ𝑖𝑙𝑙_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗ 𝑓𝑜𝑙𝑑𝑐ℎ𝑎𝑛𝑔𝑒 + 1) ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +  𝑠𝑙𝑜𝑤𝑒𝑟_𝑠𝑙𝑜𝑝𝑒 ∗  0.0001 ∗  𝑡𝑜𝑡𝑎𝑙  28 

where total is the concentration of the considered input metabolite (in µM), Km is the 29 

concentration that allows for half-maximum induction (in µM), also termed IC50, 30 

hill_transfer is the Hill coefficient that characterizes the cooperativity of the induction 31 

system, fold_change is the dynamic range (in AU) and baseline is the basal GFP 32 

fluorescence without input (benzoate). Slower_slope accounts for the linearity observed 33 

in the actuator behavior at concentrations saturating the Hill transfer function. 34 

 35 

𝑇𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟(𝑖𝑛𝑝𝑢𝑡) = 𝑟𝑎𝑛𝑔𝑒𝑒𝑛𝑧𝑦𝑚𝑒 ∗ (
(𝐸)ℎ𝑖𝑙𝑙𝐸

(𝐾𝐸)ℎ𝑖𝑙𝑙𝐸 +  (𝐸)ℎ𝑖𝑙𝑙𝐸
)) ∗ (

(𝑖𝑛𝑝𝑢𝑡)ℎ𝑖𝑙𝑙𝑖𝑛𝑝𝑢𝑡

(𝐾𝐼)ℎ𝑖𝑙𝑙𝑖𝑛𝑝𝑢𝑡 +  (𝑖𝑛𝑝𝑢𝑡)ℎ𝑖𝑙𝑙𝑖𝑛𝑝𝑢𝑡
))  36 
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Where range_enzyme is a dimensionless number characterizing the capacity of the 1 

enzyme to transduce the signal. The activity of the enzyme is characterized by a Hill 2 

function as increasing concentrations do not lead to a linear increase but enzymes 3 

saturate (E is the enzyme quantity in nM, KE and hillE are its Hill constants), and similarly, 4 

input is the input metabolite concentration in µM with KI and hill_input as its Hill constants. 5 

 6 

When combining transducers, transducer results are added before being fed into the 7 

actuator equation, just as benzoate concentrations are added before being converted to 8 

the fluorescent signal in the cell. 9 

 10 

Full model training process 11 

Our training process is detailed in the Readme files supporting our modeling scripts 12 

provided in GitHub and is summarized here. 13 

 14 

As the first step, the actuator transfer function model (benzoate transformed into 15 

fluorescence) is fitted 100 times on the actuator data, with all actuator parameters allowed 16 

to vary. The mean, standard deviation, standard error of the mean and confidence interval 17 

were saved at 95% of the estimation of those parameters. For transducer fitting (all 18 

transducers in cell-free and all except cocaine in whole-cell), we constrained the actuator 19 

characteristics in the following way: upper and lower allowed values are within the 95% 20 

confidence interval (or plus or minus one standard deviation from the mean for fold 21 

change and baseline in cell-free as it allowed a wider range, accounting for the decrease 22 

in actuator signal in transducer experiments without affecting the shape of the sigmoid). 23 

The initial values for the fitting process were sampled from a Gaussian distribution 24 

centered on the mean parameter estimation and spread with a standard deviation equal 25 

to the standard error of this parameter estimation. We then allowed fitting of all transducer 26 

parameters freely and of the actuator parameters within their 95% confidence interval. 27 

 28 

Once this is done, all common parameters (actuator transfer function and resource 29 

competition) were sampled using the same procedure and fitting on the cocaine 30 

transducer was performed. To show that parameters are well constrained (proving they 31 

minimally explain the data), Supplementary Figures S11 and S12 show results of 32 

sampling parameters from the final parameters distribution (without fitting at that stage) 33 

and how they compare to the data. 34 

 35 

Objective functions and model scoring: 36 

In order to evaluate and compare our models, we used the following functions. 37 

𝑅𝑀𝑆𝐷 =  √
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 −  𝑦𝑖
𝑝𝑟𝑒𝑑)2𝑛

1

𝑛
 38 

 39 
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It measures how close the model is to the experiments. It allows for comparison of 1 

different models on the same data, the one with the smaller RMSD being better, but does 2 

not allow comparison between experiments. 3 

𝑅2 = 1 −  
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 −  𝑦𝑖
𝑝𝑟𝑒𝑑)2𝑛

1

∑ (𝑦𝑖
𝑡𝑟𝑢𝑒 −  𝑦𝑚𝑒𝑎𝑛

𝑡𝑟𝑢𝑒)2𝑛
1

 4 

𝑅2 allows measuring the goodness of fit. When the prediction is only around the sample 5 

mean, 𝑅2 = 0. When the predictions are close to the real experimental value, 𝑅2 gets 6 

closer to 1, whereas it can have important negative values when the model is really far 7 

off. 8 

Weighted 𝑅2 = 1 −  
∑

(𝑦𝑖
𝑡𝑟𝑢𝑒− 𝑦𝑖

𝑝𝑟𝑒𝑑)2

𝑠𝑡𝑑𝑖
2

𝑛
1

∑
(𝑦𝑖

𝑡𝑟𝑢𝑒− 𝑦𝑚𝑒𝑎𝑛
𝑡𝑟𝑢𝑒)2

𝑠𝑡𝑑𝑖
2

𝑛
1

. 9 

 10 

It is a variant of 𝑅2 that weights samples according to their experimental error, giving more 11 

weight o more certain samples. It otherwise has the same properties as 𝑅2. 12 

 13 

𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝑎𝑏𝑠 (
𝑦𝑖

𝑡𝑟𝑢𝑒 −  𝑦𝑖
𝑝𝑟𝑒𝑑

𝑦𝑖
𝑡𝑟𝑢𝑒

)  ∗  100 14 

This measures the percentage of error for each point. We present the average on all 15 

experiments in Supplementary Tables S1 and S2. 16 

 17 

 18 

 19 

Perceptron weights calculation 20 

In order to calculate the weights for the classifiers presented in Figure 6, we followed the 21 

following procedure. First, we defined the expected results (expressed in “OFF”s and 22 

“ON”s). We also defined a list of weights to test for each enzyme (here, between 0.1 nM 23 

and 10 nM, as tested in our weighted transducers). Then, for each combination of enzyme 24 

weights, we simulated the outcome of the classifiers for all possible input combinations. 25 

We then tested various possible thresholds and kept the enzyme combinations for which 26 

a threshold exists that allows for the expected behavior. As the last step, we manually 27 

analyzed the classifier to keep the ones both a high difference between ON and OFF, 28 

and a minimal enzyme weight to prevent resource competitions issues that could arise as 29 

we are adding more genes than previous experiments. In order to perform clusterings 30 

presented in Supplementary Figure S8, we sampled values uniformly within the stated 31 

ranges ([0, 2µM] for low values and [80, 100µM] for high values). We then simulated the 32 

results to assess the robustness of our designs. 33 

 34 

 35 

 36 
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Binary clustering experiments 1 

In order to perform the binary/2D clustering experiments, we sampled values uniformly 2 

within the stated ranges ([0, 2µM] for low values and [80, 100µM] for high values). For 3 

different weight (HipO and CocE) values, we simulated the fluorescence output of each 4 

of those cocaine-hippurate combinations. Moreover, for different threshold values (3, 3.5 5 

and 4, as presented in Supplementary Figure S7),  we numerically solved for the 6 

benzoate concentration such that 7 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑏𝑒𝑛𝑧𝑜𝑎𝑡𝑒) = 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 8 

and then for values of cocaine and hippurate such that  9 

𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟(𝑐𝑜𝑐𝑎𝑖𝑛𝑒) + 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟(ℎ𝑖𝑝𝑝𝑢𝑟𝑎𝑡𝑒) = 𝑏𝑒𝑛𝑧𝑜𝑎𝑡𝑒 10 

This equation with two unknowns gives us a curve of cocaine and hippurate values that 11 

would lie on our decided threshold for this set of weights. All combinations on the top right 12 

of that curve will be classified to “ON” and all combinations below will be classified to 13 

“OFF”. 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
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Code and data availability: 1 

All scripts and data for generating results presented in this paper are available at 2 

https://github.com/brsynth.  3 

 4 

 5 

Biological and chemical identifiers 6 

In order to allow easier parsing of our article by bioinformatics tools, we provide here the 7 

identifiers of our biological sequences and chemical compounds. 8 

 9 

Benzoate (Benzoic acid): InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9) 10 

Hippurate (Hippuric acid):  InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-11 

5H,6H2,(H,10,13)(H,11,12) 12 

Cocaine: InChI=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-13 

16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1 14 

Benzaldehyde: InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H 15 

Biphenyl-2,3-diol: InChI=1S/C12H10O2/c13-11-8-4-7-10(12(11)14)9-5-2-1-3-6-9/h1-16 

8,13-14H 17 

Benzamide: InChI=1S/C7H7NO/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H2,8,9) 18 

 19 

BenR identifier: UniProtKB - Q9L7Y6 20 

HipO identifier: UniProtKB - P45493 21 

CocE identifier: UniProtKB - Q9L9D7 22 

vdh identifier: UniProtKB - D0RZT4 23 

bphC identifier: UniProtKB - P17297 24 

bphD identifier: UniProtKB - Q52036 25 

Benzamide transforming enzyme identifier: UniProtKB - B4XEY3 26 

 27 

Sequence and source of all the genes and parts are available in Supplementary Table 28 

S5 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
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Supplementary Figure S1. Feedback-loop circuit design of the benzoate actuator. (a) The 

open-loop circuit (Figure 1b) versus a feedback-loop circuit for the benzoate actuator. In the 

feedback-loop actuator the TF is expressed under its responsive promoter, pBen, in a low copy 

plasmid and sfGFP reporting the signal in a high copy plasmid1. (b) The dose-response of the 

feedback-loop versus the open-loop circuit (Figure 1c) to different concentrations of benzoate. 

All data points and the error bars are the mean and standard deviation of normalized values from 

three measurements. 
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Supplementary Figure S2. Comparison of the maximum signal of whole-cell circuits. 

Comparison of the maximal signal of hippurate, benzaldehyde, and cocaine transducers (beige) 

as well as hippurate-benzaldehyde adder (orange) with benzoate actuator (blue). The maximum 

signal of all the circuits are at maximum concentration of their inputs (1000 µM). The percentage 

in each bar represents its value with regard to maximum signal of benzoate in benzoate actuator.  

All data points and the error bars are from the results presented in Figures 1 and 2. 
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Supplementary Figure S3. 2D plots for the data presented in heatmap in Figure 2b. These 

14 plots help visualize the linearity of metabolic addition. At the top of each plot the columns/rows 

of the heatmap in Figure 2b have been addressed.  
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Supplementary Figure S4. Examining the effect of resource competition on the whole-cell 

cocaine transducer. To study these effects on the single-enzyme metabolic circuit, the following 

experiment was performed: cocaine transducer (with the highest signal dissipation among the 

three tested in Figure 1) was supplied with benzoate input, to test the effect of enzymes on only 

cellular resource allocation but not conversion of inputs to benzoate. The cocaine transducer with 

benzoate input shows a behavior similar or close to the benzoate actuator. All data points and the 

error bars are the mean and standard deviation of normalized values from three measurements. 
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Supplementary Figure S5. Examining the effect of enzyme efficiency on the whole-cell 

metabolic adder. To study these effects on the two-enzyme metabolic circuit (adder) the 

following experiment was performed: hippurate-benzaldehyde adder was supplied with benzoate 

input, to test the effect of enzymes on only cellular resource allocation but not conversion of inputs 

to benzoate. The adder with benzoate input shows a behavior similar to the adder inputted with 

hippurate and benzaldehyde. All data points and the error bars are the mean and standard 

deviation of normalized values from three measurements. 
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Supplementary Figure S6. Weighted transducers model results. The model simulations for 

experimental conditions presented in Figure 4. (a,b,c,d) Heatmaps representing model 

simulations for weighted transducers at different concentrations of input molecules and enzymes  

DNA for hippurate (a), cocaine (b), benzamide (c) and biphenyl-2,3-diol (d). 
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Supplementary Figure S7. Five different binary classification problems using a 

metabolic perceptron for hippurate and cocaine. (A to E). For each problem, the 

scatter plot shows multiple data points that represent a combination of input values of 

cocaine and hippurate. The concentrations for those points are sampled between 0 and 

2µM for low values and 80 and 100 µM for high values. The data points in each problem 

belong to two different sets that can be separated by a threshold line into two separate 

clusters. The trained model is then used to identify weights needed to be applied to the 

weighted transducers such that a decision threshold ‘d’ classifies the two clusters into red 

(ON, >d) or blue (OFF, <= d). The threshold lines shown in the plots represent three iso-

fluorescence lines that successfully classify the data into the binary categories: ON and 

OFF. 
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Supplementary Figure S8. Model simulations for classifiers in Figure 6. Predictions 

associated with (a) the full OR classifier (Figure 6c) and (b) the first calculation for “[cocaine (C) 

AND hippurate (H)] OR benzamide (B) OR biphenyl-2,3-diol (F)” classifier with 0.1 nM HipO 

weight with (instead of 0.03 as experimentally tested and presented in Figure 6d). In order to 

perform the clusterings, we sampled values uniformly within the stated ranges ([0, 2µM] for low 

values and [80, 100µM] for high values). We then simulated the results to assess the robustness 

of our designs. The blue and green lines refer to the thresholds separating “OFF” and “ON” states. 

The panel of “OFF” and “ON”  at the top of the plots are the expected outputs. (RFU: Relative 

Fluorescence Unit). 
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Supplementary Figure S9. Further characterization of HipO enzyme (hippurate 

transforming enzyme) at lower concentrations of the enzyme and 100 µM hippurate. HipO 

enzyme which for its weight led to higher signals than predicted, needed to be further 

characterized at concentrations lower than the minimum concentration used for the 

weighted metabolic circuits (0.1 nM). For this characterization, this figure shows the effect 

of 100 µM hippurate input alone and its additive effect when coupled with 100 µM cocaine at 

the weight (CocE enzyme concentration) of 0.1 nM. All data are the mean and the error bars are 

the standard deviation of normalized values from three measurements. (RFU: Relative 

Fluorescence Unit). 
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Supplementary Figure S10. Exploring Hippurate-Cocaine ON-OFF behavior with different 

weights and input concentrations for hippurate. All these experiments were done while 

Cocaine is at concentration of 100 uM and weight of 0.1 nM CocE. All data are the mean and the 

error bars are the standard deviation of normalized values from three measurements. (RFU: 

Relative Fluorescence Unit). 
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Supplementary Figure S11. Simulations from the random sampling of estimated 

parameters in whole-cell system. Representation of the experimental data with SEM (n = 3) in 

black, and in blue, the results from 100 simulations of the model with parameters drawn from the 

final parameters estimation without refitting. The combination of various parameters within our 

estimations correctly recapitulates the data. (A) benzoate actuator, (B) benzaldehyde transducer, 

(C) cocaine transducer, and (D) hippurate transducer. Scripts provided in GitHub also allow for 

visualization of those results for each axis of the adder in Figure 2. 
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Supplementary Figure S12. Simulations from the random sampling of estimated 

parameters in the cell-free system. Representation of the experimental data with SEM (n = 3) 

in black, and in blue, the results from 100 simulations of the model with parameters drawn from 

the final parameters estimation without refitting. The combination of various parameters within our 

estimations correctly recapitulates the data. (A) benzoate actuator, (B) benzamide transducer, (C) 

biphenyl-2,3-diol transducer, (D) cocaine transducer, and (E) hippurate transducer. The 

simulation of the transducers were performed with 100 µM of the input metabolites as will be used 

in the classifier experiments. Scripts provided in GitHub also allow for visualisation of those results 

for other axis of the various heatmaps in Figure 4. (RFU: Relative Fluorescent/expression Unit of 

GFP).  
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Supplementary Table S1. Goodness of fit scores for the whole-cell models. The correlation 

(from the R cor function), Weighted R squared and R squared between the experimental data and 

the model. Exact definition of the weighted R squared and the R squared are provided in the 

Methods section, as well as the RMSD that is used to compare models.      

 

Score Correlation Weighted R 

squared 

R squared Error 

percentage 

Fit or 

prediction 

Actuator 0.999   0.999 

  

0.999 

  

NA 

 

Fit 

Benzaldehyde 

transducer 

0.995 

   

0.992 

 

  

0.980 

 

  

NA Fit 

Hippurate 

Transducer  

0.997 0.990  0.983 NA Fit 

Cocaine 

Transducer 

0.965 0.950 0.924 NA Fit 

Adder - 

complete 

0.958 0.982  0.916  16.8 % Fit (on 

inducer = 0)  

and 

prediction 

Adder - both 

inputs present 

0.947 0.931 0.889 15.3 % Prediction 
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Supplementary Table S2. Goodness of fit scores for the cell-free models. 

        

Score Correlation Weighted R 

squared 

R squared Error 

percentage 

Fit or 

prediction 

Actuator 0.990 0.999  0.980  NA Fit 

Cocaine 

Transducer 

0.923 0.999 0.574 NA Fit 

Hippurate 

Transducer 

0.984 0.999  0.962 NA Fit 

Benzamide 

Transducer 

0.946 0.991 0.659  NA Fit 

2,3 biphenyl 

Transducer 

0.965 0.998  0.762  NA Fit 

Fixed enzyme 

Adder 

0.910  0.998  0.653  10.1% Prediction 

Fixed inducer 

adder 

0.919  0.986 0.784 16.0% 

 

Prediction 

Full OR 

classifier 

0.973 0.980 0.823 9% Prediction 

(C AND H) OR 

B Or F- Fig7 

0.985 0.999 0.913 16.9 % Prediction 
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Supplementary Table S3. Parameter estimations for in vivo model. Mean value plus and 

minus 95% Confidence Interval 

 

 

Parameter Mean Value +- 95 Confidence Interval 

Hill_transfer 1.34 +- 1 e-6  

Km 114 +- 1 e-4 

Fold_change 20.6 +- 3 e-5 

Baseline 130 +- 2 e-4 

Range_BenZ 1.1 +- 1 e-6 

Range_HipO 0.787 +- 1 e-6 

Range_CocE 0.201 +- 2.97 e-3 

total_enzyme 4.22 +- 0.193 

Ratio_hip_benz 0.776 +- 3.7 e-3 

Cooperativity_resource 1.956 +- 4.56 e-2 

Range_resource 1.973 +- 0.107 
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Supplementary Table S4. Parameter estimations for cell-free model. Mean value plus and 

minus 95% Confidence Interval (Standard Deviation for fold change and baseline) 

 

Parameter Mean Value +- 95 CI 

Hill_transfer 2.2 +- 0.1 

Km 8.40 +- 9 e-3 

Fold_change 137 +- 1.84 (sd : 9.41) 

Baseline 3.29 e-2 +- 4 e-4  (sd : 2 e-3 ) 

Slower_slope 8.19 +- 9.3 e-2 

Range_HipO 488 +- 35 

HipO_constant 0.396 +- 0.022 

Hippurate_constant 245 +- 29 

Hill_HipO 1.82 +- 0.052 

Hill_hippurate 1.205 +- 0.046 

Range_CocE 337 +- 28 

CocE_constant 0.799 +- 0.00017 

Cocaine_constant 54 .4 +- 5.04 

Hill_CocE 1.713 +- 0.055 

Hill_cocaine 1.44 +- 0.047 
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range_benzamid_enz 234 +- 20 

benzamid_enz_constant 3.73 +- 0.27 

benzamid_constant 48.6 +- 5.5 

hill_benzamid_enz 0.683 +- 0.072 

hill_benzamid 0.906 +- 0.087 

range_biphenyl_enz 63.7 +6- 4.79 

biphenyl_enz_constant 8.63 +- 0.31 

biphenyl_constant 56.3 +- 4.92 

hill_biphenyl_enz 1.25 +- 0.067 

hill_biphenyl 3.05 +- 0.192 

  

 

 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/616599doi: bioRxiv preprint 

https://doi.org/10.1101/616599
http://creativecommons.org/licenses/by/4.0/


 

 

 

S21 

 

 

Supplementary Table S5. List of sequences and their source used in this study. 

 

Sequence Description//Nucleotide sequence 

BenR 
 
UniProtKB - Q9L7Y6 

 

 

Taken from Libis et al.2 

Transcription factor for benzoate, an activator from Pseudomonas putida3 
 
ATGGAATCTCGTCTGCTGTCTGAACGTTCTTCTGTTTTCCACCACGCTGACCCGTACGCTGTTTCTGACTACGTTAA
CCAGCACGTTGGTCAGCACTGCATCGGTCTGTCTCGTACCACCCACCCGCAGGCTTCTCTGTCTCACCGTAAATTC
GCTGAACTGGACCTGTGCCGTATCTCTTACGGTGGTTCTGTTCGTGTTACCTCTCCGGCTCTGGAAACCATCTACC
ACCTGCAGGTTCTGCTGAACGGTAACTGCCTGTGGCGTGGTCACAAACGTGAACAGCACCTGGTTCCGGGTGAAC
TGCTGCTGATCAACCCGGACGACCCGGTTGACCTGACCTACTCTGAAGACTGCGAAAAATTCATCCTGAAAGTTCC
GACCCGTCTGCTGGACTCTATCTGCGACGAACAGCGTTGGCAGCGTCCGGACGGTGGTGTTCGTTTCCTGCGTAA
CCACTACCGTCTGGACGAACTGGACGGTTTCGTTAACCTGCTGGCTATGGTTTGCCACGAAGCTGAAGTTTCTGAC
TCTCTGCCGCGTGTTCAGGGTCACTACTCTCAGATCGTTGCTTCTAAACTGCTGACCCTGATGTCTACCAACATCCG
TCGTGAATCTCTGTCTGCTCCGCAGGCTGGTCTGGAACGTATCCTGGACTACATCGAACGTAACCTGAAACTGGAA
CTGTCTGCTGAAGTTCTGGCTGAACAGGCTTGCATGTCTCTGCGTTCTCTGTACGCTCTGTTCGACCAGCACCTGG
GTATCACCCCGAAACACTACGTTCGTCAGCGTAAACTGGAACGTGTTCACGCTTGCCTGTCTGACCCGACCTGCGG
TGTTCGTTCTGTTACCGAACTGGCTCTGGACTACGGTTTCCTGCACCTGGGTCGTTTCTCTGAAATCTACCGTCAGC
AGTTCGGTGAACTGCCGTCTCAGACCTTCAAACGTCGTGCTTAA 

pBen 
 
Taken from Libis et al.2 

Promoter responsive to benzoate-BenR 
 
ACTGTTCGAAGCATTGCCATTTTCTGAAGTTACCGAAAAAGTACCGAACATCCGTAAATCTGGATAACGTTCTGCAC
AATCCGGATAGCCCCCCGCCAGCCGTCTCCCTAACCTGACCAGGTCTAAACAATAACAAGGGAGAGTCTGGCCAT
G 

           Superfolder GFP                                                               

(          (sfGFP) 

ATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCATA
AGTTTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTACTGG
TAAACTGCCGGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGAC
CATATGAAGCAGCATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAGG
ATGACGGCACGTACAAAACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAACCGCATTGAGCTGAAAG
GCATTGACTTTAAAGAAGACGGCAATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGCCACAATGTTTACATC
ACCGCCGATAAACAAAAAAATGGCATTAAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGC
TGGCTGATCACTACCAGCAAAACACTCCAATCGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAGCAC
GCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAACGCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCGGG
CATCACGCATGGTATGGATGAACTGTACAAATGATGA 

HipO 
 
UniProtKB - P45493 

 

 

Taken from Libis et al.2 

Hippurate hydrolase (EC: 3.5.1.32), Campylobacter jejuni 
Hippurate to benzoate  
 
ATGAACCTGATCCCGGAAATCCTGGACCTGCAGGGTGAATTCGAAAAAATCCGTCACCAGATCCACGAAAACCCGG
AACTGGGTTTCGACGAACTGTGCACCGCTAAACTGGTTGCTCAGAAACTGAAAGAATTCGGTTACGAAGTTTACGA
AGAAATCGGTAAAACCGGTGTTGTTGGTGTTCTGAAAAAAGGTAACTCTGACAAAAAAATCGGTCTGCGTGCTGACA
TGGACGCTCTGCCGCTGCAGGAATGCACCAACCTGCCGTACAAATCTAAAAAAGAAAACGTTATGCACGCTTGCGG
TCACGACGGTCACACCACCTCTCTGCTGCTGGCTGCTAAATACCTGGCTTCTCAGAACTTCAACGGTGCTCTGAAC
CTGTACTTCCAGCCGGCTGAAGAAGGTCTGGGTGGTGCTAAAGCTATGATCGAAGACGGTCTGTTCGAAAAATTCG
ACTCTGACTACGTTTTCGGTTGGCACAACATGCCGTTCGGTTCTGACAAAAAATTCTACCTGAAAAAAGGTGCTATG
ATGGCTTCTTCTGACTCTTACTCTATCGAAGTTATCGGTCGTGGTGGTCACGGTTCTGCTCCGGAAAAAGCTAAAGA
CCCGATCTACGCTGCTTCTCTGCTGATCGTTGCTCTGCAGTCTATCGTTTCTCGTAACGTTGACCCGCAGAACTCTG
CTGTTGTTTCTATCGGTGCTTTCAACGCTGGTCACGCTTTCAACATCATCCCGGACATCGCTACCATCAAAATGTCT
GTTCGTGCTCTGGACAACGAAACCCGTAAACTGACCGAAGAAAAAATCTACAAAATCTGCAAAGGTATCGCTCAGG
CTAACGACATCGAAATCAAAATCAACAAAAACGTTGTTGCTCCGGTTACCATGAACAACGACGAAGCTGTTGACTTC
GCTTCTGAAGTTGCTAAAGAACTGTTCGGTGAAAAAAACTGCGAATTCAACCACCGTCCGCTGATGGCTTCTGAAG
ACTTCGGTTTCTTCTGCGAAATGAAAAAATGCGCTTACGCTTTCCTGGAAAACGAAAACGACATCTACCTGCACAAC
TCTTCTTACGTTTTCAACGACAAACTGCTGGCTCGTGCTGCTTCTTACTACGCTAAACTGGCTCTGAAATACCTGAA
ATAA 
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CocE 
 
UniProtKB - Q9L9D7 

 

 

Taken from Libis et al.2 

and BsaI site removed 

Cocaine esterase (EC: 3.1.1.84), Rhodococcus sp. 
Cocaine to benzoate 
 
ATGGTTGACGGTAACTACTCTGTTGCTTCTAACGTTATGGTTCCGATGCGTGACGGTGTTCGTCTGGCTGTTGACCT
GTACCGTCCGGACGCTGACGGTCCGGTTCCGGTTCTGCTGGTTCGTAACCCGTACGACAAATTCGACGTTTTCGCT
TGGTCTACCCAGTCTACCAACTGGCTGGAATTTGTTCGTGACGGTTACGCTGTTGTTATCCAGGACACCCGTGGTC
TGTTCGCTTCTGAAGGTGAATTTGTTCCGCACGTTGACGACGAAGCTGACGCTGAAGACACCCTGTCTTGGATTTT
GGAACAGGCTTGGTGCGACGGTAACGTTGGTATGTTCGGTGTTTCTTACCTGGGTGTTACCCAGTGGCAGGCTGC
TGTTTCTGGTGTTGGTGGTCTGAAAGCTATCGCTCCGTCTATGGCTTCTGCTGACCTGTACCGTGCTCCGTGGTAC
GGTCCGGGTGGTGCTCTGTCTGTTGAAGCGCTGCTGGGTTGGTCTGCTCTGATCGGTACCGGTCTGATCACCTCT
CGTTCTGACGCTCGTCCGGAAGACGCTGCTGACTTCGTTCAGCTGGCTGCTATCCTGAACGACGTTGCTGGTGCT
GCTTCTGTTACCCCGCTGGCTGAACAGCCGCTGCTGGGTCGTCTGATCCCGTGGGTTATCGACCAGGTTGTTGAC
CACCCGGACAACGACGAATCTTGGCAGTCTATCTCTCTGTTCGAACGTCTGGGTGGTCTGGCTACCCCGGCTCTGA
TCACCGCTGGTTGGTACGACGGTTTCGTTGGTGAAAGCCTGCGTACCTTCGTTGCTGTTAAAGACAACGCTGACGC
TCGTCTGGTTGTTGGTCCGTGGTCCCACTCTAACCTGACCGGTCGTAACGCTGACCGTAAATTCGGTATCGCTGCT
ACCTACCCGATCCAGGAAGCTACCACCATGCACAAAGCTTTCTTCGACCGTCACCTGCGTGGTGAAACCGACGCAC
TTGCTGGTGTTCCGAAAGTTCGTCTGTTCGTTATGGGTATCGACGAATGGCGTGACGAAACCGACTGGCCGCTGCC
GGACACCGCTTACACCCCGTTCTACCTGGGTGGTTCTGGTGCTGCTAACACCTCTACCGGTGGTGGTACCCTGTCT
ACCTCTATCAGCGGTACCGAATCTGCTGACACCTACCTGTACGACCCGGCTGACCCGGTTCCGAGCCTGGGTGGT
ACCCTGCTGTTCCACAACGGTGACAACGGTCCGGCTGACCAGCGTCCGATCCACGACCGTGACGACGTTCTGTGC
TACTCTACCGAAGTTCTGACCGACCCGGTTGAAGTTACCGGTACCGTTTCTGCTCGTCTGTTCGTTTCTTCTTCTGC
TGTTGACACCGACTTCACCGCTAAACTGGTTGACGTTTTCCCGGACGGTCGTGCTATCGCTCTGTGCGACGGTATC
GTTCGTATGCGTTACCGTGAAACCCTGGTTAACCCGACCCTGATCGAAGCTGGTGAAATCTACGAAGTTGCTATCG
ACATGCTGGCTACCTCTAACGTTTTCCTGCCGGGTCACCGTATCATGGTTCAGGTTTCTTCTTCTAACTTCCCGAAA
TACGACCGTAACTCTAACACCGGTGGTGTTATCGCTCGTGAACAGCTGGAAGAAATGTGCACCGCTGTTAACCGTA
TCCACCGTGGTCCGGAACACCCGAGCCACATCGTTCTGCCGATCATCAAACGTTAA 

vdh 
 
UniProtKB - D0RZT4 

 

 

Codon optimized and 

chemically synthesized 

Aryl-aldehyde oxidase (EC: 1.2.3.9), Acinetobacter johnsonii SH046 
Benzaldehyde to benzoate 
 
ATGCACAACGTTCAGCTGAAACAGGACAACACCGTTGACACCTCTTCTTTCGAATCTGCTCCGAACGTTCACACCGT
TCAGCTGCTGATCCACGGTCAGTCTGTTGACGCTTCTAACCAGATGACCTTCAAACGTATCTCTCCGATCGACGGT
CAGGTTGCTTCTATCGCTGCTGCTGCTACCCTGGCTGACGTTGACCTGGCTATCGAATCTGCTGCTAAAGCTTTCC
CGATCTGGTCTAAACTGTCTCCGACCGAACGTCGTCTGCGTCTGCTGAAAGCTGCTGACCTGATGGACGCTCGTAC
CGACCAGTTCATCCAGATCGGTATGCGTGAAACCGGTTCTACCGCTACCTGGTACGGCTTCAACGTTCACCTCGCT
GCTAACATGCTGCGTGAAGCTGCTGCTATGACCACCCAGATGGACGGTTCTCTGATCCCGTCTGACGTTCCGGGTA
ACATGGCTATGGGTATCCGTGTTCCGTGCGGTGTTGTTGTTGGTATCGCTCCGTGGAACGCTCCGGTTATCCTGCC
GACCCGTGCACTGGCTATGCCGCTGGCTTGCGGTAACACCGTTGTTCTGAAAGCTTCTGAAGCTTGCCCGGCTAC
CCAGCGTCTGATCGGTCAGGTTCTGCACGAAGCTGGTCTGGGTGACGGTGTTGTTAACGTTATCACCCACGCTGCT
GAAGACGCTTCTCAGATCGTTGAACGTCTGATCTCTCACCCGGCTGTTAAACGTATCAACTTCACCGGTTCTACCAA
CGTTGGTAAAATCATCGCTGAAACCGCTGCTAAATACCTGAAACCGGTTCTGCTGGAACTGGGTGGTAAAGCTCCG
GTTGTTGTTCTGAACGAAGCTGACGTTGACGAAGCTGTTAACGCTGTTGTTTTCGGTGCTTTCTTCAACCAGGGTCA
GATCTGCATGTCTACCGAACGTGTTCTGGTTCAGGACCGTATCGCTGACCAGTTCATCGAAAAACTGATCGAAAAAA
CCCGTACCATCCACGCTGGTAACCCGACCTTCAAAGGTCACGTTCTGGGTGTTCTGGAATCTCAGCGTGCTGCTAA
CCGTATCCAGCACCTGCTGGAAGACGCTCAGTCTCAGGGTGCTGACCTGCCGCTGGGTATCCACATCCAGAACAC
CACCATGCAGCCGACCCTGGTTCTGAACATCCAGCCGGAAATGCTGCTGTACCGTGAAGAATCTTTCGGTCCGGTT
TGCACCGTTCAGCGTTTCAACTCTGTTGAAGAAGGTATCGCCCTGGCTAACGACTCTGAATTCGGTCTGTCTGCTG
CTGTTTTCTCTCAGGACATCGCTCAGGCCCTGGACGTTGCTAAACAGATCGACTCCGGTATCTGCCACATCAACGG
TGCTACCGTTCACGACGAAGCTCAGATGCCGTTCGGTGGTACCAAAGCTTCTGGTTACGGTCGTTTCGGTTCTAAA
GCTTCTATCGCTGAATTCACCGAACTGCGTTGGATCACCATCCAGACCCAGTCTCGTCACTACCCGATCTAA 

bphC 
 
UniProtKB - P17297 

 

 

Codon optimized and 

chemically synthesized 

Biphenyl-2,3-diol 1,2-dioxygenase (EC: 1.13.11.39), Pseudomonas sp. 
Biphenyl-2,3-diol to 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate  
 
ATGAGCATTGAACGCTTAGGTTACCTGGGTTTCGCAGTGAAAGATGTGCCAGCCTGGGACCACTTTCTGACGAAAT
CCGTGGGCTTAATGGCGGCCGGTAGCGCCGGAGATGCAGCCCTTTACCGTGCGGACCAACGTGCTTGGCGCATC
GCAGTACAACCTGGTGAGCTTGACGATTTAGCCTATGCAGGCTTAGAGGTGGACGACGCAGCTGCGCTTGAACGT
ATGGCGGACAAATTACGTCAAGCTGGTGTTGCGTTCACCCGTGGGGACGAGGCCCTGATGCAACAGCGCAAAGTG
ATGGGGCTTCTTTGCTTGCAGGATCCATTTGGATTACCTTTGGAAATCTATTATGGACCTGCTGAAATTTTCCACGAA
CCATTCTTGCCGTCTGCTCCTGTTTCCGGGTTCGTGACCGGGGACCAGGGTATTGGCCATTTTGTCCGTTGTGTTC
CCGATACAGCGAAGGCTATGGCTTTTTACACCGAGGTCCTTGGGTTCGTGCTTTCAGACATTATTGACATTCAAATG
GGGCCCGAGACTTCCGTTCCCGCTCACTTCTTACATTGCAACGGACGCCATCACACTATCGCTTTGGCCGCCTTTC
CCATTCCGAAACGTATCCACCACTTCATGTTACAGGCAAACACAATCGACGACGTGGGTTACGCATTTGATCGTCTG
GATGCAGCAGGGCGCATTACCTCGCTGCTGGGGCGTCACACCAATGATCAGACCCTGAGCTTTTACGCTGATACC
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CCAAGCCCCATGATTGAGGTCGAATTCGGTTGGGGCCCGCGTACAGTGGATTCCTCTTGGACCGTAGCGCGTCAC
TCGCGCACCGCTATGTGGGGGCATAAGTCTGTTCGCGGACAACGCTAA 
 

bphD 
 
UniProtKB - Q52036 

 

 

Codon optimized and 

chemically synthesized 

2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (EC: 3.7.1.8), Pseudomonas putida 
2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate to benzoate 
 
ATGACAGCATTGACTGAAAGCTCTACTAGCAAATTCCTTAACATCAAAGAGAAAGGCTTGTCCGACTTTAAGATTCAT
TATAATGAAGCGGGCAACGGTGAAACTGTCATCATGCTGCATGGCGGTGGACCGGGAGCCGGAGGATGGTCGAA
CTATTATCGTAATATCGGACCGTTCGTTGAAGCCGGTTACCGTGTCATTTTGAAGGATTCACCCGGCTTTAACAAAT
CCGATGCTGTCGTCATGGATGAACAACGTGGGCTTGTAAATGCTCGTGCGGTCAAGGGATTGATGGATGCTCTTGG
CATTGATCGTGCGCATCTGGTGGGAAATTCAATGGGAGGTGCAACCGCGCTTAACTTCGCCATCGAGTATCCAGAC
CGTATTGGAAAACTTATCCTTATGGGTCCGGGAGGTTTGGGACCCTCCATGTTTGCCCCAATGCCCTTAGAGGGAA
TTAAATTATTATTTAAGTTATATGCAGAGCCGTCGTATGAAAATCTGAAACAGATGATCCAAGTGTTCCTTTATGATCA
ATCTCTGATTACTGAGGAACTTTTACAAGGACGCTGGGAAGCCATTCAGCGTCAACCAGAACATCTTAAAAACTTCC
TGATTTCTGCGCAGAAGGCGCCCCTGAGTACGTGGGATGTTACCGCCCGTTTGGGAGAGATTAAGGCGAAGACCT
TCATTACATGGGGTCGTGACGACCGCTTCGTGCCGTTAGACCATGGTCTGAAACTTTTGTGGAATATTGATGACGC
ACGCTTGCACGTTTTTTCCAAGTGCGGACATTGGGCACAATGGGAGCATGCTGACGAGTTTAACCGCTTAGCCATT
GACTTTCTGCGCCAGGCTTAA 

UniProtKB - B4XEY3 
 
 
Codon optimized and 

chemically synthesized 

Amidase (EC: 3.5.1.4), Rhodococcus erythropolis 
Benzamide to benzoate 
 
ATGGCGACAATCCGTCCCGATGACAACGCAATTGACACGGCGGCCCGCCATTATGGCATCACCCTTGACCAAAGC
GCGCGTCTTGAGTGGCCCGCACTTATTGACGGAGCCTTAGGGAGCTACGACGTTGTTGACCAGCTGTACGCTGAT
GAAGCCACGCCGCCAACAACGTCGCGTGAACATACTGTCCCTACTGCTAGCGAAAATCCCCTTTCCGCCTGGTAC
GTTACGACCTCTATCCCCCCCACAAGTGACGGAGTGTTGACTGGACGCCGCGTCGCCATCAAAGATAACGTCACA
GTAGCTGGCGTGCCAATGATGAACGGCTCGCGTACCGTTGAGGGATTTACTCCGTCACGCGACGCCACTGTAGTC
ACTCGCCTGCTGGCTGCTGGTGCAACAGTAGCTGGAAAGGCTGTCTGTGAGGACTTATGCTTTTCTGGCTCTAGTT
TTACCCCAGCCTCGGGACCTGTTCGCAATCCCTGGGATCCGCAGCGCGAGGCAGGAGGAAGTTCCGGCGGAAGT
GCAGCATTAGTAGCAAATGGCGATGTCGACTTCGCAATTGGAGGTGACCAGGGTGGCTCCATCCGTATCCCGGCT
GCCTTTTGCGGCGTAGTCGGCCACAAGCCTACATTTGGACTTGTACCATATACGGGAGCCTTCCCAATCGAACGCA
CGATTGACCACCTTGGACCGATTACACGCACTGTCCATGACGCTGCACTTATGCTGTCAGTTATCGCAGGCCGCGA
TGGAAACGACCCTCGTCAAGCGGATAGTGTGGAAGCGGGCGACTACCTTAGTACTTTAGATAGCGACGTCGACGG
GTTACGTATCGGAATCGTACGTGAGGGTTTTGGCCACGCAGTCAGCCAACCGGAGGTAGACGACGCGGTTCGTGC
AGCGGCTCACAGCTTAGCAGAAATCGGATGCACAGTGGAAGAAGTGAACATTCCATGGCACCTGCATGCGTTTCAT
ATCTGGAATGTGATTGCCACCGATGGCGGTGCTTACCAAATGTTAGACGGGAACGGTTATGGAATGAATGCAGAAG
GTTTATACGACCCTGAACTTATGGCTCACTTCGCATCTCGTCGTCTTCAACATGCAGATGCCTTGTCTGAAACCGTT
AAGCTTGTAGCTCTGACCGGCCACCACGGGATTACGACATTAGGGGGCGCTTCGTACGGGAAAGCCCGCAACTTG
GTTCCGTTAGCGCGTGCAGCTTACGACACCGCGCTTCGTCAGTTCGACGTGCTTGTAATGCCAACTTTACCTTATG
TCGCCTCAGAATTACCAGCCAATGATGTCGACCGTGCAACTTTTATTACTAAGGCGCTTGGTATGATCGCTAACACA
GCACCTTTCGATGTAACAGGGCACCCGAGCTTATCAGTTCCAGCTGGCCTTGTAAATGGGTTACCTGTCGGTATGA
TGATTACTGGAAAGACTTTTGATGATGCGACAGTGCTTCGTGTAGGGCGTGCCTTTGAGAAATTACGTGGGGCCTT
TCCGACCCCTGCAGATCACATTTCGGATAGTGCCCCGCAATTAAGCCCTGCGTAA 

J23101-B0032 
 
From iGEM registry4 

Constitutive promoter-RBS 
 
AGGATACTAGAGGATGACCCCATCTGTTTACAGCTAGCTCAGTCCTAGGTATTATGCTAGCTAGTAGAGTCACACAG
GAAAGTAGTAGATG 
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