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Abstract

Synthetic biological circuits are promising tools for developing sophisticated systems for medical,
industrial, and environmental applications. So far, circuit implementations commonly rely on gene
expression regulation for information processing using digital logic. Here, we present a new
approach for biological computation through metabolic circuits designed by computer-aided tools,
implemented in both whole-cell and cell-free systems. We first combine metabolic transducers to
build an analog adder, a device that sums up the concentrations of multiple input metabolites.
Next, we build a weighted adder where the contributions of the different metabolites to the sum
can be adjusted. Using a computational model trained on experimental data, we finally implement
two four-input “perceptrons” for desired binary classification of metabolite combinations by
applying model-predicted weights to the metabolic perceptron. The perceptron-mediated neural
computing introduced here lays the groundwork for more advanced metabolic circuits for rapid
and scalable multiplex sensing.
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Introduction

Living organisms are information-processing systems that integrate multiple input signals,
perform computations on them, and trigger relevant outputs. The multidisciplinary field of
synthetic biology has combined their information-processing capabilities with modular
and standardized engineering approaches to design sophisticated sense-and-respond
behaviors!3. Due to similarities in information flow in living systems and electronic
devices?, circuit design for these behaviors has often been inspired by electronic circuitry,
with substantial efforts invested in implementing logic circuits in living cells*®.
Furthermore, synthetic biological circuits have been used for a range of applications
including biosensors for detection of pollutants’-?2 and medically-relevant biomarkers®10,
smart therapeutics''?, and dynamic regulation and screening in metabolic
engineering314,

Synthetic circuits can be implemented at different layers of biological information
processing, such as: (i) the genetic layer comprising transcription!® and translation'®, (ii)
the metabolic layer comprising enzymes'’*8 and (iii) the signal transduction layer
comprising small molecules and their receptors®2°, Most designs implemented thus far
have focused on the genetic layer, developing circuits that perform computations using
elements such as feedback control?t, memory systems?223, amplifiers®#2%, toehold
switches?8, or CRISPR machinery?’28, However, gene expression regulation is not the
only way through which cells naturally perform computation. In nature, cells carry out
parts of their computation through metabolism, receiving multiple signals and distributing
information fluxes to metabolic, signaling, and regulatory pathways’2%:20, Integrating
metabolism into synthetic circuit design can expand the range of input signals and
communication wires used in biological circuits, while bypassing some limitations of
temporal coordination of gene expression cascades332,

The number of inputs processed by synthetic biological circuits has steadily increased
over the years, including physical inputs like heat, light, and small molecules such as
oxygen, IPTG, aTc, arabinose and others?133-3¢_ However, most of these circuits process
input signals using digital logic, which despite its ease of implementation lacks the power
that analog logic can offer!37:38, The power of combining digital and analog processing is
exemplified by the “perceptron”, the basic block of artificial neural networks inspired by
human neurons??® that can, for instance, be trained on labelled input datasets to perform
binary classification. After the training, the perceptron computes the weighted sum of
input signals (analog computation) and makes the classification decision (digital
computation) after processing it through an activation function.

Here we describe the development of complex metabolic circuitry implemented using
analog logic in whole-cell and cell-free systems by means of enzymatic reactions. For
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circuit design, we first employ computational design tools, Retropath*® and Sensipath?!,
that use biochemical retrosynthesis to predict metabolic pathways and biosensors. We
then build and model three whole-cell metabolic transducers and an analog adder to
combine their outputs. Next, we transfer our metabolic circuits to a cell-free system*243 in
order to take advantage of the higher tunability and the rapid characterization it offers**
46 expanding our system to include multiple weighted transducers and adders. Finally,
using our integrated model trained on the cell-free metabolic circuits we build a more
sophisticated device called the “metabolic perceptron”, which allows desired binary
classification of multi-input metabolite combinations by applying model-predicted weights
on the input metabolites before analog addition, and demonstrate its utility through two
examples of four-input binary classifiers. Altogether, in this work we demonstrate the
potential of synthetic metabolic circuits, along with model-assisted design, to perform
complex computations in biological systems.

Results

Whole-cell processing of hippurate, cocaine and benzaldehyde inputs

To identify the metabolic circuits to build, we use our metabolic pathway design tools,
Retropath*® and Sensipath*!. These tools function using a set of sink compounds at the
end of a metabolic pathway, here metabolites from a dataset of detectable compounds?’,
and a set of source compounds that can be used as desired inputs for the circuit. The
tools then propose pathways and the enzymes that can catalyze the necessary reactions,
allowing for promiscuity. Our metabolic circuit layers are organized according to the main
processing functions: transduction and actuation (Figure 1a). Transducers are the
simplest metabolic circuits that function as sensing enabling metabolic pathways
(SEMP)“8, consisting of one or more enzymes that transform an input metabolite into a
transduced metabolite. The transduced molecule, in turn, is detected through an actuation
function that is implemented using a transcriptional regulator.

We used benzoate as our transduced metabolite, its associated transcriptional activator
BenR, and the responsive promoter pBen to construct the actuator layer of our whole-cell
metabolic circuits*®. To compare the shape of the response curve, we constructed the
actuator layer in two formats: (i) an open-loop circuit (Figure 1b) and (ii) a feedback-loop
circuit (Figure S1). When compared to the open-loop format, the feedback-loop circuit
has previously been shown to exhibit linear dose-response to input?-*0. We found that
while the feedback-loop format does linearize the actuator response curve, apparent
toxicity at high benzoate concentrations reduces the usable activator dynamic range
(Figure S1). Therefore, we selected the open-loop format due to its higher dynamic range
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of activation (Figure 1c), setting the maximum concentration of benzoate used in this
work to the saturation point of this open-loop circuit.

Building on our previous work*®, we next implemented three upstream transducers that
convert different input metabolites into benzoate for detection by the actuator layer
already tested. The transducer layers were composed of enzymes HipO for hippurate
(Figure 1d), CocE for cocaine (Figure 1le), and vdh for benzaldehyde (Figure 1f).
Compared to the benzoate output signal, we found that the transduction capacities of the
three transducers were 99.6%, 49.2%, and 77.8%, respectively (Supplementary Figure
S2), indicating a partial dissipation in signal.
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Figure 1. Whole-cell actuator and metabolic transducers. (a) Designed synthetic metabolic circuits
using Retropath#® or Sensipath#! consist of a transducer layer and an actuator layer. (b) Open-loop circuit
construction of the benzoate actuator, which is used downstream of transducer metabolic circuits in this
work. For the open-loop circuit, the transcription factor (TF) is expressed constitutively under control of the
promoter J23101 and RBS B0032. (c) Dose-response plot of the open-loop circuit for the benzoate actuator.
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The gray curve is a model-fitted curve (see Methods section) for the open-loop circuit. (d,e,f) Whole-cell
metabolic transducers for hippurate (d), cocaine (e) and benzaldehyde (f) represented in dose-response
plots (orange circles) and their associated dose-response when there is no enzyme present (blue circles).
The red dotted lines refer to the maximum signal from the actuator (c). The transducer output benzoate is
reported through the open-loop circuit actuator. The enzymes are expressed under constitutive promoter
J23101 and RBS B0032. All data points and the error bars are the mean and standard deviation of
normalized values from three measurements.

A Whole-cell metabolic concentration adder

A metabolic concentration adder is a device composed of more than one transducer that
converts their respective input metabolites into a common transduced output metabolite.
For our whole-cell concentration adder, we combined two transducers to build a
hippurate-benzaldehyde adder actuated by the benzoate circuit (Figure 2a). Unlike digital
bit-adders that exhibit an ON-OFF digital behavior, our metabolic adders exhibit a
continuous analog behavior that is natural for metabolic signal conversion®! (Figure 2b
and Supplementary Figure S3) . Increasing the concentration of one of the inputs at any
fixed concentration of the other shows an increase in the output benzoate, and thus in the
resulting fluorescence (Figure 2b and Supplementary Figure S3).

The maximum output signal for our adder, when hippurate and benzaldehyde were both
at the maximum concentration of 1000 puM, was lower than the maximum signal produced
by hippurate and benzaldehyde transducers alone (Supplementary Figure S2).
However, as seen above, the difference between the maximum signal of their transducers
and the actuator was smaller. This dissipation in signal from the transducers to the adders
and from the actuators to the transducers (Supplementary Figure S2) could either be
because of resource competition (as a result of adding more genes) or because of
enzyme efficiency (as a result of poorly balanced enzyme stoichiometries). To test these
two hypotheses, we investigated the effect of the enzymes on cellular resource allocation.
For this purpose, the cocaine transducer and the hippurate-benzaldehyde adder were
characterized by adding benzoate to these circuits (Supplementary Figures S4 and S5).
Comparing the results of these characterizations with the benzoate actuator reveals that
dissipation in signal from the transducers to the adders is due to resource competition,
whereas that from the actuators to the transducers is due to enzyme efficiency.

In order to gain quantitative understanding of the circuits’ behavior, we empirically
modeled their individual components to see if we were able successfully capture their
behavior. We first modeled the actuator (gray curve in Figure 1c) using Hill formalism?®2
as it is the component that is common to all of our outputs and therefore constrains the
rest of our system. We then modeled our transducers, considering enzymes to be
modules that convert their respective input metabolites into benzoate, which is then
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converted to the fluorescence output already modeled above. This simple empirical
modeling strategy reproduces our transducer data (results not shown). To incorporate
observations made in Supplementary Figure S4 and S5, we included resource
competition in our models to explain circuits with one or more transducers. To this end,
we extended the Hill model to account for resource competition following previous
works®3%4, with a fixed pool of available resources for enzyme and reporter protein
production that is depleted by the transducers. This extension is further presented in the
Methods section. We trained our model on all transducers, with and without resource
competition (i.e. individual transducers, or transducers where another enzyme competes
for the resources). This model (presented in gray lines in Figure 1d,e,f and Figure 2c),
which was not trained on adder data but only on actuator, transducer, and transducers
with resource competition data, recapitulates it well. This indicates that the model
accounts for all important effects underlying the data. The full training process is
presented in the Methods section, and a table summarising scores of estimated goodness
of fit of our model is presented in Supplementary Table S1.
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Figure 2. Whole-cell metabolic adder of hippurate and benzaldehyde. (a) Hippurate and benzaldehyde
transducers are combined to build a metabolic adder producing a common output, benzoate, which is
reported through the benzoate actuator. The enzymes are expressed in one operon under control of
constitutive promoter J23101 and RBSs B0032 for HipO and B0034 for vdh. (b) Heatmap representing the
output of the adder while increasing the concentration of both inputs, hippurate and benzaldehyde. All data
points are the mean of normalized values from three measurements. (¢) Model simulations for experimental
conditions presented in (b). The model was fitted on transducer data and resource competition data.
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Cell-free processing of multiple metabolic inputs

Cell-free systems have recently emerged as a promising platform#? that provide rapid
prototyping of large libraries by serving as an abiotic chassis with low susceptibility to
toxicity. We took advantage of an E. coli cell-free system with the aim of increasing the
computational potential of metabolic circuits in several ways (Figure 3a). Firstly, a higher
number of genes can be simultaneously and combinatorially used to increase the
complexity and the number of inputs for our circuits. Secondly, the lower noise provided
by the absence of cell growth and maintenance of cellular pathways®® improves the
predictability and accuracy of the computation. Thirdly, having genes cloned in separate
plasmids enables independent tunability of circuit behavior by varying the concentration
of each part individually. Finally, cell-free systems are highly adjustable for different
performance parameters and components. In all, these advantages of cell-free systems
enable us to develop more complex computations than the whole-cell adder.

Following from our recent work®®, we first characterized a cell-free benzoate actuator to
be used downstream of other metabolic transducers. Figure 3a shows a schematic of the
cell-free benzoate actuator composed of a plasmid encoding the BenR transcriptional
activator and a second plasmid expressing sfGFP reporter under the control of a pBen
promoter. This actuator showed a higher operational range than the whole-cell
counterpart (Figure 1c). The optimal concentration of the TF plasmid (30 nM) and the
reporter plasmid (100 nM) were taken from our recent study®®. Following successful
implementation of the actuator, we proceeded to build five upstream cell-free transducers
for hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol (Figure
3c,d,e,f,g) that convert these compounds to benzoate. Each of the five transducers used
10 nM of enzyme DNA per reaction, except the biphenyl-2,3-diol transducer that used two
metabolic enzymes with 10 nM DNA each.

Compared to its whole-cell counterpart (Figure 1f), in the cell-free transducer reaction
(Figure 3e) benzaldehyde appears to spontaneously oxidise to benzoate without the
need of the transducer enzyme vdh. This behavioral difference between the whole-cell
and cell-free setups could be due to the difference in redox states inside an intact cell and
the cell-free reaction mix>’°8, Furthermore, benzamide and biphenyl-2,3-diol transducers
exhibit inhibition in fluorescence outputs at very high (1000 uM) input concentrations.
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Figure 3. Cell-free actuator and metabolic transducers. (a) Implementing benzoate actuator and
transducers in E. coli transcription/translation (TXTL) cell-free system. Cell-free reactions are composed of
cell lysate, reaction buffer (energy source, tRNAs, amino acids, etc.) and DNA plasmids. (b) Dose-response
plot of the benzoate actuator in the cell-free system with 30 nM of TF-plasmid (constitutively expressed
BenR) and 100 nM of reporter plasmid (pBen-sfGFP) per reaction. The data points represent the dose-
response of the actuator to different concentrations of benzoate and the gray curve is a model-fitted curve
on actuator data (c,d,e,f,g). Cell-free transducers coupled with the benzoate actuator for hippurate (c),
cocaine (d), benzaldehyde (e), benzamide (f), and biphenyl-2,3-diol (g), which is composed of two
enzymes. All enzymes are cloned in a separate plasmid under the control of a constitutive promoter J23101
and RBS B0032. 10 nM of each plasmid was added per reaction. The bars are the response of the circuits
to different concentrations of input with (transducers, black bars) and without enzyme (red bars). All data
are the mean and the error bars are the standard deviation of normalized values from three measurements
(RFU: Relative Fluorescence Unit).
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Cell-free weighted transducers and adders

After characterizing different transducers in the cell-free system that enable building a
multiple-input metabolic circuit, we sought to rationally tune the transducers. Cell-free
systems allow independent tuning of each plasmid by pipetting different amounts of DNA.
We applied this advantage to weight the flux of enzymatic reactions in cell-free
transducers (Figure 4a). The concentration range we used was taken from our recent
study®®, in order to have an optimal expression with minimum resource competition. We
built four weighted transducers for hippurate (Figure 4b), cocaine (Figure 4c),
benzamide (Figure 4d) and biphenyl-2,3-diol (Figure 4e). Increasing the concentration
of the enzymes produces a higher amount of benzoate from the input metabolites, and
hence higher GFP fluorescence. Compared to the others, the hippurate transducer
reached higher GFP expression at a given concentration of the enzyme and the input,
and biphenyl-2,3-diol reached the weakest signal. For the biphenyl-2,3-diol transducer
built with two enzymes (Figure 4e), both enzymes are added at the same concentration
(e.g., 1 nM of “enzyme DNA” indicates 1 nM each of plasmids encoding enzymes bphC
and bphD).
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Figure 4. Cell-free weighted transducers characterized by varying the concentration of the enzyme
DNA. (a) In the cell-free system, the circuits can be tuned by varying the amount of each enzyme pipetted
per reaction. Weighted transducers are characterized by varying the concentration of the enzymes in
transducers which then are reported through the benzoate actuator. The range of the concentrations was
varied to get optimal expression and minimum resource competition. (b,c,d,e) Heatmaps representing
weighted transducers at different concentrations of input molecules and enzymes DNA for hippurate (b),
cocaine (c), benzamide (d) and biphenyl-2,3-diol (e). For the biphenyl-2,3-diol weighted transducer (e),
concentrations represent those of each metabolic plasmid (e.g., 1 nM of “enzyme DNA” refers to 1 nM of
bphC plus 1 nM of bphD). See Supplementary Figure S6 for model results of each weighted transducer.
All data are the mean of normalized values from three measurements. (RFU: Relative Fluorescence Unit).
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Data in Figure 4 show that similar output levels can be achieved for different input
concentrations, provided the appropriate transducer concentrations are used. In the next
step, we applied this finding to build hippurate-cocaine weighted adders by altering either
the concentration of the enzymes or the concentration of the inputs (Figure 5a). The
fixed-input adder is an adder in which the concentration of inputs, hippurate and cocaine,
are fixed to 100 uM and the concentration of the enzymes is altered (top panel in Figure
5b). In this device, the weight of the reaction fluxes is continuously tunable. We then
characterized a fixed-enzyme adder by fixing the concentration of the enzymes (1 nM for
HipO, 3 nM for CocE; the cocaine signal is weaker, which is why a higher concentration
of its enzyme is used) and varying the inputs, hippurate and cocaine (top panel in Figure
5c).

In order to have the ability to build any weighted adder with predictable results, we
developed a model that accounts for the previous data. We first empirically modeled the
actuator (gray curve in Figure 3b) since all other functions are constrained by how the
actuator converts metabolite data (benzoate) into a detectable signal (GFP). We then
trained our model with individual weighted transducers (Supplementary Figure S6) and
predicted the behaviors of the weighted adders (bottom panel in Figure 5b,c). The results
shown in Figure 5b,c indicate that our model describes the adders well, despite being
trained only on transducer data. Supplementary Table S2 summarizes the different
scores to estimate goodness of fit of our model. Briefly, the model quantitatively captures
the data but tends to overestimate values at intermediate enzyme concentration ranges
and does not capture the inhibitory effect observed at the high concentration of
benzamide or biphenyl-2,3-diol, as this was not accounted for in the model.

Using the above strategy, we can build any weighted adder for which we have pre-
calculated the weights using the model on weighted transducers. We use this ability in
the following section to perform more sophisticated computation for a number of
classification problems.
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Figure 5. Multiple transducers are combined to shape an adder while weighing inputs or enzymes.
(a) Cell-free adder characterization by varying the concentration of either inputs or enzymes producing
different levels of fluorescence through the actuator. (b) Heatmap showing fixed-input adder in which the
inputs, hippurate and cocaine, are fixed to 100 uM and concentrations of associated enzyme are altered
by altering the concentration of plasmid DNA encoding them. Top: Cell-free experiment of hippurate-
cocaine fixed-input (weighted) adder. Bottom: Model simulation (prediction) of hippurate-cocaine fixed-input
(weighted) adder. (c) Fixed-enzyme adder with fixed concentrations of the enzyme DNAs, 1 nM for HipO
and 3 nM for CocE, and various concentrations of the inputs, hippurate and cocaine. Top: Cell-free
experiment of hippurate-cocaine fixed-enzyme adder. Bottom: Model simulations (prediction) of hippurate-
cocaine fixed-enzyme adder. All data are the mean of normalized values from three measurements. (RFU:
Relative Fluorescence Unit).
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Cell-free perceptron for binary classifications

The perceptron algorithm was first developed to computationally mimic the neuron’s
ability to process information, learn, and make decisions®. Perceptrons are the basic
blocks of artificial neural networks enabling the learning of deep patterns in datasets by
training the model’s input weights®°. Like a neuron, the perceptron receives multiple input
signals (x) and triggers an output depending on the weighted (wi) sum of the inputs3°. A
perceptron can be used to classify a set of input combinations after it is trained on labeled
data. In binary classification, the weighted sum is first calculated (Xwi.x;) and an activation
function (f), coupled with a decision threshold d, finally makes the decision: ON if f(Zwi.x;)
> d, OFF otherwise (Figure 6a). The activation function could be linear or non-linear
(Sigmoid, tanh, ReLU, etc.) depending on the problem®?, although a sigmoid is generally
used for classification.

Since our weighted transducer models have already been trained on the cell-free
experimental data, we checked if we could use them to calculate the weights needed to
classify different combinations of two inputs: hippurate and cocaine. We tested our model
on five different binary classification problems, A to E (Supplementary Figure 7). For
each problem, the two types of data were represented as a cluster of dots on the scatter
plot. The trained model was then used to identify weights needed to be applied to the
weighted transducers such that a decision threshold ‘d’ exists to classify the two clusters
into red (ON, >d) or blue (OFF, <=d). The lines shown in Supplementary Figure 7 plots
show three iso-fluorescence lines that represent the threshold that classifies the data into
the binary categories: ON and OFF. These theoretical classification problems
demonstrate the ability of our trained perceptron model to successfully carry out binary
classification.

Using the integrated model from our weighted transducers and adders, we next sought
to design four-input classifiers using a metabolic perceptron, and test them
experimentally. Our metabolic perceptron is a device enabling signal integration of
multiple inputs with associated weights, represented by enzyme DNA concentrations
(Figure 6b). The 4-input adder performs the weighted sum and the benzoate actuator
acts as the activation function of the metabolic perceptron. The weights can be adjusted
to implement different classification functions. To illustrate the potential of building
perceptrons with metabolic weighted adders, we computed adder weights using our
model for two different classifiers: a simple classifier equivalent to a “full OR” gate (Figure
6¢), and a more complex classifier equivalent to a “[cocaine AND hippurate] OR
benzamide OR biphenyl-2,3-diol” gate (Figure 6d). Weight calculation methods are
reported in the Methods section.
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For the classifiers, the input metabolites are fixed to 100 puM, as it allows the best ON-
OFF behavior for all inputs and weight-tuning according to model simulations (results not
shown). The model accurately predicted weights to obtain the simple “full OR” classifier
behavior (Figure 6d), as well as cocaine, benzamide, and biphenyl-2,3-diol weights for
the second complex classifier. The initial weights computed by the model are presented
in Supplementary Figure S8. The optimal weight of HipO (hippurate transducing
enzyme) was calculated to be 0.1 nM, which leads to higher signals than predicted,
particularly for the “ON” behavior with only hippurate. To further characterize the HipO
weights at still lower concentrations of the enzyme, we performed an additional
complementary characterization (Supplementary Figure S9). Our aim here was to find
a weight for HipO through which a classifier outputs a low signal (“OFF”) with only
hippurate and high signal (“ON”) when coupled with other inputs. We arrived at 0.03 nM
HipO which exhibited this shifting behavior between “OFF” and “ON” (Figure 6d and
Supplementary Figure S9). Using our model-guided design and rapid cell-free
prototyping on the HipO weight, we were able to design two 4-input binary classifiers. In
Figure 6¢,d red circles are the weights predicted with 0.03 nM for HipO and the bars are
experimental results. All actual values of the model and the experiments are provided in
Supplementary Table S7.
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threshold to “ON” when any of the inputs or their combinations are present. The second classifier (d)
performs a more complex computation. The shading represents the arbitrary threshold that allows for
perceptron decision making and the panel of “OFF” and “ON” at the top of the bars are the expected output
of the classifiers. All data are the mean and the error bars are the standard deviation of normalized values
from three measurements and red circles are the model predictions. (RFU: Relative Fluorescence Unit).

Discussion

Computing in synthetic biological circuits has largely relied on digital logic-gate circuitry
for almost two decades®®?, treating inputs as either absent (0) or present (1). While such
digital abstraction of input signals provides conceptual modularity for circuit design, it is
less compatible with the physical-world input signals that vary between low and high
values on a continuum?®’. As a result, digital biological circuits must carefully match input-
output dynamic ranges at each layer of signal transmission to ensure successful signal
processing?3°. More recently, the higher efficiency of analog computation on continuous
input has been recognized®®, and some analog biological circuits have started
emerging?L. In this regard, using metabolic pathways for cellular computing seems like a
natural progression for analog computation in biological systems?%0,

In this study, we investigated the potential of metabolism to perform analog computations
using synthetic metabolic circuits. To that end, we first established a benzoate actuator
to report the output from our metabolic circuits in both whole-cell and cell-free systems
(Figures 1c and 3b). Upstream of the actuator, we constructed hippurate, cocaine, and
benzaldehyde transducers in the whole-cell system (Figures 1d,e,f) and a metabolic
adder by combining the benzaldehyde and hippurate transducers (Figure 2). Similarly,
we constructed hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol
transducers in the cell-free system (Figures 3c,d,e,f,g) and weighted adders by
combining them (Figure 5). Compared to the numerous digital biological devices, which
compute through multi-layered genetic logic circuits, the metabolic adder is a simple one-
layered device with fast execution times.

Our computational models trained only on the actuator and transducer data predicted
adder behaviors with high accuracy (Supplementary Tables S1 and S2). This further
enabled us to calculate the required weights for more complex “metabolic perceptrons”
that compute weighted sums from multiple inputs and use them to classify the multi-input
combinations in a binary manner (Figures 6 and S7). Although we used fixed
concentrations of inputs to demonstrate the ability of our perceptrons to classify, models
trained on characterization data from weighted transducers should enable one to build
classifiers for other concentrations in the operational range of the transducers
(Supplementary Figure S10). Indeed, as shown in Figures 4 and 5, for different input

16


https://doi.org/10.1101/616599
http://creativecommons.org/licenses/by/4.0/

© 00 NO Ol b~ WN PP

B W W W WWWWWWWNDNDNDNDNDNMDNNNNNRPRERPEPRPEPERPRERPRPLEPR
O ©W 0O NO Ul A WNPFPOOUWOWNOOOOMWDMNMPEPEOOOWLONOOOGPM~WDNLPRELDO

bioRxiv preprint doi: https://doi.org/10.1101/616599; this version posted April 23, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

concentrations in the operational range the weight of the input can be tuned through the
concentration of the enzyme DNA. To the best of our knowledge, the metabolic adders
and perceptrons presented in this work are the first engineered biological circuits that use
metabolism for analog computation.

Unlike genetic circuits that experience expression delays?, metabolic circuits have the
advantage of faster response times since the enzymes have already been expressed in
the system. Yet, metabolic circuits can be connected with the other layers of cellular
information processing (like genetic or signal transduction layers) when needed, to build
more complex sense-and-respond behaviors. The actuator layer of our perceptrons is a
good example of this, where the calculated weighted sum is converted to fluorescence
output via the genetic layer. In addition, we took advantage of the properties of cell-free
systems, such as higher tunability and lack of toxicity>¢:64, to rapidly build and characterize
multiple combinations of transducer-actuator circuits. Cell-free systems can be lyophilized
on paper and stored at ambient temperature for <1 year for diagnostic applications?®. This
expands the potential scope of cell-free metabolic perceptrons for use in multiplex
detection of metabolic profiles in medical or environmental samples!6-,

Here, we have built a single-layer perceptron, with positive weights, that can classify
different profiles of input metabolites by applying different weights to each transducer. In
the future, by adding competing or attenuating reactions that reduce the concentration of
the transduced metabolite in response to an input, it may be possible to expand the
training space by applying negative weights to certain inputs®®. Furthermore, a single-
layer perceptron can only classify data that is linearly separable®®, which means that it
should be possible to draw a line between the two classes of data points in order for the
perceptron to classify them (Supplementary Figure S7). In contrast, multi-layer
perceptrons, can approximate any function®” and can be used for more complex pattern
recognition tasks®8. With the use of bioretrosynthesis-based computational tools for
metabolic pathway design, like Retropath*® and Sensipath*!, it will be possible to build
multiple layers of metabolic perceptrons that can classify complex patterns of metabolic
states in vivo, or identify different metabolite concentrations in analytical samples. Finally,
it may also be possible to apply in situ learning (within the whole-cell or cell-free
environment) by applying winner selection strategies on successful classifiers®®.
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Methods

Designing synthetic metabolic circuits

Retropath*® and Sensipath*! were used to design the metabolic circuits between potential
input metabolites and detectable metabolites as outputs*’. These tools function using a
set of sink compounds, a set of source compounds, and a set of chemical rules4”:7
implementing enzyme-mediated chemical transformations. They then use retrosynthesis
to propose pathways and the enzymes that can catalyze the necessary reactions,
allowing promiscuity, between compounds from the sink and compounds from the source.
To design the adder, the Retropath software was used with a set of detectable
compounds as the sink and the molecules we wish to use as circuit inputs as the source.
The results were potential pathways and the associated enzymes, which were then
analyzed for feasibility. The sequences of the enzymes were codon-optimized,
synthesized and implemented in E. coli or taken from a previous study.
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Molecular biology

All plasmids were made using Golden Gate assembly in E. coli Machl chemically
competent cells. Whole-cell constructs were cloned in BioBrick standard vectors pSB1K3
(high-copy plasmid) and pSB4C5 (low-copy plasmid) and the TF and all the enzymes
were constitutively expressed under constitutive promoter J23101 and RBS B0032. All
cell-free plasmids were cloned in pPBEAST®® (a derived vector from pBEST"!). BenR cell-
free plasmid and its cognate responsive prompter, pBen, expressing super-folder GFP
were taken from our recent work®6. All other cell-free enzymes were cloned under
constitutive promoter J23101 and RBS B0032. Sequence and source of all the genes and
parts are available in Supplementary Table S5. Synthetic sequences were provided by
Twist Bioscience. Enzymes for cloning including Q5 DNA polymerase, Bsal, and T4 DNA
ligase were purchased from New England Biolabs. DNA plasmids for cell-free reactions
were prepared using the Macherey-Nagel maxiprep kit.

Characterization of whole-cell circuits

For each circuit separate colonies of E. coli top10 strains harboring the circuit plasmids
were cultured overnight at 37°Cin LB with appropriate antibiotic. The next day each culture
was diluted 100x in LB with antibiotics. 95 uL of fresh cultures were distributed in 96-well
plate (Corning 3603) and the plate was incubated to reach the OD ~ 0.1 in a plate reader
(Biotek Synergy HTX). Then 5 pL of the input metabolites (100x ethanol solutions 5x
diluted in LB) were added and the plate was incubated for 18 hours at 37°C During the
incubation, the ODesoo and GFP fluorescence (gain: 35, ex: 458 nm, em: 528 nm) were
measured. Benzoate, hippurate, cocaine hydrochloride, benzaldehyde, benzamide and
biphenyl-2,3-diol  (2,3-dihydroxy-biphenyl) were purchased from Sigma-Aldrich.
Permission to purchase cocaine hydrochloride was given by the French drug regulatory
agency (Agence Nationale de Sécurité du Médicament et des Produits de Santé). For all
chemicals, serial dilutions of 100x concentrations were prepared in ethanol. The formula
presenting the results of the circuits’ characterization is shown in data normalization
section. The mean and standard deviation of all normalized data are provided in
Supplementary Table S6.

Cell-free extract and buffer preparation
Cell-free E. coli extract was produced as previously described®%7273, Briefly, an overnight

culture of BL21 Star (DE3)::RF1-CBDs E. coli was used to inoculate 4L of 2xYT-P media
in six 2 L flasks at a dilution of 1:100. The cultures were grown at 37°C with 220 rpm

shaking for approximately 3.5-4 hours until the OD 600 = 2-3. Cultures were centrifuged
at 5000 x g at 4°C for 12 minutes. Cell pellets were washed twice with 200 mL S30A
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buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7), centrifuging after
each wash at 5000 x g at 4°C for 12 minutes. Cell pellets were then resuspended in 40
mL S30A buffer and transferred to pre-weighed 50 mL Falcon conical tubes where they
were centrifuged twice at 2000 x g at 4°C for 8 and 2 minutes, respectively, removing the
supernatant after each. Finally, the tubes were reweighed and flash frozen in liquid
nitrogen before storing at -80°C.

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram of cell
pellet. Cell suspensions were lysed via a single pass through a French press
homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at 12000
x g at 4°C for 30 minutes to separate out cellular cytoplasm. After centrifugation, the
supernatant was collected and incubated at 37°C with 220 rpm shaking for 60 minutes.
The extract was recentrifuged at 12000 x g at 4°C for 30 minutes, and the supernatant
was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs; Spectra/Por4) and
dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60 mM K-glutamate, ~5 mM
Tris, pH 8.2) overnight at 4°C. The following day, the extract was re-centrifuged one final
time at 12000 x g at 4°C for 30 minutes, aliquoted, and flash frozen in liquid nitrogen
before storage at -80°C.

The buffer for cell-free reactions is composed such that final reaction concentrations were
as follows: 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM HEPES,
1.5mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM
NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, and 2%
PEG-8000. Additionally, the Mg-glutamate (0-6 mM), K-glutamate (20-140 mM), and DTT
(0-3 mM) levels were serially calibrated for each batch of cell-extract for maximum signal.
One batch of buffer was made for each batch of extract, aliquoted, and flash frozen in
liquid nitrogen before storage at -80°C.

Characterization of cell-free circuits

Cell-free reactions were performed in 15.75 pL of the mixture of 33.3% cell extract, 41.7%
buffer, and 25% plasmid DNA, input metabolites, and water. The reactions were prepared
in PCR tubes on ice and 15 pL of each was pipetted into 384-well plates (Thermo
Scientific 242764). GFP fluorescence out of each circuit was recorded in the plate reader
at 30°C (gain: 50, ex: 458 nm, em: 528 nm). The background (cell-free reaction without
any plasmid) corrected fluorescence data were normalized by 20 ng/uL of a plasmid
expressing strong constitutive sSfGFP (under OR2-OR1-Pr promoter®®) and were plotted
after 8 hours incubation. The mean and standard deviation of all normalized data are
provided in Supplementary Table S7.
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Data normalization:
For whole-cell data, we use the following normalization:

GFP(input) — GFP(LB) GFP(empty_plasmid) — GFP(LB)
0D (input) — OD(LB) 0D (empty_plasmid) — OD(LB)

Fluorescence(input) =

Reference: cells harboring empty plasmids

For cell-free data, we consider Relative Fluorescence Unit (RFU):

GFP(input) — GFP(extract)

RFU(Q t) =
(input) GFP(reference) — GFP(extract)

Reference: 20 ng/uL of a plasmid expressing the constitutive sfGFP under OR2-OR1-Pr
promoter®®.

Simulation tools and parameter fitting:

All data analysis and simulations were run on R (version 3.2.3)74. Dose-response curves
were fitted using ordinary least squares errors and the R optim function (from Package
stats version 3.2.3, using the L-BFGS-B method implementing the Limited-memory
Broyden Fletcher Goldfarb Shanno algorithm, which is a quasi-Newton method). For the
random parameter sampling around the mean fit, values were sampled from within +-1.96
standard error of the mean of the parameter estimation. The seed was set so as to ensure
reproducibility. All simulations were run in the Rstudio development environment’®.

All parameters are presented in Supplementary Tables S3 and S4.

Whole-cell model
The whole-cell model is composed of three parts: the actuator, the transducers (which all
obey the same law) and the resource competition.

(total)hill_transfer

Actuator(total) = ( + 1> * baseline

(KM)hill_transfer + (total)hill_transfer * fOldChange

where total is the concentration of the considered input (in M), Kwu is the concentration
that allows for half-maximum induction (in pM), also termed ICso, hill_transfer is the Hill
coefficient that characterizes the cooperativity of the induction system, fold_change is the
dynamic range (in AU) and baseline is the basal GFP fluorescence without input
(benzoate).
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Transducer(inducer) = inducer * range_enzyme

Where input is the input concentration in UM and range_enzyme is a dimensionless
number characterizing the capacity of the enzyme to transduce the signal. When
combining transducers with the actuator, transducer results are added before being fed
into the actuator equation, just as benzoate concentrations are added before being
converted to a fluorescent signal in the cell.

To account for resource competition, given our experimental results where there is little
competition with one enzyme and significant competition with two, we used an equation
including cooperativity of resource competition. This reduces the fold change of the
actuator as there are less resources available for producing transcription factors and
GFP.

Result(value) =

(totalenzyme)caoperativity,resaurces )

range. * value * — — - —
g resources ((totalenzyme)coaperathty_resources + (coce + benz + ratlohlpbenz * hlp0)cooperatlmty_resaurces

where value is the result of the actuator transfer function before accounting for resource
competition, range_resources, total_enzyme, cooperativity resources characterize the
Hill function that accounts for competition, coce, benz and hipo are the enzyme plasmid
concentrations. ratio_hip_benz accounts for the differences in burden from different
enzymes, its value around 0.8 is close to the ratio between enzyme lengths (1500 for
benzaldehyde transducing enzyme and 1200 for HipO).

Cell-free model
The model is composed of two parts: the actuator and the transducers.

(total)hill,trans/’er

Actuator(total) = ( * foldchange + 1) * baseline + slower_slope * 0.0001 * total

(KM)hill_transfer+ (total)hill_transfer

where total is the concentration of the considered input metabolite (in uM), Km is the
concentration that allows for half-maximum induction (in puM), also termed ICso,
hill_transfer is the Hill coefficient that characterizes the cooperativity of the induction
system, fold_change is the dynamic range (in AU) and baseline is the basal GFP
fluorescence without input (benzoate). Slower_slope accounts for the linearity observed
in the actuator behavior at concentrations saturating the Hill transfer function.

(EYritte )> . ( (input)"Hinput )

Transducer (input) = rangeenzyme * <(KE)hillE + (E)hills (K)linput + (input)hitlinput

22


https://doi.org/10.1101/616599
http://creativecommons.org/licenses/by/4.0/

© 00 NO Ok WDN P

W W WWWwwWwwWNDNDNDNDNDNDNDNNNMNMNMNNMNRPRERPRPRPEPRPEPRPEPRPEPERPRPR
N o 0ok WONPEFEP OO0 NOOOO PR~ WNPEPOOONO O WwDNPEFE O

w
(o]

w
©

bioRxiv preprint doi: https://doi.org/10.1101/616599; this version posted April 23, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Where range_enzyme is a dimensionless number characterizing the capacity of the
enzyme to transduce the signal. The activity of the enzyme is characterized by a Hill
function as increasing concentrations do not lead to a linear increase but enzymes
saturate (E is the enzyme quantity in nM, Ke and hille are its Hill constants), and similarly,
input is the input metabolite concentration in pM with K; and hill_input as its Hill constants.

When combining transducers, transducer results are added before being fed into the
actuator equation, just as benzoate concentrations are added before being converted to
the fluorescent signal in the cell.

Full model training process
Our training process is detailed in the Readme files supporting our modeling scripts
provided in GitHub and is summarized here.

As the first step, the actuator transfer function model (benzoate transformed into
fluorescence) is fitted 100 times on the actuator data, with all actuator parameters allowed
to vary. The mean, standard deviation, standard error of the mean and confidence interval
were saved at 95% of the estimation of those parameters. For transducer fitting (all
transducers in cell-free and all except cocaine in whole-cell), we constrained the actuator
characteristics in the following way: upper and lower allowed values are within the 95%
confidence interval (or plus or minus one standard deviation from the mean for fold
change and baseline in cell-free as it allowed a wider range, accounting for the decrease
in actuator signal in transducer experiments without affecting the shape of the sigmoid).
The initial values for the fitting process were sampled from a Gaussian distribution
centered on the mean parameter estimation and spread with a standard deviation equal
to the standard error of this parameter estimation. We then allowed fitting of all transducer
parameters freely and of the actuator parameters within their 95% confidence interval.

Once this is done, all common parameters (actuator transfer function and resource
competition) were sampled using the same procedure and fitting on the cocaine
transducer was performed. To show that parameters are well constrained (proving they
minimally explain the data), Supplementary Figures S11 and S12 show results of
sampling parameters from the final parameters distribution (without fitting at that stage)
and how they compare to the data.

Objective functions and model scoring:
In order to evaluate and compare our models, we used the following functions.

I jmmm - yirredy?
n
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It measures how close the model is to the experiments. It allows for comparison of
different models on the same data, the one with the smaller RMSD being better, but does
not allow comparison between experiments.

Zrll(yitrue _ yipred)z
ZTll(yitrue - ymeantrue)2
R? allows measuring the goodness of fit. When the prediction is only around the sample
mean, R? = 0. When the predictions are close to the real experimental value, R? gets
closer to 1, whereas it can have important negative values when the model is really far
off.

R?=1-

n(yitrue_ yipred)z

1
Weighted R> = 1 — e
I Yi

1

2
Sfdi

_ ymeantTlLE)Z'

2
Sfdi

It is a variant of R? that weights samples according to their experimental error, giving more
weight o more certain samples. It otherwise has the same properties as R?.

true __
l
Error percentage = abs (

red
yiP

true
Vi

) * 100

This measures the percentage of error for each point. We present the average on all
experiments in Supplementary Tables S1 and S2.

Perceptron weights calculation

In order to calculate the weights for the classifiers presented in Figure 6, we followed the
following procedure. First, we defined the expected results (expressed in “OFF”s and
“ON”s). We also defined a list of weights to test for each enzyme (here, between 0.1 nM
and 10 nM, as tested in our weighted transducers). Then, for each combination of enzyme
weights, we simulated the outcome of the classifiers for all possible input combinations.
We then tested various possible thresholds and kept the enzyme combinations for which
a threshold exists that allows for the expected behavior. As the last step, we manually
analyzed the classifier to keep the ones both a high difference between ON and OFF,
and a minimal enzyme weight to prevent resource competitions issues that could arise as
we are adding more genes than previous experiments. In order to perform clusterings
presented in Supplementary Figure S8, we sampled values uniformly within the stated
ranges ([0, 2uM] for low values and [80, 100uM] for high values). We then simulated the
results to assess the robustness of our designs.
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Binary clustering experiments
In order to perform the binary/2D clustering experiments, we sampled values uniformly
within the stated ranges ([0, 2uM] for low values and [80, 100uM] for high values). For
different weight (HipO and CocE) values, we simulated the fluorescence output of each
of those cocaine-hippurate combinations. Moreover, for different threshold values (3, 3.5
and 4, as presented in Supplementary Figure S7), we numerically solved for the
benzoate concentration such that
transfer(benzoate) = fluorescence_threshold

and then for values of cocaine and hippurate such that

transducer(cocaine) + transducer (hippurate) = benzoate
This equation with two unknowns gives us a curve of cocaine and hippurate values that
would lie on our decided threshold for this set of weights. All combinations on the top right
of that curve will be classified to “ON” and all combinations below will be classified to
“OFF”.
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Code and data availability:
All scripts and data for generating results presented in this paper are available at
https://github.com/brsynth.

Biological and chemical identifiers
In order to allow easier parsing of our article by bioinformatics tools, we provide here the
identifiers of our biological sequences and chemical compounds.

Benzoate (Benzoic acid): InChl=1S/C7H602/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
Hippurate (Hippuric acid): InChl=1S/CO9HINO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-
5H,6H2,(H,10,13)(H,11,12)

Cocaine: INChIl=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-
16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1
Benzaldehyde: InChl=1S/C7H60/c8-6-7-4-2-1-3-5-7/h1-6H

Biphenyl-2,3-diol: InChl=1S/C12H1002/c13-11-8-4-7-10(12(11)14)9-5-2-1-3-6-9/h1-
8,13-14H

Benzamide: INChl=1S/C7H7NO/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H2,8,9)

BenR identifier: UniProtkKB - Q9L7Y6

HipO identifier: UniProtkKB - P45493

CocE identifier: UniProtKB - Q9L9D7

vdh identifier: UniProtKB - DORZT4

bphC identifier: UniProtKB - P17297

bphD identifier: UniProtKB - Q52036

Benzamide transforming enzyme identifier: UniProtKB - B4XEY3

Sequence and source of all the genes and parts are available in Supplementary Table
S5
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Supplementary Figure S1. Feedback-loop circuit design of the benzoate actuator. (a) The
open-loop circuit (Figure 1b) versus a feedback-loop circuit for the benzoate actuator. In the
feedback-loop actuator the TF is expressed under its responsive promoter, pBen, in a low copy
plasmid and sfGFP reporting the signal in a high copy plasmid?. (b) The dose-response of the
feedback-loop versus the open-loop circuit (Figure 1c) to different concentrations of benzoate.
All data points and the error bars are the mean and standard deviation of normalized values from
three measurements.
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Supplementary Figure S2. Comparison of the maximum signal of whole-cell circuits.
Comparison of the maximal signal of hippurate, benzaldehyde, and cocaine transducers (beige)
as well as hippurate-benzaldehyde adder (orange) with benzoate actuator (blue). The maximum
signal of all the circuits are at maximum concentration of their inputs (1000 uM). The percentage
in each bar represents its value with regard to maximum signal of benzoate in benzoate actuator.
All data points and the error bars are from the results presented in Figures 1 and 2.
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Supplementary Figure S3. 2D plots for the data presented in heatmap in Figure 2b. These

14 plots help visualize the linearity of metabolic addition. At the top of each plot the columns/rows
of the heatmap in Figure 2b have been addressed.
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Supplementary Figure S4. Examining the effect of resource competition on the whole-cell
cocaine transducer. To study these effects on the single-enzyme metabolic circuit, the following
experiment was performed: cocaine transducer (with the highest signal dissipation among the
three tested in Figure 1) was supplied with benzoate input, to test the effect of enzymes on only
cellular resource allocation but not conversion of inputs to benzoate. The cocaine transducer with
benzoate input shows a behavior similar or close to the benzoate actuator. All data points and the
error bars are the mean and standard deviation of hormalized values from three measurements.
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Supplementary Figure S5. Examining the effect of enzyme efficiency on the whole-cell
metabolic adder. To study these effects on the two-enzyme metabolic circuit (adder) the
following experiment was performed: hippurate-benzaldehyde adder was supplied with benzoate
input, to test the effect of enzymes on only cellular resource allocation but not conversion of inputs
to benzoate. The adder with benzoate input shows a behavior similar to the adder inputted with
hippurate and benzaldehyde. All data points and the error bars are the mean and standard
deviation of normalized values from three measurements.
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Supplementary Figure S6. Weighted transducers model results. The model simulations for
experimental conditions presented in Figure 4. (a,b,c,d) Heatmaps representing model
simulations for weighted transducers at different concentrations of input molecules and enzymes
DNA for hippurate (a), cocaine (b), benzamide (c) and biphenyl-2,3-diol (d).
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Supplementary Figure S7. Five different binary classification problems using a
metabolic perceptron for hippurate and cocaine. (A to E). For each problem, the
scatter plot shows multiple data points that represent a combination of input values of
cocaine and hippurate. The concentrations for those points are sampled between 0 and
2uM for low values and 80 and 100 uM for high values. The data points in each problem
belong to two different sets that can be separated by a threshold line into two separate
clusters. The trained model is then used to identify weights needed to be applied to the
weighted transducers such that a decision threshold ‘d’ classifies the two clusters into red
(ON, >d) or blue (OFF, <=d). The threshold lines shown in the plots represent three iso-
fluorescence lines that successfully classify the data into the binary categories: ON and
OFF.
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Supplementary Figure S8. Model simulations for classifiers in Figure 6. Predictions
associated with (a) the full OR classifier (Figure 6c) and (b) the first calculation for “[cocaine (C)
AND hippurate (H)] OR benzamide (B) OR biphenyl-2,3-diol (F)” classifier with 0.1 nM HipO
weight with (instead of 0.03 as experimentally tested and presented in Figure 6d). In order to
perform the clusterings, we sampled values uniformly within the stated ranges ([0, 2uM] for low
values and [80, 100uM] for high values). We then simulated the results to assess the robustness
of our designs. The blue and green lines refer to the thresholds separating “OFF” and “ON” states.
The panel of “OFF” and “ON” at the top of the plots are the expected outputs. (RFU: Relative
Fluorescence Unit).
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Supplementary Figure S9. Further characterization of HipO enzyme (hippurate
transforming enzyme) at lower concentrations of the enzyme and 100 uM hippurate. HipO
enzyme which for its weight led to higher signals than predicted, needed to be further
characterized at concentrations lower than the minimum concentration used for the
weighted metabolic circuits (0.1 nM). For this characterization, this figure shows the effect
of 100 uM hippurate input alone and its additive effect when coupled with 100 pM cocaine at
the weight (CocE enzyme concentration) of 0.1 nM. All data are the mean and the error bars are
the standard deviation of normalized values from three measurements. (RFU: Relative
Fluorescence Unit).
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Supplementary Figure S10. Exploring Hippurate-Cocaine ON-OFF behavior with different
weights and input concentrations for hippurate. All these experiments were done while
Cocaine is at concentration of 100 uM and weight of 0.1 nM CocE. All data are the mean and the
error bars are the standard deviation of normalized values from three measurements. (RFU:
Relative Fluorescence Unit).
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Supplementary Figure S11. Simulations from the random sampling of estimated
parameters in whole-cell system. Representation of the experimental data with SEM (n = 3) in
black, and in blue, the results from 100 simulations of the model with parameters drawn from the
final parameters estimation without refitting. The combination of various parameters within our
estimations correctly recapitulates the data. (A) benzoate actuator, (B) benzaldehyde transducer,
(C) cocaine transducer, and (D) hippurate transducer. Scripts provided in GitHub also allow for
visualization of those results for each axis of the adder in Figure 2.
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Supplementary Figure S12. Simulations from the random sampling of estimated
parameters in the cell-free system. Representation of the experimental data with SEM (n = 3)
in black, and in blue, the results from 100 simulations of the model with parameters drawn from
the final parameters estimation without refitting. The combination of various parameters within our
estimations correctly recapitulates the data. (A) benzoate actuator, (B) benzamide transducer, (C)
biphenyl-2,3-diol transducer, (D) cocaine transducer, and (E) hippurate transducer. The
simulation of the transducers were performed with 100 uM of the input metabolites as will be used
in the classifier experiments. Scripts provided in GitHub also allow for visualisation of those results
for other axis of the various heatmaps in Figure 4. (RFU: Relative Fluorescent/expression Unit of

GFP).
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Supplementary Table S1. Goodness of fit scores for the whole-cell models. The correlation
(from the R cor function), Weighted R squared and R squared between the experimental data and
the model. Exact definition of the weighted R squared and the R squared are provided in the
Methods section, as well as the RMSD that is used to compare models.

Score Correlation Weighted R | R squared | Error Fit or
squared percentage [ prediction

Actuator 0.999 0.999 0.999 NA Fit

Benzaldehyde 0.995 0.992 0.980 NA Fit

transducer

Hippurate 0.997 0.990 0.983 NA Fit

Transducer

Cocaine 0.965 0.950 0.924 NA Fit

Transducer

Adder -10.958 0.982 0.916 16.8 % Fit (on

complete inducer = 0)
and
prediction

Adder - both|0.947 0.931 0.889 15.3% Prediction

inputs present
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Supplementary Table S2. Goodness of fit scores for the cell-free models.

Score Correlation Weighted R | R squared Error Fit or
squared percentage | prediction

Actuator 0.990 0.999 0.980 NA Fit

Cocaine 0.923 0.999 0.574 NA Fit

Transducer

Hippurate 0.984 0.999 0.962 NA Fit

Transducer

Benzamide 0.946 0.991 0.659 NA Fit

Transducer

2,3 biphenyl | 0.965 0.998 0.762 NA Fit

Transducer

Fixed enzyme | 0.910 0.998 0.653 10.1% Prediction

Adder

Fixed inducer | 0.919 0.986 0.784 16.0% Prediction

adder

Full OR | 0.973 0.980 0.823 9% Prediction

classifier

(C AND H) OR | 0.985 0.999 0.913 16.9 % Prediction

B Or F- Fig7
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Supplementary Table S3. Parameter estimations for in vivo model. Mean value plus and
minus 95% Confidence Interval

Parameter Mean Value +- 95 Confidence Interval
Hill_transfer 1.34+-1e-6

Km 114 +-1e-4
Fold_change 20.6 +- 3 e-5
Baseline 130 +- 2 e-4
Range_BenZ 1.1+-1e-6
Range_HipO 0.787 +- 1 e-6
Range_CocE 0.201 +- 2.97 e-3
total_enzyme 4.22 +- 0.193
Ratio_hip_benz 0.776 +- 3.7 e-3
Cooperativity _resource | 1.956 +- 4.56 e-2
Range_resource 1.973 +- 0.107
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Supplementary Table S4. Parameter estimations for cell-free model. Mean value plus and
minus 95% Confidence Interval (Standard Deviation for fold change and baseline)

Parameter Mean Value +- 95 ClI
Hill_transfer 22+-0.1

Km 8.40 +- 9 e-3

Fold_change 137 +- 1.84 (sd : 9.41)
Baseline 3.29e-2+-4e-4 (sd:2e-3)

Slower_slope 8.19+-9.3e-2
Range HipO 488 +- 35
HipO_constant 0.396 +- 0.022
Hippurate_constant 245 +- 29
Hill_HipO 1.82 +- 0.052
Hill_hippurate 1.205 +- 0.046
Range_CocE 337 +- 28

CocE_constant

0.799 +- 0.00017

Cocaine_constant 54 4 +-5.04
Hill_CocE 1.713 +- 0.055
Hill_cocaine 1.44 +- 0.047
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range_benzamid_enz 234 +- 20

benzamid_enz_constant | 3.73 +- 0.27

benzamid_constant 48.6 +- 5.5
hill_benzamid_enz 0.683 +- 0.072
hill_benzamid 0.906 +- 0.087
range_biphenyl_enz 63.7 +6- 4.79

biphenyl_enz_constant | 8.63 +- 0.31

biphenyl_constant 56.3 +- 4.92
hill_biphenyl_enz 1.25 +- 0.067
hill_biphenyl 3.05+-0.192
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Supplementary Table S5. List of sequences and their source used in this study.

Sequence

Description//Nucleotide sequence

BenR

UniProtKB - QIL7Y6

Taken from Libis et al.?

Transcription factor for benzoate, an activator from Pseudomonas putida3

ATGGAATCTCGTCTGCTGTCTGAACGTTCTTCTGTTTTCCACCACGCTGACCCGTACGCTGTTTCTGACTACGTTAA
CCAGCACGTTGGTCAGCACTGCATCGGTCTGTCTCGTACCACCCACCCGCAGGCTTCTCTGTCTCACCGTAAATTC
GCTGAACTGGACCTGTGCCGTATCTCTTACGGTGGTTCTGTTCGTGTTACCTCTCCGGCTCTGGAAACCATCTACC
ACCTGCAGGTTCTGCTGAACGGTAACTGCCTGTGGCGTGGTCACAAACGTGAACAGCACCTGGTTCCGGGTGAAC
TGCTGCTGATCAACCCGGACGACCCGGTTGACCTGACCTACTCTGAAGACTGCGAAAAATTCATCCTGAAAGTTCC
GACCCGTCTGCTGGACTCTATCTGCGACGAACAGCGTTGGCAGCGTCCGGACGGTGGTGTTCGTTTCCTGCGTAA
CCACTACCGTCTGGACGAACTGGACGGTTTCGTTAACCTGCTGGCTATGGTTTGCCACGAAGCTGAAGTTTCTGAC
TCTCTGCCGCGTGTTCAGGGTCACTACTCTCAGATCGTTGCTTCTAAACTGCTGACCCTGATGTCTACCAACATCCG
TCGTGAATCTCTGTCTGCTCCGCAGGCTGGTCTGGAACGTATCCTGGACTACATCGAACGTAACCTGAAACTGGAA
CTGTCTGCTGAAGTTCTGGCTGAACAGGCTTGCATGTCTCTGCGTTCTCTGTACGCTCTGTTCGACCAGCACCTGG
GTATCACCCCGAAACACTACGTTCGTCAGCGTAAACTGGAACGTGTTCACGCTTGCCTGTCTGACCCGACCTGCGG
TGTTCGTTCTGTTACCGAACTGGCTCTGGACTACGGTTTCCTGCACCTGGGTCGTTTCTCTGAAATCTACCGTCAGC
AGTTCGGTGAACTGCCGTCTCAGACCTTCAAACGTCGTGCTIAA

pBen

Taken from Libis et al.2

Promoter responsive to benzoate-BenR

ACTGTTCGAAGCATTGCCATTTTCTGAAGTTACCGAAAAAGTACCGAACATCCGTAAATCTGGATAACGTTCTGCAC
AATCCGGATAGCCCCCCGCCAGCCGTCTCCCTAACCTGACCAGGTCTAAACAATAACAAGGGAGAGTCTGGCCAT
G

Superfolder GFP
sfGFP)

ATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCATA
AGTTTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTACTGG
TAAACTGCCGGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGAC
CATATGAAGCAGCATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAGG
ATGACGGCACGTACAAAACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAACCGCATTGAGCTGAAAG
GCATTGACTTTAAAGAAGACGGCAATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGCCACAATGTTTACATC
ACCGCCGATAAACAAAAAAATGGCATTAAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGC
TGGCTGATCACTACCAGCAAAACACTCCAATCGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAGCAC
GCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAACGCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCGGG
CATCACGCATGGTATGGATGAACTGTAC

HipO

UniProtKB - P45493

Taken from Libis et al.2

Hippurate hydrolase (EC: 3.5.1.32), Campylobacter jejuni
Hippurate to benzoate

ATGAACCTGATCCCGGAAATCCTGGACCTGCAGGGTGAATTCGAAAAAATCCGTCACCAGATCCACGAAAACCCGG
AACTGGGTTTCGACGAACTGTGCACCGCTAAACTGGTTGCTCAGAAACTGAAAGAATTCGGTTACGAAGTTTACGA
AGAAATCGGTAAAACCGGTGTTGTTGGTGTTCTGAAAAAAGGTAACTCTGACAAAAAAATCGGTCTGCGTGCTGACA
TGGACGCTCTGCCGCTGCAGGAATGCACCAACCTGCCGTACAAATCTAAAAAAGAAAACGTTATGCACGCTTGCGG
TCACGACGGTCACACCACCTCTCTGCTGCTGGCTGCTAAATACCTGGCTTCTCAGAACTTCAACGGTGCTCTGAAC
CTGTACTTCCAGCCGGCTGAAGAAGGTCTGGGTGGTGCTAAAGCTATGATCGAAGACGGTCTGTTCGAAAAATTCG
ACTCTGACTACGTTTTCGGTTGGCACAACATGCCGTTCGGTTCTGACAAAAAATTCTACCTGAAAAAAGGTGCTATG
ATGGCTTCTTCTGACTCTTACTCTATCGAAGTTATCGGTCGTGGTGGTCACGGTTCTGCTCCGGAAAAAGCTAAAGA
CCCGATCTACGCTGCTTCTCTGCTGATCGTTGCTCTGCAGTCTATCGTTTCTCGTAACGTTGACCCGCAGAACTCTG
CTGTTGTTTCTATCGGTGCTTTCAACGCTGGTCACGCTTTCAACATCATCCCGGACATCGCTACCATCAAAATGTCT
GTTCGTGCTCTGGACAACGAAACCCGTAAACTGACCGAAGAAAAAATCTACAAAATCTGCAAAGGTATCGCTCAGG
CTAACGACATCGAAATCAAAATCAACAAAAACGTTGTTGCTCCGGTTACCATGAACAACGACGAAGCTGTTGACTTC
GCTTCTGAAGTTGCTAAAGAACTGTTCGGTGAAAAAAACTGCGAATTCAACCACCGTCCGCTGATGGCTTCTGAAG
ACTTCGGTTTCTTCTGCGAAATGAAAAAATGCGCTTACGCTTTCCTGGAAAACGAAAACGACATCTACCTGCACAAC
TCTTCTTACGTTTTCAACGACAAACTGCTGGCTCGTGCTGCTTCTTACTACGCTAAACTGGCTCTGAAATACCTGAA
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CocE

UniProtKB - Q9L9D7

Taken from Libis et al.?
and Bsal site removed

Cocaine esterase (EC: 3.1.1.84), Rhodococcus sp.
Cocaine to benzoate

ATGGTTGACGGTAACTACTCTGTTGCTTCTAACGTTATGGTTCCGATGCGTGACGGTGTTCGTCTGGCTGTTGACCT
GTACCGTCCGGACGCTGACGGTCCGGTTCCGGTTCTGCTGGTTCGTAACCCGTACGACAAATTCGACGTTTTCGCT
TGGTCTACCCAGTCTACCAACTGGCTGGAATTTGTTCGTGACGGTTACGCTGTTGTTATCCAGGACACCCGTGGTC
TGTTCGCTTCTGAAGGTGAATTTGTTCCGCACGTTGACGACGAAGCTGACGCTGAAGACACCCTGTCTTGGATTTT
GGAACAGGCTTGGTGCGACGGTAACGTTGGTATGTTCGGTGTTTCTTACCTGGGTGTTACCCAGTGGCAGGCTGC
TGTTTCTGGTGTTGGTGGTCTGAAAGCTATCGCTCCGTCTATGGCTTCTGCTGACCTGTACCGTGCTCCGTGGTAC
GGTCCGGGTGGTGCTCTGTCTGTTGAAGCGCTGCTGGGTTGGTCTGCTCTGATCGGTACCGGTCTGATCACCTCT
CGTTCTGACGCTCGTCCGGAAGACGCTGCTGACTTCGTTCAGCTGGCTGCTATCCTGAACGACGTTGCTGGTGCT
GCTTCTGTTACCCCGCTGGCTGAACAGCCGCTGCTGGGTCGTCTGATCCCGTGGGTTATCGACCAGGTTGTTGAC
CACCCGGACAACGACGAATCTTGGCAGTCTATCTCTCTGTTCGAACGTCTGGGTGGTCTGGCTACCCCGGCTCTGA
TCACCGCTGGTTGGTACGACGGTTTCGTTGGTGAAAGCCTGCGTACCTTCGTTGCTGTTAAAGACAACGCTGACGC
TCGTCTGGTTGTTGGTCCGTGGTCCCACTCTAACCTGACCGGTCGTAACGCTGACCGTAAATTCGGTATCGCTGCT
ACCTACCCGATCCAGGAAGCTACCACCATGCACAAAGCTTTCTTCGACCGTCACCTGCGTGGTGAAACCGACGCAC
TTGCTGGTGTTCCGAAAGTTCGTCTGTTCGTTATGGGTATCGACGAATGGCGTGACGAAACCGACTGGCCGCTGCC
GGACACCGCTTACACCCCGTTCTACCTGGGTGGTTCTGGTGCTGCTAACACCTCTACCGGTGGTGGTACCCTGTCT
ACCTCTATCAGCGGTACCGAATCTGCTGACACCTACCTGTACGACCCGGCTGACCCGGTTCCGAGCCTGGGTGGT
ACCCTGCTGTTCCACAACGGTGACAACGGTCCGGCTGACCAGCGTCCGATCCACGACCGTGACGACGTTCTGTGC
TACTCTACCGAAGTTCTGACCGACCCGGTTGAAGTTACCGGTACCGTTTCTGCTCGTCTGTTCGTTTCTTCTTCTGC
TGTTGACACCGACTTCACCGCTAAACTGGTTGACGTTTTCCCGGACGGTCGTGCTATCGCTCTGTGCGACGGTATC
GTTCGTATGCGTTACCGTGAAACCCTGGTTAACCCGACCCTGATCGAAGCTGGTGAAATCTACGAAGTTGCTATCG
ACATGCTGGCTACCTCTAACGTTTTCCTGCCGGGTCACCGTATCATGGTTCAGGTTTCTTCTTCTAACTTCCCGAAA
TACGACCGTAACTCTAACACCGGTGGTGTTATCGCTCGTGAACAGCTGGAAGAAATGTGCACCGCTGTTAACCGTA
TCCACCGTGGTCCGGAACACCCGAGCCACATCGTTCTGCCGATCATCAAACGTIIAA

vdh

UniProtKB - DORZT4

Codon optimized and
chemically synthesized

Aryl-aldehyde oxidase (EC: 1.2.3.9), Acinetobacter johnsonii SHO46
Benzaldehyde to benzoate

ATGCACAACGTTCAGCTGAAACAGGACAACACCGTTGACACCTCTTCTTTCGAATCTGCTCCGAACGTTCACACCGT
TCAGCTGCTGATCCACGGTCAGTCTGTTGACGCTTCTAACCAGATGACCTTCAAACGTATCTCTCCGATCGACGGT
CAGGTTGCTTCTATCGCTGCTGCTGCTACCCTGGCTGACGTTGACCTGGCTATCGAATCTGCTGCTAAAGCTTTCC
CGATCTGGTCTAAACTGTCTCCGACCGAACGTCGTCTGCGTCTGCTGAAAGCTGCTGACCTGATGGACGCTCGTAC
CGACCAGTTCATCCAGATCGGTATGCGTGAAACCGGTTCTACCGCTACCTGGTACGGCTTCAACGTTCACCTCGCT
GCTAACATGCTGCGTGAAGCTGCTGCTATGACCACCCAGATGGACGGTTCTCTGATCCCGTCTGACGTTCCGGGTA
ACATGGCTATGGGTATCCGTGTTCCGTGCGGTGTTGTTGTTGGTATCGCTCCGTGGAACGCTCCGGTTATCCTGCC
GACCCGTGCACTGGCTATGCCGCTGGCTTGCGGTAACACCGTTGTTCTGAAAGCTTCTGAAGCTTGCCCGGCTAC
CCAGCGTCTGATCGGTCAGGTTCTGCACGAAGCTGGTCTGGGTGACGGTGTTGTTAACGTTATCACCCACGCTGCT
GAAGACGCTTCTCAGATCGTTGAACGTCTGATCTCTCACCCGGCTGTTAAACGTATCAACTTCACCGGTTCTACCAA
CGTTGGTAAAATCATCGCTGAAACCGCTGCTAAATACCTGAAACCGGTTCTGCTGGAACTGGGTGGTAAAGCTCCG
GTTGTTGTTCTGAACGAAGCTGACGTTGACGAAGCTGTTAACGCTGTTGTTTTCGGTGCTTTCTTCAACCAGGGTCA
GATCTGCATGTCTACCGAACGTGTTCTGGTTCAGGACCGTATCGCTGACCAGTTCATCGAAAAACTGATCGAAAAAA
CCCGTACCATCCACGCTGGTAACCCGACCTTCAAAGGTCACGTTCTGGGTGTTCTGGAATCTCAGCGTGCTGCTAA
CCGTATCCAGCACCTGCTGGAAGACGCTCAGTCTCAGGGTGCTGACCTGCCGCTGGGTATCCACATCCAGAACAC
CACCATGCAGCCGACCCTGGTTCTGAACATCCAGCCGGAAATGCTGCTGTACCGTGAAGAATCTTTCGGTCCGGTT
TGCACCGTTCAGCGTTTCAACTCTGTTGAAGAAGGTATCGCCCTGGCTAACGACTCTGAATTCGGTCTGTCTGCTG
CTGTTTTCTCTCAGGACATCGCTCAGGCCCTGGACGTTGCTAAACAGATCGACTCCGGTATCTGCCACATCAACGG
TGCTACCGTTCACGACGAAGCTCAGATGCCGTTCGGTGGTACCAAAGCTTCTGGTTACGGTCGTTTCGGTTCTAAA
GCTTCTATCGCTGAATTCACCGAACTGCGTTGGATCACCATCCAGACCCAGTCTCGTCACTACCCGATCIAA

bphC

UniProtKB - P17297

Codon optimized and
chemically synthesized

Biphenyl-2,3-diol 1,2-dioxygenase (EC: 1.13.11.39), Pseudomonas sp.
Biphenyl-2,3-diol to 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate

ATGAGCATTGAACGCTTAGGTTACCTGGGTTTCGCAGTGAAAGATGTGCCAGCCTGGGACCACTTTCTGACGAAAT
CCGTGGGCTTAATGGCGGCCGGTAGCGCCGGAGATGCAGCCCTTTACCGTGCGGACCAACGTGCTTGGCGCATC
GCAGTACAACCTGGTGAGCTTGACGATTTAGCCTATGCAGGCTTAGAGGTGGACGACGCAGCTGCGCTTGAACGT
ATGGCGGACAAATTACGTCAAGCTGGTGTTGCGTTCACCCGTGGGGACGAGGCCCTGATGCAACAGCGCAAAGTG
ATGGGGCTTCTTTGCTTGCAGGATCCATTTGGATTACCTTTGGAAATCTATTATGGACCTGCTGAAATTTTCCACGAA
CCATTCTTGCCGTCTGCTCCTGTTTCCGGGTTCGTGACCGGGGACCAGGGTATTGGCCATTTTGTCCGTTGTGTTC
CCGATACAGCGAAGGCTATGGCTTTTTACACCGAGGTCCTTGGGTTCGTGCTTTCAGACATTATTGACATTCAAATG
GGGCCCGAGACTTCCGTTCCCGCTCACTTCTTACATTGCAACGGACGCCATCACACTATCGCTTTGGCCGCCTTTC
CCATTCCGAAACGTATCCACCACTTCATGTTACAGGCAAACACAATCGACGACGTGGGTTACGCATTTGATCGTCTG
GATGCAGCAGGGCGCATTACCTCGCTGCTGGGGCGTCACACCAATGATCAGACCCTGAGCTTTTACGCTGATACC
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CCAAGCCCCATGATTGAGGTCGAATTCGGTTGGGGCCCGCGTACAGTGGATTCCTCTTGGACCGTAGCGCGTCAC
TCGCGCACCGCTATGTGGGGGCATAAGTCTGTTCGCGGACAACGCTAA

bphD

UniProtkB - Q52036

Codon optimized and
chemically synthesized

2-Hydroxy-6-o0x0-6-phenylhexa-2,4-dienoate hydrolase (EC: 3.7.1.8), Pseudomonas putida
2-hydroxy-6-oxo0-6-phenylhexa-2,4-dienoate to benzoate

ATGACAGCATTGACTGAAAGCTCTACTAGCAAATTCCTTAACATCAAAGAGAAAGGCTTGTCCGACTTTAAGATTCAT
TATAATGAAGCGGGCAACGGTGAAACTGTCATCATGCTGCATGGCGGTGGACCGGGAGCCGGAGGATGGTCGAA
CTATTATCGTAATATCGGACCGTTCGTTGAAGCCGGTTACCGTGTCATTTTGAAGGATTCACCCGGCTTTAACAAAT
CCGATGCTGTCGTCATGGATGAACAACGTGGGCTTGTAAATGCTCGTGCGGTCAAGGGATTGATGGATGCTCTTGG
CATTGATCGTGCGCATCTGGTGGGAAATTCAATGGGAGGTGCAACCGCGCTTAACTTCGCCATCGAGTATCCAGAC
CGTATTGGAAAACTTATCCTTATGGGTCCGGGAGGTTTGGGACCCTCCATGTTTGCCCCAATGCCCTTAGAGGGAA
TTAAATTATTATTTAAGTTATATGCAGAGCCGTCGTATGAAAATCTGAAACAGATGATCCAAGTGTTCCTTTATGATCA
ATCTCTGATTACTGAGGAACTTTTACAAGGACGCTGGGAAGCCATTCAGCGTCAACCAGAACATCTTAAAAACTTCC
TGATTTCTGCGCAGAAGGCGCCCCTGAGTACGTGGGATGTTACCGCCCGTTTGGGAGAGATTAAGGCGAAGACCT
TCATTACATGGGGTCGTGACGACCGCTTCGTGCCGTTAGACCATGGTCTGAAACTTTTGTGGAATATTGATGACGC
ACGCTTGCACGTTTTTTCCAAGTGCGGACATTGGGCACAATGGGAGCATGCTGACGAGTTTAACCGCTTAGCCATT
GACTTTCTGCGCCAGGCTIAA

UniProtKB - B4XEY3

Codon optimized and
chemically synthesized

Amidase (EC: 3.5.1.4), Rhodococcus erythropolis
Benzamide to benzoate

ATGGCGACAATCCGTCCCGATGACAACGCAATTGACACGGCGGCCCGCCATTATGGCATCACCCTTGACCAAAGC
GCGCGTCTTGAGTGGCCCGCACTTATTGACGGAGCCTTAGGGAGCTACGACGTTGTTGACCAGCTGTACGCTGAT
GAAGCCACGCCGCCAACAACGTCGCGTGAACATACTGTCCCTACTGCTAGCGAAAATCCCCTTTCCGCCTGGTAC
GTTACGACCTCTATCCCCCCCACAAGTGACGGAGTGTTGACTGGACGCCGCGTCGCCATCAAAGATAACGTCACA
GTAGCTGGCGTGCCAATGATGAACGGCTCGCGTACCGTTGAGGGATTTACTCCGTCACGCGACGCCACTGTAGTC
ACTCGCCTGCTGGCTGCTGGTGCAACAGTAGCTGGAAAGGCTGTCTGTGAGGACTTATGCTTTTCTGGCTCTAGTT
TTACCCCAGCCTCGGGACCTGTTCGCAATCCCTGGGATCCGCAGCGCGAGGCAGGAGGAAGTTCCGGCGGAAGT
GCAGCATTAGTAGCAAATGGCGATGTCGACTTCGCAATTGGAGGTGACCAGGGTGGCTCCATCCGTATCCCGGCT
GCCTTTTGCGGCGTAGTCGGCCACAAGCCTACATTTGGACTTGTACCATATACGGGAGCCTTCCCAATCGAACGCA
CGATTGACCACCTTGGACCGATTACACGCACTGTCCATGACGCTGCACTTATGCTGTCAGTTATCGCAGGCCGCGA
TGGAAACGACCCTCGTCAAGCGGATAGTGTGGAAGCGGGCGACTACCTTAGTACTTTAGATAGCGACGTCGACGG
GTTACGTATCGGAATCGTACGTGAGGGTTTTGGCCACGCAGTCAGCCAACCGGAGGTAGACGACGCGGTTCGTGC
AGCGGCTCACAGCTTAGCAGAAATCGGATGCACAGTGGAAGAAGTGAACATTCCATGGCACCTGCATGCGTTTCAT
ATCTGGAATGTGATTGCCACCGATGGCGGTGCTTACCAAATGTTAGACGGGAACGGTTATGGAATGAATGCAGAAG
GTTTATACGACCCTGAACTTATGGCTCACTTCGCATCTCGTCGTCTTCAACATGCAGATGCCTTGTCTGAAACCGTT
AAGCTTGTAGCTCTGACCGGCCACCACGGGATTACGACATTAGGGGGCGCTTCGTACGGGAAAGCCCGCAACTTG
GTTCCGTTAGCGCGTGCAGCTTACGACACCGCGCTTCGTCAGTTCGACGTGCTTGTAATGCCAACTTTACCTTATG
TCGCCTCAGAATTACCAGCCAATGATGTCGACCGTGCAACTTTTATTACTAAGGCGCTTGGTATGATCGCTAACACA
GCACCTTTCGATGTAACAGGGCACCCGAGCTTATCAGTTCCAGCTGGCCTTGTAAATGGGTTACCTGTCGGTATGA
TGATTACTGGAAAGACTTTTGATGATGCGACAGTGCTTCGTGTAGGGCGTGCCTTTGAGAAATTACGTGGGGCCTT
TCCGACCCCTGCAGATCACATTTCGGATAGTGCCCCGCAATTAAGCCCTGCGIAA

J23101-B0032

From iGEM registry*

Constitutive promoter-RBS

AGGATACTAGAGGATGACCCCATCTGTTTACAGCTAGCTCAGTCCTAGGTATTATGCTAGCTAGTAGAGTCACACAG
GAAAGTAGTAGATG
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