

Evolution and genetic architecture of disassortative mating at a locus under heterozygote advantage

Ludovic Maisonneuve^{1,*}, Mathieu Joron², Mathieu Chouteau³ and Violaine Llaurens¹

1. Institut de Systematique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, 45 rue Buffon, 75005 Paris, France;

2. Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France;

3. Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, Université De Guyane, IFREMER, CNRS Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana;

* Corresponding author: Ludovic Maisonneuve; e-mail: ludovic.maisonneuve@mnhn.fr.

Manuscript elements: Table 1, figure 1, figure 2, figure 3, figure 4, figure 5, figure S1, figure S2, figure S3, figure S4, figure S5, figure S6, figure S7, figure S8.

Keywords: Heterogamy, Supergene, Frequency dependent selection, genetic load, mate preference, *Heliconius numata*.

Manuscript type: Article.

Abstract

2 The evolution of mate preferences may depend on natural selection acting on the mating cues
3 and on the underlying genetic architecture. While the evolution of assortative mating acting
4 on locally adapted traits has been well-characterized, the evolution of disassortative mating is
5 poorly characterized. Here we aim at understanding the evolution of disassortative mating for
6 traits under strong local selection, by focusing on polymorphic mimicry as an illustrative ex-
7 ample. Positive frequency-dependent selection exerted by predators indeed generates positive
8 selection on mimetic colour patterns. In this well-characterized adaptive landscape, polymor-
9 phic mimicry is rare but had been reported in a butterfly species where chromosomal inversions
10 control mimetic colour pattern variations. Because inversions are often associated with recessive
11 deleterious mutations, we hypothesize they may induce a heterozygote advantage at the colour
12 pattern locus, putatively favoring the evolution of disassortative mating. To explore the condi-
13 tions underlying the emergence of disassortative mating, we modeled both a color pattern locus
14 and a mate preference locus. We confirm that a heterozygote advantage favors the evolution of
15 disassortative mating and show that disassortative mating is more likely to emerge if at least one
16 adaptive allele is free from any genetic load. Comparisons of hypothetical genetic architectures
17 underlying mate choice behaviors show that rejection alleles linked to the colour pattern locus
18 can be under positive selection and enable the emergence of disassortative mating behaviour.
19 Our results therefore provide relevant predictions on both the selection regimes and the genetic
20 architecture favouring the emergence of disassortative mating, which could be compared to em-
pirical data that are starting to emerge on mate preferences in wild populations.

22

Introduction

Mate preferences often play an important role in shaping traits diversity in natural populations,
24 but the mechanisms responsible for their emergence often remain to be characterized. While
the evolution of assortative mating on locally adapted trait is relatively well understood (Otto
26 et al., 2008; de Cara et al., 2008; Thibert-Plante and Gavrilets, 2013), the selective forces involved
in the evolution of disassortative mating are still largely unknown. Disassortative mating, *i.e.*
28 preferential crosses between individuals displaying a different phenotype, is a rare form of mate
preference (Jiang et al., 2013) and is expected to have a large effect on polymorphism in traits
30 targeted by sexual selection. In populations where individuals tend to mate with partners with
a phenotype different from their own, individuals with a rare phenotype have a larger number
32 of available mates, resulting in higher reproductive success. By generating a negative frequency-
dependent selection on mating cues, disassortative mating is thus often pointed out to generate
34 and/or maintain polymorphism within populations of various species. Obligate disassortative
mating for sexes or mating types leads to the persistence of intermediate frequencies of sexes or
36 mating types (Wright, 1939), and promotes polymorphism, with in some extreme cases, thou-
sands of mating types being maintained, as in some Basidiomycete fungi for instance (Casselton,
38 2002). A few examples of disassortative mating are also based on other traits such as body chiral-
ity in *Amphidromus inversus* snails, where a greater fecundity is reported in inter-chiral mating
40 events, therefore promoting polymorphism within population (Schilthuizen et al., 2007). Disas-
sortative mating is frequently reported in traits where polymorphism is maintained because of
42 natural selection: in the scale eating predator fish *Perissodus microlepis*, a dimorphism on the
mouth-opening direction ('lefty' versus 'righty') is maintained within populations by negative
44 frequency-dependent selection (Takahashi and Hori, 2008), due to prey behavior monitoring the
most attacked side. A disassortative mating behavior based of the mouth-opening direction is
46 also observed in this species (Hori, 1993). Disassortative mating based on odors is also reported
in mice (Penn and Potts, 1999) and humans (Wedekind et al., 1995): odor profiles are indeed

48 tightly linked to genotypes at the MHC loci controlling for variations in the immune response,
known to be under strong balancing selection (Piertney and Oliver, 2006). The balancing se-
50 lection in MHC partly stems from heterozygous advantage, whereby heterozygous genotypes
might be able to recognize a large range of pathogens. Such heterozygote advantage may thus
52 promotes the evolution of disassortative mating (Tregenza and Wedell, 2000). Extreme examples
of heterozygotes advantage are observed for loci for which homozygotes have reduced survival.
54 In the seaweed fly *Coelopa frigida* the heterozygotes ($\alpha\beta$) at the locus Adh have a better fitness
than homozygotes ($\alpha\alpha$ or $\beta\beta$) (Butlin et al., 1984; Mérot et al., 2019) and females prefer males with
56 a different genotype on Adh locus from their own (Day and Butlin, 1987). In the white-throated
sparrow *Zonotrichia albicollis*, strong disassortative mating is reported regarding the color of the
58 head stripe and associated with chromosomal dimorphism. This plumage polymorphism is con-
trolled by single locus (Tuttle et al., 2016), where a lack of homokaryotype individuals is observed
60 (Horton et al., 2013).

Nevertheless while the fitness advantage of disassortative mating at loci with overdominance
62 seems straightforward, the genetic basis of disassortative mating preferences remains largely
unknown. One exception is the self-incompatibility system in *Brassicaceae* where the S-locus con-
64 trols for a specific rejection of incompatible pollen (Hiscock and McInnis, 2003). S-haplotypes
contains tightly linked co-evolved SCR and SRK alleles, encoding for a protein of the pollen coat
66 and a receptor kinase located in the pistil membrane respectively, preventing fertilization from
self-incompatible pollen due to specific receptor-ligand interactions. Self-rejection is also sug-
68 gested to explain the disassortative mating behavior linked to odor in humans. Body odors are
strongly influenced by genotypes at the immune genes HLA and rejection of potential partners
70 is shown to be linked to level of HLA similarity, rather than specific rejection of a given HLA
genotype (Wedekind and Füri, 1997). In the white-throated sparrow, disassortative mating stems
72 from specific preferences for color plumage that differ between males and females, whereby tan-
striped males are preferred by all females whereas white-striped females are preferred by all
74 males (Houtman and Falls, 1994). Different mechanisms leading to mate preferences and as-

sociated genetic architecture can thus be hypothesized, that could depend (1) or not (2) on the
76 phenotype of the chooser. Based on the categories described by Kopp et al. (2018), we assume
either (1) *Self-referencing*, (i.e. when individual used its own signal to choose its mate), that could
78 involve either (1a) a single locus affecting both the mating cues and the preferences or (1b) a two
locus architecture where one locus controls mating cues and the second one encodes for a mating
80 behavior that depends on the phenotype at the trait locus or (2) preferences for or rejection of
a given phenotype (*preference/trait* hypothesis), that could involve two loci, one controlling the
82 mating cue and the other the preference toward the different cues (Kopp et al., 2018). The locus
controlling preference could therefore either be the same or different from the locus controlling
84 cue variations, and in the latter case, the level of linkage disequilibrium between the two loci
could have a strong impact on the evolution of disassortative mating. The level of recombin-
86 ation between loci controlling mating cues and mating preferences potentially has a strong impact
on the evolution of mate behavior, and these two main categories become quite similar when
88 the linkage disequilibrium is high. In models investigating the evolution of assortative mating
on locally-adapted traits, theoretical simulations have demonstrated that assortative mating is
90 favored when the preference and the cue locus are linked (Kopp et al., 2018).

Here we explore the evolutionary forces leading to the emergence disassortative mating be-
92 haviour. We focus on the specific case of the butterfly species *Heliconius numata*, where high
polymorphism in wing pattern is maintained within population (Joron et al., 1999) and strong
94 disassortative mating is documented between wing pattern forms (Chouteau et al., 2017). *H.*
numata butterflies are chemically-defended (Arias et al., 2016), and their wing patterns act as
96 warning signals against predators. At a local scale, natural selection leads to the fixation of a
single warning signal shared among sympatric defended species (Müllerian mimicry) (Merrill
98 et al., 2015). However, local polymorphism of mimetic colour patterns can still emerge within
species in some balancing conditions between migration and local selection for specific mimetic
100 patterns (Joron and Iwasa, 2005). The local polymorphism of several mimetic patterns observed
within populations of *H. numata* (Joron et al., 1999), would then require a high migration rate

102 compensating for strong local selection. However, disassortative mating based on wing pattern is
103 reported in *H. numata* in which females reject males displaying the same color pattern (Chouteau
104 et al., 2017). Such disassortative mating behaviour could then enhance the local polymorphism
105 in colour pattern within this species. This mating behavior could, in turn, promote migration
106 because immigrant individuals exhibiting a locally rare phenotype would benefit from increased
107 reproductive success. Nevertheless, the evolution of such disassortative mating is unclear, no-
108 tably because this mate preference should be strongly counter-selected by predators attacking
109 more readily locally rare, non-mimetic warning patterns (Chouteau et al., 2016). By focusing on
110 this well-documented example, we used a theoretical approach to provide general predictions on
111 the evolution of disassortative mating in polymorphic traits, and on expected genetic architecture
112 underlying this behavior.

113 Variation in wing colour patterns of *H. numata* is controlled by a single genomic region,
114 called the supergene P (Joron et al. , 2006), which display chromosomal inversions (Joron et al. ,
115 2011). These inversions have recently been shown to be associated with a significant genetic load,
116 resulting in a strong heterozygote advantage (Jay et al, bioRxiv). We thus investigate whether
117 genetic load associated with locally adaptive alleles may favor the evolution of mate preference
118 and promote local polymorphism despite local directional selection. We then explored two pu-
119 tative genetic architectures of mate preferences based on (1) *self referencing* and (2) based on
120 *preference/trait* rule, and tested their respective impact on the evolution of disassortative mating
121 behavior. Under both hypotheses, we assumed that the mating cue and the mating preference are
122 controlled by two distinct loci, and investigate the effect of linkage between loci on the evolution
123 of disassortative mating behavior.

124

Methods

125 Based on a previous-developed model of Müllerian mimicry (Joron and Iwasa, 2005) extended to
126 diploid populations (Llaurens et al., 2013), we describe a two-populations model with a locus *P*

controlling mimetic color pattern under local selection and spatial variations in mimetic communities. We explicitly model the genetic architecture controlling mate preference toward color pattern by a locus M assuming either (1) a preference based on the phenotype of the choosing individual or (2) a preference for a given color pattern displayed by mating partner, independent from the colour pattern of the choosing individual. We also assume different levels of genetic load associated with the color pattern alleles. Every individual thus have a genotype i described as follows :

$$i = (p_1, p_2, m_1, m_2), \quad (1)$$

where p_1 and p_2 are two alleles at the locus P and m_1 and m_2 two alleles at the locus M .

We track down the evolution of allele frequencies at both the locus P controlling variations in wing color pattern and locus M controlling mate preference. A recombination rate r between these two loci is assumed.

138 *Mimetic color patterns*

At locus P , three alleles are assumed to segregate, namely alleles a , b and c , encoding for phenotypes [A], [B] and [C] respectively. We assume strict dominance among the three alleles with $a \succ b \succ c$ in agreement with the strict dominance observed among supergene P alleles within natural populations of *H. numata* (Le Poul et al., 2014). The three color pattern phenotypes are assumed to be perceived as strictly different by both mating partners and predators. The resemblance $Res[i][j]$ between pairs of individuals exhibiting phenotype $[i]$ and $[j]$ respectively is thus set to 1 for identical phenotypes and to 0 for dissimilar one. The resemblance matrix among the three phenotypes is :

$$Res = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Spatial variation in mimetic communities

148 Local selection promotes convergent evolution of wing color pattern among defended species (i.
e. Müllerian mimicry, (Müller, 1879)), forming so-called mimicry rings composed of individuals
150 from different species displaying the same warning signal. At a larger scale, a spatial mosaic of
warning patterns can be observed, through an equilibrium between colonization and selection
152 acting locally (Sherratt, 2006).

Here we assume two populations of an unpalatable species involved in Müllerian mimicry
154 with other chemically-defended species. We assume separated sex and obligate sexual reproduction
between the two sexes. The environment differs in communities of local species involved in
156 mimicry (*i.e.* mimicry rings). We consider two patches occupied by different mimetic communities: population 1 is located in a patch where the local community (*i.e.* other chemically-defended
158 species, not including *H. numata*) mostly displays phenotype [A], and population 2 in a patch
where the mimetic community mostly displays phenotype [B]. This spatial heterogeneity is represented
160 by the parameter $\sigma \in [0, 1]$ simulating the relative proportion of phenotypes [A] and [B]
in mimicry rings of patch 1 and 2 respectively, so that the higher is σ , the more the two communities
162 differed, leading to spatial heterogeneity favouring phenotype [A] in patch 1 and phenotype
[B] in patch 2. This spatial heterogeneity σ plays a central role on the predation suffered by the
164 different phenotypes in the two patches (see Predation section below). The focal mimetic species
is polymorphic for those two phenotypes, corresponding to the locally advantageous phenotypes
166 [A] or [B] (Note that the allele c, and corresponding phenotype [C] is non-mimetic in both patches
and is then disadvantaged in both patches).

Positive frequency-dependent predation

168 Every individual of the focal (polymorphic) species suffer a predation risk modulated by its re-
semblance to the local mimetic community of butterflies. We assume a symmetrical condition
170 where the mortality coefficient was $d(1 - \sigma)$ for phenotypes matching the local mimicry ring

¹⁷² (i.e. diminishing predation exerted on genotypes displaying phenotype [A] in population 1 and
genotypes displaying [B] in population 2) and $d(1 + \sigma)$ otherwise (i.e. increasing predation ex-
¹⁷⁴ erted on genotypes displaying phenotype [B] or [C] in population 1 and on genotypes displaying
phenotype [A] or [C] in population 2), where d represents the baseline predation risk and σ the
¹⁷⁶ spatial heterogeneity of mimicry communities in patch 1 and 2.

¹⁷⁸ Predation exerted on a given phenotype depends on its match to the local mimicry environ-
ment, but also on its own abundance in the patch. Predators learn to associate warning patterns
¹⁸⁰ to chemical defense. This learning behavior generates a positive frequency-dependent selection
(pFDS) on butterfly wing pattern (Chouteau et al., 2016), because displaying a widely shared
color pattern decreases the risk of encountering a naive predator (Sherratt, 2006). Number-
¹⁸² dependent predator avoidance in the focal species is assumed to depend on its unpalatability
coefficient (λ) and the density of each phenotype, so that protection gained by resemblance
¹⁸⁴ among phenotypes is greater for higher values of the unpalatability coefficient λ . This results in
the following change in number of each genotype i in population pop due to predation :

$$\Delta P_{i,pop}^t = -\frac{d}{1 + \lambda(\sum_j Res_{[i],[j]})N_{j,pop}^t}[(1 + \sigma)(1 - Res_{[i],[pop]}) + (1 - \sigma)Res_{[i],[pop]}]N_{i,pop}^t \quad (2)$$

¹⁸⁶ with $N_{i,pop}$ representing the total number of individuals with genotype i in population pop ,
 $Res_{[i],[pop]}$ representing the resemblance of the phenotype expressed by genotype i to the local
¹⁸⁸ mimetic community. The predation rate is indeed lower in individuals displaying the phenotype
mimetic to the local community (i.e. the phenotype A in population 1 and B in population
¹⁹⁰ 2). Individuals displaying phenotype [C] were non-mimetic in both populations, and therefore
suffer from high predation risk in both populations. The numerator models the positive number
¹⁹² dependent selection, this effect being stronger for higher values of toxicity.

Migration

¹⁹⁴ The change in the number of individuals with genotype i in population pop due to migration between populations pop and pop' is given by:

$$\Delta M_{i,pop}^t = mig(N_{i,pop'} - N_{i,pop}) \quad (3)$$

¹⁹⁶ with mig is the migration coefficient $mig \in [0, 1]$).

Mate preferences

¹⁹⁸ The mate preference is considered as strict, implying that choosy individuals never mate with individuals displaying a non-preferred phenotype. Two hypothetical mate preference mechanisms ²⁰⁰ are investigated. Under the *self-referencing* hypothesis (hyp 1), two alleles are assumed at loci M , coding for (i) random mating (r) and (ii) preferential mating behavior (either assortative *sim* or ²⁰² disassortative *dis*) respectively (see fig. S1 for more details). We assume that the preference alleles *sim* and *dis* are dominant over the random mating allele *r* (see fig. S1 for more details). The ²⁰⁴ dominance relationships between the *sim* and *dis* alleles are not specified because we investigate independently the evolution of assortative and disassortative mating from a population ²⁰⁶ ancestrally mating at random. Note that under hyp. 1, mating behavior is based on a self-referencing, and thus crucially depends on the color pattern of the individual expressing the preference.

²⁰⁸ An alternative model of mechanisms of mate preference is investigated, assuming a specific ²¹⁰ recognition of color patterns, acting as mating cue (*preference/trait*, hyp.2). Under hyp.2, four ²¹² alleles segregate at locus M : allele M_r , coding for an absence of color pattern recognition (leading ²¹⁴ to random mating behavior), and M_a , M_b and M_c coding for a specific recognition of color pattern phenotypes [A], [B] and [C]. The 'no preference' allele M_r is recessive over all the preference alleles M_a , M_b and M_c , and preference alleles are co-dominant, so that that heterozygotes at the locus M can recognize two different alleles. Then, the recognition enabled by preference alleles M_a , M_b and M_c triggers either attraction (hyp.2.a) or repulsion (hyp.2.b) toward the recognized

216 color pattern, leading to assortative or disassortative mating behavior depending on the genotype
at locus M (see figure S2 and S3 for more details).

218 We expect the evolution of disassortative mating to be favored when preference alleles (M_a ,
 M_b and M_c) generate rejection behavior (hyp.2.b) rather than attraction (hyp.2.a). Disassortative
220 mating of females indeed implies the avoidance of males displaying their color pattern. Such
behavior can simply emerge from an haplotype combining allele a at color pattern locus P and M_a
222 at preference locus M assuming the genetic architecture triggering rejection (hyp 2.b). Assuming
a genetic architecture generating attraction (hyp 2.a) however, disassortative mating only emerge
224 when females displaying the color pattern phenotype [A] (i.e. with genotypes aa , ab or ac) carry
the heterozygous genotype M_bM_c at the preference locus M , preventing a complete fixation
226 of this behavior.

228 To characterize female mating preferences generated by the different genotypes at locus M
and the link with their own colour pattern phenotype, we distinguish two main behaviors emerg-
230 ing under hyp.2 (fig. S2 and S3 for attraction (hyp.2.a) and rejection (hyp.2.b) hypotheses respec-
tively):

- 232 • Self-acceptance : females mate with males displaying their own color pattern phenotype.
- Self-avoidance : females do not mate with males displaying their own color pattern phenotype.

234 These two inferred behaviours can be directly compared with empirically-estimated mate prefer-
ences expressed by females exhibiting different colour patterns, towards males displaying various
236 colour pattern (Chouteau et al., 2017).

Reproduction

238 We also assume a balanced sex-ratio, a carrying capacity K and a growth rate r , all equal in both
populations. We name $N_{tot,pop}^t$ the total density of individuals in population pop at time t . Sexual
240 reproduction is computed explicitly. Assuming Mendelian segregation and a recombination at

rate ρ between both locus, the change in the number of individuals with genotype i in population pop due to reproduction is then described as follows:

The frequency of genotype i in population pop (defined as $f_{i,pop}^t$) is first computed. The change in frequency $F_{i,pop}^t$ then consider the frequencies of each genotype in the population, mendelian segregation and the mate preferences computed in equation 1.4. We assume a single choosy sex: only females can express preference toward males phenotype while males have no preference, and can mate with any accepting females, so that the genotype of the choosy partners i is entirely determining the probability of crosses between partners i and j .

The preference matrix $Pref$ is initially set as $Pref_{i,[j]} = 1$ when females with genotype i accept males with genotype j as mating partner and $Pref_{i,[j]} = 0$ otherwise.

We define the fertility of the individual i as below

$$f_i = Pref_{i,A}P_A + Pref_{i,B}P_B + Pref_{i,C}P_C \quad (4)$$

Where P_i refer to the proportion of the morph i in the population.

Because choosy individuals might have a reduced reproductive success due to limited mate availability (Kirkpatrick and Nuismer, 2004), we also assume a cost associated with choosiness refer to as $cost$, When this cost is low ($cost = 0$), females have access to a large number of potential mates, so that their fertility is not limited when they become choosy ("Animal" model), whereas when this cost is high ($cost = 1$), females have access to a limited number of potential mates, so that their fertility tends to decrease when they become choosy ("Plant" model). This cost of choosiness is known to limit the evolution of mating preferences (Otto et al., 2008).

$$F_{i,pop}^{t+1} = \sum_{j,k} \text{coef}(i,j,k,\rho) \frac{1 - cost + cost f_j}{f_j} Pref_{j,[k]} \frac{f_{j,pop}^t}{2} \frac{f_{k,pop}^t}{2} \quad (5)$$

Where coef controls the mendelian segregation of alleles during reproduction between an individual of genotype j and an individual of genotype k , therefore depending on the recombination rate ρ between the color pattern locus P and the preference locus M .

We normalized this matrix as $\forall i \sum_j f_{j,pop}^{t+1} = 1$

$$f_{i,pop}^{t+1} = \frac{F_{i,pop}^{t+1}}{\sum_j F_{j,pop}^{t+1}} \quad (6)$$

²⁶⁴ Overall, the change in the number of genotype i in population pop is given by:

$$\Delta R_{i,pop}^t = r(1 - \frac{N_{tot,pop}^t}{K})N_{i,pop}^t f_{i,pop}^{t+1} \quad (7)$$

Survival

²⁶⁶ We assume a mortality rate of larvae named δ . The recessive genetic loads $\delta_1, \delta_2, \delta_3$ associated
 with the alleles a, b and c respectively then limits the survival probabilities of larvae with an
²⁶⁸ homozygous genotype at the supergene P . Dominant alleles are usually derived alleles associated
 with inversions (see Llaurens et al. (2017) for a review) whereas recessive alleles are generally
²⁷⁰ carried by the ancestral gene order. We thus expect that the genetic load associated with the
 most dominant allele a and the intermediately dominant allele b have similar strength because
²⁷² of deleterious mutations captured by the inversions, i.e. $\delta_1 = \delta_2$. These genetic loads associated
 with dominant alleles could then be higher than the genetic load associated with the recessive
²⁷⁴ allele c , namely δ_3 .

$$\delta_i = \begin{cases} \delta_1 & \text{if } (m_1, m_2) = (a, a) \\ \delta_2 & \text{if } (m_1, m_2) = (b, b) \\ \delta_3 & \text{if } (m_1, m_2) = (c, c) \\ 0 & \text{else} \end{cases} \quad (8)$$

$$\Delta S_{i,pop}^t = -(1 - (1 - \delta)(1 - \delta_i))N_{i,pop}^t \quad (9)$$

Tracking the evolution of the two populations using numerical analyses

²⁷⁶ Overall, the change in the number of genotype i in the population pop is given by:

Abbreviation	Name	Parameter range
N_i^0	Initial size of the population i	100
d	Predation strength	[0,1]
σ	Spatial heterogeneity of local mimicry ring	0.5
λ	Unpalatability coefficient	0.0002
mig	Migration rate	[0,1]
ρ	Recombination rate	[0, 0.5]
r	Growth rate	2
K	Carrying capacity	2000
δ	Baseline death rate	[0, 1]
δ_i	Genetic load linked to allele i	[0, 1]
$cost$	cost of choosiness	[0, 1]
Δf^t	Temporal variations	

Table 1: Description of parameters used in the model and range explored in simulations.

$$\Delta N_{i,pop}^t = \Delta P_{i,pop}^t + \Delta R_{i,pop}^t + \Delta M_{i,pop}^t + \Delta S_{i,pop}^t \quad (10)$$

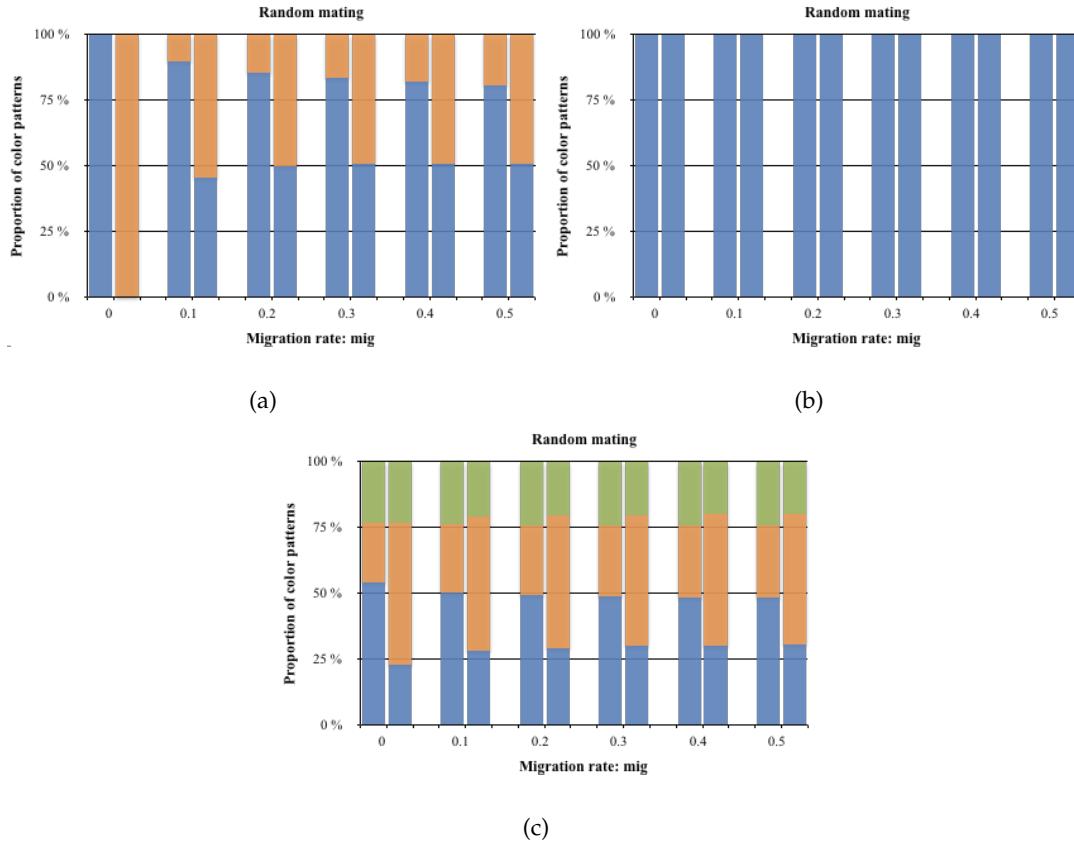
All parameters and range values used in the different simulations are summarized in Table 1
 278 below. Simulations were performed using Python v.3.

280 The complexity of this two-locus diploid model prevents comprehensive exploration with an-
 alytical methods. The model is thus studied using deterministic simulations, to provide general
 282 predictions, neglecting the effect of stochastic processes, such as drift. Our predictions might thus
 be relevant for species with large effective population size, such as *H. numata*. We use discrete
 284 time simulations where all events (reproduction, predation and migration) occur simultaneously,
 therefore relevantly simulating a natural population with overlapping generations.

286 In our simulations, the growth rate r is set to 2, the carrying capacity K is assumed to be equal
287 to 2000 per population. Initial population sizes $N_{tot,1}^0$ and $N_{tot,2}^0$ are 100 individuals. The three
288 alleles at the locus P controlling color pattern variations are introduced in proportion $\frac{1}{3}$ in each
289 population. We set the toxicity parameter λ to 0.0002, and the spatial heterogeneity of mimetic
290 communities σ to 0.5. These parameter values are selected as conditions where wing color pattern
291 polymorphism could be maintained without any genetic load or disassortative mating behavior,
292 based on a previous study (Llaurens et al., 2013).

Results

294 *Effect of mate choice on polymorphism*


As already highlighted in the literature (Llaurens et al., 2013), assuming random mating, polymorphism can be maintained through an equilibrium between spatially heterogeneous selection and migration. In the absence of migration, alleles a and b become fixed in population 1 and 2 respectively, owing to their mimetic advantage within their respective communities. Polymorphism with persistence of alleles a and b within each patch can only be maintained with migration at an intermediate rate, but in all cases the non mimetic allele c is lost in both populations (fig.1 (a)).

To test for an effect of mate choice on the previously described selection/migration equilibrium, simulations were carried out introducing alleles (r , dis or sim) at the mate choice locus (Hyp.1), assumed to be fully linked to the colour pattern locus ($\rho = 0$). We then computed the evolution of frequencies at the color pattern locus after 10,000 time steps for different migration rates mig . Assuming assortative mating via self-referencing (hyp. 1) leads to the fixation of the dominant allele a in both patches for all migration rates explored, because allele a is the most frequently expressed due to dominance and therefore benefits from a frequency-dependent advantage (fig.1 (b)). By contrast, disassortative mating maintains higher degree of polymorphism, with the two mimetic alleles a and b , and the non-mimetic allele c persisting within populations, for all migration rates. The non-mimetic phenotype [C] is rarely expressed because the recessive

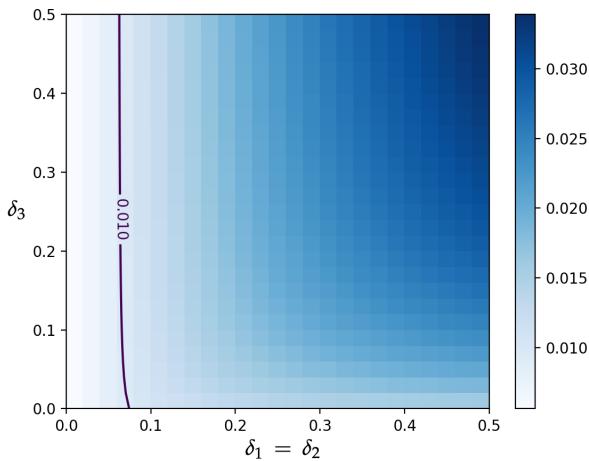
allele c persists at low frequency, yet associates with high reproductive success because of disassortative mating. Indeed, the strict disassortative preference assumed here strongly increases the reproductive success of individuals displaying a rare phenotype, such as [C]. This effect would be weakened with less stringent mate preferences. Nevertheless, the negative FDS on color pattern generated by disassortative mating counteracts the positive FDS due to predator behavior acting on the same trait. Disassortative mate preferences can thus promote the polymorphism of alleles within and between patches.

318 Linked genetic load favors the persistence of a non-mimetic allele

In the following simulations, migration parameter mig were then set to 0.1, allowing a persistence of polymorphism of alleles a and b at the color pattern locus P , when assuming random mating. We then investigated the influence of a genetic load associated with the different color pattern alleles on polymorphism at the color pattern locus. This allows inferring the effect on polymorphism of heterozygote advantage generated by genetic load, independently of the evolution of mating preferences. We observe that phenotypes [A] and [B] are maintained but not phenotype [C] when a genetic load is associated with the non mimetic allele c only ($\delta_1 = \delta_2 = 0$ and $\delta_3 > 0$) or when this load is stronger than the one associated with alleles a and b (Supp. table S4). However, the non-mimetic allele c is maintained with the other alleles a and b within both populations, when (i) all three alleles carry a genetic load of similar strength, *i.e.* $\delta_1 = \delta_2 = \delta_3 > 0$ or (ii) when allele c is the only one not carrying a genetic load ($\delta_1 = \delta_2 > 0$ and $\delta_3 = 0$) (Supp. table S4). Heterozygote advantage generated by the genetic load associated with mimetic alleles at the locus P thus favors the persistence of balanced polymorphism and more specifically promotes the maintenance of the non mimetic allele c within both populations.

Figure 1: Impact of mate preferences on color pattern diversity within both populations. The equilibrium frequencies of color pattern phenotypes in population 1 and 2 for different migration rates mig are computed assuming different mating behaviors, *i.e.* assortative (a), random (b) or disassortative (c). The heights of the colored stacked bars indicates the frequencies of color pattern phenotypes [A], [B] and [C] (as blue, orange and green areas respectively) in population 1 and 2 (on the left and right side respectively, within each level of migration). The three alleles at the locus P controlling color pattern variations are introduced in proportion $\frac{1}{3}$ in each population. The locus M controls for the self-referencing based mate preferences (hyp. 1). Simulations are run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0$, $\rho = 0$, $cost = 0.1$, $\delta_1 = \delta_2 = \delta_3 = 0$ and $\delta = 0$.

Evolution of disassortative mating


334 Because we expect heterozygote advantage at color pattern locus P to enhance the evolution of
 335 disassortative mating preferences at the locus M , we first investigated the influence of a genetic
 336 load on the evolution of disassortative behavior, by testing the invasion of mutant inducing
 337 self-avoidance (hyp. 1) in a population initially performing random mating. We computed the

frequency of the mutants 100 time steps after the introduction, assuming full linkage between loci P and M. Figure 2 shows that the genetic load associated with alleles a and b ($\delta_1 = \delta_2$) has a strong positive impact on the emergence of disassortative mating. The genetic load associated with the recessive allele c (δ_3) has a slighter positive effect on the evolution of disassortative mating. At a larger evolutionary scale, this leads to the fixation of the disassortative mating allele dis (see equilibrium after 10,000 time steps in supp. figure S5) when the genetic load associated with the dominant alleles a and b is positive. Simulations assuming different costs associated with choosiness (*cost*) show a similar effect of associated genetic loads, although increasing this cost slows down the invasion of the choosy disassortative mating mutant dis (see Sup. fig. S6). Overall, this confirms that genetic load linked to the color pattern locus P favors the evolution of disassortative mating behavior in both populations and further promotes polymorphism at the locus P .

How does the genetic architecture of mating preference influence the evolution of disassortative mating behavior ?

To study the evolution of mating behavior assuming different genetic architecture of mate preferences, we investigated the invasion of mate preference alleles M_r , M_a , M_b and M_c controlling random mating, recognition of phenotype A , B and C respectively (Hyp. 2). We ran simulations for 10,000 time steps in order to compute the equilibrium distribution of haplotypes. We first assumed that loci P and M are fully linked ($\rho = 0$). We compared simulations where mate preference alleles triggered either attraction (Hyp. 2a) or rejection (Hyp. 2b) of the recognized color pattern phenotype (fig.3(a) and fig.3(b) respectively).

When preference alleles cause female attraction to males with a given phenotype (Hyp.2a), we observed high frequencies of haplotypes $a - M_b$ and $b - M_a$ in both populations at equilibrium, as soon as the genetic load associated with dominant alleles δ_1 and δ_2 was greater than from 0 (fig.3(a)). These two haplotypes benefit from both positive selection associated with mimicry

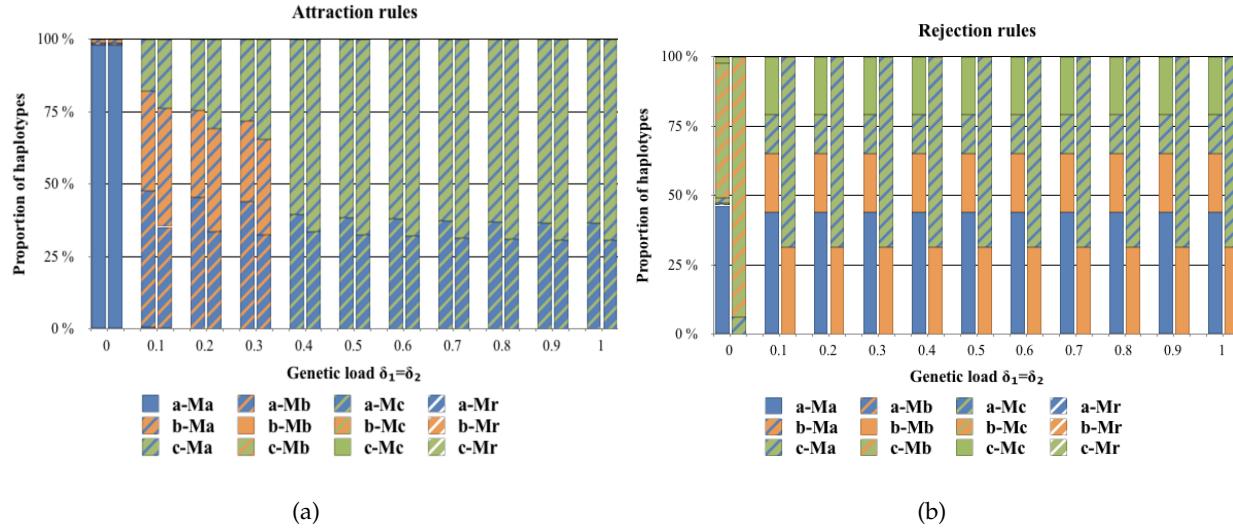


Figure 2: Impact of linked genetic load on the evolution of disassortative mating, assuming self-referencing (Hyp.1). The invasion of a mutant with disassortative mating preferences depends on the strength of the genetic load associated with dominant alleles a and b assumed equal ($\delta_1 = \delta_2$) (x axis) and with the recessive allele c (δ_3) (y axis). The shade of blue indicates the frequency of the mutant with disassortative mating preferences dis , inducing self-avoidance based on phenotype (hyp. 1), after 100 time steps. The purple line indicates the initial frequency of the mutant, set to 0.01, therefore highlighting the conditions above which an invasion by the mutant is observed. The three alleles at the locus controlling colour pattern variations are introduced in even proportion (*i.e.* $\frac{1}{3}$) in each population, and the initial frequency of the mutant are 0.01, shown by the vertical purple line marking the limit of invasion by the mutant. Simulations are run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $\rho = 0$, $mig = 0.1$, $\delta = 0.1$ and $cost = 0.1$.

and limited expression of the genetic load due to the preferential formation of heterozygotes.

364 Haplotype $c - M_a$ is maintained because of the benefit associated with the choice of the most
 365 frequent mimetic phenotype A, and the limited expression of the non-mimetic phenotype C
 366 because allele c is recessive. Nevertheless, Haplotype $b - M_a$ becomes lost as the genetic load
 367 increases and cannot be compensated by the beneficial effect of mimicry, which is weaker for
 368 phenotype B than phenotype A because A is more abundant. As a consequence, the mimetic
 369 phenotype B is not maintained in populations where the genetic load is high, and the dominant
 370 phenotype A becomes predominantly expressed in both populations.

By contrast, when mate preference is based on alleles causing rejection behavior (Hyp.2b)

Figure 3: Influence of a genetic load on haplotype diversity, assuming (a) attraction rule (hyp. 2a) or (b) rejection rule (hyp. 2b) at the preference locus (*preference/trait*). The proportion of haplotypes obtained 2000 time steps after the introduction of preference alleles in both populations are shown for different values of genetic load associated with alleles a and b ($\delta_1 = \delta_2$). The locus M controls for a specific recognition of colour pattern alleles inducing either (a) attraction (hyp.2a) or (b) rejection (hyp.2b). The three alleles at the locus P controlling color pattern variations are initially introduced in even proportion $\frac{1}{3}$ in each population. After 10,000 time steps under random mating the four alleles at locus M : M_r , M_a , M_b and M_c are introduced respectively in proportion 0.99 , $\frac{0.01}{3}$, $\frac{0.01}{3}$, $\frac{0.01}{3}$. Simulations are run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $\rho = 0$, $mig = 0.1$, $\delta_3 = 0$, $\delta = 0.1$ and $cost = 0.1$.

372 and when a genetic load is associated with the mimetic alleles a and b at locus P , these alleles
 373 become associated with the corresponding rejection alleles at locus M (*i.e.* $a - M_a$ and $b - M_b$
 374 have an intermediate frequency in both populations) (fig.3(b)). Non mimetic allele c becomes
 375 either associated with a self-avoiding allele $c - M_c$, or an allele rejecting the dominant allele a
 376 ($c - M_a$). The three alleles (a , b and c) persist within patches for all positive values of genetic
 377 load (fig.3(b)). This contrasts with the previously described case where preference alleles lead to
 378 attraction (hyp. 2a), for which mimetic allele b is lost when the genetic load is high (fig. 3(a)).
 Although equilibrium haplotype frequencies are similar for all positive values of genetic load
 380 assuming preference allele coding for rejection (Hyp.2b), the strength of genetic load still impacts
 the temporal dynamics of haplotypes, the equilibrium being reached earlier as the genetic load

382 increases (see sup. fig S7). This difference in the timing of invasion of the rejection haplotypes
 383 reflects higher selection coefficient associated with these haplotypes in simulations where genetic
 384 load is stronger.

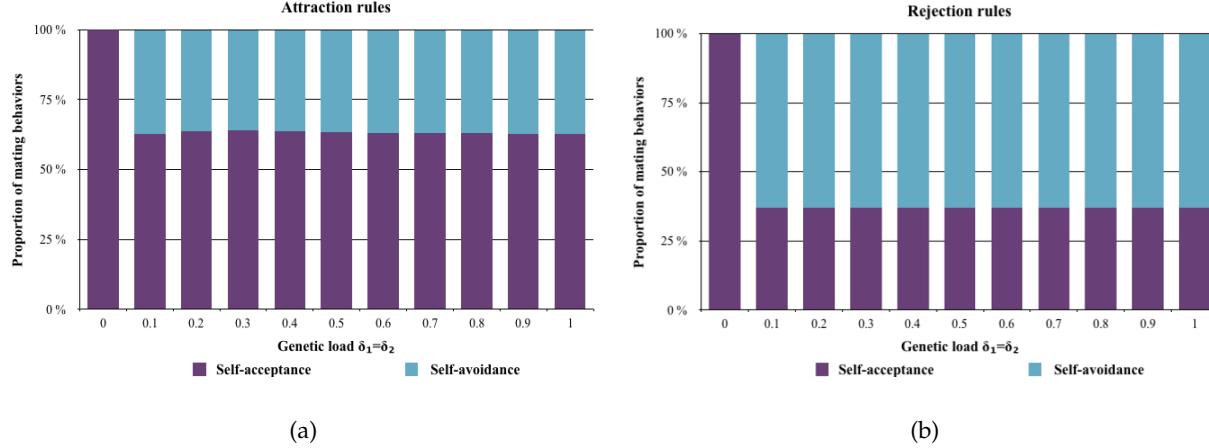


Figure 4: Influence of a genetic load on the distribution of mating behaviour observed at the population level, assuming attraction (a) or rejection (b) alleles at the preference locus (preference/trait). The proportion of individuals displaying self-acceptance (in purple) and self-avoidance (in blue) obtained 2000 time steps after the introduction of preference alleles in both populations are shown for different values of the level of genetic load of δ_1 and δ_2 . The locus M controls for a specific recognition of colour pattern alleles inducing either (a) attraction (hyp.2a) or (b) rejection (hyp.2b). The three alleles at the locus P controlling color pattern variations are initially introduced in even proportion $\frac{1}{3}$ in each population. After 10,000 time steps under random mating the four alleles at locus M M_r , M_a , M_b and M_c are introduced respectively in proportion 0.99, $\frac{0.01}{3}$, $\frac{0.01}{3}$, $\frac{0.01}{3}$. Simulations are run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $\rho = 0$, $mig = 0.1$, $\delta_3 = 0$, $\delta = 0.1$ and $cost = 0.1$.

We then investigate how haplotype frequencies translated into individual behavior. When
 386 we consider preference alleles leading to attraction (hyp.2a), the majority of individuals display
 387 assortative preferences at equilibrium, even with a high genetic load (figure 4(a)). This is surpris-
 388 ing given that most haplotypes are of a “disassortative” type, *i.e.* linking a colour pattern allele
 389 with an attraction allele to a different colour pattern. Nevertheless, colour pattern alleles b and
 390 c are both linked to M_a , coding for attraction to A. As a consequence, most individuals formed
 391 are heterozygous at both the colour pattern locus (with one allele a and another allele) and at
 392 the preference locus (with one allele coding for attraction to phenotype a and another allele).

These double heterozygotes thus benefit from mimicry but also escape from the expression of deleterious mutations, but can still mate with individuals sharing the same phenotype. By contrast, when we consider preference alleles leading to rejection (hyp.2b), most individuals display a disassortative mating behavior (figure 4(b)). This highlights that the genetic architecture of mate preference plays a key role in the evolution of the mating behavior of diploid individuals and that the evolution of disassortative haplotypes inducing disassortative preferences do not necessarily cause disassortative mating at the population scale.

At equilibrium, the proportion of self-avoidance behavior in the population does not depend of the strength of the genetic load (figure 4(b)). But the strength of the genetic load does impact the speed of evolution of disassortative mating (Supp. fig. S7), and again suggests stronger positive selection on disassortative mating when the genetic load associated with dominant wing colour pattern alleles is higher.

Impact of linkage between loci P and M on the evolution of disassortative mating

We observe that the genetic load associated with the two most dominant alleles at the color pattern locus *P* impacts the evolution of mate choice, when the color pattern locus *P* and the preference locus *M* are fully linked. We then test for an effect of recombination between alleles at the two loci on the evolution of mate choice by performing simulations with different values of the recombination rate ρ . Assuming *self-referencing* (hyp.1), increasing recombination rate further promotes the invasion of the disassortative allele *dis* (see Sup. fig S8). Under hyp. 1, mate preference depends on the phenotype displayed by the individual, so that the allele *dis* always translates into a disassortative behavior, irrespective of the linkage disequilibrium between preference locus and color pattern locus. Increased recombination thus only results in a more rapid fixation of the disassortative mating allele *dis*, which benefits the associated genetic load. This hypothesis 1 is thus very similar to a single locus architecture, where a single pleiotropic gene controls both the mating cue and the rejection of this cue.

By contrast, when assuming preference for a given color pattern allele (hyp.2), mating be-

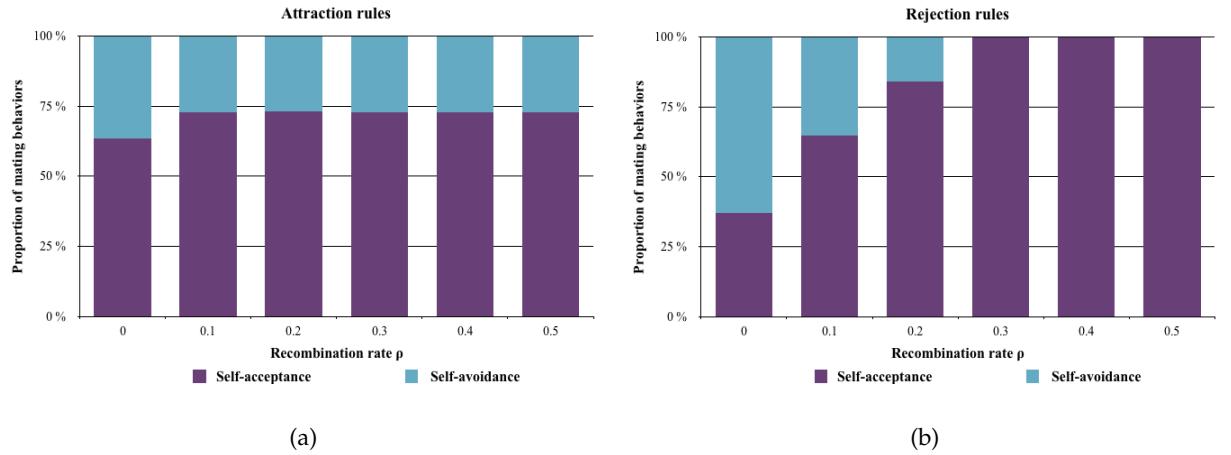


Figure 5: Influence of recombination between colour pattern and preference alleles on the distribution of mating behaviours at the population level, assuming (a) attraction or (b) rejection alleles at the preference locus (*preference/trait*). The proportion of individuals displaying self-acceptance (in purple) and self-avoidance (in blue) obtained 2000 time steps after the introduction of preference alleles in both populations are shown for different values of recombination rate ρ between the preference locus M and the color pattern locus P . The locus M controls for a specific recognition of colour pattern alleles inducing either (a) attraction (hyp.2a) or (b) rejection (hyp.2b). The three alleles at the locus P controlling color pattern variations are initially introduced in even proportion $\frac{1}{3}$ in each population. After 10,000 time steps under random mating the four alleles at locus M M_r , M_a , M_b and M_c are introduced respectively in proportion 0,99, $\frac{0,01}{3}$, $\frac{0,01}{3}$, $\frac{0,01}{3}$. Simulations are run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $\rho = 0$, $mig = 0.1$, $\delta_3 = 0$, $\delta = 0.1$ and $cost = 0.1$.

havior depends on the genotype at the preference locus M independently of the phenotype of the choosing individuals, so that we expected a stronger effect of recombination rate on mate choice evolution. Figure 5 indeed confirms that, by breaking associations between preference and wing pattern alleles, recombination between locus P and M decreases the proportion of individuals performing self-avoidance at equilibrium. The evolution of disassortative mating behaviors is further impaired when assuming that preference alleles generate rejection (hyp. 2a): self-avoidance behavior completely disappears when preference and colour pattern loci are unlinked (*i.e.* when $\rho = 0.5$).

Under attraction rule (hyp.2.a), for each color pattern allele, two third of the possible haplotypes lead to self-avoidance (for instance $a - M_b$ and $a - M_c$ for color pattern allele a). By

contrast, under rejection rule (hyp.2.b), only one out the three possible haplotypes leads to self-
430 avoidance (for instance $a - M_a$ for color pattern allele a). Moreover, the allele encoding for the rejection of a given color pattern (e.g. M_a) is rarely linked with the rejected color pattern allele
432 (e.g. a) because mate choice limits crosses between an individual carrying a rejection allele on one hand and an individual displaying the rejected allele on the other hand. This limited linkage
434 between rejecting and rejected alleles further impedes the formation of disassortative haplotypes (e.g. $a - M_a$) by recombination when assuming rejection rule (Hyp.2b). Overall, genetic architec-
436 tures enabling recombination between color pattern and preference loci thus limit the evolution of haplotypes linking colour pattern alleles with the corresponding mate choice allele leading
438 to disassortative mating, when assuming a preference locus acting on the specific recognition of mating cues (i.e. under hyp.2).

440

Discussion

Genetic architecture of disassortative mating: theoretical predictions

442 Our model shows that disassortative mating is more likely to emerge when genetic architecture is based on *self-referencing* rather than on *preference/trait*. The genetic basis of disassortative mating
444 is largely unknown in natural populations. Assortative mating is better known, for instance in *Heliconius* butterflies where it is generally associated with attraction towards a specific cue. The
446 locus controlling preference for yellow *vs.* white in *H. cydno* maps close to the gene *aristaless*, whose variations in expression controls for the white/yellow switch in this species (Kronforst
448 et al., 2006; Westerman et al., 2018). In *H. melpomene*, a major QTL associated with preference towards red was identified in crosses between individuals displaying a red pattern and individuals with a white pattern (Merrill et al., 2019). This QTL is also located close to the gene *optix* involved in the variation of red patterning in *H. melpomene*. Assortative mating in *Heliconius* thus
450 seems to rely on alleles encoding for preference for specific cues in linkage with loci involved in the variation of these cues. Contrastingly, our model suggests that the genetic architecture of
452

454 disassortative mating might differ from those documented in species showing assortative mating behaviour.

456 Some *preference/trait* genotypes generate similar mate preferences to some *self-referencing* genotypes: for example, under the rejection rule, the genotype $a - M_a / a - M_a$ leads to the same mate
458 preference as the genotype $a - dis / a - dis$ under self-referencing rule. Introducing recombination
460 in the *preference/trait* rule then enables decoupling the mating cue and its corresponding
462 preference alleles, thereby disrupting the self rejection behaviour. Under the *preference/trait* rule,
464 some haplotypes thus generates partial disassortative mating : for instance the *rejection rule* hap-
466 lotype $a - Mb$ allows mating with individuals displaying both the non-self phenotype c and the
468 self phenotype a . This self-acceptation behavior may increase the reproductive success associated
470 with these haplotypes. The persistence of these *rejection rule* haplotypes allowing both assortative
and disassortative mating prevents the fixation of strict self-rejection behaviour in the popula-
472 tion. Furthermore, under the *preference/trait* rule, our model distinguishes whether the specific
recognition of the cue leads to either rejection or attraction, and highlights that these two hy-
474 potheses lead to evolution of different mate preferences: disassortative mating is indeed more
likely to emerge assuming the rejection rule. This rejection rule indeed generates a larger number
476 of self-rejecting haplotypes than the attraction rule, although recombination limits this effect.

478 Another major difference between the two rules relies on the role of the phenotypes of the
choosing and chosen individuals on mate choice. Under both rules, mate choice is based on
the phenotype of the chosen individual, so that dominance relationships at the colour pattern
480 locus influences the evolution of disassortative mating. Nevertheless, under *self-referencing*, mate
preference also depends on the phenotype of the choosing individual, so that dominance at the
colour pattern locus of both the choosing and chosen individuals determines the choice. Under
preference/trait however, mate preference does not depend on the phenotype of the choosing
individual, but on dominance relationships at the mate preference locus, allowing for different
types of preference to emerge, including individuals reproducing with different phenotypes only,
or individuals mating with either their own phenotype and different ones.

Altogether, our theoretical shows that the genetic basis of mate preferences have a strong
482 impact on the evolution of disassortative mating at loci under heterozygote advantage, pointing
out the need to characterize the genetic basis of mate preference empirically, as well as the linkage
484 disequilibrium with the locus controlling variations in the mating cues.

*Evolution of disassortative mating results from interactions between dominance
486 and deleterious mutations*

Here, we confirm that the evolution of disassortative mating is promoted by the heterozygote
488 advantage associated with alleles determining the mating cue. As mentioned below, the pheno-
type of the chosen individuals depends on dominance relationships at the colour pattern locus.
490 Our model highlights that a genetic load associated with dominant alleles has a stronger ef-
fect on promoting disassortative mating than a genetic load associated with the most recessive
492 haplotype. This theoretical prediction is in accordance with the few documented cases of poly-
morphism promoted by disassortative mating. In the polymorphic butterfly *Heliconius numata*
494 for instance, the top dominant haplotype *bicoloratus* is associated with a strong genetic load (Jay
et al., 2019). Similarly, in the white throated sparrow, the dominant *white* allele is also associated
496 with a significant genetic load (Tuttle et al., 2016). Again, in the self-incompatibility locus of the
Brassicaceae, dominant haplotypes carry a higher genetic load than recessive haplotypes (Llaurens
498 et al., 2009). Disassortative mating is beneficial because it increases the number of heterozygous
offspring with higher fitness. Once disassortative mating is established within populations, re-
500 cessive deleterious mutations associated with the dominant haplotype become sheltered because
the formation of dominant homozygotes is strongly reduced, limiting the opportunities for purg-
502 ing via recombination (Llaurens et al., 2009). Similarly, the model of Karlin and Feldman (1968)
suggests that disassortative mating slows down the purge of deleterious alleles. Falk and Li
504 (1969) proved that disassortative mate choice promotes polymorphism, and therefore limits the
loss of alleles under negative selection. Disassortative mating might thus shelter deleterious mu-

506 tations linked to dominant alleles, and thus reinforces heterozygote advantage. The sheltering
508 of deleterious mutations is favoured by the interaction between two aspects of the genetic archi-
508 tecture, dominance at the mating cue locus and limited recombination. This is likely to happen
508 in polymorphic traits involving chromosomal rearrangements, where recombination is limited.
510 Many rearranged haplotypes are indeed associated with serious fitness reduction at homozy-
510 gotes state (Faria et al., 2019), such as in the derived haplotypes of the supergene controlling
512 controlling plumage and mate preferences in the white-throated sparrow (Thomas et al., 2008).
514 The deleterious elements in inverted segment can be due to an initial capture by the inversions
514 (Kirkpatrick, 2010) but could also accumulate through time, resulting in different series of dele-
514 terious mutations associated to inverted and non-inverted haplotypes (Berdan et al., 2019).

516 Here, we assume that mate choice relied purely on a single cue. Nevertheless, mate choice
518 could be based on other cues, controlled by linked locus and enabling discrimination between
518 homozygotes and heterozygotes, thereby further increasing the proportion of heterozygous off-
520 springs with high fitness. We also modelled strict preferences regarding colour patterns, but
520 choosiness might be less stringent in the wild, and may limit the evolution of disassortative
522 mating. Depending on the cues and dominance relationships among haplotypes, different mate
522 choice behaviours may also evolve, which might modulate the evolution of polymorphism within
524 populations. Our model thus stresses the need to document dominance relationships among
524 haplotypes segregating at polymorphic loci, as well as mate choice behaviour and cues, to un-
524 derstand the evolutionary forces involved in the emergence of disassortative mating.

526 Conclusions

528 Inspired by a well-documented case of disassortative mating based on cues subject to natural
528 selection, our model shows that balancing selection promoting local polymorphism and het-
530 erozygote advantage is likely to favor the evolution of disassortative mating preferences. The
530 genetic basis of this behavior is predicted to involve haplotypes triggering rejection toward spe-

cific cues. Such rejection loci promote disassortative mating when they are in tight linkage with
532 the locus controlling mating cue variations.

Acknowledgments

534 The authors would like to thank Charline Smadi and Emmanuelle Porcher for feedback on the
modeling approach developed here. We also thank Thomas Aubier and Richard Merrill and
536 the whole Heliconius group for stimulating discussion on mate choice evolution in our favorite
butterflies. We are also grateful to Roger Butlin for his thoughtful review of a previous version of
538 this manuscript. This work was supported by the Emergence program from Paris City Council
to VL and the ANR grant SUPERGENE to MJ.

540 References

M. Arias, A. Meichanetzoglou, M. Elias, N. Rosser, D. L. De-Silva, B. Nay, and V. Llaurens.
542 Variation in cyanogenic compounds concentration within a heliconius butterfly community:
does mimicry explain everything? *BMC evolutionary biology*, 16(1):272, 2016.

544 E. L. Berdan, A. Blanckaert, R. K. Butlin, and C. Bank. Muller's ratchet and the
long-term fate of chromosomal inversions. *bioRxiv*, 2019. 10.1101/606012. URL
546 <https://www.biorxiv.org/content/early/2019/04/13/606012>.

R. K. Butlin, P. M. Collins, and T. H. Day. The effect of larval density on an inversion polymor-
548 phism in the seaweed fly *coelopa frigida*. *Heredity*, 1984.

L. Casselton. Mate recognition in fungi. *Heredity*, 88(2):142, 2002.

550 M. Chouteau, M. Arias, and M. Joron. Warning signals are under positive frequency-dependent
selection in nature. *Proceedings of the national Academy of Sciences*, 113(8):2164–2169, 2016.

552 M. Chouteau, V. Llaurens, F. Piron-Prunier, and M. Joron. Polymorphism at a mimicry supergene

554 maintained by opposing frequency-dependent selection pressures. Proceedings of the National
555 Academy of Sciences, 114(31):8325–8329, 2017.

556 T. H. Day and Butlin. Non-random mating in natural populations of the seaweed fly, *coelopa*
557 *frigida*. Heredity, 1987.

558 M. de Cara, N. Barton, and M. Kirkpatrick. A model for the evolution of assorta-
559 tive mating. The American Naturalist, 171(5):580–596, 2008. 10.1086/587062. URL
560 <https://doi.org/10.1086/587062>. PMID: 18419568.

561 C. T. Falk and C. C. Li. Negative assortative mating: Exact solution to a simple model. Genetics,
562 1969.

563 R. Faria, K. Johannesson, R. K. Butlin, and A. M. Westram. Evolving inversions. Trends in ecology
564 & evolution, 2019.

565 S. J. Hiscock and S. M. McInnis. Pollen recognition and rejection during the sporophytic self-
566 incompatibility response: *Brassica* and beyond. Trends in plant science, 8(12):606–613, 2003.

567 M. Hori. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish.
568 Science, 260(5105):216–219, 1993.

569 B. M. Horton, Y. Hu, C. L. Martin, B. P. Bunke, B. S. Matthews, I. T. Moore, J. W. Thomas, and
570 D. L. Maney. Behavioral characterization of a white-throated sparrow homozygous for the *zal2*
571 *m* chromosomal rearrangement. Behavior genetics, 43(1):60–70, 2013.

572 A. M. Houtman and J. B. Falls. Negative assortative mating in the white-throated sparrow,
573 *zonotrichia albicollis*: the role of mate choice and intra-sexual competition. Animal Behaviour,
574 48(2):377–383, 1994.

575 P. Jay, M. Chouteau, A. Whibley, H. Bastide, V. Llaurens, H. Parrinello, and
576 M. Joron. Mutation accumulation in chromosomal inversions maintains wing pat-

576 tern polymorphism in a butterfly. bioRxiv, 2019. 10.1101/736504. URL
 <https://www.biorxiv.org/content/early/2019/08/15/736504>.

578 Y. Jiang, D. I. Bolnick, and M. Kirkpatrick. Assortative mating in animals. The American
Naturalist, 181(6):E125–E138, 2013. 10.1086/670160. URL <https://doi.org/10.1086/670160>.
580 PMID: 23669548.

582 M. Joron and Y. Iwasa. The evolution of a müllerian mimic in a spatially distributed community.
 Journal of Theoretical Biology, 237(1):87–103, 2005.

584 M. Joron, I. R. Wynne, G. Lamas, and J. Mallet. Variable selection and the coexistence of multiple
 mimetic forms of the butterfly *heliconius numata*. Evolutionary Ecology, 13(7-8):721–754, 1999.

586 S. Karlin and M. W. Feldman. Further analysis of negative assortative mating. Genetics, 1968.

588 M. Kirkpatrick. How and why chromosome inversions evolve. PLoS biology, 8(9):e1000501, 2010.

590 M. Kirkpatrick and S. L. Nuismer. Sexual selection can constrain sympatric speciation.
 Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1540):687–693,
592 2004.

594 M. Kopp, M. R. Servedio, T. C. Mendelson, R. J. Safran, R. L. Rodríguez, M. E. Hauber, E. C.
 Scordato, L. B. Symes, C. N. Balakrishnan, D. M. Zonana, et al. Mechanisms of assortative
596 mating in speciation with gene flow: connecting theory and empirical research. The American
Naturalist, 191(1):1–20, 2018.

598 M. R. Kronforst, L. G. Young, D. D. Kapan, C. McNeely, R. J. O'Neill, and L. E. Gilbert. Linkage
 of butterfly mate preference and wing color preference cue at the genomic location of wingless.
 Proceedings of the National Academy of Sciences, 103(17):6575–6580, 2006.

600 Y. Le Poul, A. Whibley, M. Chouteau, F. Prunier, V. Llaurens, and M. Joron. Evolution of domi-
 nance mechanisms at a butterfly mimicry supergene. Nature Communications, 5:5644, 2014.

V. Llaurens, L. Gonthier, and S. Billiard. The sheltered genetic load linked to the s locus in plants:
600 new insights from theoretical and empirical approaches in sporophytic self-incompatibility.
Genetics, 183(3):1105–1118, 2009.

602 V. Llaurens, S. Billiard, and M. Joron. The effect of dominance on polymorphism in müllerian mimicry. Journal of theoretical biology, 337:101–110, 2013.

604 V. Llaurens, A. Whibley, and M. Joron. Genetic architecture and balancing selection: the life and death of differentiated variants. Molecular ecology, 26(9):2430–2448, 2017.

606 C. Mérot, V. Llaurens, E. Normandeau, L. Bernatchez, and M. Wellenreuther. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. bioRxiv, 2019.
608 10.1101/648584. URL <https://www.biorxiv.org/content/early/2019/05/24/648584>.

R. M. Merrill, K. K. Dasmahapatra, J. Davey, D. Dell'Aglio, J. Hanly, B. Huber, C. D. Jiggins,
610 M. Joron, K. Kozak, V. Llaurens, et al. The diversification of heliconius butterflies: what have we learned in 150 years? Journal of Evolutionary Biology, 28(8):1417–1438, 2015.

612 R. M. Merrill, P. Rastas, S. H. Martin, M. C. Melo, S. Barker, J. Davey, W. O. McMillan, and C. D. Jiggins. Genetic dissection of assortative mating behavior. PLoS biology, 17(2):e2005902, 2019.

614 F. Müller. Ituna and thyridia; a remarkable case of mimicry in butterflies (transl. by ralph meldola from the original german article in kosmos, may 1879, 100). Transactions of the Entomological
616 Society of London, 1879.

S. P. Otto, M. R. Servedio, and S. L. Nuismer. Frequency-dependent selection and the evolution
618 of assortative mating. Genetics, 179(4):2091–2112, 2008.

D. J. Penn and W. K. Potts. The evolution of mating preferences and major histocompatibility
620 complex genes. The American Naturalist, 153(2):145–164, 1999.

S. Piertney and M. Oliver. The evolutionary ecology of the major histocompatibility complex.
622 Heredity, 96(1):7, 2006.

M. Schilthuizen, P. G. Craze, A. S. Cabanban, A. Davison, J. Stone, E. Gittenberger, and B. Scott.

624 Sexual selection maintains whole-body chiral dimorphism in snails. Journal of evolutionary
biology, 20(5):1941–1949, 2007.

626 T. N. Sherratt. Spatial mosaic formation through frequency-dependent selection in müllerian mimicry complexes. Journal of Theoretical Biology, 2006.

628 T. Takahashi and M. Hori. Evidence of disassortative mating in a tanganayikan cichlid fish and its role in the maintenance of intrapopulation dimorphism. Biology Letters, 4(5):497–499, 2008. 10.1098/rsbl.2008.0244. URL
<https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2008.0244>.

632 X. Thibert-Plante and S. Gavrilets. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecology letters, 16, 06 2013. 10.1111/ele.12131.

634 J. W. Thomas, M. Cáceres, J. J. Lowman, C. B. Morehouse, M. E. Short, E. L. Baldwin, D. L. Maney, and C. L. Martin. The chromosomal polymorphism linked to variation in social behavior in 636 the white-throated sparrow (*zonotrichia albicollis*) is a complex rearrangement and suppressor of recombination. 179(3):1455–1468, 2008. ISSN 0016-6731. 10.1534/genetics.108.088229. URL
<https://www.genetics.org/content/179/3/1455>.

T. Tregenza and N. Wedell. Genetic compatibility, mate choice and patterns of parentage: invited 640 review. Molecular Ecology, 9(8):1013–1027, 2000.

E. M. Tuttle, A. O. Bergland, M. L. Korody, M. S. Brewer, D. J. Newhouse, P. Minx, M. Stager, 642 A. Betuel, Z. A. Cheviron, W. C. Warren, et al. Divergence and functional degradation of a sex chromosome-like supergene. Current Biology, 26(3):344–350, 2016.

644 C. Wedekind and S. Füri. Body odour preferences in men and women: do they aim for specific mhc combinations or simply heterozygosity? Proceedings of the Royal Society of London.
646 Series B: Biological Sciences, 264(1387):1471–1479, 1997.

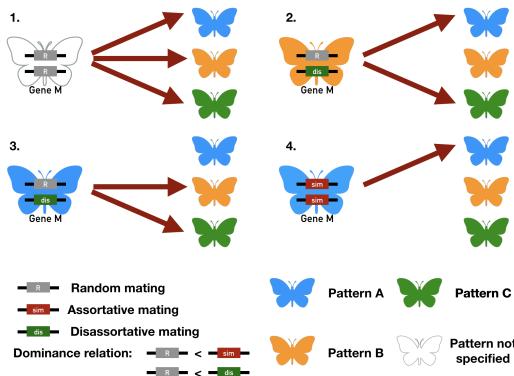
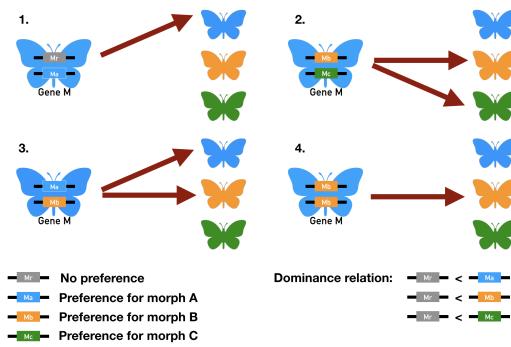
648 C. Wedekind, T. Seebeck, F. Bettens, and A. J. Paepke. Mhc-dependent mate preferences in
humans. Proceedings of the Royal Society of London. Series B: Biological Sciences, 260(1359):
245–249, 1995.

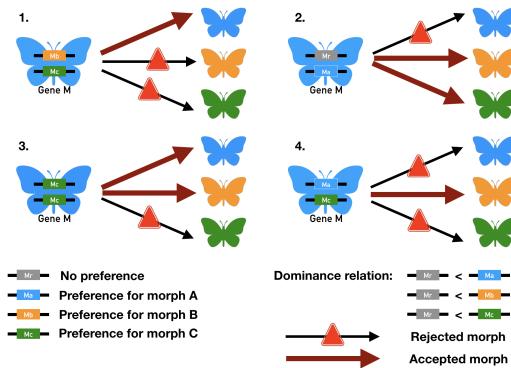
650 E. L. Westerman, N. W. VanKuren, D. Massardo, A. Tenger-Trolander, W. Zhang, R. I. Hill,
M. Perry, E. Bayala, K. Barr, N. Chamberlain, et al. Aristless controls butterfly wing color
652 variation used in mimicry and mate choice. Current Biology, 28(21):3469–3474, 2018.

S. Wright. The distribution of self-sterility alleles in populations. Genetics, 24(4):538, 1939.

654

Supplementary Material


Figure S1: Mate preferences expressed by the different genotypes at locus *M*, assuming *self-referencing* (Hyp.1).

1. Butterflies carrying two *r* alleles mate at random, independently from either their own color pattern or the color pattern displayed by mating partners.
- 2-3. Butterflies carrying a *dis* allele display disassortative mating behavior, and mate preferentially with individuals whose color pattern differ from their own.
4. Butterflies carrying a *sim* allele display an assortative mating behavior and thus preferentially mate with individuals displaying the same color pattern.

Cases 1 and 4 therefore lead to *self-acceptance*, while cases 2 and 3 lead to *self-avoidance*.

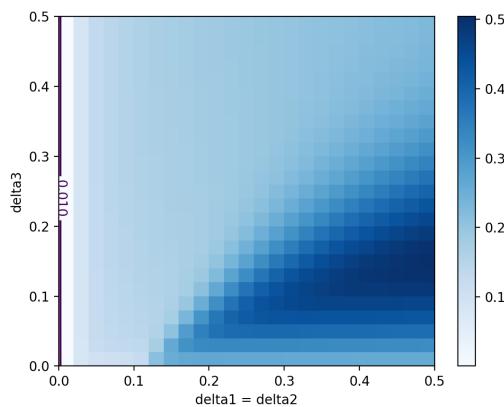

Figure S2: Mate preferences expressed by the different genotypes at locus *M* assuming preference allele encoding for attraction of specific color patterns (preference/trait) (hyp.2.a). 1. A butterfly displaying phenotype [A] (in blue) carried one allele coding for specific attraction toward partner displaying phenotype [A] (in blue) and the allele coding for random mating at the locus *M* controlling the mate choice. This butterfly will mate preferentially with individuals displaying phenotype [A], resulting in assortative mating. 2. A butterfly displaying phenotype [A] (in blue) carries one allele coding for specific attraction toward partner displaying phenotype [B] (in orange) and one allele coding for specific attraction toward partner displaying phenotype [C] (in green). This individual will preferentially mate with individuals displaying phenotype [B] and [C], resulting in disassortative mating. 3. A butterfly displaying phenotype [A] (in blue) carries one allele coding for specific attraction toward partner displaying phenotype [A] (in blue) and one allele coding for specific attraction toward partner displaying phenotype [B] (in orange). This individual will preferentially mate with individuals displaying phenotype [A] and [B]. 4. A butterfly displaying phenotype [A] (in blue) carries two alleles coding for specific attraction toward partner displaying phenotype [B] (in orange). This individual will preferentially mate with individuals displaying phenotype [B], resulting in disassortative mating. Cases 1 and 3 therefore lead to *self-acceptance*, while cases 2 and 4 lead to *self-avoidance*.

Figure S3: Mate preferences expressed by the different genotypes at locus M preference allele encoding for rejection of specific color patterns (preference/trait) (hyp.2.a). 1. A butterfly displaying phenotype [A] (in blue) carried one allele coding for specific rejection toward partner displaying phenotype [B] (in orange) and one allele one allele coding for specific rejection toward partner displaying phenotype [C] (in orange). This butterfly will mate preferentially with individuals displaying phenotype [A], resulting in assortative mating. 2. A butterfly displaying phenotype [A] (in blue) carried one allele coding for specific rejection toward partner displaying phenotype [A] (in orange) and one allele coding for random mating (in grey). This butterfly will mate preferentially with individuals displaying phenotypes [B] and [C], resulting in disassortative mating. 3. A butterfly displaying phenotype [A] (in blue) carried two alleles coding for specific rejection toward partners displaying phenotype [C] (in green). This butterfly will mate preferentially with individuals displaying phenotypes [A] and [B]. 4. A butterfly displaying phenotype [A] (in blue) carried one allele coding for specific rejection toward partner displaying phenotype [A] (in blue) and one allele coding for specific rejection toward partner displaying phenotype [C] (in green). This butterfly will mate preferentially with individuals displaying phenotype [B] resulting in disassortative mating. Cases 1 and 3 therefore lead to *self-acceptance*, while cases 2 and 4 lead to *self-avoidance*.

$\delta_1 = \delta_2$	δ_3	Population 1			Population 2		
		Proportion of morph A	Proportion of morph B	Proportion of morph C	Proportion of morph A	Proportion of morph B	Proportion of morph C
0,00	0,00	90 %	10 %	0 %	46 %	54 %	0 %
0,00	0,25	90 %	10 %	0 %	46 %	54 %	0 %
0,00	0,50	90 %	10 %	0 %	46 %	54 %	0 %
0,00	1,00	90 %	10 %	0 %	46 %	54 %	0 %
0,25	0,00	63 %	8 %	28 %	22 %	53 %	25 %
0,25	0,25	79 %	18 %	3 %	35 %	59 %	6 %
0,25	0,50	80 %	18 %	2 %	38 %	58 %	4 %
0,25	1,00	82 %	18 %	1 %	41 %	57 %	2 %
0,50	0,00	56 %	7 %	37 %	19 %	51 %	31 %
0,50	0,25	76 %	19 %	5 %	32 %	59 %	9 %
0,50	0,50	78 %	19 %	3 %	36 %	59 %	5 %
0,50	1,00	80 %	19 %	1 %	39 %	58 %	3 %
1,00	0,00	51 %	5 %	43 %	17 %	48 %	35 %
1,00	0,25	74 %	19 %	7 %	31 %	58 %	11 %
1,00	0,50	77 %	19 %	4 %	35 %	59 %	6 %
1,00	1,00	79 %	19 %	2 %	38 %	58 %	3 %

Figure S4: Impact of linked genetic load on color pattern polymorphism, assuming random mating. The proportion of phenotypes [A], [B] and [C] in the population 1 and 2 after 1000 time steps depend on the different values of genetic load associated with the recessive allele c (δ_1), intermediate-dominant allele b (δ_2) and dominant allele c (δ_3). Simulation were run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $\rho = 0$, $mig = 0.1$, $\delta = 0.1$ and $cost = 0.1$.

Figure S5: Effect of the cost of choosiness $cost$ on the invasion of the disassortative mutant dis , under the *self-referencing hypothesis (Hyp.1)*. Simulations are run assuming either low cost of choosiness $cost = 0.1$. The invasion of the disassortative mutant dis always depends on the strength of genetic load associated with the dominant alleles a and b ($\delta_1 = \delta_2$) on the x-axis and to the recessive allele c , δ_3 , on the y-axis. Level of blue indicates the frequency of the disassortative mutant dis , inducing self-avoidance based on phenotype (hyp. 1), after 10,000 time steps. The three alleles at the locus P controlling color pattern variations were introduced in proportion $\frac{1}{3}$ in each population, and the initial frequency of the mutant was 0.01, shown by the vertical purple line, marking the limit of invasion by the mutant. Simulation were run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0$, $mig = 0.1$ and $\rho = 0$.

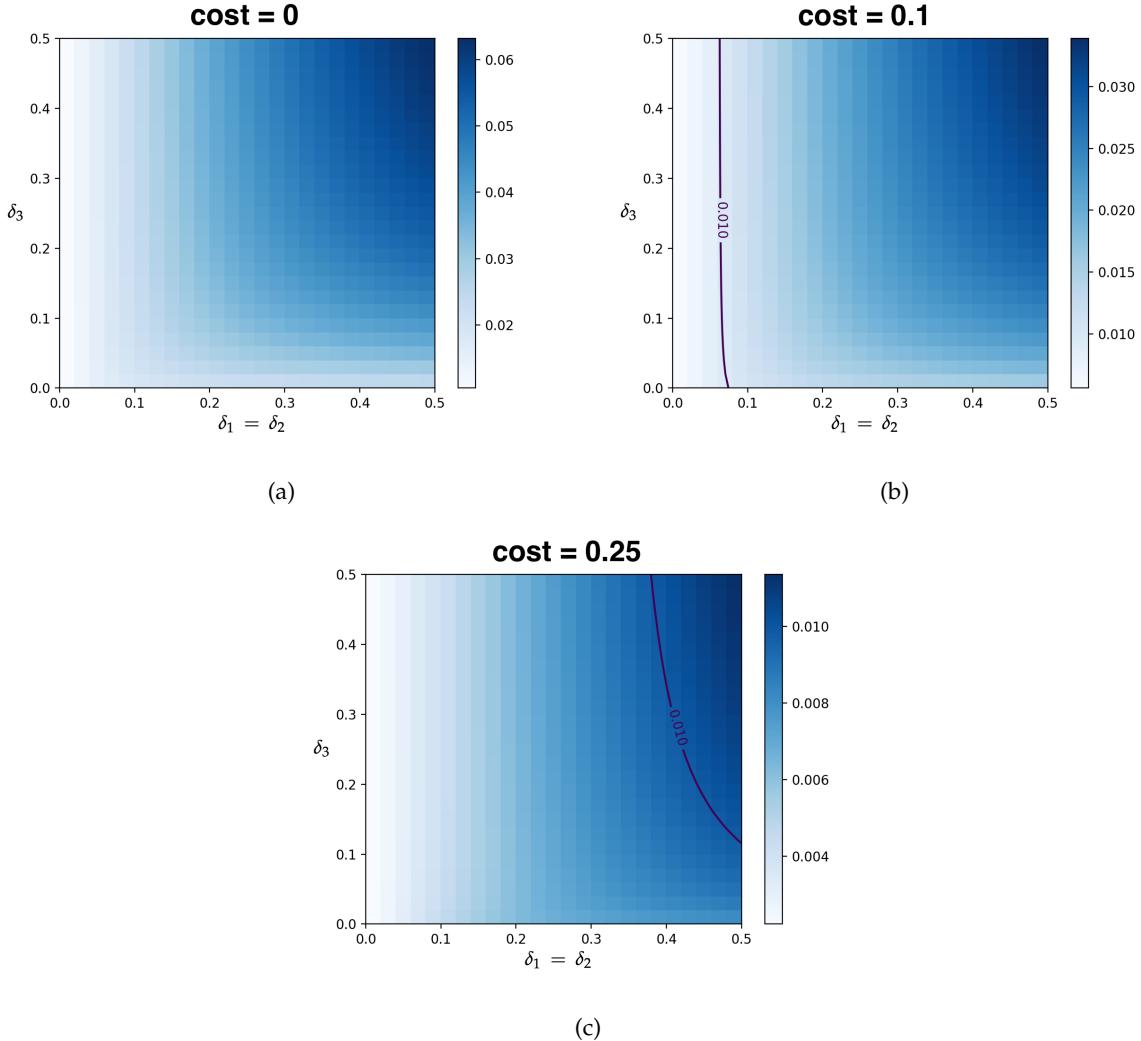
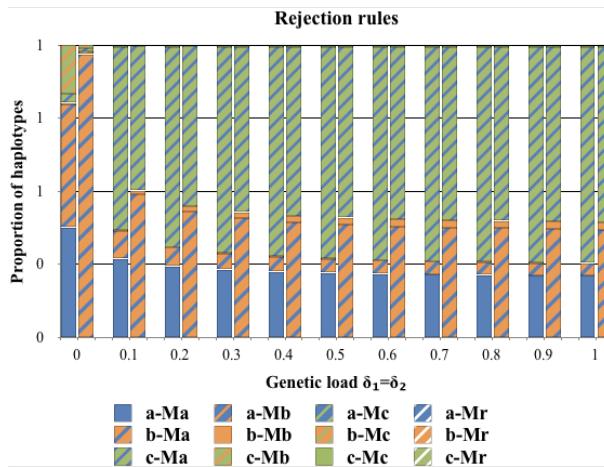
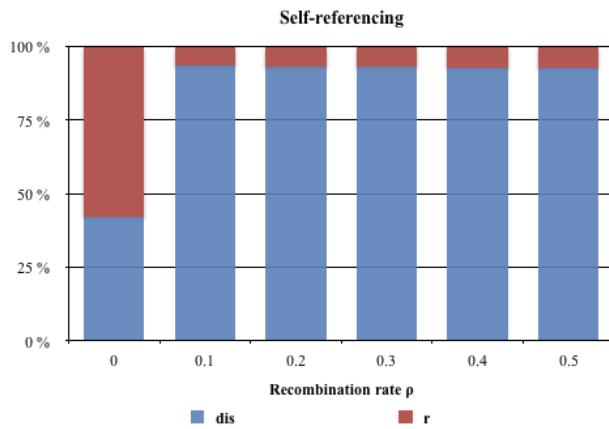




Figure S6: **Effect of the cost of choosiness $cost$ on the invasion of the disassortative mutant *dis*, under the self-referencing hypothesis (Hyp.1).** Simulations were run assuming either (a) no cost of choosiness $cost = 0$, (b) low cost of choosiness $cost = 0.1$ or (c) elevated cost of choosiness $cost = 0.25$. The invasion of the disassortative mutant *dis* always depends on the strength of genetic load associated with the dominant alleles a and b ($\delta_1 = \delta_2$) on the x-axis and to the recessive allele c , δ_3 , on the y-axis. Level of blue indicates the frequency of the disassortative mutant *dis*, inducing self-avoidance based on phenotype (hyp. 1), after 100 time steps. The three alleles at the locus P controlling color pattern variations were introduced in proportion $\frac{1}{3}$ in each population, and the initial frequency of the mutant was 0.01, shown by the vertical purple line, marking the limit of invasion by the mutant. Simulation were run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0$, $mig = 0.1$ and $\rho = 0$.

Figure S7: Impact of the genetic load on haplotype diversity, assuming rejection alleles at the preference locus (Hyp. 2b), during the emergence of preference alleles. The proportion of haplotypes obtained 200 time steps after the introduction of preference alleles in both populations are shown for different values of genetic load associated with alleles a and b ($\delta_1 = \delta_2$). The locus M controls for a specific recognition of colour pattern alleles inducing either (a) attraction (hyp.2a) or (b) rejection (hyp.2b). The three alleles at the locus P controlling color pattern variations are initially introduced in even proportion $\frac{1}{3}$ in each population. After 10,000 time steps under random mating the four alleles at locus M M_r , M_a , M_b and M_c are introduced respectively in proportion 0.99 , $\frac{0.01}{3}$, $\frac{0.01}{3}$, $\frac{0.01}{3}$. Simulations are run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $\rho = 0$, $mig = 0.1$, $\delta_3 = 0$, $\delta = 0.1$ and $cost = 0.1$.

Figure S8: Impact of recombination between color pattern (locus P) and preference alleles (locus M) on mating behavior, assuming self-referencing preference alleles (Hyp.1). The proportion of *dis* and *r* alleles in both populations for different values of recombination rate ρ after 10,000 time steps. The three alleles at the locus P controlling color pattern variations were introduced in proportion $\frac{1}{3}$ in each population and the genetic architecture to describe the locus M corresponded to self-referencing (hyp.1). Simulations were run assuming $r = 2$, $K = 2000$, $N_{tot,1}^0 = N_{tot,2}^0 = 100$, $\lambda = 0.0002$, $\sigma = 0.5$, $d = 0.1$, $mig = 0.1$, $\delta_1 = 0.5$, $\delta_2 = 0.5$, $\delta_3 = 0$, $\delta = 0.1$ and $cost = 0.1$.